EP1192838A2 - Hearing aid device, comprising a directional microphone system and a method for operating a hearing aid device - Google Patents
Hearing aid device, comprising a directional microphone system and a method for operating a hearing aid deviceInfo
- Publication number
- EP1192838A2 EP1192838A2 EP00927233A EP00927233A EP1192838A2 EP 1192838 A2 EP1192838 A2 EP 1192838A2 EP 00927233 A EP00927233 A EP 00927233A EP 00927233 A EP00927233 A EP 00927233A EP 1192838 A2 EP1192838 A2 EP 1192838A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- hearing aid
- microphone
- directional microphone
- order
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 9
- 238000013528 artificial neural network Methods 0.000 claims description 3
- 230000001419 dependent effect Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000003491 array Methods 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 101100513402 Arabidopsis thaliana MIK2 gene Proteins 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 101150101778 mik1 gene Proteins 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R25/00—Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
- H04R25/40—Arrangements for obtaining a desired directivity characteristic
- H04R25/407—Circuits for combining signals of a plurality of transducers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R25/00—Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
- H04R25/40—Arrangements for obtaining a desired directivity characteristic
- H04R25/405—Arrangements for obtaining a desired directivity characteristic by combining a plurality of transducers
Definitions
- the invention relates to a hearing aid with the features of the preamble of claim 1. Furthermore, the invention relates to a method for operating a hearing aid.
- Hearing aid devices with at least two microphones for achieving directional microphone characteristics of first or higher order are known as prior art.
- second-order or higher-order directional microphone systems are used, an undesired reduction in the directivity index (directional index) occurs in individual frequency ranges of the input signal.
- the frequency range from 100 Hz to 6 kHz is particularly interesting for improving hearing.
- a directivity index that falls slightly towards higher frequencies is obtained over this frequency range.
- Di values of about 5 dB are obtained.
- Directional microphone systems of the n-th order with n> l have a negative directivity index due to the high sensitivity to component tolerances at low frequencies.
- DI values of 7 dB and more can be achieved for frequencies from 1 kHz to 5 kHz.
- a hearing aid is known from US Pat. No. 5,757,933 in which it is possible to switch manually between a zero-order microphone (microphone without directional effect) and a first-order microphone system. The switch is made by the hearing aid wearer.
- the invention has for its object to provide a hearing aid and a method for operating a hearing aid, in which a high directivity index is achieved over a wide frequency range of the input signal.
- the hearing aid according to the invention comprises at least two microphones in order to be able to implement directional microphone systems of zero, first or higher order.
- a zero-directional microphone system in the sense of the invention is to be understood as a microphone system without directional effect, for example an omnidirectional microphone that is not connected to other microphones.
- first-order directional microphone systems is a theoretically achievable maximum value of the directivity index
- DI DI of 6 dB (hypermere).
- KEMAR a standard research manikin
- Directional microphone systems of the second and higher order have Di values of 10 dB and more, which are advantageous, for example, for better speech intelligibility.
- a hearing aid contains, for example, three omnidirectional microphones
- directional microphone systems of zero to second order can be formed on this basis. Microphone signals can thus be simultaneously received from these directional microphone systems with zero to second order polar patterns.
- the microphone signals emanating from microphone systems of different orders are weighted and summed differently depending on the frequency.
- a hearing aid with directional microphone systems of first and second order essentially the first order microphone signal is further processed at low frequencies and the second order microphone signal is processed at higher frequencies.
- the weighting is preferably carried out by filter elements, the microphone signal of the first-order directional microphone system being subjected to low-pass filtering and the microphone signal of the second-order directional microphone system being subjected to high-pass filtering.
- the microphone signal of the directional microphone of the first order is passed on at low frequencies and the microphone signal of the directional microphone system of the nth order is passed on for further processing, where n stands for the highest occurring order.
- essentially the microphone signals of the directional microphone systems between the first and the highest occurring order are preferably processed further.
- the cut-off frequencies of the filter elements connected downstream of the directional microphone systems are adjustable.
- the limit frequencies in the audible frequency range for example up to 10 kHz
- the associated frequency-dependent selection of directional microphone systems of different orders directional properties can be achieved for the overall system, which are clearly superior to conventional hearing aids, viewed over the entire frequency range.
- An optimized directional effect can thus be achieved for each frequency of the input signal.
- Modern hearing aids allow the acoustic input signal to be divided into channels. Among other things, this enables different amplification of individual frequency ranges.
- the cutoff frequencies of the filter elements downstream of the directional microphone systems are coupled to cutoff cutoff frequencies of the hearing aid.
- each directional microphone system forms a channel.
- the filter elements for weighting the microphone signals then simultaneously effect the channel division, which means that additional filter elements for channel division can be omitted.
- the position of one or more cut-off frequencies can also be determined according to the situation and continuously checked and adjusted. This results in an optimized adaptation to different usable / noise situations.
- the environmental situation is preferably analyzed by means of a neural network and / or a fuzzy logic controller.
- the setting of the cut-off frequencies and the overall directional characteristic of the microphone system of a hearing aid according to the invention can also be carried out differently depending on the hearing program set.
- a zero-order microphone signal microphone signal with no directional effect
- FIG. 1 shows a basic circuit diagram for the generation and frequency-dependent combination of directional microphone systems of different orders
- Figure 2 is a schematic diagram of a hearing aid with three microphones
- Figure 3 shows a frequency-specific curve of the directivity index (DI).
- the microphones of a hearing aid are labeled MIK1, MIK2, ...., MIKm.
- the electronic circuit arrangement ES for forming directional microphone systems can include electronic components such as delay elements, summation elements or inverters.
- the directional microphone signals thus formed at the output of the electronic circuit ES are referred to as zero-order directional microphone signal RSO, first-order directional microphone signal RS1,..., N-order directional microphone signal RSn.
- Several directional microphone signals of the same order can also be formed. In the hearing aid according to the invention, however, at least two directional microphone signals differ in terms of their order.
- the filter bank FB has filter elements, for example high-pass, low-pass or bandpass filters.
- the directional microphone signals are attenuated differently by the filter bank FB depending on their order and their signal frequency.
- the cut-off frequencies and filter coefficients of the individual filter elements can preferably be set.
