EP1192333B1 - Component that can be subjected to hot gas, especially a turbine blade - Google Patents

Component that can be subjected to hot gas, especially a turbine blade Download PDF

Info

Publication number
EP1192333B1
EP1192333B1 EP00942078A EP00942078A EP1192333B1 EP 1192333 B1 EP1192333 B1 EP 1192333B1 EP 00942078 A EP00942078 A EP 00942078A EP 00942078 A EP00942078 A EP 00942078A EP 1192333 B1 EP1192333 B1 EP 1192333B1
Authority
EP
European Patent Office
Prior art keywords
turbulators
wall
inclination
walls
turbine blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00942078A
Other languages
German (de)
French (fr)
Other versions
EP1192333A1 (en
Inventor
Peter Tiemann
Michael Scheurlen
Dirk Anding
Hans-Thomas Bolms
Michael Strassberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP00942078A priority Critical patent/EP1192333B1/en
Publication of EP1192333A1 publication Critical patent/EP1192333A1/en
Application granted granted Critical
Publication of EP1192333B1 publication Critical patent/EP1192333B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2212Improvement of heat transfer by creating turbulence

Definitions

  • the present invention relates to a hot gas Component, in particular a turbine blade, with at least a channel that can be acted upon by a cooling fluid and delimited by two first, opposite walls is used to improve the heat transfer between the component and the cooling fluid with one or more turbulators are provided, the turbulators of the first wall and the turbulators of the second wall have the same direction of inclination have and opposite a flow direction of the Cooling fluids are inclined at an angle of inclination.
  • Such a component in the form of a gas turbine blade is from EP 0 758 932 B1 or US 5,695,321, in particular FIG. 9A is known.
  • the well-known gas turbine blade is hollow and has at least one channel on which can be acted upon by a cooling fluid. hereby can increase the gas inlet temperature into the gas turbine be so that the efficiency is improved.
  • the channel is of two first opposite walls limited. There are one or more turbulators on these walls provided the heat transfer between the gas turbine blade and improve the cooling fluid.
  • the turbulators both walls have the same direction of inclination and are around the same angle of inclination with respect to a flow direction of the cooling fluid inclined. With such a configuration the channel can be narrowed locally by the turbulators.
  • US 5,413,458 shows a gas turbine guide vane with a Platform.
  • the platform is provided with a flow chamber, are arranged in the turbulators in such a way that the flow chamber flowing cooling fluid to the corners of the Platform is directed.
  • the object of the present invention is therefore to provide a hot gas Provide component in which an essentially uniform channel cross-section over the entire Length of the turbulators without local restrictions.
  • this object is achieved at the beginning of a component mentioned type in that the angle of inclination of the turbulators of the first wall from the angle of inclination Turbulators of the second wall is different.
  • the different angles of inclination of the turbulators the first and second walls enable the turbulators to be arranged without local bottlenecks.
  • the turbulators are lying down due to the different angles of inclination no longer in sections across from. Rather, the turbulators a wall practically completely alternating over its entire length arranged to the turbulators of the other wall become. This results in the direction of the length of the turbulators a uniform cross section of the channel for the Cooling fluid.
  • Cross-section changes and the associated pressure losses are significantly reduced.
  • the length of the first wall is advantageously greater than the length the second wall. This allows different cross sections can be selected for the component that can be subjected to hot gas.
  • the first two walls curved.
  • a cross section can be seen through the curved walls in the form of a wing profile for the hot gas Component can be selected. This cross section is particularly necessary for use as a turbine blade.
  • the angle of inclination the turbulators of the first wall larger than the angle of inclination the turbulators of the second wall.
  • the length of the turbulators the first wall is thereby reduced, while the Length of the turbulators of the second wall is increased.
  • the Tilt angles are chosen so that the turbulators practically completely alternating on the two walls are arranged to each other. This essentially leads to one uniform cross-section of the channel over the entire Length of the turbulators.
  • Two additional walls to limit the channel are advantageous provided that connect the first two walls together.
  • the interior of the component that can be subjected to hot gas is through these two other walls into several, for example three, divided channels that are interconnected.
  • the cooling fluid flows through the three channels in succession. It is advantageous when used as a gas turbine blade the first channel in which the temperature of the cooling fluid at lowest is on the inflow side of the gas turbine blade arranged.
  • the two others Walls arranged at an angle to each other.
  • This angular arrangement enables alignment of these additional walls in the essentially perpendicular to the first two walls.
  • This Alignment optimizes the management of the Cooling fluid.
  • the angular position of the other two walls is moreover better for absorbing stresses in the Suitable for use as a gas turbine blade.
  • the turbulators just trained. This straight training makes it easier the demolding of the component according to the invention and cheaper the production.
  • the Turbulators curved. With curved turbulators is a complete alternation of the turbulators over theirs entire length possible. The pressure losses due to changes in cross-section are minimized as much as possible.
  • a gas turbine blade 10 is in the Longitudinal section and shown in cross section.
  • the gas turbine blade 10 has a cooling channel 11 on the inside in three individual, essentially parallel to each other Channels 12, 13, 14 is divided.
  • a cooling fluid, in particular Cooling air flows through the cooling channel 11 in the direction of the arrow 15th
  • Each of the three channels 12, 13, 14 is from the two outer walls 16, 17 and one or both partitions 18, 19 limited. To improve the heat transfer between the Cooling fluid and the outer walls 16, 17 are these with turbulators 20, 21 provided.
  • the two are Outer walls 16, 17 are curved and have a different Length on. This will make it for the gas turbine blade 10 required wing profile reached.
  • the Outer wall 16 forms the suction side of the gas turbine blade 10, and the outer wall 17 forms the pressure side.
  • the turbulators 20, 21 have the same direction of inclination and are opposite to a flow direction 22 of the cooling fluid inclined at an angle of inclination. This is for the turbulator 20 with the angle of inclination ⁇ shown in Figure 1.
  • the flow direction 22 of the cooling fluid in the individual channels 12, 13, 14 runs essentially parallel to the partitions 18, 19.
  • the turbulators 20 are also longer than the turbulators 21.
  • the turbulators have 20 the same angle of inclination with respect to the flow direction 22 of the cooling fluid as the turbulators 21 in one Projection parallel to one of the two walls 18, 19.
  • the turbulators 20, 21 in sections face the same height.
  • Figure 7 and Figure 8 show a section along the line V-V as well as VI-VI in FIG. 2 for a gas turbine blade 10 the state of the art.
  • the turbulators 20, 21 of the two outer walls 16, 17 alternate arranged to each other.
  • the cooling fluid can in this Area evenly from one outer wall 16 to the other Pendulum outer wall 17.
  • the opposite two turbulators 20, 21 at the same height.
  • a evenly fluctuating cooling fluid flow is no longer possible. Rather, they form between the turbulators 20, 21 Constrictions 23. This makes it available for the cooling fluid standing cross section is constantly changing. This cross-sectional change leads to pressure losses and therefore to one locally reduced cooling effectiveness and overheating.
  • the invention provides for the turbulators 20, 21 with the same direction of inclination, but different angles of inclination to be arranged opposite to the flow direction 22.
  • This is shown in more detail in Figures 3 and 4, each Show views in the direction of the partitions 18, 19.
  • the Turbulators 20, 21 have the same on both outer walls 16, 17 Inclination direction, namely from bottom left to right at the top.
  • the outer wall 17 is not shown in FIGS. 3 and 4.
  • the partition wall 18 of FIG undistorted in width. Because of the line of sight the partition 19 distorted accordingly and therefore shown wider.
  • the turbulators 20 extend from the partition 18 to the partition 19 along the first wall 16. Sie are therefore in the view according to Figure 3 in the right area partially covered by the partition 19.
  • the turbulators 21 extend along the outer wall 17 between the Partitions 18, 19. Due to the different lengths of the Outer walls 16, 17 and the angular position of the partition walls 18, 19 results in a different length for the turbulators 20, 21.
  • the angle of inclination ⁇ is the Turbulators of the first outer wall 16 are chosen larger than that Tilt angle ⁇ of the turbulators 21 of the second outer wall 17.
  • the actual length of the turbulators 20 is thereby decreases while the length of the turbulators 21 increases becomes. There is therefore an angle difference ⁇ between the turbulators 20, 21.
  • FIG. 4 shows a view in the viewing direction of the partition 19. Accordingly, the partition 19 appears undistorted while the partition 18 appears wider due to the viewing direction.
  • Figures 3 and 4 show the position of the turbulators 20, 21 from different angles. Because of these different viewing angles, different angles of inclination and angle differences result in FIGS. 3 and 4, which are correspondingly referred to as ⁇ 1 , ⁇ 2 , ⁇ 1 , ⁇ 2 and ⁇ 1 , ⁇ 2 .
  • the type and size of the distortion depend on the individual case.
  • FIGS. 9 and 10 The angular profile of the turbulators 20, 21 in FIGS. 9 and 10 opposite the flow direction 22 is selected Projection direction.
  • FIG. 10 also shows a schematic projection of the channel 13 in the plane along the section line I-I in Figure 2. In this projection results in the arrangement according to the invention of the turbulators 20, 21 that shown in FIG smooth course.
  • the invention enables a uniform cross section of the channel 11 over the entire length of the turbulators 20, 21.

