EP1407544B1 - Filter circuit and method for processing an audio signal - Google Patents

Filter circuit and method for processing an audio signal Download PDF

Info

Publication number
EP1407544B1
EP1407544B1 EP02787125A EP02787125A EP1407544B1 EP 1407544 B1 EP1407544 B1 EP 1407544B1 EP 02787125 A EP02787125 A EP 02787125A EP 02787125 A EP02787125 A EP 02787125A EP 1407544 B1 EP1407544 B1 EP 1407544B1
Authority
EP
European Patent Office
Prior art keywords
filter
audio signal
universal
stage
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02787125A
Other languages
German (de)
French (fr)
Other versions
EP1407544A2 (en
Inventor
Wolfgang Neumann
Hermann Gier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPL Electronics GmbH
Original Assignee
SPL Electronics GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SPL Electronics GmbH filed Critical SPL Electronics GmbH
Publication of EP1407544A2 publication Critical patent/EP1407544A2/en
Application granted granted Critical
Publication of EP1407544B1 publication Critical patent/EP1407544B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G5/00Tone control or bandwidth control in amplifiers
    • H03G5/005Tone control or bandwidth control in amplifiers of digital signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G5/00Tone control or bandwidth control in amplifiers
    • H03G5/02Manually-operated control
    • H03G5/04Manually-operated control in untuned amplifiers
    • H03G5/10Manually-operated control in untuned amplifiers having semiconductor devices
    • H03G5/12Manually-operated control in untuned amplifiers having semiconductor devices incorporating negative feedback