- the output signals (AS0, AS1 ... ASn) of the filter bank FB are fed to a summation element S in order to form the overall microphone microphone signal GRS.
- the principle circuit diagram shown for processing the microphone signals of a hearing aid can be implemented both in digital and in analog circuitry. There can also be other elements Components such as A / D converters, D / A converters, switches, amplifiers, etc. (not shown here).
- the circuit will be set in such a way that the first-order directional microphone signal is transmitted at least essentially up to a lower limit frequency fgl, for example 1 kHz.
- fgl a lower limit frequency
- the directional microphone signal of the first order is increasingly mixed with directional microphone signals of a higher order and possibly the directional microphone signals are even attenuated.
- FIG. 2 shows an exemplary embodiment of a hearing aid with three microphones 1, 2 and 3.
- a signal line 11 there is a signal of a first order system with the directional microphone characteristic “undelayed eight” when the input signals of the microphones 1, 2 follow Inversion in the inverter 4 can be added via the sum element 7.
- a signal with the directional microphone characteristic "delayed eight" of a first-order directional microphone system is present in the signal line 13 when the signals of the microphones 2 and 3 are added in the sum element 8 after inverting the signal of the microphone 3 in the inverter 5 and subsequently inverted in the inverter 6 and delayed in the delay element 10.
- the microphone pairs 1, 2 and 2, 3 thus each form a first-order directional microphone system due to the circuitry shown.
- the mentioned signals of the directional microphone systems of the first order are processed in a signal processing unit 14 (channel-specific zifisch) processed and supplied as an output signal to the speaker 16.
- the circuit diagram according to FIG. 2 also allows a. To be implemented by suitably interconnecting all three microphones
- Directional microphone system of the second order in that the signals of the signal lines 11, 13 are combined in the sum element 9 to form the signal line 12.
- the signal processing unit 14 comprises a filter element
- the signal processing unit 14 can essentially further process the signals in the signal lines 11 or 13. If the signal frequency exceeds the limit frequency fg, the filter element 17 essentially further processes the signal of the signal line 12, and thus a signal of a second-order directional microphone system.
- the signal lines 11 and 13 in the filter element 17 are connected to low-pass filters, while the signal line 12 is fed to a high-pass filter.
- the filtered signals are summed (not shown).
- DI directivity index
- neural networks and fuzzy logic controls can be present to control the respective Limit frequencies fg to be determined again and again in accordance with the situation by signal-analytical assessment of the useful / storage noise and, if necessary, continuously adapted.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Neurosurgery (AREA)
- Otolaryngology (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Circuit For Audible Band Transducer (AREA)
Abstract
Description
Beschreibung description
Hörhilfsgerät mit Richtmikrofonsystem sowie Verfahren zum Betrieb eines HörhilfegerätsHearing aid with directional microphone system and method for operating a hearing aid
Die Erfindung betrifft ein Hörhilfsgerät mit den Merkmalen des Oberbegriffs des Patentanspruchs 1. Ferner betrifft die Erfindung ein Verfahren zum Betrieb eines Hörhilfsgeräts.The invention relates to a hearing aid with the features of the preamble of claim 1. Furthermore, the invention relates to a method for operating a hearing aid.
Als Stand der Technik sind Hörhilfsgeräte mit mindestens zwei Mikrofonen zur Erzielung von Richtmikrofoncharakteristiken erster oder höherer Ordnung bekannt. Bei Verwendung von Richtmikrofonsystemen zweiter oder höherer Ordnung tritt in einzelnen Frequenzbereichen des Eingangssignals eine uner- wünschte Absenkung des Directivity-Index (Richtwirkungsindex) auf.Hearing aid devices with at least two microphones for achieving directional microphone characteristics of first or higher order are known as prior art. When second-order or higher-order directional microphone systems are used, an undesired reduction in the directivity index (directional index) occurs in individual frequency ranges of the input signal.
Bei Hörhilfsgeräten ist insbesondere der Frequenzbereich von 100 Hz bis 6 kHz für die Verbesserung des Hörvermögens inte- ressant. Bei Richtmikrofonsystemen erster Ordnung erhält man über diesen Frequenzbereich einen in Richtung höheren Frequenzen leicht fallenden Richtwirkungsindex. Für tiefere Frequenzen, beispielsweise bis 1 kHz, erhält man Di-Werte von etwa 5 dB. Richtmikrofonsysteme n-ter Ordnung mit n>l haben jedoch wegen der hohen Empfindlichkeit gegenüber Bauteiltoleranzen bei tiefen Frequenzen einen negativen Richtwirkungsindex. Dafür sind aber für Frequenzen von 1 kHz bis 5 kHz DI- Werte von 7 dB und mehr erreichbar. Um auch für tiefe Frequenzen höhere Di-Werte erreichen zu können, sind enge Bau- teiltoleranzen (z.B. Phasendifferenz der beteiligten Mikrofone <0,25°) einzuhalten, die bestenfalls mit Silizium-Mikro- fonarrays erreicht werden können. Diese haben aber bei der für Hörgeräte verwendeten Versorgungsspannung (<1V) noch ein zu großes Signal-zü-Rausch-Verhältnis, wodurch der Einsatz dieser Arrays aktuell noch nicht sinnvoll ist. Aus der US 5,757,933 ist ein Horhilfsgerat bekannt, bei dem manuell zwischen einem Mikrofon nullter Ordnung (Mikrofon ohne Richtwirkung) und einem Mikrofonsystem erster Ordnung umgeschaltet werden kann. Die Umschaltung erfolgt dabei durch den Horgeratetrager .In the case of hearing aids, the frequency range from 100 Hz to 6 kHz is particularly interesting for improving hearing. In first-order directional microphone systems, a directivity index that falls slightly towards higher frequencies is obtained over this frequency range. For lower frequencies, for example up to 1 kHz, Di values of about 5 dB are obtained. Directional microphone systems of the n-th order with n> l, however, have a negative directivity index due to the high sensitivity to component tolerances at low frequencies. However, DI values of 7 dB and more can be achieved for frequencies from 1 kHz to 5 kHz. In order to be able to achieve higher di values even for low frequencies, close component tolerances (eg phase difference of the microphones involved <0.25 °) must be observed, which can at best be achieved with silicon microphone arrays. However, at the supply voltage used for hearing aids (<1V), these still have a too high signal-to-noise ratio, which means that the use of these arrays is currently not yet sensible. A hearing aid is known from US Pat. No. 5,757,933 in which it is possible to switch manually between a zero-order microphone (microphone without directional effect) and a first-order microphone system. The switch is made by the hearing aid wearer.