Abstract

The invention relates to a component (10) that can be subjected to a hot gas, especially a turbine blade. At least one channel (13) is provided. Said channel can be subjected to a cooling fluid and is delimited by two first walls (16, 17), which face each other and have turbulators (20, 21) with the same direction of inclination. The turbulators (20) of the first wall (16) have a different angle of inclination (α) in relation to a direction of flow (22) of the cooling fluid to the turbulators (21) of the second wall (17) in order to avoid constrictions (23).

Description

Die vorliegende Erfindung betrifft ein heißgasbeaufschlagbares Bauteil, insbesondere eine Turbinenschaufel, mit mindestens einem Kanal, der mit einem Kühlfluid beaufschlagbar ist und von zwei ersten, einander gegenüberliegenden Wänden, begrenzt ist, die zur Verbesserung des Wärmeübergangs zwischen dem Bauteil und dem Kühlfluid mit einem oder mehreren Turbulatoren versehen sind, wobei die Turbulatoren der ersten Wand und die Turbulatoren der zweiten Wand dieselbe Neigungsrichtung aufweisen und gegenüber einer Strömungsrichtung des Kühlfluids um einen Neigungswinkel geneigt sind.The present invention relates to a hot gas Component, in particular a turbine blade, with at least a channel that can be acted upon by a cooling fluid and delimited by two first, opposite walls is used to improve the heat transfer between the component and the cooling fluid with one or more turbulators are provided, the turbulators of the first wall and the turbulators of the second wall have the same direction of inclination have and opposite a flow direction of the Cooling fluids are inclined at an angle of inclination.

Ein derartiges Bauteil in der Ausgestaltung als Gasturbinenschaufel ist aus der EP 0 758 932 B1 oder der US 5,695,321, insbesondere Figur 9A bekannt. Die bekannte Gasturbinenschaufel ist hohl ausgebildet und weist mindestens einen Kanal auf, der mit einem Kühlfluid beaufschlagbar ist. Hierdurch kann die Eintrittstemperatur des Gases in die Gasturbine erhöht werden, so daß der Wirkungsgrad verbessert wird. Der Kanal ist von zwei ersten voneinander gegenüberliegenden Wänden begrenzt. An diesen Wänden sind eine oder mehrere Turbulatoren vorgesehen, die den Wärmeübergang zwischen der Gasturbinenschaufel und dem Kühlfluid verbessern. Die Turbulatoren beider Wände weisen dieselbe Neigungsrichtung auf und sind um denselben Neigungswinkel gegenüber einer Strömungsrichtung des Kühlfluids geneigt. Bei einer derartigen Ausgestaltung kann der Kanal durch die Turbulatoren lokal verengt werden. Dies tritt insbesondere dann auf, wenn die beiden einander gegenüberliegenden Wände und damit die Turbulatoren unterschiedliche Längen aufweisen. Die Turbulatoren der beiden Wände liegen sich dann abschnittsweise auf derselben Höhe gegenüber. Der Kanal wird an dieser Stelle lokal eingeengt. Da jede Wand im Regelfall mit mehreren Turbulatoren versehen ist, tritt dieses Einengen wiederholt auf. Es ergibt sich damit kein gleichmäßig von der einen Wand zur anderen Wand pendelnder Kühlfluidstrom mit im wesentlichen konstantem Querschnitt. Vielmehr wird der für das Kühlfluid zur Verfügung stehende Querschnitt ständig verändert, so daß Druckverluste auftreten.Such a component in the form of a gas turbine blade is from EP 0 758 932 B1 or US 5,695,321, in particular FIG. 9A is known. The well-known gas turbine blade is hollow and has at least one channel on which can be acted upon by a cooling fluid. hereby can increase the gas inlet temperature into the gas turbine be so that the efficiency is improved. The channel is of two first opposite walls limited. There are one or more turbulators on these walls provided the heat transfer between the gas turbine blade and improve the cooling fluid. The turbulators both walls have the same direction of inclination and are around the same angle of inclination with respect to a flow direction of the cooling fluid inclined. With such a configuration the channel can be narrowed locally by the turbulators. This occurs especially when the two are facing each other opposite walls and therefore the turbulators different Have lengths. The turbulators of the two Walls then face each other at the same height in sections. The canal is narrowed locally at this point. There usually provide each wall with several turbulators this constriction occurs repeatedly. It follows no one swinging evenly from one wall to the other Cooling fluid flow with a substantially constant cross section. Rather, it becomes available for the cooling fluid standing cross section is constantly changing, so that pressure drops occur.