Definitions

  • the invention relates to a filter circuit and a method for processing an audio signal, which are adapted to edit audio signals over the entire usual transmission bandwidth, about 10 Hz to 50 kHz, such that an improved, pleasant sound is produced.
  • filter circuits are also known as equalizers and are used as analog circuits, for example in audio mixing consoles for the amplification and / or recording of music and in devices of consumer electronics, information technology and telecommunications.
  • the U.S. Patent 4,709,391 describes a filter circuit for processing an audio signal to reduce the distortion of the output signal.
  • the circuit comprises a non-linear network having at least two parallel branches, at least one of which branches compensating for second-order or higher-order non-linear distortion.
  • the filters known today are typically scaled to a selected frequency range of the audio transmission bandwidth. By cascading several such filters, an equalizer, or equalizer, is formed which covers the entire audio frequency spectrum and processes an audio signal to produce a desired sound effect and, in particular, a pleasing sound effect.
  • Each individual filter may include controls or adjustments for bandwidth, frequency, boost, or suppression (boost / cut), and the like, and these controls or adjustments affect the respective parameters of the associated filter.
  • the filters of the equalizer are independent of each other, i. the setting of one filter does not affect the setting of another filter.
  • a filter Basically, the function of a filter is to attenuate or preferentially transmit certain frequency components or ranges of a signal. Filters are differentiated according to the type of im
  • Filter processed signal as analog filters or digital filters, with respect to the circuit implementation, reactance, active or monolithic filter, with respect to the frequency range and the frequency interval, for example as a low-pass filter, high-pass filter, bandpass filter, all-pass filter and bandstop, and with respect to the transfer function and impulse response , as recursive filters or non-recursive filters, in particular tranversal filters or FIR filters.
  • the basics of filter technology are described in eg Prof. Manfred Seifert: Analog Circuits, Verlagtechnik GmbH, 1994 , Further background for the design of filter circuits can be found, for example, in Arthur B. Williams, Fred J. Taylor: Electronic Filter Design Handbook, Mc Graw-Hill Book Company, 1988 ; E. Zwicker, M. Zollner: Electroacoustics, Springer Verlag, 1987 ; U. Titzer, Ch. Schenk: Semiconductor Circuit Technology, Springer Verlag, 1999 ,
  • Filter circuits for processing analog or digital signals are used in the prior art wherever loudspeakers are used for the reproduction of sound, such as speech or music.
  • the filter circuit is usually a power amplifier, amplifier, and a sound transducer, speakers, connected downstream.
  • Common uses of the prior art filter circuits and filter circuit according to the invention are in consumer electronics such as radios, radio receivers, satellite receivers, television receivers, Playstation and the like, in IT technology such as in computer sound cards, and in telecommunications as in mobile phones and telephone terminals.
  • the filter circuit can also be used in sound mixing consoles and the like.
  • the invention is based on the object to provide a new filter circuit and a method for processing an audio signal, which input signals in the entire frequency range for the transmission of audio signals, from about 10 Hz to 50 kHz can process and process the incoming audio signals and equalize, that creates a pleasant listening experience.
  • the invention provides a filter circuit and a method for processing an audio signal, which are composed of a plurality of linked individual filters.
  • a number of different filter stages are connected in series, and the audio signal is input to the first filter stage of the series-connected filter stages and fed through the series circuit to an output of the filter circuit.
  • the audio signal is input directly, ie, bypassing the first, second, etc. filter stage into the further filter stages as an additional input signal, and conducted essentially unprocessed to the output.
  • the substantially unprocessed audio signal and the output of the series-connected filter stages are summed.
  • the individual filter stages are linked together in such a way that they influence one another, so that a change in a filter stage also influences the behavior of the subsequent filter stages.
  • an interactive interaction between the filter stages can be achieved by setting individual parameters of selected filter stages, by means of which the audio signal can be influenced in a desired manner in order to produce a desired auditory impression.
  • an adjustable equalization curve results, with which certain frequency ranges are emphasized or raised and at the same time other frequency ranges are lowered in a desired ratio thereto.
  • the interaction of the individual filter stages, in addition to the pure frequency amplitude processing and a phase shift of the audio signal can be generated in dependence on the amplitude.
  • the filter circuit according to the invention preferably operates in a frequency range of 10 Hz to 50 kHz, in particular 20 Hz to 22 kHz.
  • the inventive combination of the filter stages and in particular the interaction of the filter stages lead to an advantageous equalization and a pleasant listening experience when the output signal is passed through an electroacoustic transducer.
  • the more pleasant hearing impression is achieved in the filter circuit according to the invention, in particular by an improved depth graduation of the sound, an increased separation of the instrumentation, an improvement of clarity and transparency of the sounds and a subjective increase in loudness.
  • the filter circuit according to the invention can be realized by an analog circuit as well as by a programmed digital algorithm.
  • the filter can thus be implemented in software, firmware or hardware.
  • the audio input signal is divided into two paths: over the first path or branch, the audio signal is supplied as a reference signal essentially unprocessed, in the ratio 1: 1, to a non-inverting input of an output summation stage.
  • the second path or branch is preferably guided via a controllable amplifier stage whose output signal serves as main amplitude control for all subsequent filter stages.
  • This output signal of the controllable amplifier stage is supplied to a plurality of secondary branches, wherein the secondary branches each have resistances at their inputs, which weight the audio signal and distribute it to the various filter stages.
  • the first branch may have a switching function or a switch for switching off the reference signal to the summing stage.
  • This has the consequence that only the guided in the second branch audio signal is applied to the output of the filter circuit.
  • This signal may then be elsewhere, e.g. be mixed in a sound mixer via auxiliary paths, its original audio signal or the reference signal.
  • the filter stages connected in series in the second branch preferably comprise a control filter, a modified bandpass filter and a modified universal filter connected in series in this order.
  • the control filter is realized as an active area adjuster.
  • An area adjuster is basically a filter that controls bass and treble, with the frequencies for the bass and treble fixed and the amplitudes for bass and treble adjustable.
  • the control filter is realized so that it is fixed for a higher frequency range in frequency and amplitude, and for a lower frequency range has a fixed frequency and a variable amplitude, wherein the variable amplitude can be adjusted via a regulator.
  • the output of the control filter is supplied to the modified bandpass filter, the bandpass filter as a further input signal, the substantially unprocessed audio signal receives via another, weighted side branch.
  • This modified bandpass filter emphasizes the low frequency range of the audio signal and acts as a frequency-dependent resistor to ground reaching its maximum at a desired frequency, eg 50 Hz.
  • the output of the series combination of the control filter and the modified bandpass filter is applied to a control input of the modified universal filter.
  • the control filter existing controller and the summation of the functions of the control filter and modified band-pass filter frequency and phase regulation of the bass range is effected at the entrance of the modified universal filter. The effect of these two filters together is thus different in combination than if only one of the filters were present or the filters were decoupled from each other.
  • the low-pass filter is followed by a bandpass filter and a high-pass filter, with low-pass, bandpass and high-pass filters being combined in such a way that they comprise a first and a second integrator stage, which will be described in more detail below.
  • the second drive path takes place via a further secondary branch with the essentially unprocessed audio signal via the non-inverting input of an amplifier stage.
  • the output of this amplifier stage is connected via a node to the non-inverting input of the high-pass stage of the modified universal filter, to which a regulator is also connected.
  • This node leads via another controller to the output of the universal filter, which is connected to an inverting input of the output summation stage.
  • the bandwidth of the universal filter can be set, which determines the frequency range for the mid-high-frequency reduction or increase.
  • the second controller can be used to adjust the output signal of the universal filter to the summing stage. This controller can also be called a process controller.
  • a high and harmonic filter can be provided in a further secondary branch, which receives the substantially unprocessed audio signal and whose output is connected to the non-inverting input of the output summing stage.
  • the inventive distribution of the audio signal to the filter stages and the filter output signals and the reference signal to the inverting and non-inverting inputs of the output summing creates an interaction of frequency and phase of the audio signal at the output of the summer.
  • This interaction additionally expanded by regulators and / or switches and adjusters in the individual filter stages determines the frequency equalization, or sound filter curves, of the filter circuit according to the invention.
  • Fig. 1 shows a preferred embodiment of the filter circuit according to the invention as a schematic block diagram.
  • an audio input signal with in and an audio output signal with out is designated.
  • the audio input signal in is divided into two branches 20, 22, wherein the first branch 20 may be referred to as a reference branch and the second branch 22 as a filter branch.
  • the reference branch 20 has a 1: 1 driver stage 13, which supplies the audio input signal in unprocessed to the non-inverting input of a summing stage 12.
  • a controllable amplifier stage 1 which performs an amplitude control of the audio input signal in for the subsequent filter stages, in addition, the audio input signal in but not further processed.
  • the output signal of the controllable amplifier stage 1 is divided by a plurality of parallel-connected resistors 2-A, 2-B, 2-C, 2-D, 2-E to a plurality of, in the illustrated embodiment five, (5), sub-branches, wherein the resistors serve to adjust the ratio of minor branches.
  • the resistors need not necessarily be provided in all sub-branches, as long as the desired ratio between the individual secondary branches is achieved.
  • the amplifier stage may be implemented by multiplication and the resistors by corresponding weighting functions.
  • the reference branch 20 optionally (not shown) may be provided a switch or a switching function to interrupt this branch, so that the unprocessed and unamplified audio signal does not reach the summing stage 12. Then, only the filtered signal is present at the output of the filter circuit, the reference signal being applied elsewhere, e.g. in an audio mixer via Aux send / return paths, the filtered signal can be mixed.
  • a control filter 3 In the first sub-branch A, a control filter 3, a modified band-pass filter 6 and a modified universal filter 7 are connected in series in this order, the output of the modified universal filter 7 being fed to the inverting input of the summing stage 12.
  • the second sub-branch B contains an optional high and overtone filter 4, whose output signal is supplied to the non-inverting input of the summing stage 12.
  • the input signal of the high and harmonic filter 4 is also supplied to the control filter 3.
  • the third sub-branch C leads the substantially unprocessed audio signal together with the output signal of the control filter 3 to the input of the bandpass filter 6.
  • the substantially unprocessed audio signal is fed directly to the universal filter 7.
  • the amplitude-amplified, but otherwise unprocessed audio signal is fed directly to a non-inverting input of the summing stage 12.
  • the modified universal filter 7 basically comprises a first input stage with a voltage divider 8, which receives the output signal of the modified bandpass filter 6 and applies it to the input of the universal filter core 14.
  • the modified universal filter 7 has a second input stage with a preamplifier 9, which receives the substantially unprocessed audio signal and whose output is connected via an output node 15 to a controller 10 and the universal filter core 14.
  • the node 15 is also fed to an output controller 11 whose output is connected to the inverting input of the summing stage 12.
  • the universal filter core 14 comprises, as will be explained in more detail below, a low-pass filter, a band-pass filter and a high-pass filter and covers the entire audible spectrum from 20 Hz to 22 kHz.
  • frequency ranges are set in the modified universal filter via the controller 10, which are to be raised or lowered.
  • the controller 10 may have a bandwidth of about 1 kHz. to cover about 22 kHz.
  • the control filter 3 and the modified bandpass filter 6 serve to control the universal filter 7 and more particularly the universal filter core 14. They are fixed dimensioned for a certain frequency range and variably adjustable for a wider frequency range, as explained in more detail with reference to FIG.
  • the bandpass filter 6 is constructed as a frequency-dependent resistor to ground and generates a bass frequency of about 50 Hz, as also explained in more detail with reference to FIG.
  • the control filter is realized as an active area adjuster which has a fixed frequency and amplitude setting for a higher frequency range and a fixed frequency setting and a variable amplitude setting for a lower frequency range.
  • the sum of the functions of these two filters is supplied to the first input stage 8 of the universal filter 7 or universal filter core 14, wherein the control filter 3 existing in the controller, which can also be referred to as bass sound controller, and the addition of the modified bandpass filter, a desired frequency equalization in the modified universal filter 7 can be adjusted.
  • this causes the control filter 3 a frequency selection, the bandpass filter 6 frequency addition in the bass range and thus a phase shift and the controller 10 in the universal filter 7 frequency control.
  • the frequency range of about 20 to 150 Hz can be amplified, the frequency range of about 150 to 500 Hz can be lowered, and the frequency range beyond that can be amplified again.
  • the controller 10 may adjust the range of the frequency reduction, e.g. to about 150 to 700 Hz (largest bandwidth, smallest Q) or to other desired values, the descent may e.g. can be extended up to 20 kHz, so that only the peak values above 20 kHz to about 22 kHz are amplified.
  • the input signal can optionally be supplied to the high and harmonic filters 4.
  • the optional high and overtone filter 4 emphasizes the higher frequency range.
  • a compressor limiter for level control, a stage for time correction or the like can be used in the secondary branch B.
  • the first input stage of the universal filter 7 with the voltage divider 8 is an important circuit point in the filter circuit according to the invention for controlling and adjusting the universal filter.
  • the universal filter can additionally provide further operations and circuit expansions for even greater sound filtering by integrating regulators and / or switchable inductors in this control input.
  • a compressor / limiter, a time correction element or the like may be provided for further processing of the audio signal.
  • Fig. 2 shows the same basic elements as the block diagram of Fig. 1, which are designated by the same reference numerals. These include the controllable amplifier stage 1 at the input of the filter branch 22, the resistor network 2, with the resistors 2-A, 2-B, 2-C, 2-D and 2-E, which set the weighting of the secondary branches, the control filter or area adjuster 3, the modified bandpass filter 6, the modified universal filter 7, the high and harmonic filter 4 and the controller 11 and the driver stage 13 in the first or reference branch 20 and the output summation 12th
  • the audio input signal in is supplied via reference branch 20 through the 1: 1 driver stage 13, which has an operational amplifier OP 13 , and via a resistor to the non-inverting input of an operational amplifier OP 12 configured as a summer of the output summing stage 12.
  • a switch for interrupting the reference branch 20 may be provided.
  • the filter branch 22 initially passes through the controllable amplifier stage 1, which has an operational amplifier OP 1 and a regulator 24, which determines the drive amplification for the subsequent filter stages.
  • the output signal of the controllable amplifier stage 1 is fed via the resistor network 2 to the different secondary branches A, B, C, D, E, the resistors of the resistor network having values in the range of e.g. 1 k ⁇ to 100 k ⁇ .
  • the resistor network 2 passively divides the second branch or filter branch 22 into five sub-branches, which are trimmed via series resistors to adjust their ratio.
  • the first sub-branch A leads to the control filter 3, which is a modified active area adjuster, for a certain higher frequency range in amplitude and frequency fixed dimensioned and fixed in frequency for a lower frequency range and in the amplitude via a controller 26 is variable.
  • the control filter 3 comprises the controller 26 and an operational amplifier OP 3 , which are connected as shown in Fig. 2 via resistors and capacitors.
  • the operational amplifier OP 3 has a feedback comprising a resistor and a capacitor between the output and the inverting input of the operational amplifier OP 3 , which are connected in series. At the connection point between resistor and capacitor is another resistor, which receives a part of its control signal via the sub-branch B.
  • the regulator 26 is also connected to the inverting input of the operational amplifier OP 3 to adjust the variable bass amplitude.
  • the sub-branch B also has a branch point 14 for branching the audio signal to the optional up and harmonic filter 4.
  • the output signal of the high and harmonic filter 4 is connected via a resistor to the non-inverting input of the operational amplifier OP 12 of the output summing stage 12.
  • the output signal of the control filter 3 is conducted via a resistor to a node 28, which also receives the audio signal via the sub-branch C.
  • This node 28 forms the input signal for the modified bandpass filter stage 6.
  • the bandpass filter stage 6 has a first operational amplifier OP 61 and a second operational amplifier OP 62 , which are connected as shown in Fig. 2 by means of resistors and capacitors to form an active modified band-pass filter.
  • the input signal from the node 28 is fed to the non-inverting input of the first operational amplifier OP 61 , the modified active bandpass filter 6 being dimensioned to act as a frequency-dependent resistance to ground at a very low frequency, eg 50 Hz. reached its maximum.
  • the audio signal which has passed through the control filter 3 and the active bandpass filter is applied to the control input of the modified general purpose filter 7.
  • the controller 26 of the control filter 3 and the summed bandpass filter 6 can be set on the universal filter 7 desired bass tones.
  • the bass signal can be influenced such that you have a largely unchanged bass signal, a very percussive, hard bass or a gets very soft, round bass sound. This is called setting the bass tones.
  • the modified universal filter 7 has a first input stage with a voltage divider 8, which is formed from two resistors and is connected to a control input 30 on.
  • the control input 30 receives the output signal of the modified bandpass filter 6.
  • the input stage with the voltage divider is the core of the modified universal filter 7, or the universal filter core 14, formed downstream of three operational amplifiers OP 71 , OP 72 and OP 73 , which as shown in FIG 2 are connected with resistors and capacitors.
  • the interconnection of these operational amplifiers is done differently than in the prior art known universal filters, as well as the interconnection of the modified bandpass filter 6 and the control filter or activeêtneinstellers 3 is not common as in the prior art
  • the inventors have found that by modifying the filter circuits as shown in the figures and described herein, particularly advantageous filter characteristics with regard to timbre and frequency equalization result.
  • the first operational amplifier OP 71 operates as a low-pass filter
  • the second operational amplifier OP 72 forms a band-pass filter
  • the third operational amplifier OP 73 operates as a high-pass filter, the operational amplifiers forming a total of two integrators.
  • the universal filter according to the invention is modified so that the input circuit of the low-pass filter, OP 71 does not correspond to that of a conventional Tiefpackedeingangs and that a second input of the universal filter 7 is provided via the second input stage 9. Also, the bandpass, OP 72 , is not formed in the usual way because it receives its input signal on the inverting input.
  • the summed output signal from the control filter 3 and the modified bandpass filter 6 fed via the voltage divider 8 is applied to the non-inverting input of the first operational amplifier OP 71 , which operates as a low-pass filter.
  • the modified universal filter 7 receives a second control signal via the secondary branch D from the resistor network 2, this signal being fed to the non-inverting input of an operational amplifier OP 9 of the amplifier stage 9.
  • the output of the amplifier stage 9 is moved to a node 15 which is connected via a voltage divider to the non-inverting input of the operational amplifier OP 73 of the high-pass filter.
  • a controller 10 is connected, with which the bandwidth, which determines the frequency range for the mid-high-tone reduction or increase, can be set individually.
  • the output signal of the active bandpass stage formed by the operational amplifier OP 72 leads via the node 15 to a controller 11, with which the signal can be switched to the inverting input of the operational amplifier OP 12 of the output summing stage 12.
  • FIG. 3 schematically shows a flow chart which illustrates how the filter circuit according to the invention is implemented in a method or in a digital algorithm can be implemented as a computer program.
  • the audio signal passes through an amplification stage 40, which can be realized by multiplication by an adjustable coefficient.
  • the amplified audio signal successively passes through a control filter function 42, a bandpass filter function 43 and a general purpose filter function 44 which each process the signal as dictated by the circuits of the control filter 3, the bandpass filter 6 and the universal filter 7.
  • the output of the universal filter 44 is input to a summer function 46.
  • the amplified audio signal is further diverted at the output of the gain function 40 and also directly input as a control parameter to the bandpass filter function 43, the universal filter function 44 and the summer function 46.
  • the amplified audio signal at the output of amplifier function 40 is input to a high and overtone filter function 48, the output of which is also switched to summer function 46.
  • the essentially unchanged audio signal is also switched to the summer function 46 via a 1: 1 driver function 50.
  • the parallel drawn to the respective signal paths resistors indicate that the respective signals in the paths according to the function of the resistor network 2 weighted (52) can be.
  • the individual function blocks realize the functions shown in FIG. 2 as circuit diagrams. The skilled person knows how he can implement these functions in software.
  • the filtering method according to the invention can be realized as an algorithm in a computer program which can run on a personal computer, a general-purpose computer or a special computer or which can be integrated in a microprocessor for installation in devices of consumer electronics, information technology or telecommunication technology.
  • the filter circuit can be realized as an analog circuit or as a semiconductor integrated circuit, the filter circuit according to the invention can also be realized by a combination of hardware, firmware and / or software.

Landscapes

  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)
  • Networks Using Active Elements (AREA)
  • Stereophonic System (AREA)
  • Filters That Use Time-Delay Elements (AREA)

Abstract

The invention relates to a filter circuit for processing an audio signal, comprising a first branch in which the audio signal is guided in an essentially unchanged state to an output summation stage, and a second branch comprising several series-connected filter stages. The audio signal is inputted into a first filter stage of the series-connected filter stages and guided via said stages to an output summation stage. The second branch comprises several secondary branches via which the audio signal is directly guided to further filter stages of the series-connected filter stages. At least one of the filter stages is adjustable and adjusting one filter stage has an impact on the function of another filter stage.

Description

Die Erfindung betrifft eine Filterschaltung und ein Verfahren zur Verarbeitung eines Audiosignals, die dazu geeignet sind, Audiosignale über der gesamten üblichen Übertragungsbandbreite, etwa 10 Hz bis 50 kHz, derart zu bearbeiten, daß ein verbesserter, angenehmerer Klang entsteht. Solche Filterschaltungen sind auch als Equalizer bekannt und werden als analoge Schaltungen beispielsweise in Tonmischpults für die Verstärkung und/oder Aufnahme von Musik sowie in Geräten der Konsumerelectronik, Informationstechnologie und Telekommunikation eingesetzt.The invention relates to a filter circuit and a method for processing an audio signal, which are adapted to edit audio signals over the entire usual transmission bandwidth, about 10 Hz to 50 kHz, such that an improved, pleasant sound is produced. Such filter circuits are also known as equalizers and are used as analog circuits, for example in audio mixing consoles for the amplification and / or recording of music and in devices of consumer electronics, information technology and telecommunications.