Der Erfindung liegt die Aufgabe zugrunde, ein Horhilfsgerat sowie ein Verfahren zum Betrieb eines Horhilfsgerats anzubieten, bei dem ein hoher Directivity-Index über einen großen Frequenzbereich des Eingangssignals erreicht wird.The invention has for its object to provide a hearing aid and a method for operating a hearing aid, in which a high directivity index is achieved over a wide frequency range of the input signal.
Die Aufgabe w rd für das Horhilfsgerat durch die Merkmale des Patentanspruchs 1 gelost. Vorteilhafte Ausfuhrungsformen werden in den Ansprüchen 2 - 9 realisiert. Für das Verfahren wird die Aufgabe durch die Merkmale des Patentanspruchs 10 gelost .The problem is solved for the hearing aid by the features of claim 1. Advantageous embodiments are realized in claims 2-9. For the method, the task is solved by the features of claim 10.
Das erfmdungsgemaße Horhilfsgerat umfasst mindestens zwei Mikrofone, um Richtmikrofonsysteme nullter, erster oder hohe- rer Ordnung realisieren zu können. Als Richtmikrofonsystem nullter Ordnung im Sinne der Erfindung ist dabei ein Mikrofonsystem ohne Richtwirkung zu verstehen, beispielsweise ein nicht mit weiteren Mikrofonen verschaltetes omnidirektionales Mikrofon. Mit Richtmikrofonsystemen erster Ordnung ist ein theoretisch erreichbarer Maximalwert des Directivity-IndexThe hearing aid according to the invention comprises at least two microphones in order to be able to implement directional microphone systems of zero, first or higher order. A zero-directional microphone system in the sense of the invention is to be understood as a microphone system without directional effect, for example an omnidirectional microphone that is not connected to other microphones. With first-order directional microphone systems is a theoretically achievable maximum value of the directivity index
(DI) von 6 dB (Hypermere) zu erreichen. In der Praxis erhalt man am KEMAR (einer Standard Forschungspuppe) bei optimaler Lage der Mikrofone und bestem Abgleich der von den Mikrofonen erzeugten Signale Di-Werte von 4 - 4,5 dB. Richtmikrofonsys- teme zweiter und höherer Ordnung weisen Di-Werte von 10 dB und mehr auf, die beispielsweise für eine bessere Sprachver- standlichkeit vorteilhaft sind.(DI) of 6 dB (hypermere). In practice you get at the KEMAR (a standard research manikin) with an optimal position of the microphones and the best balance of the signals generated by the microphones Di values of 4 - 4.5 dB. Directional microphone systems of the second and higher order have Di values of 10 dB and more, which are advantageous, for example, for better speech intelligibility.
Enthalt ein Horhilfsgerat z.B. drei omnidirektionale Mikro- föne, so können auf dieser Basis Richtmikrofonsysteme nullter bis zweiter Ordnung gebildet werden. Von diesen Richtmikrofonsystemen lassen sich somit gleichzeitig Mikrofonsignale mit Richtcharakteristiken nullter bis zweiter Ordnung ableiten.If a hearing aid contains, for example, three omnidirectional microphones, directional microphone systems of zero to second order can be formed on this basis. Microphone signals can thus be simultaneously received from these directional microphone systems with zero to second order polar patterns.
Vorteilhaft werden gemäß der Erfindung die von Mikrofonsyste- men unterschiedlicher Ordnung ausgehenden Mikrofonsignale m Abhängigkeit von der Frequenz unterschiedlich gewichtet und summiert. So wird beispielsweise bei einem Horhilfsgerat mit Richtmikrofonsystemen erster und zweiter Ordnung bei niedrigen Frequenzen im Wesentlichen das Mikrofonsignal erster Ordnung und bei höheren Frequenzen das Mikrofonsignal zweiter Ordnung weiterverarbeitet. Die Gewichtung erfolgt vorzugsweise durch Filterelemente, wobei das Mikrofonsignal des Richtmikrofonsystems erster Ordnung einer Tiefpassfilterung und das Mikrofonsignal des Richtmikrofonsystems zweiter Ord- nung einer Hochpassfilterung unterworfen wird. Allgemein wird bei tiefen Frequenzen im Wesentlichen das Mikrofonsignal des Richtmikrofons erster Ordnung und bei hohen Frequenzen das Mikrofonsignal des Richtmikrofonsystems n-ter Ordnung zur Weiterverarbeitung weitergeleitet, wobei n für die höchste auftretende Ordnung steht. Im mittleren Frequenzbereich werden vorzugsweise im Wesentlichen die Mikrofonsignale der Richtmikrofonsysteme zwischen der ersten und der höchsten auftretenden Ordnung weiterverarbeitet.According to the invention, the microphone signals emanating from microphone systems of different orders are weighted and summed differently depending on the frequency. For example, in a hearing aid with directional microphone systems of first and second order, essentially the first order microphone signal is further processed at low frequencies and the second order microphone signal is processed at higher frequencies. The weighting is preferably carried out by filter elements, the microphone signal of the first-order directional microphone system being subjected to low-pass filtering and the microphone signal of the second-order directional microphone system being subjected to high-pass filtering. In general, the microphone signal of the directional microphone of the first order is passed on at low frequencies and the microphone signal of the directional microphone system of the nth order is passed on for further processing, where n stands for the highest occurring order. In the middle frequency range, essentially the microphone signals of the directional microphone systems between the first and the highest occurring order are preferably processed further.