Die US 5,413,458 zeigt eine Gasturbinenleitschaufel mit einer Plattform. Die Plattform ist mit einer Strömungskammer versehen, in der Turbulatoren derart angeordnet sind, daß durch die Strömungskammer strömendes Kühlfluid zu den Ecken der Plattform geleitet wird.US 5,413,458 shows a gas turbine guide vane with a Platform. The platform is provided with a flow chamber, are arranged in the turbulators in such a way that the flow chamber flowing cooling fluid to the corners of the Platform is directed.

Aufgabe der vorliegenden Erfindung ist es daher, ein heißgasbeaufschlagbares Bauteil bereitzustellen, bei dem ein im wesentlichen gleichmäßiger Kanalquerschnitt über die gesamte Länge der Turbulatoren ohne lokale Einengungen vorliegt.The object of the present invention is therefore to provide a hot gas Provide component in which an essentially uniform channel cross-section over the entire Length of the turbulators without local restrictions.

Erfindungsgemäß wird diese Aufgabe bei einem Bauteil der eingangs genannten Art dadurch gelöst, daß der Neigungswinkel der Turbulatoren der ersten Wand von dem Neigungswinkel der Turbulatoren der zweiten Wand verschieden ist.According to the invention, this object is achieved at the beginning of a component mentioned type in that the angle of inclination of the turbulators of the first wall from the angle of inclination Turbulators of the second wall is different.

Die unterschiedlichen Neigungswinkel der Turbulatoren der ersten und zweiten Wand ermöglichen ein Anordnen der Turbulatoren ohne lokale Engstellen. Die Turbulatoren liegen sich auf Grund der unterschiedlichen Neigungswinkel nicht mehr abschnittsweise gegenüber. Vielmehr können die Turbulatoren der einen Wand über ihre gesamte Länge praktisch vollständig alternierend zu den Turbulatoren der anderen Wand angeordnet werden. Hierdurch ergibt sich in Richtung der Länge der Turbulatoren ein gleichmäßiger Querschnitt des Kanals für das Kühlfluid. Die bei den bekannten Konstruktionen auftretenden Querschnittswechsel und die damit verbundenen Druckverluste werden wesentlich verringert. The different angles of inclination of the turbulators the first and second walls enable the turbulators to be arranged without local bottlenecks. The turbulators are lying down due to the different angles of inclination no longer in sections across from. Rather, the turbulators a wall practically completely alternating over its entire length arranged to the turbulators of the other wall become. This results in the direction of the length of the turbulators a uniform cross section of the channel for the Cooling fluid. The occurring in the known constructions Cross-section changes and the associated pressure losses are significantly reduced.

Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung gehen aus den Unteransprüchen hervor.Advantageous refinements and developments of the invention emerge from the subclaims.

Vorteilhaft ist die Länge der ersten Wand größer als die Länge der zweiten Wand. Hierdurch können unterschiedliche Querschnitte für das heißgasbeaufschlagbare Bauteil gewählt werden.The length of the first wall is advantageously greater than the length the second wall. This allows different cross sections can be selected for the component that can be subjected to hot gas.

In vorteilhafter Weiterbildung sind die beiden ersten Wände gebogen ausgebildet. Durch die gebogenen Wände kann ein Querschnitt in Form eines Tragflügelprofils für das heißgasbeaufschlagbare Bauteil gewählt werden. Dieser Querschnitt ist insbesondere für die Verwendung als Turbinenschaufel erforderlich.In an advantageous development, the first two walls curved. A cross section can be seen through the curved walls in the form of a wing profile for the hot gas Component can be selected. This cross section is particularly necessary for use as a turbine blade.

Nach einer vorteilhaften Ausgestaltung ist der Neigungswinkel der Turbulatoren der ersten Wand größer als der Neigungswinkel der Turbulatoren der zweiten Wand. Die Länge der Turbulatoren der ersten Wand wird hierdurch verringert, während die Länge der Turbulatoren der zweiten Wand vergrößert wird. Die Neigungswinkel werden hierbei derart gewählt, daß die Turbulatoren auf den beiden Wänden praktisch vollständig alternierend zueinander angeordnet sind. Dies führt zu einem im wesentlichen gleichmäßigen Querschnitt des Kanals über die gesamte Länge der Turbulatoren.According to an advantageous embodiment, the angle of inclination the turbulators of the first wall larger than the angle of inclination the turbulators of the second wall. The length of the turbulators the first wall is thereby reduced, while the Length of the turbulators of the second wall is increased. The Tilt angles are chosen so that the turbulators practically completely alternating on the two walls are arranged to each other. This essentially leads to one uniform cross-section of the channel over the entire Length of the turbulators.

Vorteilhaft sind zwei weitere Wände zur Begrenzung des Kanals vorgesehen, die die beiden ersten Wände miteinander verbinden. Der Innenraum des heißgasbeaufschlagbaren Bauteils wird durch diese beiden weiteren Wände in mehrere, beispielsweise drei, Kanäle unterteilt, die miteinander in Verbindung stehen. Das Kühlfluid durchströmt nacheinander die drei Kanäle. Vorteilhaft ist bei der Verwendung als Gasturbinenschaufel der erste Kanal, in dem die Temperatur des Kühlfluids am niedrigsten ist, an der angeströmten Seite der Gasturbinenschaufel angeordnet. Two additional walls to limit the channel are advantageous provided that connect the first two walls together. The interior of the component that can be subjected to hot gas is through these two other walls into several, for example three, divided channels that are interconnected. The cooling fluid flows through the three channels in succession. It is advantageous when used as a gas turbine blade the first channel in which the temperature of the cooling fluid at lowest is on the inflow side of the gas turbine blade arranged.