Das US-Patent 4,709,391 beschreibt eine Filterschaltung zur Verarbeitung eines Audiosignals zur Minderung der Verzerrung des Ausgangssignals. Die Schaltung umfaßt ein nicht-lineares Netzwerk mit wenigstens zwei parallelen Zweigen, wobei wenigstens einer dieser Zweige nicht-lineare Verzerrung zweiter oder höherer Ordnung kompensiert.The U.S. Patent 4,709,391 describes a filter circuit for processing an audio signal to reduce the distortion of the output signal. The circuit comprises a non-linear network having at least two parallel branches, at least one of which branches compensating for second-order or higher-order non-linear distortion.

Die heute bekannten Filter sind in der Regel auf einen ausgewählten Frequenzbereich der Audio-Übertragungsbandbreite skaliert. Durch eine Kaskadenschaltung mehrerer solcher Filter wird ein Equalizer, oder Entzerrer, gebildet, der das gesamte Audio-Frequenzspektrum abdeckt und ein Audiosignal derart verarbeitet, daß ein gewünschter Klangeffekt und insbesondere eine angenehme Klangwirkung entsteht. Jeder einzelne Filter kann Regler oder Einstellmöglichkeiten für die Bandbreite, die Frequenz, die Verstärkung oder Unterdrückung (Boost/Cut) und dergleichen enthalten, wobei diese Regler oder Einstellmöglichkeiten jeweils auf die entsprechenden Parameter des zugehörigen Filters wirken. Die Filter des Equalizers sind von einander unabhängig, d.h. die Einstellung eines Filters beeinflußt nicht die Einstellung eines anderen Filters.The filters known today are typically scaled to a selected frequency range of the audio transmission bandwidth. By cascading several such filters, an equalizer, or equalizer, is formed which covers the entire audio frequency spectrum and processes an audio signal to produce a desired sound effect and, in particular, a pleasing sound effect. Each individual filter may include controls or adjustments for bandwidth, frequency, boost, or suppression (boost / cut), and the like, and these controls or adjustments affect the respective parameters of the associated filter. The filters of the equalizer are independent of each other, i. the setting of one filter does not affect the setting of another filter.

Verschiedene Filtertypen und Möglichkeiten zu deren Realisierung sind bekannt. Grundsätzlich ist die Funktion eines Filters, bestimmte Frequenzkomponenten oder -bereiche eines Signals zu dämpfen oder bevorzugt zu übertragen. Filter werden unterschieden nach Art des imDifferent filter types and possibilities for their realization are known. Basically, the function of a filter is to attenuate or preferentially transmit certain frequency components or ranges of a signal. Filters are differentiated according to the type of im

Filter verarbeiteten Signals, als analoge Filter oder digitale Filter, bezüglich der schaltungstechnischen Realisierung, als Reaktanzfilter, aktive Filter oder monolithische Filter, bezüglich des Frequenzbereichs und des Frequenzintervalls, z.B. als Tiefpaßfilter, Hochpaßfilter, Bandpaßfilter, Allpaßfilter und Bandsperre, und bezüglich der Übertragungsfunktion und Impulsantwort, als rekursive Filter oder nicht rekursive Filter, insbesondere Tranversalfilter oder FIR-Filter. Die Grundlagen der Filtertechnik sind z.B. beschrieben in Prof. Manfred Seifert: Analoge Schaltungen, Verlag Technik GmbH, 1994 . Weiterer Hintergrund zum Entwurf von Filterschaltungen findet sich z.B. in Arthur B. Williams, Fred J. Taylor: Electronic Filter Design Handbook, Mc Graw-Hill Book Company, 1988 ; E. Zwicker, M. Zollner: Elektroakustik, Springer Verlag, 1987 ; U. Titzer, Ch. Schenk: Halbleiter-Schaltungstechnik, Springer Verlag, 1999 .Filter processed signal, as analog filters or digital filters, with respect to the circuit implementation, reactance, active or monolithic filter, with respect to the frequency range and the frequency interval, for example as a low-pass filter, high-pass filter, bandpass filter, all-pass filter and bandstop, and with respect to the transfer function and impulse response , as recursive filters or non-recursive filters, in particular tranversal filters or FIR filters. The basics of filter technology are described in eg Prof. Manfred Seifert: Analog Circuits, Verlag Technik GmbH, 1994 , Further background for the design of filter circuits can be found, for example, in Arthur B. Williams, Fred J. Taylor: Electronic Filter Design Handbook, Mc Graw-Hill Book Company, 1988 ; E. Zwicker, M. Zollner: Electroacoustics, Springer Verlag, 1987 ; U. Titzer, Ch. Schenk: Semiconductor Circuit Technology, Springer Verlag, 1999 ,

Filterschaltung zur Verarbeitung analoger oder digitaler Signale werden im Stand der Technik überall dort eingesetzt, wo Lautsprecher für die Wiedergabe von Ton, wie Sprache oder Musik, verwendet werden. Der Filterschaltung ist in der Regel eine Endstufe, Verstärker, und ein Schallwandler, Lautsprecher, nachgeschaltet. Übliche Einsatzarten der Filterschaltungen des Standes der Technik und der Filterschaltung gemäß der Erfindung sind in der Consumer Electronic, wie in Radios, Radioempfängern, Satellitenempfängern, Fernsehempfängern, Playstation und dergleichen, in der IT-Technik, wie in Soundkarten für Computern, und in der Telekommunikationstechnik, wie in Mobiltelefonen und Telefonendgeräten. Die Filterschaltung kann jedoch auch in Ton-Mischpulten und ähnlichem eingesetzt werden.Filter circuits for processing analog or digital signals are used in the prior art wherever loudspeakers are used for the reproduction of sound, such as speech or music. The filter circuit is usually a power amplifier, amplifier, and a sound transducer, speakers, connected downstream. Common uses of the prior art filter circuits and filter circuit according to the invention are in consumer electronics such as radios, radio receivers, satellite receivers, television receivers, Playstation and the like, in IT technology such as in computer sound cards, and in telecommunications as in mobile phones and telephone terminals. However, the filter circuit can also be used in sound mixing consoles and the like.

Der Erfindung liegt die Aufgabe zu Grunde, eine neue Filterschaltung und ein Verfahren zur Verarbeitung eines Audiosignals anzugeben, welche Eingangssignale im gesamten für die Übertragung von Audiosignalen üblichen Frequenzbereich, von etwa 10 Hz bis 50 kHz verarbeiten können und die eingehenden Audiosignale derart verarbeiten und entzerren, daß ein angenehmer Höreindruck entsteht.The invention is based on the object to provide a new filter circuit and a method for processing an audio signal, which input signals in the entire frequency range for the transmission of audio signals, from about 10 Hz to 50 kHz can process and process the incoming audio signals and equalize, that creates a pleasant listening experience.

Diese Aufgabe wird durch eine Filterschaltung mit den Merkmalen von Anspruch 1 sowie durch ein Verfahren mit den Merkmalen von Anspruch 11 gelöst.This object is achieved by a filter circuit having the features of claim 1 and by a method having the features of claim 11.

Die Erfindung sieht eine Filterschaltung und ein Verfahren zur Verarbeitung eines Audiosignals vor, die aus mehreren, miteinander verknüpften Einzelfiltern aufgebaut sind. Eine Anzahl verschiedener Filterstufen sind in Reihe geschaltet, und das Audiosignal wird in die erste Filterstufe der in Reihe geschalteten Filterstufen eingegeben und über die Reihenschaltung zu einem Ausgang der Filterschaltung geführt. Gleichzeitig wird das Audiosignal direkt, also unter Umgehung der ersten, zweiten etc. Filterstufe in die weiteren Filterstufen als zusätzliches Eingangssignal eingegeben sowie im wesentlichen unverarbeitet zu dem Ausgang geführt. Am Ausgang werden das im wesentlichen unverarbeitete Audiosignal sowie das Ausgangssignal der in Reihe geschalteten Filterstufen summiert. Die einzelnen Filterstufen sind derart miteinander verknüpft, daß sie sich gegenseitig beeinflussen, so daß eine Veränderung einer Filterstufe auch das Verhalten der nachfolgenden Filterstufen beeinflußt. Durch die erfindungsgemäße Verknüpfung der einzelnen Filterstufen kann über die Einstellung einzelner Parameter ausgewählter Filterstufen eine interaktive Wechselwirkung zwischen den Filterstufen erreicht werden, durch die das Audiosignal auf gewünschte Weise beeinflußt werden kann, um einen gewünschten Höreindruck zu erzeugen. Bei der anschließenden Verknüpfung des verarbeiteten Audiosignals mit dem im wesentlichen unverarbeiteten Audiosignal in einer Summierstufe ergibt sich eine einstellbare Entzerrungskurve, mit der bestimmte Frequenzbereiche betont bzw. angehoben und gleichzeitig andere Frequenzbereiche in einem gewünschten Verhältnis dazu abgesenkt werden. Durch das Zusammenwirken der einzelnen Filterstufen kann neben der reinen Frequenz-Amplitudenbearbeitung auch eine Phasenverschiebung des Audiosignals in Abhängigkeit von der Amplitude erzeugt werden. Die erfindungsgemäße Filterschaltung arbeitet vorzugsweise in einem Frequenzbereich von 10 Hz bis 50 kHz, insbesondere 20 Hz bis 22 kHz.The invention provides a filter circuit and a method for processing an audio signal, which are composed of a plurality of linked individual filters. A number of different filter stages are connected in series, and the audio signal is input to the first filter stage of the series-connected filter stages and fed through the series circuit to an output of the filter circuit. At the same time, the audio signal is input directly, ie, bypassing the first, second, etc. filter stage into the further filter stages as an additional input signal, and conducted essentially unprocessed to the output. At the output, the substantially unprocessed audio signal and the output of the series-connected filter stages are summed. The individual filter stages are linked together in such a way that they influence one another, so that a change in a filter stage also influences the behavior of the subsequent filter stages. By linking the individual filter stages according to the invention, an interactive interaction between the filter stages can be achieved by setting individual parameters of selected filter stages, by means of which the audio signal can be influenced in a desired manner in order to produce a desired auditory impression. In the subsequent linking of the processed audio signal to the substantially unprocessed audio signal in a summation stage, an adjustable equalization curve results, with which certain frequency ranges are emphasized or raised and at the same time other frequency ranges are lowered in a desired ratio thereto. The interaction of the individual filter stages, in addition to the pure frequency amplitude processing and a phase shift of the audio signal can be generated in dependence on the amplitude. The filter circuit according to the invention preferably operates in a frequency range of 10 Hz to 50 kHz, in particular 20 Hz to 22 kHz.

Überraschenderweise hat sich gezeigt, daß die erfindungsgemäße Verknüpfung der Filterstufen und insbesondere die Wechselwirkung der Filterstufen unter einander zu einer vorteilhaften Entzerrung und einem angenehmen Höreindruck führen, wenn das Ausgangssignal über einen elektroakustischen Wandler geführt wird. Der angenehmere Höreindruck wird bei der Filterschaltung gemäß der Erfindung insbesondere durch eine verbesserte Tiefenstaffelung des Klangs, eine erhöhte Trennung der Instrumentierung, eine Verbesserung von Klarheit und Transparenz der Töne sowie eine subjektive Lautheitserhöhung erreicht.Surprisingly, it has been found that the inventive combination of the filter stages and in particular the interaction of the filter stages lead to an advantageous equalization and a pleasant listening experience when the output signal is passed through an electroacoustic transducer. The more pleasant hearing impression is achieved in the filter circuit according to the invention, in particular by an improved depth graduation of the sound, an increased separation of the instrumentation, an improvement of clarity and transparency of the sounds and a subjective increase in loudness.