Bei einer Ausfuhrungsform der Erfindung sind die Grenzfrequenzen der den Richtmikrofonsystemen nachgeschalteten Filterelemente einstellbar. Durch die Festlegung der Grenzfrequenzen im hörbaren Frequenzbereich, beispielsweise bis 10 kHz, und die damit verbundene frequenzabhangige Auswahl von Richtmikrofonsystemen unterschiedlicher Ordnung lassen sich für das Gesamtsystem Richtwirkungseigenschaften erreichen, die herkömmlichen Horhilfsgeraten, über den gesamten Frequenzbereich betrachtet, deutlich überlegen sind. Für ede Frequenz des Eingangssignals ist damit eine optimierte Richt- Wirkung erreichbar. Moderne Horhilfsgerate erlauben die Einteilung des akustischen Eingangssignals in Kanäle. Dadurch wird unter anderem eine unterschiedliche Verstärkung einzelner Frequenzbereiche ermöglicht. Bei einer vorteilhaften Ausfuhrungsform der Er- findung sind die Grenzfrequenzen der den Richtmikrofonsystemen nachgeschalteten Filterelemente an Kanalgrenzfrequenzen des Horhilfsgerats gekoppelt. Im einfachsten Fall bildet dabei jedes Richtmikrofonsystem einen Kanal. Die Filterelemente zur Gewichtung der Mikrofonsignale bewirken dann gleichzeitig die Kanaleinteilung, womit zusatzliche Filterelemente zur Kanaleinteilung entfallen können.In one embodiment of the invention, the cut-off frequencies of the filter elements connected downstream of the directional microphone systems are adjustable. By defining the limit frequencies in the audible frequency range, for example up to 10 kHz, and the associated frequency-dependent selection of directional microphone systems of different orders, directional properties can be achieved for the overall system, which are clearly superior to conventional hearing aids, viewed over the entire frequency range. An optimized directional effect can thus be achieved for each frequency of the input signal. Modern hearing aids allow the acoustic input signal to be divided into channels. Among other things, this enables different amplification of individual frequency ranges. In an advantageous embodiment of the invention, the cutoff frequencies of the filter elements downstream of the directional microphone systems are coupled to cutoff cutoff frequencies of the hearing aid. In the simplest case, each directional microphone system forms a channel. The filter elements for weighting the microphone signals then simultaneously effect the channel division, which means that additional filter elements for channel division can be omitted.
Neben einer einmaligen, beispielsweise bei der Anpassung des Horhilfsgerats erfolgten Einstellung der Grenzfrequenzen kann die Lage einzelner oder mehrerer Grenzfrequenzen auch situationsgerecht bestimmt und kontinuierlich überprüft und ange- passt werden. Hierdurch erfolgt eine optimierte Anpassung an verschiedene Nutz-/Storschallsituationen. Die Analyse der Umgebungssituation erfolgt vorzugsweise mittels eines neurona- len Netzes und/oder einer Fuzzy-Logik-Steuerung.In addition to a one-time setting of the cut-off frequencies, for example when adapting the hearing aid, the position of one or more cut-off frequencies can also be determined according to the situation and continuously checked and adjusted. This results in an optimized adaptation to different usable / noise situations. The environmental situation is preferably analyzed by means of a neural network and / or a fuzzy logic controller.
Die Einstellung der Grenzfrequenzen sowie der gesamten Richtcharakteristik des Mikrofonsystems eines Horhilfsgerats gemäß der Erfindung kann auch in Abhängigkeit des eingestellten Horprogramms unterschiedlich erfolgen. Dabei kann für einen bestimmten Frequenzbereich zumindest m Wesentlichen auch ein Mikrofonsignal nullter Ordnung (Mikrofonsignal ohne Richtwirkung) weiterverarbeitet werden.The setting of the cut-off frequencies and the overall directional characteristic of the microphone system of a hearing aid according to the invention can also be carried out differently depending on the hearing program set. In this case, a zero-order microphone signal (microphone signal with no directional effect) can at least essentially be further processed for a specific frequency range.
Weitere Einzelheiten der Erfindung werden nachfolgend anhand der in der Zeichnung dargestellten Ausfuhrungsbeispiele naher erläutert. Es zeigen:Further details of the invention are explained in more detail below with reference to the exemplary embodiments shown in the drawing. Show it:
Figur 1 ein Prinzip-Schaltbild zur Erzeugung und frequenzab- hangigen Kombination von Richtmikrofonsystemen unterschiedlicher Ordnung, Figur 2 ein schematisches Schaltbild eines Horhilfsgerats mit drei Mikrofonen sowieFIG. 1 shows a basic circuit diagram for the generation and frequency-dependent combination of directional microphone systems of different orders, Figure 2 is a schematic diagram of a hearing aid with three microphones and
Figur 3 einen frequenzspezif schen Verlauf des Directivity- Index (DI) .Figure 3 shows a frequency-specific curve of the directivity index (DI).
Bei dem in Figur 1 dargestellten Pπnzipschaltbild sind die Mikrofone eines Horhilfsgerats mit MIK1, MIK2, ...., MIKm bezeichnet. Zur Bildung von Richtmikrofonsystemen unterschied- licher Ordnung werden die Ausgangssignale der Mikrofone in einer elektronischen Schaltung ES miteinander verschaltet. Die elektronische Schaltungsanordnung ES zur Bildung von Richtmikrofonsystemen kann dabei elektronische Komponenten, wie Verzogerungselemente, Summationselemente oder Inverter, umfassen. Die so gebildeten Richtmikrofonsignale am Ausgang der elektronischen Schaltung ES werden als R chtmikrofonsig- nal nullter Ordnung RSO, Richtmikrofonsignal erster Ordnung RS1, ...., Richtmikrofonsignal n-ter Ordnung RSn bezeichnet. Dabei können auch mehrere Richtmikrofonsignale derselben Ord- nung gebildet werden. Bei dem Horhilfsgerat gemäß der Erfindung unterscheiden sich ηedoch wenigstens zwei Richtmikrofon- signale hinsichtlich ihrer Ordnung. Zur Weiterverarbeitung der Richtmikrofonsignale sind diese einer Filterbank FB zugeführt. Die Filterbank FB weist Filterelemente auf, zum Bei- spiel Hochpass-, Tiefpass- oder Bandpassfilter. Die Richt- mikrofonsignale werden mittels der Filterbank FB in Abhängigkeit ihrer Ordnung und ihrer Signalfrequenz unterschiedlich gedampft. Dabei sind vorzugsweise die Grenzfrequenzen und Filterkoeffizienten der einzelnen Filterelemente em- stellbar. Die Ausgangssignale (AS0, AS1 ... ASn) der Filterbank FB sind zur Bildung des Gesamtπchtmikrofonsignals GRS einem Summationselement S zugeführt.In the schematic diagram shown in FIG. 1, the microphones of a hearing aid are labeled MIK1, MIK2, ...., MIKm. To form directional microphone systems of different orders, the output signals of the microphones are interconnected in an electronic circuit ES. The electronic circuit arrangement ES for forming directional microphone systems can include electronic components such as delay elements, summation elements or inverters. The directional microphone signals thus formed at the output of the electronic circuit ES are referred to as zero-order directional microphone signal RSO, first-order directional microphone signal RS1,..., N-order directional microphone signal RSn. Several directional microphone signals of the same order can also be formed. In the hearing aid according to the invention, however, at least two directional microphone signals differ in terms of their order. For further processing of the directional microphone signals, these are fed to a filter bank FB. The filter bank FB has filter elements, for example high-pass, low-pass or bandpass filters. The directional microphone signals are attenuated differently by the filter bank FB depending on their order and their signal frequency. The cut-off frequencies and filter coefficients of the individual filter elements can preferably be set. The output signals (AS0, AS1 ... ASn) of the filter bank FB are fed to a summation element S in order to form the overall microphone microphone signal GRS.