Gemäß einer vorteilhaften Weiterbildung sind die beiden weiteren Wände winklig zueinander angeordnet. Diese winklige Anordnung ermöglicht ein Ausrichten dieser weiteren Wände im wesentlichen senkrecht zu den beiden ersten Wänden. Dieses Ausrichten führt zu einer Optimierung der Führung des Kühlfluids. Die Winkelstellung der beiden weiteren Wände ist darüber hinaus besser zur Aufnahme von Belastungen bei der Verwendung als Gasturbinenschaufel geeignet.According to an advantageous development, the two others Walls arranged at an angle to each other. This angular arrangement enables alignment of these additional walls in the essentially perpendicular to the first two walls. This Alignment optimizes the management of the Cooling fluid. The angular position of the other two walls is moreover better for absorbing stresses in the Suitable for use as a gas turbine blade.

In einer ersten vorteilhaften Ausgestaltung sind die Turbulatoren gerade ausgebildet. Diese gerade Ausbildung erleichtert das Entformen des erfindungsgemäßen Bauteils und verbilligt die Herstellung.In a first advantageous embodiment, the turbulators just trained. This straight training makes it easier the demolding of the component according to the invention and cheaper the production.

Gemäß einer weiteren vorteilhaften Ausgestaltung sind die Turbulatoren gebogen ausgebildet. Mit gebogenen Turbulatoren ist ein vollständiges Alternieren der Turbulatoren über ihre gesamte Länge möglich. Die Druckverluste auf Grund von Querschnittsänderungen werden soweit wie möglich minimiert.According to a further advantageous embodiment, the Turbulators curved. With curved turbulators is a complete alternation of the turbulators over theirs entire length possible. The pressure losses due to changes in cross-section are minimized as much as possible.

Nachstehend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert, die in schematischer Weise in der Zeichnung dargestellt sind. Das erfindungsgemäße Bauteil wird hierbei am Beispiel einer Gasturbinenschaufel beschrieben. Dies ist nicht als Einschränkung des Umfangs der Erfindung zu verstehen. Es zeigt:

  • Figur 1 einen Längsschnitt durch eine Gasturbinenschaufel entlang der Linie I-I in Figur 2;
  • Figur 2 einen Querschnitt durch eine Gasturbinenschaufel entlang der Linie II-II in Figur 1;
  • Figur 3 eine Ansicht in Pfeilrichtung III aus Figur 2;
  • Figur 4 eine Ansicht in Pfeilrichtung IV aus Figur 2;
  • Figur 5 einen Schnitt längs der Linie V-V in Figur 2;
  • Figur 6 einen Schnitt längs der Linie VI-VI in Figur 2;
  • Figur 7 eine Ansicht ähnlich Figur 5 bei einer Gasturbinenschaufel nach dem Stand der Technik;
  • Figur 8 eine Ansicht ähnlich Figur 6 bei einer Gasturbinenschaufel nach dem Stand der Technik;
  • Figur 9 eine Ansicht ähnlich Figur 1 bei einer erfindungsgemäßen Gasturbinenschaufel; und
  • Figur 10 eine Ansicht ähnlich Figur 9 bei einer Gasturbinenschaufel gemäß dem Stand der Technik.
  • The invention is explained in more detail below on the basis of exemplary embodiments, which are shown schematically in the drawing. The component according to the invention is described using the example of a gas turbine blade. This should not be construed to limit the scope of the invention. It shows:
  • 1 shows a longitudinal section through a gas turbine blade along the line II in Figure 2;
  • FIG. 2 shows a cross section through a gas turbine blade along the line II-II in FIG. 1;
  • Figure 3 is a view in the direction of arrow III of Figure 2;
  • Figure 4 is a view in the direction of arrow IV of Figure 2;
  • 5 shows a section along the line VV in Figure 2;
  • 6 shows a section along the line VI-VI in Figure 2;
  • Figure 7 is a view similar to Figure 5 in a gas turbine blade according to the prior art;
  • Figure 8 is a view similar to Figure 6 in a gas turbine blade according to the prior art;
  • Figure 9 is a view similar to Figure 1 in a gas turbine blade according to the invention; and
  • Figure 10 is a view similar to Figure 9 in a gas turbine blade according to the prior art.
  • In den Figuren 1 und 2 ist eine Gasturbinenschaufel 10 im Längsschnitt sowie im Querschnitt dargestellt. Die Gasturbinenschaufel 10 weist innenseitig einen Kühlkanal 11 auf, der in drei einzelne, im wesentlichen parallel zueinander verlaufende Kanäle 12, 13, 14 unterteilt ist. Ein Kühlfluid, insbesondere Kühlluft, durchströmt den Kühlkanal 11 in Pfeilrichtung 15.In Figures 1 and 2, a gas turbine blade 10 is in the Longitudinal section and shown in cross section. The gas turbine blade 10 has a cooling channel 11 on the inside in three individual, essentially parallel to each other Channels 12, 13, 14 is divided. A cooling fluid, in particular Cooling air flows through the cooling channel 11 in the direction of the arrow 15th

    Jeder der drei Kanäle 12, 13, 14 wird von den beiden Außenwänden 16, 17 sowie eine oder beiden Trennwänden 18, 19 begrenzt. Zur Verbesserung des Wärmeübergangs zwischen dem Kühlfluid und den Außenwänden 16, 17 sind diese mit Turbulatoren 20, 21 versehen.Each of the three channels 12, 13, 14 is from the two outer walls 16, 17 and one or both partitions 18, 19 limited. To improve the heat transfer between the Cooling fluid and the outer walls 16, 17 are these with turbulators 20, 21 provided.