Die erfindungsgemäße Filterschaltung kann durch einen analogen Schaltkreis ebenso realisiert werden wie durch einen programmierten digitalen Algorithmus. Das Filter kann somit in Software, Firmware oder Hardware realisiert sein.The filter circuit according to the invention can be realized by an analog circuit as well as by a programmed digital algorithm. The filter can thus be implemented in software, firmware or hardware.

Grundsätzlich wird bei der Erfindung das Audio-Eingangssignal in zwei Wege aufgeteilt: über den ersten Weg oder Zweig wird das Audiosignal als ein Bezugsignal im wesentlichen unverarbeitet, im Verhältnis 1:1, einem nicht-invertierenden Eingang einer Ausgangs-Summierstufe zugeführt. Der zweite Weg oder Zweig wird vorzugsweise über eine regelbare Verstärkerstufe geführt, deren Ausgangssignal als Haupt-Amplitudensteuerung für alle nachfolgenden Filterstufen dient. Dieses Ausgangssignal der regelbaren Verstärkerstufe wird mehreren Nebenzweigen zugeführt, wobei die Nebenzweige an ihren Eingängen jeweils Widerstände aufweisen, welche das Audiosignal gewichten und auf die verschiedenen Filterstufen verteilen.Basically, in the invention, the audio input signal is divided into two paths: over the first path or branch, the audio signal is supplied as a reference signal essentially unprocessed, in the ratio 1: 1, to a non-inverting input of an output summation stage. The second path or branch is preferably guided via a controllable amplifier stage whose output signal serves as main amplitude control for all subsequent filter stages. This output signal of the controllable amplifier stage is supplied to a plurality of secondary branches, wherein the secondary branches each have resistances at their inputs, which weight the audio signal and distribute it to the various filter stages.

Optional kann der erste Zweig eine Schaltfunktion oder einen Schalter zum Abschalten des Bezugssignals zur Summierstufe aufweisen. Dies hat zur Folge, daß nur das im zweiten Zweig geführte Audiosignal am Ausgang der Filterschaltung anliegt. Dieses Signal kann dann an anderer Stelle, z.B. in einem Ton-Mischpult über Hilfswege, seinem ursprünglichen Audiosignal bzw. dem Bezugssignal zugemischt werden.Optionally, the first branch may have a switching function or a switch for switching off the reference signal to the summing stage. This has the consequence that only the guided in the second branch audio signal is applied to the output of the filter circuit. This signal may then be elsewhere, e.g. be mixed in a sound mixer via auxiliary paths, its original audio signal or the reference signal.

Die in dem zweiten Zweig in Reihe geschalteten Filterstufen umfassen vorzugsweise ein Steuerfilter, ein modifiziertes Bandpaßfilter und ein modifiziertes Universalfilter, die in dieser Reihenfolge in Reihe geschaltet sind. Das Steuerfilter ist als ein aktiver Flächeneinsteller realisiert. Ein Flächeneinsteller ist im Prinzip ein Filter, das Bässe und Höhen regelt, wobei die Frequenzen für die Bässe und Höhen fest voreingestellt sind und die Amplituden für Bässe und Höhen regelbar sind. Erfindungsgemäß ist das Steuerfilter so realisiert, daß es für einen höheren Frequenzbereich in Frequenz und Amplitude fest eingestellt ist, und für einen tieferen Frequenzbereich eine feste Frequenz und eine variable Amplitude aufweist, wobei die variable Amplitude über einen Regler eingestellt werden kann.The filter stages connected in series in the second branch preferably comprise a control filter, a modified bandpass filter and a modified universal filter connected in series in this order. The control filter is realized as an active area adjuster. An area adjuster is basically a filter that controls bass and treble, with the frequencies for the bass and treble fixed and the amplitudes for bass and treble adjustable. According to the invention, the control filter is realized so that it is fixed for a higher frequency range in frequency and amplitude, and for a lower frequency range has a fixed frequency and a variable amplitude, wherein the variable amplitude can be adjusted via a regulator.

Das Ausgangssignal des Steuerfilters wird dem modifizierten Bandpaßfilter zugeführt, wobei das Bandpaßfilter als weiteres Eingangssignal das im wesentlichen unverarbeitete Audiosignal über einen weiteren, gewichteten Nebenzweig empfängt. Dieses modifizierte Bandpaßfilter betont den tiefen Frequenzbereich des Audiosignals und wirkt wie ein frequenzabhängiger Widerstand gegen Masse, der bei einer gewünschten Frequenz, z.B. 50 Hz, sein Maximum erreicht.The output of the control filter is supplied to the modified bandpass filter, the bandpass filter as a further input signal, the substantially unprocessed audio signal receives via another, weighted side branch. This modified bandpass filter emphasizes the low frequency range of the audio signal and acts as a frequency-dependent resistor to ground reaching its maximum at a desired frequency, eg 50 Hz.

Das Ausgangssignal der Reihenschaltung aus dem Steuerfilter und dem modifizierten Bandpaßfilter wird einem Steuereingang des modifizierten Universalfilters zugeführt. Durch in dem Steuerfilter vorhandene Regler und die Summierung der Funktionen von Steuerfilter und modifiziertem Bandpaßfilter wird am Eingang des modifizierten Universalfilters eine Frequenz- und Phasenregulierung des Baßbereichs bewirkt. Die Wirkung dieser beiden Filter zusammen ist somit in Kombination anders, als wenn jeweils nur einer der Filter vorhanden wäre oder die Filter voneinander entkoppelt wären.The output of the series combination of the control filter and the modified bandpass filter is applied to a control input of the modified universal filter. By in the control filter existing controller and the summation of the functions of the control filter and modified band-pass filter frequency and phase regulation of the bass range is effected at the entrance of the modified universal filter. The effect of these two filters together is thus different in combination than if only one of the filters were present or the filters were decoupled from each other.

Die Einstellung des modifizierten Universalfilters erfolgt über zwei Signalwege: das Summenausgangssignal aus dem Steuerfilter und dem Bandpaßfilter steuert über einen Spannungsteiler den nicht-invertierenden Eingang einer ersten Integratorstufe an, welche als Tiefpaß arbeitet. Dem Tiefpaß sind ein Bandpaß und ein Hochpaß nachgeschaltet, wobei Tiefpaß, Bandpaß und Hochpaß insgesamt so kombiniert sind, daß sie eine erste und eine zweite Integratorstufe umfassen, die weiter unten noch näher ausgeführt ist.The adjustment of the modified universal filter via two signal paths: the sum output signal from the control filter and the bandpass filter controls via a voltage divider to the non-inverting input of a first integrator stage, which operates as a low-pass filter. The low-pass filter is followed by a bandpass filter and a high-pass filter, with low-pass, bandpass and high-pass filters being combined in such a way that they comprise a first and a second integrator stage, which will be described in more detail below.

Der zweite Ansteuerweg erfolgt über einen weiteren Nebenzweig mit dem im wesentlichen unverarbeiteten Audiosignal über den nicht-invertierenden Eingang einer Verstärkerstufe. Der Ausgang dieser Verstärkerstufe ist über einen Knoten mit dem nicht-invertierenden Eingang der Hochpaßstufe des modifizierten Universalfilters verbunden, an dem ferner ein Regler angeschlossen ist. Dieser Knoten führt über einen weiteren Regler zum Ausgang des Universalfilters, der auf einen invertierenden Eingang der Ausgangs-Summierstufe gelegt ist.The second drive path takes place via a further secondary branch with the essentially unprocessed audio signal via the non-inverting input of an amplifier stage. The output of this amplifier stage is connected via a node to the non-inverting input of the high-pass stage of the modified universal filter, to which a regulator is also connected. This node leads via another controller to the output of the universal filter, which is connected to an inverting input of the output summation stage.

Mit dem zuerst genannten Regler läßt sich die Bandbreite des Universalfilters einstellen, welche den Frequenzbereich für die Mitten-Hochton-Absenkung bzw. -Anhebung bestimmt. Über den zweiten Regler kann das Ausgangssignal des Universalfilters auf die Summierstufe aufgeregelt werden. Dieser Regler kann auch als Prozeß-Regler bezeichnet werden.With the first-mentioned controller, the bandwidth of the universal filter can be set, which determines the frequency range for the mid-high-frequency reduction or increase. The second controller can be used to adjust the output signal of the universal filter to the summing stage. This controller can also be called a process controller.

Erfindungsgemäß kann in einem weiteren Nebenzweig ein Hoch- und Obertonfilter vorgesehen sein, der das im wesentlichen unverarbeitete Audiosignal empfängt und dessen Ausgang mit dem nicht-invertierenden Eingang der Ausgang-Summierstufe verbunden ist.According to the invention, a high and harmonic filter can be provided in a further secondary branch, which receives the substantially unprocessed audio signal and whose output is connected to the non-inverting input of the output summing stage.

Durch die erfindungsgemäße Verteilung des Audiosignals auf die Filterstufen und der Filterausgangssignale sowie des Bezugssignals auf die invertierenden und nicht-invertierenden Eingänge der Ausgangs-Summierstufe entsteht eine Wechselwirkung von Frequenz und Phase des Audiosignals am Ausgang des Summierers. Diese Wechselwirkung, zusätzlich erweitert durch Regler und/oder Schalter sowie Einsteller in den einzelnen Filterstufen bestimmt die Frequenzentzerrung, oder Klangfilterkurven, der erfindungsgemäßen Filterschaltung.The inventive distribution of the audio signal to the filter stages and the filter output signals and the reference signal to the inverting and non-inverting inputs of the output summing creates an interaction of frequency and phase of the audio signal at the output of the summer. This interaction, additionally expanded by regulators and / or switches and adjusters in the individual filter stages determines the frequency equalization, or sound filter curves, of the filter circuit according to the invention.

Während im Stand der Technik vergleichbare Filterschaltungen oder Entzerrer mehrere in Reihe oder parallel geschaltete Filterstufen verwendeten, welche sich im wesentlichen nicht gegenseitig beeinflussen sollten, haben die Erfinder ein neuartiges Filter gefunden, bei der die Wechselwirkung zwischen den einzelnen Filterstufen gezielt genutzt wird, um eine gewünschte Entzerrung und Klangverbesserung zu erreichen. Dieses Filter, das als analoge Filterschaltung beschrieben wurde, ist in gleicher Weise auch als digitales Filter in einem Computerprogramm realisierbar.While in the prior art comparable filter circuits or equalizers used several series or parallel filter stages which should not substantially interfere with each other, the inventors have found a novel filter in which the interaction between the individual filter stages is selectively utilized to produce a desired one To achieve equalization and sound enhancement. This filter, which has been described as an analog filter circuit, can be implemented in the same way as a digital filter in a computer program.

Die Erfindung ist im folgenden anhand bevorzugter Ausführungsform mit Bezug auf die Zeichnung näher erläutert. In den Figuren zeigen:

  • Fig. 1 eine schematische Blockdarstellung einer bevorzugten Ausführungsform der erfindungsgemäßen Filterschaltung;
  • Fig. 2 einen detaillierten Schaltplan der erfindungsgemäßen Filterschaltung; und
  • Fig. 3 ein Ablaufdiagramm zur Erläuterung der Realisierung des erfindungsgemäßen Verfahrens in einem Computerprogramm.
The invention is explained below with reference to a preferred embodiment with reference to the drawings. In the figures show:
  • Fig. 1 is a schematic block diagram of a preferred embodiment of the filter circuit according to the invention;
  • 2 shows a detailed circuit diagram of the filter circuit according to the invention; and
  • Fig. 3 is a flowchart for explaining the implementation of the method according to the invention in a computer program.