Das dargestellte Prinzip-Schaltbild zur Verarbeitung der Mik- rofonsignale eines Horhilfsgerats kann sowohl in digitaler als auch in analoger Schaltungstechnik ausgeführt werden. Zwischen den einzelnen Elementen können sich auch weitere Komponenten, wie A/D-Wandler, D/A-Wandler, Schalter, Verstärker usw. (hier nicht dargestellt), befinden.The principle circuit diagram shown for processing the microphone signals of a hearing aid can be implemented both in digital and in analog circuitry. There can also be other elements Components such as A / D converters, D / A converters, switches, amplifiers, etc. (not shown here).
In der Regel wird die Schaltung so eingestellt sein, dass bis zu einer unteren Grenzfrequenz fgl, beispielsweise 1 kHz, wenigstens im Wesentlichen das Richtmikrofonsignal erster Ordnung weitergeleitet wird. Mit steigender Frequenz werden dem Richtmikrofonsignal erster Ordnung zunehmend Richtmikrofonsignale höherer Ordnung zugemischt und eventuell die Richtmikrofonsignale niedriger Ordnung sogar gedämpft.As a rule, the circuit will be set in such a way that the first-order directional microphone signal is transmitted at least essentially up to a lower limit frequency fgl, for example 1 kHz. With increasing frequency, the directional microphone signal of the first order is increasingly mixed with directional microphone signals of a higher order and possibly the directional microphone signals are even attenuated.
So kann es sein, dass oberhalb einer bestimmten Grenzfrequenz fg2 am Ausgang des Su mationselements S wenigstens im Wesentlichen nur noch das Richtmikrofonsignal mit der höchsten vor- kommenden Ordnung weitergeleitet wird.So it may be that above a certain cut-off frequency fg2 at the output of the simulation element S, at least essentially only the directional microphone signal with the highest occurring order is passed on.
Figur 2 zeigt als Ausführungsbeispiel ein Hörhilfsgerät mit drei Mikrofonen 1, 2 und 3. In einer Signalleitung 11 liegt ein Signal eines Systems erster Ordnung mit der Richtmikro- foncharakteristik „unverzögerte Acht" vor, wenn die Einganc^- signale der Mikrofone 1, 2 nach Invertierung im Inverter 4 über das Summenelement 7 addiert werden.FIG. 2 shows an exemplary embodiment of a hearing aid with three microphones 1, 2 and 3. In a signal line 11 there is a signal of a first order system with the directional microphone characteristic “undelayed eight” when the input signals of the microphones 1, 2 follow Inversion in the inverter 4 can be added via the sum element 7.
In der Signalleitung 13 ist ein Signal mit der Richtmikrofon- Charakteristik „verzögerte Acht" eines Richtmikrofonssystems erster Ordnung vorhanden, wenn die Signale der Mikrofone 2 und 3 nach Invertierung des Signals des Mikrofons 3 im Inverter 5 im Summenelement 8 addiert und nachfolgend im Inverter 6 invertiert und im Verzögerungselement 10 verzögert werden.A signal with the directional microphone characteristic "delayed eight" of a first-order directional microphone system is present in the signal line 13 when the signals of the microphones 2 and 3 are added in the sum element 8 after inverting the signal of the microphone 3 in the inverter 5 and subsequently inverted in the inverter 6 and delayed in the delay element 10.
Die Mikrofonpaare 1, 2 und 2, 3 bilden somit durch die dargestellte Verschaltung jeweils ein Richtmikrofonsystem erster Ordnung.The microphone pairs 1, 2 and 2, 3 thus each form a first-order directional microphone system due to the circuitry shown.
Die genannten Signale der Richtmikrofonssysteme erster Ordnung werden in einer Signalverarbeitungseinheit 14 (kanalspe- zifisch) weiterverarbeitet und als Ausgangssignal dem Lautsprecher 16 zugeführt.The mentioned signals of the directional microphone systems of the first order are processed in a signal processing unit 14 (channel-specific zifisch) processed and supplied as an output signal to the speaker 16.
Das Schaltbild gemäß FIG 2 erlaubt durch geeignete Verschal- tung aller drei Mikrofone auch eine Realisierung einesThe circuit diagram according to FIG. 2 also allows a. To be implemented by suitably interconnecting all three microphones
Richtmikrofonsystems zweiter Ordnung, indem die Signale der Signalleitungen 11, 13 im Summenelement 9 zur Signalleitung 12 vereint werden.Directional microphone system of the second order, in that the signals of the signal lines 11, 13 are combined in the sum element 9 to form the signal line 12.
Die Signalverarbeitungseinheit 14 umfasst ein FilterelementThe signal processing unit 14 comprises a filter element
17 sowie ein Stellelement 15 zur Einstellung wenigstens einer Grenzfrequenz des Filterelements 17.17 and an adjusting element 15 for setting at least one cutoff frequency of the filter element 17.