    Wie insbesondere aus Figur 2 ersichtlich ist, sind die beiden Außenwände 16, 17 gebogen ausgebildet und weisen eine unterschiedliche Länge auf. Hierdurch wird das für die Gasturbinenschaufel 10 erforderliche Tragflügelprofil erreicht. Die Außenwand 16 bildet die Saugseite der Gasturbinenschaufel 10, und die Außenwand 17 bildet die Druckseite. Die beiden Trennwände 18, 19, die den mittleren Kanal 13 begrenzen, verbinden die Außenwände 16, 17 miteinander. Diese Trennwände.18, 19 sind winklig zueinander angeordnet und stehen im wesentlichen senkrecht zu den Außenwänden 16, 17. Hierdurch wird eine Optimierung bei der Führung des Kühlfluids erreicht. Durch die Winkelstellung der Trennwände 18, 19 senkrecht zu den Außenwänden 16, 17 können weiter im Betrieb auftretenden Belastungen der Gasturbinenschaufel 10 besser aufgenommen werden. As can be seen in particular from FIG. 2, the two are Outer walls 16, 17 are curved and have a different Length on. This will make it for the gas turbine blade 10 required wing profile reached. The Outer wall 16 forms the suction side of the gas turbine blade 10, and the outer wall 17 forms the pressure side. The two partitions 18, 19, which delimit the central channel 13 the outer walls 16, 17 with each other. These partitions. 18, 19 are arranged at an angle to each other and are essentially perpendicular to the outer walls 16, 17. This is an optimization reached in the management of the cooling fluid. Through the Angular position of the partition walls 18, 19 perpendicular to the outer walls 16, 17 can continue to occur during operation the gas turbine blade 10 can be better absorbed.

    Die Turbulatoren 20, 21 weisen dieselbe Neigungsrichtung auf und sind gegenüber einer Strömungsrichtung 22 des Kühlfluids um einen Neigungswinkel geneigt. Dies ist für den Turbulator 20 mit dem Neigungswinkel α in Figur 1 dargestellt. Die Strömungsrichtung 22 des Kühlfluids in den einzelnen Kanälen 12, 13, 14 verläuft im wesentlichen parallel zu den Trennwänden 18, 19.The turbulators 20, 21 have the same direction of inclination and are opposite to a flow direction 22 of the cooling fluid inclined at an angle of inclination. This is for the turbulator 20 with the angle of inclination α shown in Figure 1. The flow direction 22 of the cooling fluid in the individual channels 12, 13, 14 runs essentially parallel to the partitions 18, 19.

    Im Kanal 13, bei dem der zugeordnete Bereich der Außenwand 16 länger ist als der zugeordnete Bereich der Außenwand 17, sind die Turbulatoren 20 ebenfalls länger als die Turbulatoren 21. Bei den bekannten Gasturbinenschaufeln weisen die Turbulatoren 20 denselben Neigungswinkel gegenüber der Strömungsrichtung 22 des Kühlfluids auf wie die Turbulatoren 21 in einer Projektion parallel zu einer der beiden Wände 18, 19. Hierdurch können sich die Turbulatoren 20, 21 abschnittsweise auf derselben Höhe gegenüberliegen.In the channel 13, in which the assigned area of the outer wall 16 is longer than the assigned area of the outer wall 17 the turbulators 20 are also longer than the turbulators 21. In the known gas turbine blades, the turbulators have 20 the same angle of inclination with respect to the flow direction 22 of the cooling fluid as the turbulators 21 in one Projection parallel to one of the two walls 18, 19. Hereby can the turbulators 20, 21 in sections face the same height.

    Figur 7 und Figur 8 zeigen einen Schnitt längs der Linie V-V sowie VI-VI in Figur 2 bei einer Gasturbinenschaufel 10 nach dem Stand der Technik. An der in Figur 2 linken Seite des Kanals 13, die im Querschnitt in Figur 7 dargestellt ist, sind die Turbulatoren 20, 21 der beiden Außenwände 16, 17 alternierend zueinander angeordnet. Das Kühlfluid kann in diesem Bereich gleichmäßig von der einen Außenwand 16 zur anderen Außenwand 17 pendeln. Bei dem in Figur 2 rechten Bereich, der im Querschnitt in Figur 8 dargestellt ist, liegen sich die beiden Turbulatoren 20, 21 auf derselben Höhe gegenüber. Eine gleichmäßig pendelnder Kühlfluidstrom ist nicht mehr möglich. Vielmehr bilden sich zwischen den Turbulatoren 20, 21 Engstellen 23. Hierdurch wird der für das Kühlfluid zur Verfügung stehende Querschnitt ständig verändert. Diese Querschnittsänderung führt zu Druckverlusten und daher zu einer lokal verminderten Kühleffektivität und Überhitzungen.Figure 7 and Figure 8 show a section along the line V-V as well as VI-VI in FIG. 2 for a gas turbine blade 10 the state of the art. On the left side of the channel in FIG. 2 13, which is shown in cross section in Figure 7 the turbulators 20, 21 of the two outer walls 16, 17 alternate arranged to each other. The cooling fluid can in this Area evenly from one outer wall 16 to the other Pendulum outer wall 17. In the area on the right in FIG. 2, the is shown in cross section in Figure 8, the opposite two turbulators 20, 21 at the same height. A evenly fluctuating cooling fluid flow is no longer possible. Rather, they form between the turbulators 20, 21 Constrictions 23. This makes it available for the cooling fluid standing cross section is constantly changing. This cross-sectional change leads to pressure losses and therefore to one locally reduced cooling effectiveness and overheating.

    Demgegenüber sieht die Erfindung vor, die Turbulatoren 20, 21 mit derselben Neigungsrichtung, aber unterschiedlichen Neigungswinkeln gegenüber der Strömungsrichtung 22 anzuordnen. Dies ist in den Figuren 3 und 4 näher dargestellt, die jeweils Ansichten in Richtung der Trennwände 18, 19 zeigen. Die Turbulatoren 20, 21 weisen auf beiden Außenwänden 16, 17 dieselbe Neigungsrichtung auf, nämlich von links unten nach rechts oben verlaufend. Aus Gründen der besseren Übersicht ist die Außenwand 17 in den Figuren 3 und 4 nicht dargestellt.In contrast, the invention provides for the turbulators 20, 21 with the same direction of inclination, but different angles of inclination to be arranged opposite to the flow direction 22. This is shown in more detail in Figures 3 and 4, each Show views in the direction of the partitions 18, 19. The Turbulators 20, 21 have the same on both outer walls 16, 17 Inclination direction, namely from bottom left to right at the top. For the sake of a better overview the outer wall 17 is not shown in FIGS. 3 and 4.