Fig. 1 zeigt eine bevorzugte Ausführungsform der erfindungsgemäßen Filterschaltung als schematisches Blockdiagramm.Fig. 1 shows a preferred embodiment of the filter circuit according to the invention as a schematic block diagram.

In Fig. 1 ist ein Audio-Eingangssignal mit in und ein Audio-Ausgangssignal mit out bezeichnet. Das Audio-Eingangssignal in wird in zwei Zweige 20, 22 aufgeteilt, wobei der erste Zweig 20 als Bezugszweig bezeichnet werden kann und der zweite Zweig 22 als Filterzweig. Der Bezugszweig 20 weist eine 1:1-Treiberstufe 13 auf, welche das Audio-Eingangssignal in unverarbeitet dem nicht-invertierenden Eingang einer Summierstufe 12 zuführt.In Fig. 1, an audio input signal with in and an audio output signal with out is designated. The audio input signal in is divided into two branches 20, 22, wherein the first branch 20 may be referred to as a reference branch and the second branch 22 as a filter branch. The reference branch 20 has a 1: 1 driver stage 13, which supplies the audio input signal in unprocessed to the non-inverting input of a summing stage 12.

Am Eingang des Filterzweiges 22 liegt eine regelbare Verstärkerstufe 1, welche eine Amplitudensteuerung des Audio-Eingangssignals in für die nachfolgenden Filterstufen durchführt, darüber hinaus das Audio-Eingangssignals in jedoch nicht weiter verarbeitet. Das Ausgangssignal der regelbaren Verstärkerstufe 1 wird über mehrere parallel geschaltete Widerstände 2-A, 2-B, 2-C, 2-D, 2-E auf mehrere, bei der gezeigten Ausführung fünf, (5), Nebenzweige aufgeteilt, wobei die Widerstände dazu dienen, das Verhältnis der Nebenzweige einzustellen. Wie durch den "Widerstand" 2-D in Figur 1 angedeutet, müssen die Widerstände nicht notwendig in allen Nebenzweigen vorgesehen sein, solange das gewünschte Verhältnis zwischen den einzelnen Nebenzweigen erreicht wird. Bei einer Softwarerealisierung der Erfindung können die Verstärkerstufe durch eine Multiplikation und die Widerstände durch entsprechende Wichtungsfunktionen verwirklicht werden.At the input of the filter branch 22 is a controllable amplifier stage 1, which performs an amplitude control of the audio input signal in for the subsequent filter stages, in addition, the audio input signal in but not further processed. The output signal of the controllable amplifier stage 1 is divided by a plurality of parallel-connected resistors 2-A, 2-B, 2-C, 2-D, 2-E to a plurality of, in the illustrated embodiment five, (5), sub-branches, wherein the resistors serve to adjust the ratio of minor branches. As indicated by the "resistor" 2-D in Figure 1, the resistors need not necessarily be provided in all sub-branches, as long as the desired ratio between the individual secondary branches is achieved. In a software implementation of the invention, the amplifier stage may be implemented by multiplication and the resistors by corresponding weighting functions.

In dem Bezugszweig 20 kann optional (nicht gezeigt) ein Schalter vorgesehen bzw. eine Schaltfunktion realisiert sein, um diesen Zweig zu unterbrechen, so daß das unverarbeitete und unverstärkte Audiosignal nicht zu Summierstufe 12 gelangt. Es liegt dann nur das gefilterte Signal am Ausgang der Filterschaltung an, wobei das Bezugssignal an anderer Stelle, z.B. in einem Audio-Mischpult über Aux send/return-Wege, dem gefilterten Signal aufgemischt werden kann.In the reference branch 20 optionally (not shown) may be provided a switch or a switching function to interrupt this branch, so that the unprocessed and unamplified audio signal does not reach the summing stage 12. Then, only the filtered signal is present at the output of the filter circuit, the reference signal being applied elsewhere, e.g. in an audio mixer via Aux send / return paths, the filtered signal can be mixed.

Im ersten Nebenzweig A sind ein Steuerfilter 3, ein modifiziertes Bandpaßfilter 6 und ein modifiziertes Universalfilter 7 in dieser Reihenfolge in Reihe geschaltet, wobei das Ausgangssignal des modifizierten Universalfilters 7 dem invertierenden Eingang der Summierstufe 12 zugeführt wird. Der zweite Nebenzweig B enthält ein optionales Hoch- und Obertonfilter 4, dessen Ausgangssignal dem nicht-invertierenden Eingang der Summierstufe 12 zugeführt wird. Das Eingangssignal des Hoch- und Obertonfilters 4 wird auch dem Steuerfilter 3 zugeführt. Der dritte Nebenzweig C führt das im wesentlichen unverarbeitete Audiosignal zusammen mit dem Ausgangssignal des Steuerfilters 3 auf den Eingang des Bandpaßfilters 6. Über den vierten Nebenzweig D wird das im wesentlichen unverarbeitete Audiosignal dem Universalfilter 7 direkt zugeführt. Über den fünften Nebenzweig E wird das amplitudenverstärkte, im übrigen aber unverarbeitete Audiosignal direkt auf einen nicht-invertierenden Eingang der Summierstufe 12 geführt.In the first sub-branch A, a control filter 3, a modified band-pass filter 6 and a modified universal filter 7 are connected in series in this order, the output of the modified universal filter 7 being fed to the inverting input of the summing stage 12. The second sub-branch B contains an optional high and overtone filter 4, whose output signal is supplied to the non-inverting input of the summing stage 12. The input signal of the high and harmonic filter 4 is also supplied to the control filter 3. The third sub-branch C leads the substantially unprocessed audio signal together with the output signal of the control filter 3 to the input of the bandpass filter 6. About the fourth sub-branch D, the substantially unprocessed audio signal is fed directly to the universal filter 7. About the fifth sub-branch E, the amplitude-amplified, but otherwise unprocessed audio signal is fed directly to a non-inverting input of the summing stage 12.

Das modifizierte Universalfilter 7 umfaßt grundsätzlich eine erste Eingangsstufe mit einem Spannungsteiler 8, der das Ausgangssignal des modifizierten Bandpaßfilters 6 empfängt und an den Eingang des Universalfilterkerns 14 anlegt. Das modifizierte Universalfilter 7 weist eine zweite Eingangsstufe mit einem Vorverstärker 9 auf, die das im wesentlichen unverarbeitete Audiosignal empfängt und deren Ausgang über einen Ausgangsknoten 15 mit einem Regler 10 und dem Universalfilterkern 14 verbunden ist. Der Knoten 15 ist auch auf einen Ausgangsregler 11 geführt, dessen Ausgang mit dem invertierenden Eingang der Summierstufe 12 verbunden ist. Der Universalfilterkern 14 umfaßt, wie unten noch näher erläutert ist, ein Tiefpaßfilter, ein Bandpaßfilter und ein Hochpaßfilter und deckt das gesamte hörbare Spektrum von 20 Hz bis 22 kHz ab. Insbesondere werden in dem modifizierten Universalfilter über den Regler 10 Frequenzbereiche eingestellt, die angehoben oder angesenkt werden sollen. Zum Beispiel kann der Regler 10 eine Bandbreite von etwa 1 kHz. bis etwa 22 kHz abdecken.The modified universal filter 7 basically comprises a first input stage with a voltage divider 8, which receives the output signal of the modified bandpass filter 6 and applies it to the input of the universal filter core 14. The modified universal filter 7 has a second input stage with a preamplifier 9, which receives the substantially unprocessed audio signal and whose output is connected via an output node 15 to a controller 10 and the universal filter core 14. The node 15 is also fed to an output controller 11 whose output is connected to the inverting input of the summing stage 12. The universal filter core 14 comprises, as will be explained in more detail below, a low-pass filter, a band-pass filter and a high-pass filter and covers the entire audible spectrum from 20 Hz to 22 kHz. In particular, frequency ranges are set in the modified universal filter via the controller 10, which are to be raised or lowered. For example, the controller 10 may have a bandwidth of about 1 kHz. to cover about 22 kHz.

Das Steuerfilter 3 und das modifizierte Bandpaßfilter 6 dienen zur Ansteuerung des Universalfilters 7 und spezieller des Universalfilterkerns 14. Sie sind für einen bestimmten Frequenzbereich festdimensioniert und für einen weiteren Frequenzbereich variabel einstellbar, wie mit Bezug auf Fig. 2 noch näher erläutert ist. Das Bandpaßfilter 6 ist aufgebaut wie ein frequenzabhängiger Widerstand gegen Masse und erzeugt eine Baßfrequenz von etwa 50 Hz, wie ebenfalls mit Bezug auf Fig. 2 näher erläutert ist. Wie bereits erwähnt, ist das Steuerfilter als aktiver Flächeneinsteller realisiert, der für einen höheren Frequenzbereich eine feste Frequenz- und Amplitudeneinstellung aufweist und für einen niedrigeren Frequenzbereich eine feste Frequenzeinstellung und eine variable Amplitudeneinstellung.The control filter 3 and the modified bandpass filter 6 serve to control the universal filter 7 and more particularly the universal filter core 14. They are fixed dimensioned for a certain frequency range and variably adjustable for a wider frequency range, as explained in more detail with reference to FIG. The bandpass filter 6 is constructed as a frequency-dependent resistor to ground and generates a bass frequency of about 50 Hz, as also explained in more detail with reference to FIG. As already mentioned, the control filter is realized as an active area adjuster which has a fixed frequency and amplitude setting for a higher frequency range and a fixed frequency setting and a variable amplitude setting for a lower frequency range.

Die Summe der Funktionen dieser beiden Filter wird der ersten Eingangsstufe 8 des Universalfilters 7 bzw. Universalfilterkerns 14 zugeführt, wobei über den im Steuerfilter 3 vorhandenen Regler, der auch als Baßsoundregler bezeichnet werden kann, und die Addition mit dem modifizierten Bandpaßfilter eine gewünschte Frequenzentzerrung in dem modifizierten Universalfilter 7 eingestellt werden kann.The sum of the functions of these two filters is supplied to the first input stage 8 of the universal filter 7 or universal filter core 14, wherein the control filter 3 existing in the controller, which can also be referred to as bass sound controller, and the addition of the modified bandpass filter, a desired frequency equalization in the modified universal filter 7 can be adjusted.

Vereinfacht gesagt bewirkt hierbei das Steuerfilter 3 eine Frequenzselektion, das Bandpaßfilter 6 eine Frequenzaddition im Baßbereich und somit eine Phasenverschiebung und der Regler 10 im Universalfilter 7 eine Frequenzregelung.In simple terms, this causes the control filter 3 a frequency selection, the bandpass filter 6 frequency addition in the bass range and thus a phase shift and the controller 10 in the universal filter 7 frequency control.

Zum Beispiel kann in dem modifizierten Universalfilter der Frequenzbereich von etwa 20 bis 150 Hz verstärkt, der Frequenzbereich von etwa 150 bis 500 Hz abgesenkt, und der darüber hinausgehende Frequenzbereich wieder verstärkt werden. Der Regler 10 kann den Bereich der Frequenzabsenkung einstellen, z.B. auf etwa 150 bis 700 Hz (größte Bandbreite, kleinstes Q) oder auf gewünschte andere Werte, die Absenkung kann z.B. ausgedehnt werden auf bis zu 20 kHz, so daß nur die Spitzenwerte über 20 kHz bis etwa 22 kHz verstärkt werden.For example, in the modified universal filter, the frequency range of about 20 to 150 Hz can be amplified, the frequency range of about 150 to 500 Hz can be lowered, and the frequency range beyond that can be amplified again. The controller 10 may adjust the range of the frequency reduction, e.g. to about 150 to 700 Hz (largest bandwidth, smallest Q) or to other desired values, the descent may e.g. can be extended up to 20 kHz, so that only the peak values above 20 kHz to about 22 kHz are amplified.