In Abhängigkeit einer im Stellelement 15 der Signalverarbei- tungseinheit 14 eingestellten Grenzfrequenz fg kann bei Signalfrequenzen f < fg durch die Signalverarbeitungseinheit 14 im Wesentlichen eine Weiterverarbeitung der Signale in den Signalleitungen 11 oder 13 erfolgen. Wenn die Signalfrequenz die Grenzfrequenz fg überschreitet, erfolgt durch das Filter- element 17 im Wesentlichen die Weiterverarbeitung des Signals der Signalleitung 12, und damit eines Signals eines Richtmikrofonssystems zweiter Ordnung.Depending on a limit frequency fg set in the control element 15 of the signal processing unit 14, at signal frequencies f <fg the signal processing unit 14 can essentially further process the signals in the signal lines 11 or 13. If the signal frequency exceeds the limit frequency fg, the filter element 17 essentially further processes the signal of the signal line 12, and thus a signal of a second-order directional microphone system.
Hierfür sind die Signalleitungen 11 und 13 im Filterelement 17 mit Tiefpassfiltern verschaltet, während die Signalleitung 12 einem Hochpass zugeführt ist. Am Ausgang des Filterelements 17 werden die gefilterten Signale summiert (nicht dargestellt) .For this purpose, the signal lines 11 and 13 in the filter element 17 are connected to low-pass filters, while the signal line 12 is fed to a high-pass filter. At the output of the filter element 17, the filtered signals are summed (not shown).
Damit wird auch bei Unterschreiten der Grenzfrequenz fG ein Absinken des Directivity-Index (DI) vermieden. Es werden die vorteilhaften Verläufe des DI der Systeme erster und zweiter Ordnung über den gesamten Frequenzbereich kombiniert (vgl. FIG 3) .This prevents the directivity index (DI) from falling even when the frequency falls below the limit frequency f G. The advantageous courses of the DI of the first and second order systems are combined over the entire frequency range (cf. FIG. 3).
In der Signalverarbeitungseinheit 14 können neuronale Netze und Fuzzy-logic-Steuerungen vorhanden sein, um die jeweiligen Grenzfrequenzen fg situationsgerecht durch signalanalytische Beurteilung der Nutz-/Storschallsιtuatιon immer wieder festzulegen und gegebenenfalls kontinuierlich anzupassen.In the signal processing unit 14, neural networks and fuzzy logic controls can be present to control the respective Limit frequencies fg to be determined again and again in accordance with the situation by signal-analytical assessment of the useful / storage noise and, if necessary, continuously adapted.
FIG 3 zeigt die verschiedenen Verlaufe des DI über den zu verarbeitenden Frequenzbereich. Um zu erreichen, dass die DI- Werte über den gesamten Frequenzbereich auf möglichst hohem Niveau verbleiben, wird bei der Signalverarbeitung bei Frequenzen unterhalb der Grenzfrequenz fg = 1000 Hz im wesent- liehen auf ein System erster Ordnung mit dem Di-Verlauf A zurückgegriffen.3 shows the different courses of the DI over the frequency range to be processed. In order to ensure that the DI values remain at the highest possible level over the entire frequency range, signal processing at frequencies below the cut-off frequency fg = 1000 Hz is essentially based on a system of the first order with the Di curve A.
Oberhalb der Grenzfrequenz fg = 1000 Hz erfolgt im wesentlichen die Weiterleitung des Signals eines Richtmikrofonsystems zweiter Ordnung mit dem Di-Verlauf B, welcher höhere Di-Werte als das System erster Ordnung erreicht. Zum Vergleich ist der Di-Verlauf C einer normal hörenden Person ohne Zuhilfenahme technischer Hilfsmittel, simuliert am KEMAR, ebenfalls abgebildet.Above the cut-off frequency fg = 1000 Hz, the signal of a directional microphone system of the second order with the D profile B, which reaches higher Di values than the first order system, is essentially passed on. For comparison, the di-course C of a normal hearing person without the aid of technical aids, simulated at KEMAR, is also shown.
Vorteilhafterweise entspricht die Grenzfrequenz fg = 1000 Hz der Grenzfrequenz fg eines Zwei-Kanal-Signalverarbeitungs- systems, welches einen ersten Signalverarbeitungskanal für Signalfrequenzen bis zu 1000 Hz und einen zweiten Kanal für Frequenzen ab 1000 Hz aufweist. The cut-off frequency fg = 1000 Hz advantageously corresponds to the cut-off frequency fg of a two-channel signal processing system which has a first signal processing channel for signal frequencies up to 1000 Hz and a second channel for frequencies from 1000 Hz.
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19925392 | 1999-06-02 | ||
DE19925392 | 1999-06-02 | ||
PCT/EP2000/004648 WO2000076268A2 (en) | 1999-06-02 | 2000-05-22 | Hearing aid device, comprising a directional microphone system and a method for operating a hearing aid device |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1192838A2 true EP1192838A2 (en) | 2002-04-03 |
EP1192838B1 EP1192838B1 (en) | 2003-08-06 |
EP1192838B2 EP1192838B2 (en) | 2013-09-04 |
Family
ID=7910100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00927233.7A Expired - Lifetime EP1192838B2 (en) | 1999-06-02 | 2000-05-22 | Hearing aid device, comprising a directional microphone system and a method for operating a hearing aid device |
Country Status (5)
Country | Link |
---|---|
US (2) | US7324649B1 (en) |
EP (1) | EP1192838B2 (en) |
DE (1) | DE50003206D1 (en) |
DK (1) | DK1192838T4 (en) |
WO (1) | WO2000076268A2 (en) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7050876B1 (en) | 2000-10-06 | 2006-05-23 | Phonak Ltd. | Manufacturing methods and systems for rapid production of hearing-aid shells |
DE10310579B4 (en) * | 2003-03-11 | 2005-06-16 | Siemens Audiologische Technik Gmbh | Automatic microphone adjustment for a directional microphone system with at least three microphones |
DE10327890A1 (en) * | 2003-06-20 | 2005-01-20 | Siemens Audiologische Technik Gmbh | Method for operating a hearing aid and hearing aid with a microphone system, in which different directional characteristics are adjustable |
EP1489882A3 (en) * | 2003-06-20 | 2009-07-29 | Siemens Audiologische Technik GmbH | Method for operating a hearing aid system as well as a hearing aid system with a microphone system in which different directional characteristics are selectable. |