    Bei der Ansicht gemäß Figur 3 erscheint die Trennwand 18 von der Breite her unverzerrt. Auf Grund der Blickrichtung ist die Trennwand 19 entsprechend verzerrt und daher breiter dargestellt. Die Turbulatoren 20 erstrecken sich von der Trennwand 18 bis zur Trennwand 19 entlang der ersten Wand 16. Sie sind daher in der Ansicht gemäß Figur 3 im rechten Bereich stellenweise von der Trennwand 19 verdeckt. Die Turbulatoren 21 erstrecken sich entlang der Außenwand 17 zwischen den Trennwänden 18, 19. Auf Grund der unterschiedlichen Länge der Außenwände 16, 17 und der Winkelstellung der Trennwände 18, 19 ergibt sich eine unterschiedliche Länge für die Turbulatoren 20, 21.In the view according to FIG. 3, the partition wall 18 of FIG undistorted in width. Because of the line of sight the partition 19 distorted accordingly and therefore shown wider. The turbulators 20 extend from the partition 18 to the partition 19 along the first wall 16. Sie are therefore in the view according to Figure 3 in the right area partially covered by the partition 19. The turbulators 21 extend along the outer wall 17 between the Partitions 18, 19. Due to the different lengths of the Outer walls 16, 17 and the angular position of the partition walls 18, 19 results in a different length for the turbulators 20, 21.

    Zum Vermeiden von Engstellen wird der Neigungswinkel α der Turbulatoren der ersten Außenwand 16 größer gewählt als der Neigungswinkel β der Turbulatoren 21 der zweiten Außenwand 17. Die tatsächliche Länge der Turbulatoren 20 wird hierdurch verringert, während die Länge der Turbulatoren 21 vergrößert wird. Es ergibt sich daher eine Winkeldifferenz γ zwischen den Turbulatoren 20, 21.To avoid constrictions, the angle of inclination α is the Turbulators of the first outer wall 16 are chosen larger than that Tilt angle β of the turbulators 21 of the second outer wall 17. The actual length of the turbulators 20 is thereby decreases while the length of the turbulators 21 increases becomes. There is therefore an angle difference γ between the turbulators 20, 21.

    Figur 4 zeigt eine Ansicht in Blickrichtung der Trennwand 19. Entsprechend erscheint die Trennwand 19 unverzerrt, während die Trennwand 18 auf Grund der Blickrichtung breiter erscheint. Die Winkeldifferenz y zwischen den Turbulatoren 20, 21 auf Grund der unterschiedlichen Neigungswinkel α, β ist deutlich erkennbar. FIG. 4 shows a view in the viewing direction of the partition 19. Accordingly, the partition 19 appears undistorted while the partition 18 appears wider due to the viewing direction. The angular difference y between the turbulators 20, 21 due to the different inclination angles α, β clearly.

    Die Figuren 3 und 4 geben die Lage der Turbulatoren 20, 21 aus unterschiedlichen Blickwinkeln wieder. Wegen dieser unterschiedlichen Blickwinkel ergeben sich in den Figuren 3 und 4 unterschiedliche Neigungswinkel und Winkeldifferenzen, die entsprechend als α1, α2, β1, β2 sowie γ1, γ2 bezeichnet werden. Die Art und die Größe der Verzerrung hängen hierbei vom Einzelfall ab.Figures 3 and 4 show the position of the turbulators 20, 21 from different angles. Because of these different viewing angles, different angles of inclination and angle differences result in FIGS. 3 and 4, which are correspondingly referred to as α 1 , α 2 , β 1 , β 2 and γ 1 , γ 2 . The type and size of the distortion depend on the individual case.

    Auf Grund der unterschiedlichen Neigungswinkel α, β, aber derselben Neigungsrichtung der Turbulatoren 20, 21 ergibt sich ein fast vollständiges Alternieren der Turbulatoren. Wie in Figur 3 und 4 dargestellt liegen sich die Turbulatoren 20,21 an keiner Stelle gegenüber. Das Kühlfluid kann daher ungehindert von einer Außenwand 16 zur anderen Außenwand 17 pendeln. Dies gilt sowohl nahe der Trennwand 18 als auch nahe der Trennwand 19.Due to the different inclination angles α, β, however same direction of inclination of the turbulators 20, 21 results an almost complete alternation of the turbulators. How the turbulators are shown in FIGS. 3 and 4 20.21 nowhere across. The cooling fluid can therefore freely from one outer wall 16 to the other outer wall 17 commute. This applies both close to the partition 18 and close the partition 19.

    In den Figuren 5 und 6 sind die Verhältnisse nahe den Trennwänden 18, 19 entsprechend der Schnittlinien V-V und VI-VI in Figur 2 dargestellt. Es ergibt sich deutlich, daß die beim Stand der Technik vorhandene Einengung 23 bei der erfindungsgemäßen Gasturbinenschaufel 10 nicht mehr vorliegt. Dies wird durch die unterschiedlichen Neigungswinkel α, β der Turbulatoren 20, 21 bei gleicher Neigungsrichtung erreicht.In Figures 5 and 6, the conditions are close to the partitions 18, 19 according to the section lines V-V and VI-VI in Figure 2 shown. It is clear that the State of the art constriction 23 in the invention Gas turbine blade 10 is no longer present. this will due to the different inclination angles α, β of the turbulators 20, 21 reached with the same direction of inclination.

    Bei Verwendung gerader Turbulatoren 20, 21, wie in den Figuren 3 und 4 dargestellt, läßt sich eine kostengünstige Herstellung der Gasturbinenschaufel 10 erreichen. Ein vollständiges Alternieren der Turbulatoren 20, 21 ist mit geraden Turbulatoren nur bei parallelen Trennwänden 18 und 19 möglich. So ist der Abstand zwischen den Turbulatoren 20, 21 nahe der Trennwand 18 vom Abstand nahe der Trennwand 19 verschieden. Durch die Verwendung gebogener Turbulatoren 20, 21 läßt sich ein vollständiges mittiges Alternieren erreichen. Dies ist insbesondere in Figur 9 dargestellt. Mittels gebogener Turbulatoren 20, 21 läßt sich darüber hinaus entlang der gesamten Länge der Turbulatoren 20, 21 ein gleichmäßiger Abstand d zwischen den Turbulatoren 20, 21 erzielen. Hierdurch ergibt sich ein optimales Pendeln des Kühlfluidstroms zwischen den beiden Außenwänden 16, 17. Zum Vergleich ist in Figur 10 die gegenseitige Lage der Turbulatoren 20, 21 bei ei-5 ner Gasturbinenschaufel 10 nach dem Stand der Technik dargestellt, wenn die Trennwände 18, 19 nicht parallel sind und die Entfernung der Trennwände 18 erfolgt. Es ergibt sich deutlich, daß sich die Turbulatoren 20, 21 nahe der Trennwand 19 gegenüberliegen. Hierdurch wird die in Figur 8 dargestellte Einengung 23 ausgebildet.When using straight turbulators 20, 21, as in the figures 3 and 4 shown, can be inexpensive to manufacture reach the gas turbine blade 10. A complete one Alternation of the turbulators 20, 21 is straight Turbulators only possible with parallel partitions 18 and 19. So the distance between the turbulators 20, 21 is close the partition 18 different from the distance near the partition 19. By using curved turbulators 20, 21 complete alternation in the middle can be achieved. This is shown in particular in FIG. 9. By means of curved Turbulators 20, 21 can also be along the entire length of the turbulators 20, 21 a uniform distance d between the turbulators 20, 21 achieve. hereby there is an optimal oscillation of the cooling fluid flow between the two outer walls 16, 17. For comparison, in FIG 10 the mutual position of the turbulators 20, 21 at ei-5 ner gas turbine blade 10 shown according to the prior art, if the partitions 18, 19 are not parallel and the partition 18 is removed. It follows clearly that the turbulators 20, 21 near the partition 19 are opposite. As a result, the one shown in FIG Constriction 23 is formed.