Für die weitere Bearbeitung von Hochton-Frequenzen oder zur Erzeugung zusätzlicher Obertöne (Harmonische) kann das Eingangssignal optional dem Hoch- und Obertonfilter 4 zugeführt werden. Das optionale Hoch- und Obertonfilter 4 betont den höheren Frequenzbereich. Als weitere Optionen können in dem Nebenzweig B ein KompressorBegrenzer zur Pegelkontrolle, eine Stufe zur Zeitkorrektur oder dergleichen eingesetzt werden.For further processing of high frequency frequencies or for generating additional overtones (harmonics), the input signal can optionally be supplied to the high and harmonic filters 4. The optional high and overtone filter 4 emphasizes the higher frequency range. As further options, a compressor limiter for level control, a stage for time correction or the like can be used in the secondary branch B.

Die erste Eingangsstufe des Universalfilters 7 mit dem Spannungsteiler 8 ist ein wichtiger Schaltungspunkt in der erfindungsgemäßen Filterschaltung zur Ansteuerung und Einstellung des Universalfilters. Das Universalfilter kann zusätzlich durch Integration von Reglern und/oder zuschaltbaren Induktivitäten bei diesem Steuereingang weitere Operationen und Schaltungserweiterungen für eine noch weitergehende Klangfilterung vorsehen.The first input stage of the universal filter 7 with the voltage divider 8 is an important circuit point in the filter circuit according to the invention for controlling and adjusting the universal filter. The universal filter can additionally provide further operations and circuit expansions for even greater sound filtering by integrating regulators and / or switchable inductors in this control input.

Am Ausgang des Universalfilters 7 können für die weitere Verarbeitung des Audiosignals beispielsweise wiederum ein Kompressor/Begrenzer, ein Zeitkorrekturelement oder dergleichen vorgesehen sein.At the output of the universal filter 7, for example, a compressor / limiter, a time correction element or the like may be provided for further processing of the audio signal.

Die erfindungsgemäße Filterschaltung ist im folgenden mit Bezug auf Fig. 2 mit weiteren Einzelheiten erläutert.The filter circuit according to the invention is explained below with reference to FIG. 2 with further details.

Fig. 2 zeigt dieselben Grundelemente wie das Blockschaltbild der Fig. 1, welche mit denselben Bezugszeichen bezeichnet sind. Diese umfassen die regelbare Verstärkerstufe 1 am Eingang des Filterzweiges 22, das Widerstandsnetzwerk 2, mit den Widerständen 2-A, 2-B, 2-C, 2-D und 2-E, welche die Gewichtung der Nebenzweige einstellen, das Steuerfilter oder Flächeneinsteller 3, das modifizierte Bandpaßfilter 6, das modifizierte Universalfilter 7, das Hoch- und Obertonfilter 4 und den Regler 11 sowie die Treiberstufe 13 im ersten oder Bezugszweig 20 und die Ausgangs-Summierstufe 12.Fig. 2 shows the same basic elements as the block diagram of Fig. 1, which are designated by the same reference numerals. These include the controllable amplifier stage 1 at the input of the filter branch 22, the resistor network 2, with the resistors 2-A, 2-B, 2-C, 2-D and 2-E, which set the weighting of the secondary branches, the control filter or area adjuster 3, the modified bandpass filter 6, the modified universal filter 7, the high and harmonic filter 4 and the controller 11 and the driver stage 13 in the first or reference branch 20 and the output summation 12th

Das Audio-Eingangssignal in wird über den Bezugszweig 20 durch die 1:1-Treiberstufe 13, die einen Operationsverstärker OP13 aufweist, und über einen Widerstand dem nicht-invertierenden Eingang eines als Summierer konfigurierten Operationsverstärker OP12 der Ausgangs-Summierstufe 12 zugeführt. In dem Bezugszweig 20 kann optional ein Schalter (nicht gezeigt) zur Unterbrechung des Bezugszweigs 20 vorgesehen sein. Dadurch kommt nur das gefilterte Audiosignal über den Filterzweig 22 zu der Ausgangssummierstufe 12. Das unverarbeitete Audiosignal oder Referenzsignal kann dann an anderer Stelle dem gefilterten Signal zugemischt werden.The audio input signal in is supplied via reference branch 20 through the 1: 1 driver stage 13, which has an operational amplifier OP 13 , and via a resistor to the non-inverting input of an operational amplifier OP 12 configured as a summer of the output summing stage 12. In the reference branch 20, optionally, a switch (not shown) for interrupting the reference branch 20 may be provided. As a result, only the filtered audio signal passes through the filter branch 22 to the output summing stage 12. The unprocessed audio signal or reference signal can then be added elsewhere to the filtered signal.

Der Filterzweig 22 geht zunächst durch die regelbare Verstärkerstufe 1, welche einen Operationsverstärker OP1 sowie einen Regler 24 aufweist, welcher die Ansteuerverstärkung für die nachfolgenden Filterstufen bestimmt.The filter branch 22 initially passes through the controllable amplifier stage 1, which has an operational amplifier OP 1 and a regulator 24, which determines the drive amplification for the subsequent filter stages.

Das Ausgangssignal der regelbaren Verstärkerstufe 1 wird über das Widerstandsnetzwerk 2 auf die verschiedenen Nebenzweige A, B, C, D, E geführt, wobei die Widerstände des Widerstandsnetzwerkes Werte im Bereich von z.B. 1 kΩ bis 100 kΩ haben können. Das Widerstandsnetzwerk 2 teilt den zweiten Zweig oder Filterzweig 22 passiv in fünf Nebenzweige auf, welche über Vorwiderstände getrimmt werden, um deren Verhältnis einzustellen.The output signal of the controllable amplifier stage 1 is fed via the resistor network 2 to the different secondary branches A, B, C, D, E, the resistors of the resistor network having values in the range of e.g. 1 kΩ to 100 kΩ. The resistor network 2 passively divides the second branch or filter branch 22 into five sub-branches, which are trimmed via series resistors to adjust their ratio.

Der erste Nebenzweig A führt zu dem Steuerfilter 3, das ein abgewandelter aktiver Flächeneinsteller ist, der für einen bestimmten höheren Frequenzbereich in Amplitude und Frequenz fest dimensioniert und für einen niedrigeren Frequenzbereich in der Frequenz fest eingestellt und in der Amplitude über einen Regler 26 variabel ist. Das Steuerfilter 3 umfaßt den Regler 26 sowie einen Operationsverstärker OP3, die wie in Fig. 2 gezeigt über Widerstände und Kondensatoren verbunden sind. Der Operationsverstärker OP3 weist eine Rückkopplung auf, die einen Widerstand und einen Kondensator zwischen dem Ausgang und dem invertierenden Eingang des Operationsverstärkers OP3 umfaßt, welche in Reihe geschaltet sind. Am Verbindungspunkt zwischen Widerstand und Kondensator liegt ein weiterer Widerstand, der über den Nebenzweig B ein Teil seines Steuersignals erhält. Der Regler 26 ist ebenfalls auf den invertierenden Eingang des Operationsverstärkers OP3 geschaltet, um die variable Baß-Amplitude einzustellen.The first sub-branch A leads to the control filter 3, which is a modified active area adjuster, for a certain higher frequency range in amplitude and frequency fixed dimensioned and fixed in frequency for a lower frequency range and in the amplitude via a controller 26 is variable. The control filter 3 comprises the controller 26 and an operational amplifier OP 3 , which are connected as shown in Fig. 2 via resistors and capacitors. The operational amplifier OP 3 has a feedback comprising a resistor and a capacitor between the output and the inverting input of the operational amplifier OP 3 , which are connected in series. At the connection point between resistor and capacitor is another resistor, which receives a part of its control signal via the sub-branch B. The regulator 26 is also connected to the inverting input of the operational amplifier OP 3 to adjust the variable bass amplitude.

Der Nebenzweig B weist auch einen Abzweigpunkt 14 zur Abzweigung des Audiosignals zu dem optionalen Hoch- und Obertonfilter 4 auf. Das Ausgangssignal des Hoch- und Obertonfilters 4 ist über einen Widerstand auf den nicht-invertierenden Eingang des Operationsverstärkers OP12 der Ausgangs-Summierstufe 12 geschaltet.The sub-branch B also has a branch point 14 for branching the audio signal to the optional up and harmonic filter 4. The output signal of the high and harmonic filter 4 is connected via a resistor to the non-inverting input of the operational amplifier OP 12 of the output summing stage 12.

Das Ausgangssignal des Steuerfilters 3 ist über einen Widerstand zu einem Knotenpunkt 28 geführt, der auch das Audiosignal über den Nebenzweig C empfängt. Dieser Knoten 28 bildet das Eingangssignal für die modifizierte Bandpaßfilterstufe 6. Die Bandpaßfilterstufe 6 weist einen ersten Operationsverstärker OP61 und einen zweiten Operationsverstärker OP62 auf, die wie in Fig. 2 gezeigt mittels Widerständen und Kondensatoren zu einem aktiven modifizierten Bandpaßfilter verschaltet sind. Das Eingangssignal vom Knoten 28 ist an den nicht-invertierenden Eingang des ersten Operationsverstärkers OP61 geführt, wobei das modifizierte aktive Bandpaßfilter 6 so dimensioniert ist, daß es wie ein frequenzabhängiger Widerstand gegen Masse wirkt, der bei einer sehr niedrigen Frequenz, z.B. 50 Hz, sein Maximum erreicht.The output signal of the control filter 3 is conducted via a resistor to a node 28, which also receives the audio signal via the sub-branch C. This node 28 forms the input signal for the modified bandpass filter stage 6. The bandpass filter stage 6 has a first operational amplifier OP 61 and a second operational amplifier OP 62 , which are connected as shown in Fig. 2 by means of resistors and capacitors to form an active modified band-pass filter. The input signal from the node 28 is fed to the non-inverting input of the first operational amplifier OP 61 , the modified active bandpass filter 6 being dimensioned to act as a frequency-dependent resistance to ground at a very low frequency, eg 50 Hz. reached its maximum.

Das Audiosignal, welches das Steuerfilter 3 und das aktive Bandpaßfilter durchlaufen hat, wird an den Steuereingang des modifizierten Universalfilters 7 angelegt. Mit Hilfe des Reglers 26 des Steuerfilters 3 und dem aufsummierten Bandpaßfilter 6 lassen sich gewünschte Baß-Klangfarben am Universalfilter 7 einstellen. Über den Regler 26 in dem Steuerfilter 3 und das aufsummierte Bandpaßfilter 6 läßt sich das Baßsignal derart beeinflussen, daß man ein weitgehend unverändertes Baßsignal, einen sehr perkussiven, harten Baßklang oder einen sehr weichen, runden Baßklang erhält. Dies wird als Einstellung der Baßklangfarben bezeichnet.The audio signal which has passed through the control filter 3 and the active bandpass filter is applied to the control input of the modified general purpose filter 7. With the help of the controller 26 of the control filter 3 and the summed bandpass filter 6 can be set on the universal filter 7 desired bass tones. About the controller 26 in the control filter 3 and the summed bandpass filter 6, the bass signal can be influenced such that you have a largely unchanged bass signal, a very percussive, hard bass or a gets very soft, round bass sound. This is called setting the bass tones.