DE10327889B3 (en) | 2003-06-20 | 2004-09-16 | Siemens Audiologische Technik Gmbh | Adjusting hearing aid with microphone system with variable directional characteristic involves adjusting directional characteristic depending on acoustic input signal frequency and hearing threshold |
ATE356405T1 (en) * | 2003-07-07 | 2007-03-15 | Koninkl Philips Electronics Nv | SYSTEM AND METHOD FOR SIGNAL PROCESSING |
DE10331956C5 (en) | 2003-07-16 | 2010-11-18 | Siemens Audiologische Technik Gmbh | Hearing aid and method for operating a hearing aid with a microphone system, in which different Richtcharaktistiken are adjustable |
DE10334396B3 (en) * | 2003-07-28 | 2004-10-21 | Siemens Audiologische Technik Gmbh | Electrical hearing aid has individual microphones combined to provide 2 microphone units in turn combined to provide further microphone unit with same order directional characteristic |
ATE402586T1 (en) | 2003-09-19 | 2008-08-15 | Widex As | METHOD FOR CONTROLLING THE DIRECTIONAL CHARACTERISTICS OF A HEARING AID AND SIGNAL PROCESSING DEVICE FOR A HEARING AID WITH CONTROLLABLE DIRECTIONAL CHARACTERISTICS |
US8331582B2 (en) * | 2003-12-01 | 2012-12-11 | Wolfson Dynamic Hearing Pty Ltd | Method and apparatus for producing adaptive directional signals |
EP1699261B1 (en) * | 2005-03-01 | 2011-05-25 | Oticon A/S | System and method for determining directionality of sound detected by a hearing aid |
US7697827B2 (en) | 2005-10-17 | 2010-04-13 | Konicek Jeffrey C | User-friendlier interfaces for a camera |
DK1841281T3 (en) * | 2006-03-28 | 2015-10-26 | Oticon As | System and method for generating auditory spatial information |
US7936890B2 (en) | 2006-03-28 | 2011-05-03 | Oticon A/S | System and method for generating auditory spatial cues |
EP2123113B1 (en) | 2006-12-15 | 2018-02-14 | Sonova AG | Hearing system with enhanced noise cancelling and method for operating a hearing system |
JP4367484B2 (en) * | 2006-12-25 | 2009-11-18 | ソニー株式会社 | Audio signal processing apparatus, audio signal processing method, and imaging apparatus |
US8107654B2 (en) | 2008-05-21 | 2012-01-31 | Starkey Laboratories, Inc | Mixing of in-the-ear microphone and outside-the-ear microphone signals to enhance spatial perception |
DE102008049086B4 (en) * | 2008-09-26 | 2011-12-15 | Siemens Medical Instruments Pte. Ltd. | Hearing aid with a directional microphone system and method for operating such a hearing aid |
DK2262285T3 (en) * | 2009-06-02 | 2017-02-27 | Oticon As | Listening device providing improved location ready signals, its use and method |
JP5304571B2 (en) * | 2009-09-24 | 2013-10-02 | 沖電気工業株式会社 | Sound collector, acoustic communication system, and program |
US9055357B2 (en) | 2012-01-05 | 2015-06-09 | Starkey Laboratories, Inc. | Multi-directional and omnidirectional hybrid microphone for hearing assistance devices |
US10091579B2 (en) | 2014-05-29 | 2018-10-02 | Cirrus Logic, Inc. | Microphone mixing for wind noise reduction |
US9763016B2 (en) | 2014-07-31 | 2017-09-12 | Starkey Laboratories, Inc. | Automatic directional switching algorithm for hearing aids |
US10492008B2 (en) | 2016-04-06 | 2019-11-26 | Starkey Laboratories, Inc. | Hearing device with neural network-based microphone signal processing |
US10679640B2 (en) * | 2018-08-16 | 2020-06-09 | Harman International Industries, Incorporated | Cardioid microphone adaptive filter |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4399327A (en) | 1980-01-25 | 1983-08-16 | Victor Company Of Japan, Limited | Variable directional microphone system |
US4751738A (en) | 1984-11-29 | 1988-06-14 | The Board Of Trustees Of The Leland Stanford Junior University | Directional hearing aid |
US4742548A (en) | 1984-12-20 | 1988-05-03 | American Telephone And Telegraph Company | Unidirectional second order gradient microphone |
JPS6223300A (en) | 1985-07-23 | 1987-01-31 | Victor Co Of Japan Ltd | Directional microphone equipment |
DE8529458U1 (en) | 1985-10-16 | 1987-05-07 | Siemens AG, 1000 Berlin und 8000 München | Hearing aid |
US5121426A (en) | 1989-12-22 | 1992-06-09 | At&T Bell Laboratories | Loudspeaking telephone station including directional microphone |
DE69221762T2 (en) | 1991-04-18 | 1998-03-05 | Matsushita Electric Ind Co Ltd | Microphone apparatus |
US5524056A (en) | 1993-04-13 | 1996-06-04 | Etymotic Research, Inc. | Hearing aid having plural microphones and a microphone switching system |
EP0632586A1 (en) * | 1993-06-29 | 1995-01-04 | Laboratoires D'electronique Philips S.A.S. | Device for automatic control of sounds with fuzzy logic |
US5463694A (en) | 1993-11-01 | 1995-10-31 | Motorola | Gradient directional microphone system and method therefor |
US5473701A (en) | 1993-11-05 | 1995-12-05 | At&T Corp. | Adaptive microphone array |
EP0712261A1 (en) | 1994-11-10 | 1996-05-15 | Siemens Audiologische Technik GmbH | Programmable hearing aid |
US5793875A (en) * | 1996-04-22 | 1998-08-11 | Cardinal Sound Labs, Inc. | Directional hearing system |
US5715319A (en) * | 1996-05-30 | 1998-02-03 | Picturetel Corporation | Method and apparatus for steerable and endfire superdirective microphone arrays with reduced analog-to-digital converter and computational requirements |
US5757933A (en) * | 1996-12-11 | 1998-05-26 | Micro Ear Technology, Inc. | In-the-ear hearing aid with directional microphone system |
US6041127A (en) * | 1997-04-03 | 2000-03-21 | Lucent Technologies Inc. | Steerable and variable first-order differential microphone array |
US6236731B1 (en) * | 1997-04-16 | 2001-05-22 | Dspfactory Ltd. | Filterbank structure and method for filtering and separating an information signal into different bands, particularly for audio signal in hearing aids |
US6240192B1 (en) * | 1997-04-16 | 2001-05-29 | Dspfactory Ltd. | Apparatus for and method of filtering in an digital hearing aid, including an application specific integrated circuit and a programmable digital signal processor |
US6154552A (en) * | 1997-05-15 | 2000-11-28 | Planning Systems Inc. | Hybrid adaptive beamformer |