    Der Winkelverlauf der Turbulatoren 20, 21 in den Figuren 9 und 10 gegenüber der Strömungsrichtung 22 ist auf die gewählte Projektionsrichtung zurückzuführen. Sowohl Figur 9 als auch Figur 10 zeigen eine schematische Projektion des Kanals 13 in die Ebene entlang der Schnittlinie I-I in Figur 2. In dieser Projektion ergibt sich bei der erfindungsgemäßen Anordnung der Turbulatoren 20, 21 der in Figur 9 dargestellte gleichmäßige Verlauf.The angular profile of the turbulators 20, 21 in FIGS. 9 and 10 opposite the flow direction 22 is selected Projection direction. Both Figure 9 and FIG. 10 also shows a schematic projection of the channel 13 in the plane along the section line I-I in Figure 2. In this projection results in the arrangement according to the invention of the turbulators 20, 21 that shown in FIG smooth course.

    Die scheinbar unterschiedlichen Neigungswinkel der Turbulatoren 20, 21 in Figur 10 sowie die scheinbar gleichen Neigungswinkel in Figur 9 sind auf die Verzerrung durch die Projektion zurückzuführen. Auf Grund dieser Verzerrung erscheint scheinen die Turbulatoren 20, 21 sowohl in Figur 9 als auch in Figur 10 trotz ihrer in Wirklichkeit unterschiedlichen Länge als gleich lang.The apparently different angles of inclination of the turbulators 20, 21 in Figure 10 and the apparently same inclination angle in Figure 9 are on the distortion caused by the projection due. Because of this distortion appears the turbulators 20, 21 appear in both FIG. 9 and in Figure 10 despite their actually different Length as equal length.

    Insgesamt ermöglicht die Erfindung einen gleichmäßigen Querschnitt des Kanals 11 über die gesamte Länge der Turbulatoren 20, 21.Overall, the invention enables a uniform cross section of the channel 11 over the entire length of the turbulators 20, 21.

    Claims (8)

    1. Component (10), in particular a turbine blade/vane, which can be subjected to hot gas, and has at least one duct (13) which can be subjected to a cooling fluid and is bounded by two first walls (16, 17) opposite to one another, which walls are provided with one or more turbulators (20, 21) to improve the heat transfer between the component (10) and the cooling fluid, the turbulators (20) of the first wall (16) and the turbulators (21) of the second wall (17) having the same direction of inclination and being inclined relative to a flow direction (22) of the cooling fluid by an angle of inclination (α; β), characterized in that the angle of inclination (α) of the turbulators (20) of the first wall (16) is different from the angle of inclination (β) of the turbulators (21) of the second wall (17).
    2. Component according to Claim 1, characterized in that the length of the first wall (16) is greater than the length of the second wall (17).
    3. Component according to Claim 1 or 2, characterized in that the first two walls (16, 17) have a curved configuration.
    4. Component according to Claim 2 or 3, characterized in that the angle of inclination (α) of the turbulators (20) of the first wall (16) is greater than the angle of inclination (β) of the turbulators (21) of the second wall (17).
    5. Component according to one of Claims 1 to 4, characterized in that two further walls (18, 19) are provided to form boundaries for the duct (13), which walls (18, 19) connect the two first walls (16, 17) to one another.
    6. Component according to Claim 5, characterized in that the two further walls (18, 19) are arranged at an angle relative to one another.
    7. Component according to one of Claims 1 to 6, characterized in that the turbulators (20, 21) have a straight configuration.
    8. Component according to one of Claims 1 to 6, characterized in that the turbulators (20, 21) have a curved configuration.
    EP00942078A 1999-06-28 2000-06-15 Component that can be subjected to hot gas, especially a turbine blade Expired - Lifetime EP1192333B1 (en)

    Priority Applications (1)

    Application Number Priority Date Filing Date Title
    EP00942078A EP1192333B1 (en) 1999-06-28 2000-06-15 Component that can be subjected to hot gas, especially a turbine blade

    Applications Claiming Priority (4)

    Application Number Priority Date Filing Date Title
    EP99112370 1999-06-28
    EP99112370 1999-06-28
    EP00942078A EP1192333B1 (en) 1999-06-28 2000-06-15 Component that can be subjected to hot gas, especially a turbine blade
    PCT/EP2000/005525 WO2001000965A1 (en) 1999-06-28 2000-06-15 Component that can be subjected to hot gas, especially a turbine blade

    Publications (2)

    Publication Number Publication Date
    EP1192333A1 EP1192333A1 (en) 2002-04-03
    EP1192333B1 true EP1192333B1 (en) 2003-06-04

    Family

    ID=8238439

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00942078A Expired - Lifetime EP1192333B1 (en) 1999-06-28 2000-06-15 Component that can be subjected to hot gas, especially a turbine blade

    Country Status (5)

    Country Link
    US (1) US6641362B1 (en)
    EP (1) EP1192333B1 (en)
    JP (1) JP4489336B2 (en)
    DE (1) DE50002464D1 (en)
    WO (1) WO2001000965A1 (en)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2015073092A3 (en) * 2013-09-05 2015-08-06 United Technologies Corporation Gas turbine engine airfoil turbulator for airfoil creep resistance