Das modifizierte Universalfilter 7 weist eine erste Eingangsstufe mit einem Spannungsteiler 8 auf, der aus zwei Widerständen gebildet ist und mit einem Steuereingang 30 verbunden ist, auf. Der Steuereingang 30 empfängt das Ausgangssignal des modifizierten Bandpaßfilters 6. Der Eingangsstufe mit dem Spannungsteiler ist das Kernstück des modifizierten Universalfilters 7, oder der Universalfilterkern 14, nachgeschaltet, der aus drei Operationsverstärkern OP71, OP72 und OP73 gebildet ist, welche wie in Fig. 2 gezeigt mit Widerständen und Kondensatoren verschaltet sind. Die Verschaltung dieser Operationsverstärker erfolgt anders als bei aus dem Stand der Technik bekannten Universalfiltern, sowie auch die Verschaltung des modifizierten Bandpaßfilters 6 und des Steuerfilters oder aktiven Flächeneinstellers 3 nicht wie im Stand der Technik üblich istThe modified universal filter 7 has a first input stage with a voltage divider 8, which is formed from two resistors and is connected to a control input 30 on. The control input 30 receives the output signal of the modified bandpass filter 6. The input stage with the voltage divider is the core of the modified universal filter 7, or the universal filter core 14, formed downstream of three operational amplifiers OP 71 , OP 72 and OP 73 , which as shown in FIG 2 are connected with resistors and capacitors. The interconnection of these operational amplifiers is done differently than in the prior art known universal filters, as well as the interconnection of the modified bandpass filter 6 and the control filter or active Flächeneinstellers 3 is not common as in the prior art

Die Erfinder haben herausgefunden, daß sich durch die Modifikation der Filterschaltungen, wie sie in den Figuren gezeigt und hier beschrieben ist, besonders vorteilhafte Filtereigenschaften in bezug auf die Klangfarbe und die Frequenzentzerrung ergeben.The inventors have found that by modifying the filter circuits as shown in the figures and described herein, particularly advantageous filter characteristics with regard to timbre and frequency equalization result.

In dem Universalfilterkern 14 arbeitet der erste Operationsverstärker OP71 als Tiefpaß, der zweite Operationsverstärker OP72 bildet einen Bandpaß, und der dritte Operationsverstärker OP73 arbeitet als Hochpaß, wobei die Operationsverstärker insgesamt zwei Integratoren bilden.In the universal filter core 14, the first operational amplifier OP 71 operates as a low-pass filter, the second operational amplifier OP 72 forms a band-pass filter, and the third operational amplifier OP 73 operates as a high-pass filter, the operational amplifiers forming a total of two integrators.

Gegenüber einem "normalen" Universalfilter ist das Universalfilter gemäß der Erfindung so modifiziert, daß die Eingangsbeschaltung des Tiefpaß, OP71 nicht der eines üblichen Tiefpaßeingangs entspricht und daß noch ein zweiter Eingang des Universalfilters 7 über die zweite Eingangsstufe 9 vorgesehen wird. Auch der Bandpaß, OP72, ist nicht auf übliche Weise gebildet, weil er sein Eingangssignal auf dem invertierenden Eingang erhält.Compared to a "normal" universal filter, the universal filter according to the invention is modified so that the input circuit of the low-pass filter, OP 71 does not correspond to that of a conventional Tiefpaßeingangs and that a second input of the universal filter 7 is provided via the second input stage 9. Also, the bandpass, OP 72 , is not formed in the usual way because it receives its input signal on the inverting input.

Das über den Spannungsteiler 8 geführte Summenausgangssignal aus dem Steuerfilter 3 und dem modifizierten Bandpaßfilter 6 wird an den nicht-invertierenden Eingang des ersten Operationsverstärker OP71 angelegt, der als Tiefpaß arbeitet. Zusammengefaßt werden bei der Erfindung zwar die Kernelemente eines Universalfilters, nämlich Tiefpaß, Hochpaß und Bandpaß, übernommen, deren Ansteuerung und Verknüpfung wird jedoch verändert.The summed output signal from the control filter 3 and the modified bandpass filter 6 fed via the voltage divider 8 is applied to the non-inverting input of the first operational amplifier OP 71 , which operates as a low-pass filter. Summarized in the Invention while the core elements of a universal filter, namely low-pass, high-pass and bandpass, taken over, their control and linking is changed.

Zusätzlich kann durch die Integration von Reglern und/oder zuschaltbaren Induktivitäten, wie bei 32 angedeutet, am invertierenden Eingang des Operationsverstärkers OP71 des Tiefpaß-Integrators eine weitere Einstellung der Klangfilterung vorgesehen werdenIn addition, by the integration of regulators and / or switchable inductors, as indicated at 32, a further adjustment of the sound filtering can be provided at the inverting input of the operational amplifier OP 71 of the low-pass integrator

Das modifizierte Universalfilter 7 erhält ein zweites Steuersignal über den Nebenzweig D aus dem Widerstandsnetzwerk 2, wobei dieses Signal auf den nicht-invertierenden Eingang eines Operationsverstärker OP9 der Verstärkerstufe 9 geführt ist. Der Ausgang der Verstärkerstufe 9 ist auf einen Knotenpunkt 15 gerührt der über einen Spannungsteiler an den nicht-invertierenden Eingang des Operationsverstärkers OP73 des Hochpaßfilters gelegt ist. An dem Knoten 15 ist auch ein Regler 10 angeschlossen, mit dem die Bandbreite, welche den Frequenzbereich für die Mitten-Hochton-Absenkung bzw. -Anhebung bestimmt, individuell eingestellt werden kann. Das Ausgangssignal der durch den Operationsverstärker OP72 gebildeten aktiven Bandpaßstufe führt über den Knoten 15 auf einen Regler 11, mit dem das Signal auf den invertierenden Eingang des Operationsverstärkers OP12 der Ausgangs-Summierstufe 12 aufgeschaltet werden kann.The modified universal filter 7 receives a second control signal via the secondary branch D from the resistor network 2, this signal being fed to the non-inverting input of an operational amplifier OP 9 of the amplifier stage 9. The output of the amplifier stage 9 is moved to a node 15 which is connected via a voltage divider to the non-inverting input of the operational amplifier OP 73 of the high-pass filter. At the node 15, a controller 10 is connected, with which the bandwidth, which determines the frequency range for the mid-high-tone reduction or increase, can be set individually. The output signal of the active bandpass stage formed by the operational amplifier OP 72 leads via the node 15 to a controller 11, with which the signal can be switched to the inverting input of the operational amplifier OP 12 of the output summing stage 12.

An diesem Punkt können optional weitere Bearbeitungsstufen und -funktionen eingefügt werden, beispielsweise mittels eines Kompressors/Begrenzers, eines Zeitkorrektur-Elementes oder dergleichen.Optionally, further processing stages and functions may be inserted at this point, for example by means of a compressor / limiter, a time correction element or the like.

Durch die genaue Verteilung der verschiedenen Filterausgangssignale und des Bezugssignals auf die invertierenden und nicht-invertierenden Eingängen des Operationsverstärkers OP12 der Ausgangssummierstufe 12 entsteht eine Wechselwirkung von Frequenz und Phase des Audiosignal am Ausgang des Summierers. Diese Wechselwirkung, zusätzlich erweitert durch Regler oder Schalter in den einzelnen Filterstufen bestimmt die gesamte Frequenzentzerrung der erfindungsgemäßen Audio-Filterschaltung.By accurately distributing the various filter output signals and the reference signal to the inverting and non-inverting inputs of the operational amplifier OP 12 of the output summing stage 12, there arises an interaction of frequency and phase of the audio signal at the output of the summer. This interaction, additionally extended by regulators or switches in the individual filter stages determines the total frequency equalization of the audio filter circuit according to the invention.

Fig. 3 schließlich zeigt schematisch ein Ablaufdiagramm, das illustriert, wie die erfindungsgemäße Filterschaltung in einem Verfahren bzw. in einem digitalen Algorithmus realisiert werden kann, der als ein Computerprogramm umgesetzt werden kann. Wie in Fig. 3 gezeigt durchläuft das Audiosignal eine Verstärkungsstufe 40, die durch eine Multiplikation mit einem einstellbaren Koeffizient realisiert werden kann. Das verstärkte Audiosignal durchläuft nacheinander eine Steuerfilterfunktion 42, eine Bandpaßfilterfunktion 43 und eine Universalfilterfunktion 44, welche das Signal jeweils so verarbeiten, wie es durch die Schaltungen des Steuerfilters 3, des Bandpaßfilters 6 und des Universalfilters 7 vorgegeben ist. Das Ausgangssignal des Universalfilters 44 wird in eine Summiererfunktion 46 eingegeben. Das verstärkte Audiosignal wird ferner am Ausgang der Verstärkungsfunktion 40 abgezweigt und direkt auch als Steuerparameter in die Bandpaßfilterfunktion 43, die Universalfilterfunktion 44 und die Summiererfunktion 46 eingegeben. Zusätzlich wird das verstärkte Audiosignal am Ausgang der Verstärkerfunktion 40 in eine Hoch- und Obertonfilterfunktion 48 eingegeben, deren Ausgangssignal ebenfalls auf die Summiererfunktion 46 geschaltet wird. Schließlich wird auch das im wesentlichen unveränderte Audiosignal über eine 1: 1-Treiberfunktion 50 auf die Summiererfunktion 46 aufgeschaltet. Die zu den jeweiligen Signalwegen parallel gezeichneten Widerstände deuten an, daß die jeweilige Signale in den Wegen entsprechend der Funktion des Widerstandsnetzwerks 2 gewichtet (52) werden können. Die einzelnen Funktionsblöcke realisieren die Funktionen, welche in Fig. 2 als Schaltungsdiagramme gezeigt sind. Der Fachmann weiß, wie er diese Funktionen in Software realisieren kann.Finally, FIG. 3 schematically shows a flow chart which illustrates how the filter circuit according to the invention is implemented in a method or in a digital algorithm can be implemented as a computer program. As shown in Fig. 3, the audio signal passes through an amplification stage 40, which can be realized by multiplication by an adjustable coefficient. The amplified audio signal successively passes through a control filter function 42, a bandpass filter function 43 and a general purpose filter function 44 which each process the signal as dictated by the circuits of the control filter 3, the bandpass filter 6 and the universal filter 7. The output of the universal filter 44 is input to a summer function 46. The amplified audio signal is further diverted at the output of the gain function 40 and also directly input as a control parameter to the bandpass filter function 43, the universal filter function 44 and the summer function 46. In addition, the amplified audio signal at the output of amplifier function 40 is input to a high and overtone filter function 48, the output of which is also switched to summer function 46. Finally, the essentially unchanged audio signal is also switched to the summer function 46 via a 1: 1 driver function 50. The parallel drawn to the respective signal paths resistors indicate that the respective signals in the paths according to the function of the resistor network 2 weighted (52) can be. The individual function blocks realize the functions shown in FIG. 2 as circuit diagrams. The skilled person knows how he can implement these functions in software.

Das erfindungsgemäße Filterverfahren kann als ein Algorithmus in einem Computerprogramm realisiert werden, welches auf einem Personalcomputer, einem Allzweckrechner oder einem Spezialrechner laufen kann oder das in einem Mikroprozessor zum Einbau in Geräte der Konsumerelectronik, Informationstechnologie oder Telekommunikationstechnik integriert werden kann. Die Filterschaltung kann als analoge Schaltung oder als integrierter Halbleiterschaltkreis realisiert werden, die erfindungsgemäße Filterschaltung ist auch durch eine Kombination aus Hardware, Firmware und/oder Software realisierbar.The filtering method according to the invention can be realized as an algorithm in a computer program which can run on a personal computer, a general-purpose computer or a special computer or which can be integrated in a microprocessor for installation in devices of consumer electronics, information technology or telecommunication technology. The filter circuit can be realized as an analog circuit or as a semiconductor integrated circuit, the filter circuit according to the invention can also be realized by a combination of hardware, firmware and / or software.