US6766029B1 (en) * | 1997-07-16 | 2004-07-20 | Phonak Ag | Method for electronically selecting the dependency of an output signal from the spatial angle of acoustic signal impingement and hearing aid apparatus |
US6603861B1 (en) | 1997-08-20 | 2003-08-05 | Phonak Ag | Method for electronically beam forming acoustical signals and acoustical sensor apparatus |
EP0820210A3 (en) | 1997-08-20 | 1998-04-01 | Phonak Ag | A method for elctronically beam forming acoustical signals and acoustical sensorapparatus |
NL1007858C2 (en) | 1997-12-19 | 1999-06-22 | Microtronic Nederland Bv | Directional hearing aid. |
JP4163294B2 (en) * | 1998-07-31 | 2008-10-08 | 株式会社東芝 | Noise suppression processing apparatus and noise suppression processing method |
-
2000
- 2000-05-22 EP EP00927233.7A patent/EP1192838B2/en not_active Expired - Lifetime
- 2000-05-22 WO PCT/EP2000/004648 patent/WO2000076268A2/en active IP Right Grant
- 2000-05-22 DE DE50003206T patent/DE50003206D1/en not_active Expired - Lifetime
- 2000-05-22 US US09/979,966 patent/US7324649B1/en not_active Expired - Fee Related
- 2000-05-22 DK DK00927233.7T patent/DK1192838T4/en active
-
2007
- 2007-10-22 US US11/876,142 patent/US7929721B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO0076268A2 * |
Also Published As
Publication number | Publication date |
---|---|
US7324649B1 (en) | 2008-01-29 |
WO2000076268A3 (en) | 2001-05-17 |
DK1192838T4 (en) | 2013-12-16 |
US20080044046A1 (en) | 2008-02-21 |
EP1192838B1 (en) | 2003-08-06 |
EP1192838B2 (en) | 2013-09-04 |
WO2000076268A2 (en) | 2000-12-14 |
DE50003206D1 (en) | 2003-09-11 |
US7929721B2 (en) | 2011-04-19 |
DK1192838T3 (en) | 2003-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1192838B1 (en) | Hearing aid device, comprising a directional microphone system and a method for operating a hearing aid device | |
EP1251493B1 (en) | Method for noise reduction with self-adjusting spurious frequency | |
DE10331956C5 (en) | Hearing aid and method for operating a hearing aid with a microphone system, in which different Richtcharaktistiken are adjustable | |
EP0758817B1 (en) | Equaliser for digital signals | |
WO2000057671A2 (en) | Method and device for receiving and treating audiosignals in surroundings affected by noise | |
EP0942627A2 (en) | Hearing aid with a directional microphone system and method for operating the same | |
DE3331440A1 (en) | PHASE CONTROL ARRANGEMENT SOUND RECEIVER WITHOUT UNWANTED RECEPTION CHARACTERISTICS | |
EP1465453B1 (en) | Automatic adjustment of a directional microphone system with at least three microphones | |
EP3454572B1 (en) | Method for detection of a defect in a listening instrument | |
EP2840809A2 (en) | Control of the strength of the effect of a binaural directional microphone | |
EP1489884A2 (en) | Method for operating an acoustic prosthesis and acoustic prosthesis with a microphone system wherin different directional characteristics are selectable | |
DE60004863T2 (en) | A METHOD FOR REGULATING THE DIRECTIVE EFFECT OF THE SOUND RECEIVING CHARACTERISTICS OF A HEARING AID AND A HEARING AID FOR IMPLEMENTING THE METHOD | |
EP1489882A2 (en) | Method for operating a hearing aid system as well as a hearing aid system with a microphone system in which different directional characteristics are selectable. | |
DE10334396B3 (en) | Electrical hearing aid has individual microphones combined to provide 2 microphone units in turn combined to provide further microphone unit with same order directional characteristic | |
EP2124482A2 (en) | Hearing device with an equalisation filter in a filter bank system | |
EP1407544B1 (en) | Filter circuit and method for processing an audio signal | |
DE4436272A1 (en) | Influencing the directional characteristics of acousto-electrical receiver device with at least two microphones with different individual directional characteristics | |
EP2437520A1 (en) | Hearing aid for frequency compression | |
DE10310580A1 (en) | Device and method for adapting hearing aid microphones | |
DE3133107A1 (en) | Personal sound protection | |
DE102019111150A1 (en) | Audio system and method for controlling an audio system | |
DE112018002744T5 (en) | sound detection | |
DE102004006957A1 (en) | Method and device for amplifying a received signal | |
DE4306013C3 (en) | Circuit arrangement for compressing or expanding an audio signal | |
DE102008053095B4 (en) | A filter assembly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20011114 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): CH DE DK LI |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50003206 Country of ref document: DE Date of ref document: 20030911 Kind code of ref document: P |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20030806 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: WIDEX A/S Effective date: 20040506 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH) |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20130904 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): CH DE DK LI |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: AELC |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 50003206 Country of ref document: DE Effective date: 20130904 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T4 Effective date: 20131212 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50003206 Country of ref document: DE Representative=s name: FDST PATENTANWAELTE FREIER DOERR STAMMLER TSCH, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20150520 Year of fee payment: 16 Ref country code: DK Payment date: 20150522 Year of fee payment: 16 Ref country code: DE Payment date: 20150521 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50003206 Country of ref document: DE Representative=s name: FDST PATENTANWAELTE FREIER DOERR STAMMLER TSCH, DE Ref country code: DE Ref legal event code: R081 Ref document number: 50003206 Country of ref document: DE Owner name: SIVANTOS GMBH, DE Free format text: FORMER OWNER: SIEMENS AUDIOLOGISCHE TECHNIK GMBH, 91058 ERLANGEN, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50003206 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20160531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160531 |