    Families Citing this family (13)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US7513745B2 (en) * 2006-03-24 2009-04-07 United Technologies Corporation Advanced turbulator arrangements for microcircuits
    US7641445B1 (en) 2006-12-01 2010-01-05 Florida Turbine Technologies, Inc. Large tapered rotor blade with near wall cooling
    US7866947B2 (en) * 2007-01-03 2011-01-11 United Technologies Corporation Turbine blade trip strip orientation
    US7955053B1 (en) 2007-09-21 2011-06-07 Florida Turbine Technologies, Inc. Turbine blade with serpentine cooling circuit
    US8376706B2 (en) * 2007-09-28 2013-02-19 General Electric Company Turbine airfoil concave cooling passage using dual-swirl flow mechanism and method
    US8042268B2 (en) * 2008-03-21 2011-10-25 Siemens Energy, Inc. Method of producing a turbine component with multiple interconnected layers of cooling channels
    US20090324841A1 (en) * 2008-05-09 2009-12-31 Siemens Power Generation, Inc. Method of restoring near-wall cooled turbine components
    EP2146055B2 (en) 2008-07-17 2022-01-19 Ansaldo Energia S.P.A. Sealing element for a gas turbine, a gas turbine including said sealing element and method for cooling said sealing element
    EP2602439A1 (en) 2011-11-21 2013-06-12 Siemens Aktiengesellschaft Coolable hot gas component for a gas turbine
    WO2014175937A2 (en) * 2013-02-05 2014-10-30 United Technologies Corporation Gas turbine engine component having curved turbulator
    CN106481366B (en) * 2015-08-28 2019-03-26 中国航发商用航空发动机有限责任公司 Cooling blade and gas turbine
    US11085304B2 (en) * 2018-06-07 2021-08-10 Raytheon Technologies Corporation Variably skewed trip strips in internally cooled components
    JP2023165485A (en) * 2022-05-06 2023-11-16 三菱重工業株式会社 Turbine blade and gas turbine

    Family Cites Families (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4627480A (en) 1983-11-07 1986-12-09 General Electric Company Angled turbulence promoter
    US5695322A (en) * 1991-12-17 1997-12-09 General Electric Company Turbine blade having restart turbulators
    US5695321A (en) 1991-12-17 1997-12-09 General Electric Company Turbine blade having variable configuration turbulators
    US5700132A (en) * 1991-12-17 1997-12-23 General Electric Company Turbine blade having opposing wall turbulators
    US5681144A (en) * 1991-12-17 1997-10-28 General Electric Company Turbine blade having offset turbulators
    US5413458A (en) 1994-03-29 1995-05-09 United Technologies Corporation Turbine vane with a platform cavity having a double feed for cooling fluid
    US5431537A (en) 1994-04-19 1995-07-11 United Technologies Corporation Cooled gas turbine blade
    DE19634238A1 (en) * 1996-08-23 1998-02-26 Asea Brown Boveri Coolable shovel
    US5797726A (en) 1997-01-03 1998-08-25 General Electric Company Turbulator configuration for cooling passages or rotor blade in a gas turbine engine
    EP0892150B1 (en) * 1997-07-14 2003-02-05 ALSTOM (Switzerland) Ltd System for cooling the trailing edge of a hollow gasturbine blade

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2015073092A3 (en) * 2013-09-05 2015-08-06 United Technologies Corporation Gas turbine engine airfoil turbulator for airfoil creep resistance

    Also Published As

    Publication number Publication date
    JP4489336B2 (en) 2010-06-23
    US6641362B1 (en) 2003-11-04
    JP2003503620A (en) 2003-01-28
    WO2001000965A1 (en) 2001-01-04
    DE50002464D1 (en) 2003-07-10
    EP1192333A1 (en) 2002-04-03

    Similar Documents

    Publication Publication Date Title
    EP1266127B1 (en) Cooling system for a turbine blade
    EP1192333B1 (en) Component that can be subjected to hot gas, especially a turbine blade
    EP1113145B1 (en) Blade for gas turbines with metering section at the trailing edge
    DE10001109B4 (en) Cooled shovel for a gas turbine
    EP1223308B1 (en) Turbomachine component
    DE102006048305B4 (en) Plate heat exchanger
    EP2611990B1 (en) Turbine blade for a gas turbine
    EP2143883A1 (en) Turbine blade and corresponding casting core
    CH697919B1 (en) Turbine blade having a concave cooling flow path and arranged therein opposite swirling currents causing turbulators.
    DE10220532A1 (en) Heat-exchange radiator has protruberances on sheets from hollow plate plane facing inwards
    DE102014119691A1 (en) Internal cooling channels in turbine blades
    DE102016208344A1 (en) Fluidic component
    DE112010002307T5 (en) heatsink
    EP1167689A1 (en) Configuration of a coolable turbine blade
    WO2016131786A1 (en) Shell and tube heat exchanger
    EP1266128B1 (en) Reinforcement and cooling structure of a turbine blade
    DE602004011171T2 (en) Heat exchanger with plate stack
    DE3513936C2 (en) Cooling device for a multi-stage compressor
    DE2127454A1 (en) Gas turbine
    EP0386131B1 (en) Countercurrent heat-exchanger
    EP1247937B1 (en) Gas turbine blade and gas turbine
    DE102021129828A1 (en) Pressure reducing device for a flowing fluid
    EP0268791B1 (en) Heat exchanger
    DE10360240B4 (en) Rib for heat exchangers with parallel stratification of flat heat exchanger tubes
    DE10350735B4 (en) Combustion chamber with cooling device and method for producing the combustion chamber

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20011129

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Designated state(s): CH DE FR GB IT LI SE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: SIEMENS SCHWEIZ AG

    RIN2 Information on inventor provided after grant (corrected)

    Inventor name: ANDING, DIRK

    Inventor name: BOLMS, HANS-THOMAS

    Inventor name: STRASSBERGER, MICHAEL

    Inventor name: TIEMANN, PETER

    Inventor name: SCHEURLEN, MICHAEL

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 50002464

    Country of ref document: DE

    Date of ref document: 20030710

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030904

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040305

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PCAR

    Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20120626

    Year of fee payment: 13

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130615

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20150608

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20150610

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20150902

    Year of fee payment: 16

    Ref country code: DE

    Payment date: 20150821

    Year of fee payment: 16

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50002464

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20160615

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20170228

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170103

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160630

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160630

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160615