Die in der vorstehenden Beschreibung, den Ansprüchen und den Figuren gezeigten Merkmale können sowohl einzeln als auch in beliebiger Kombination für die Verwirklichung der Erfindung in ihren verschiedenen Ausgestaltung von Bedeutung sein.The features shown in the foregoing description, the claims and the figures may be of importance both individually and in any combination for the realization of the invention in its various configuration.

Claims (23)

  1. A filter circuit for processing an audio signal, having
    a first path (20), in which the audio signal is routed essentially unchanged to an output summing stage (12), and
    a second path (22), which has a plurality of series-connected filter stages (3, 6, 7), where the audio signal is input into a first filter stage (3) from the series-connected filter stages and is routed via the series-connected filter stages to the output summing stage (12), and where the second path has a plurality of subsidiary paths via which the audio signal is supplied directly to further filter stages (6, 7) from the series-connected filter stages, and
    where at least one of the filter stages is adjustable and the output of the adjusted filter stage controls the filter function of at least one downstream filter stage.
  2. The filter circuit as claimed in claim 1, characterized in that each of the filter stages (3, 6, 7) receives the audio signal via the subsidiary paths directly.
  3. The filter circuit as claimed in claim 1 or 2, characterized in that the subsidiary paths have resistors (2) for weighting the audio signal.
  4. The filter circuit as claimed in one of the preceding claims, characterized in that the filter stages comprise a control filter (3), a bandpass filter (6) and a modified universal filter (7) which are connected in series in this order.
  5. The filter circuit as claimed in claim 4, characterized in that the control filter (3) is in the form of an active area adjuster which, in a first, relatively high frequency range, has a fixed adjustment for frequency and amplitude and, in a second, relatively low frequency range, has a fixed frequency adjustment and can be adjusted so as to vary the amplitude.
  6. The filter circuit as claimed in one of the preceding claims, characterized in that the universal filter (7) has a universal filter core (14) which comprises a low-pass filter (OP71), a bandpass filter (OP72) and a high-pass filter (OP73).
  7. The filter circuit as claimed in claim 6, characterized in that the universal filter core has three operational amplifiers (OP71, OP72, OP73) arranged such that they form two integrators.
  8. The filter circuit as claimed in claim 6 or 7, characterized in that the universal filter (7) has the following features: a first input stage having a voltage divider (8), a second input stage having an input amplifier (9), the universal filter (14) and a control (10), where the output of the first input stage (8) forms the input signal for the low-pass filter (OP71) in the universal filter core (14), the output signal from the second input stage (9) forms the input signal for the high-pass filter (OP73) in the universal filter core (14), and the control (10) is connected to a node (15) which is also connected to the input of the high-pass filter (OP73), in the universal filter core (14), and where the node (15) also forms the output of the universal filter (7).
  9. The filter circuit as claimed in one of the preceding claims, characterized in that the second path (22) has a controllable amplifier (1) connected upstream of it.
  10. The filter circuit as claimed in one of the preceding claims, characterized in that the second path (22) has a further subsidiary path, which contains a treble and harmonic filter (4) whose input receives the audio signal and whose output is connected to the output summing stage (12).
  11. A method for processing an audio signal, in which the audio signal is processed using a first filter function in order to produce a first processed audio signal, the audio signal and the first processed audio signal are processed using a second filter function in order to produce a second processed audio signal, the audio signal and the second processed audio signal are processed using a third filter function in order to produce a third processed audio signal, and the third processed audio signal and the essentially unprocessed audio signal are summed in order to produce an audio output signal, where at least one of the filter functions is adjustable and the output of the adjusted filter function controls a downstream filter function.
  12. The method as claimed in claim 11, characterized in that the audio signal is weighted before it is supplied to the filter functions.
  13. The method as claimed in claim 11 or 12, characterized in that the audio signal is amplified before it is supplied to the filter functions.
  14. The method as claimed in claim 13, characterized in that the amplified audio signal is summed with the third processed audio signal and the essentially unprocessed audio signal.
  15. The method as claimed in claim 14, characterized in that the amplified audio signal is processed using a fourth filter function in order to produce a fourth processed audio signal, which is summed with the amplified audio signal, the third processed audio signal and the essentially unprocessed audio signal.
  16. The method as claimed in claim 15, characterized in that the third processed audio signal is inverted before it is summed with the fourth processed audio signal, the amplified audio signal and the essentially unprocessed audio signal.
  17. The method as claimed in claims 11-16, characterized in that the first filter function comprises a control function, the second filter function comprises bandpass filtering and the third filter function comprises universal filtering.
  18. The method as claimed in claim 17, characterized in that the control function, in a first, relatively high frequency range, makes provision for fixed adjustment of frequency and amplitude and, in a second, relatively low frequency range, makes provision for fixed frequency adjustment and allows variable adjustment of the amplitude.
  19. The method as claimed in claim 17 or 18, characterized in that the universal filtering comprises low-pass filtering, bandpass filtering and high-pass filtering.
  20. The method as claimed in claim 19, characterized in that the universal filtering comprises integration and in that the frequency ranges for the low-pass filtering, bandpass filtering and high-pass filtering are adjustable.
  21. The method as claimed in one of claim 11-20, characterized in that the fourth filter function comprises treble and harmonic filtering.
  22. A computer program comprising a program code which executes the method as claimed in one of the preceding claims 11-21 when the computer program is running on a computer.
  23. A data storage medium having a computer program as claimed in claim 22 stored thereon.
EP02787125A 2001-07-18 2002-07-10 Filter circuit and method for processing an audio signal Expired - Lifetime EP1407544B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10134927 2001-07-18
DE10134927A DE10134927C1 (en) 2001-07-18 2001-07-18 Filter circuit and method for processing an audio signal
PCT/EP2002/007703 WO2003009469A2 (en) 2001-07-18 2002-07-10 Filter circuit and method for processing an audio signal

Publications (2)

Publication Number Publication Date
EP1407544A2 EP1407544A2 (en) 2004-04-14
EP1407544B1 true EP1407544B1 (en) 2007-09-26

Family

ID=7692203

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02787125A Expired - Lifetime EP1407544B1 (en) 2001-07-18 2002-07-10 Filter circuit and method for processing an audio signal

Country Status (8)

Country Link
US (1) US7352872B2 (en)
EP (1) EP1407544B1 (en)
JP (1) JP4421291B2 (en)
CN (1) CN1265550C (en)
AT (1) ATE374448T1 (en)
AU (1) AU2002354996A1 (en)
DE (2) DE10134927C1 (en)
WO (1) WO2003009469A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101085775B1 (en) * 2004-12-07 2011-11-21 삼성전자주식회사 An Apparatus For Suppression of Cross Modulation Noise IN Diversity System of Mobile Receiver
KR100677629B1 (en) 2006-01-10 2007-02-02 삼성전자주식회사 Method and apparatus for simulating 2-channel virtualized sound for multi-channel sounds
US8165322B2 (en) * 2007-05-16 2012-04-24 Gebrüder Frei GmbH & Co. KG Circuit for processing sound signals
US20140022273A1 (en) * 2011-10-18 2014-01-23 Kiril Vidimce Surface Based Graphics Processing
US9060223B2 (en) 2013-03-07 2015-06-16 Aphex, Llc Method and circuitry for processing audio signals
CN105992100B (en) 2015-02-12 2018-11-02 电信科学技术研究院 A kind of preset collection determination method for parameter of audio equalizer and device
US10477314B2 (en) * 2017-03-20 2019-11-12 Bambu Tech, Inc. Dynamic audio enhancement using an all-pass filter
DE102017124046A1 (en) * 2017-10-16 2019-04-18 Ask Industries Gmbh Method for performing a morphing process

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696519A (en) * 1979-12-29 1981-08-04 Sony Corp Tone control circuit
US4422048A (en) * 1980-02-14 1983-12-20 Edwards Richard K Multiple band frequency response controller
NL8401823A (en) * 1984-06-08 1986-01-02 Philips Nv DEVICE FOR CONVERTING AN ELECTRIC SIGNAL TO AN ACOUSTIC SIGNAL OR REVERSE AND A NON-LINEAR NETWORK FOR USE IN THE DEVICE.
US5046105A (en) * 1990-04-30 1991-09-03 Rane Corporation Audio signal equalizer having accelerated slope phase shift compensated filters
US6792119B1 (en) * 1997-05-05 2004-09-14 Koninklijke Philips Electronics N.V. Audio system
US6163789A (en) * 1998-11-18 2000-12-19 Oak Technology, Inc. Digital parametric equalizer with symmetrical cut and boost spectrums

Also Published As

Publication number Publication date
CN1265550C (en) 2006-07-19
EP1407544A2 (en) 2004-04-14
AU2002354996A1 (en) 2003-03-03
ATE374448T1 (en) 2007-10-15
WO2003009469A2 (en) 2003-01-30
DE50210983D1 (en) 2007-11-08
CN1533633A (en) 2004-09-29
JP4421291B2 (en) 2010-02-24
US20040179700A1 (en) 2004-09-16
DE10134927C1 (en) 2003-01-30
WO2003009469A3 (en) 2003-12-04
JP2004535605A (en) 2004-11-25
US7352872B2 (en) 2008-04-01

Similar Documents

Publication Publication Date Title
DE69531828T2 (en) HEARING AID WITH SIGNAL PROCESSING TECHNIQUES
DE69433662T2 (en) ADAPTIVE GAIN AND FILTER CIRCUIT FOR SOUND PLAY SYSTEM
DE3742803C2 (en) Arrangement for automatic dynamic equalization
DE3939478C2 (en) Noise reduction device in an FM stereo tuner
DE3100025A1 (en) DIGITALLY CONTROLLED COMPENSATION AND EQUALIZER SYSTEM
DE102005019677A1 (en) Improvements for or in relation to signal processing
EP1192837B1 (en) Method for processing an audio signal
DE3619031C2 (en)
DE2658301B1 (en) Hearing aid
EP0758817A1 (en) Equaliser for digital signals
DE112012006457B4 (en) Frequency characteristic modification device
DE112012006458T5 (en) Signal processing device
DE102006047986A1 (en) Processing an input signal in a hearing aid
EP1407544B1 (en) Filter circuit and method for processing an audio signal
DE2222531A1 (en) Noise suppression compander
DE2839229C2 (en) Crossover with a transversal filter
DE19624092B4 (en) Amplification circuit, preferably for analog or digital hearing aids and hearing aids using a corresponding amplification circuit or a corresponding signal processing algorithm
EP0779706B1 (en) Circuitry for improving signal to noise ratio
DE19955696A1 (en) Device for generating harmonics in an audio signal
DE102008024534A1 (en) Hearing device with an equalization filter in the filter bank system
DE60125072T2 (en) Digital graphical / parametric equalizer
EP0485357B1 (en) Hearing aid with filter circuit
EP0700153A2 (en) Circuit with a controllable transfer characteristic
DE102004006957A1 (en) Method and device for amplifying a received signal
EP3698474B1 (en) Method for the adjustment of parameters for the individual modification of an audio signal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031222

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070926

REF Corresponds to:

Ref document number: 50210983

Country of ref document: DE

Date of ref document: 20071108

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070926

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070926

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080106

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071227

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080226

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070926

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070926

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070926

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170628

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170705

Year of fee payment: 16

Ref country code: DE

Payment date: 20170801

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50210983

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180710

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190201

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731