EP0386131B1 - Countercurrent heat-exchanger - Google Patents
Countercurrent heat-exchanger Download PDFInfo
- Publication number
- EP0386131B1 EP0386131B1 EP19890900222 EP89900222A EP0386131B1 EP 0386131 B1 EP0386131 B1 EP 0386131B1 EP 19890900222 EP19890900222 EP 19890900222 EP 89900222 A EP89900222 A EP 89900222A EP 0386131 B1 EP0386131 B1 EP 0386131B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat exchanger
- passages
- exchanger according
- channels
- plates
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000009413 insulation Methods 0.000 claims description 2
- 239000012530 fluid Substances 0.000 abstract description 6
- UNILWMWFPHPYOR-KXEYIPSPSA-M 1-[6-[2-[3-[3-[3-[2-[2-[3-[[2-[2-[[(2r)-1-[[2-[[(2r)-1-[3-[2-[2-[3-[[2-(2-amino-2-oxoethoxy)acetyl]amino]propoxy]ethoxy]ethoxy]propylamino]-3-hydroxy-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-[(2r)-2,3-di(hexadecanoyloxy)propyl]sulfanyl-1-oxopropan-2-yl Chemical compound O=C1C(SCCC(=O)NCCCOCCOCCOCCCNC(=O)COCC(=O)N[C@@H](CSC[C@@H](COC(=O)CCCCCCCCCCCCCCC)OC(=O)CCCCCCCCCCCCCCC)C(=O)NCC(=O)N[C@H](CO)C(=O)NCCCOCCOCCOCCCNC(=O)COCC(N)=O)CC(=O)N1CCNC(=O)CCCCCN\1C2=CC=C(S([O-])(=O)=O)C=C2CC/1=C/C=C/C=C/C1=[N+](CC)C2=CC=C(S([O-])(=O)=O)C=C2C1 UNILWMWFPHPYOR-KXEYIPSPSA-M 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0012—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the apparatus having an annular form
- F28D9/0018—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the apparatus having an annular form without any annular circulation of the heat exchange media
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0031—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
- F28D9/0037—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
- F28F3/04—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2250/00—Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
- F28F2250/10—Particular pattern of flow of the heat exchange media
- F28F2250/104—Particular pattern of flow of the heat exchange media with parallel flow
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S165/00—Heat exchange
- Y10S165/355—Heat exchange having separate flow passage for two distinct fluids
- Y10S165/356—Plural plates forming a stack providing flow passages therein
- Y10S165/357—Plural plates forming a stack providing flow passages therein forming annular heat exchanger
- Y10S165/358—Radially arranged plates
Definitions
- the invention relates to a countercurrent heat exchanger with exchange surfaces consisting of sheets, which are arranged between inlet channels narrowing in the inlet direction and outlet channels widening in the outlet direction.
- a known heat exchanger in which the distances between the heat exchanger surfaces are relatively small (US-A-4 042 018) is made from folded zigzag sheets.
- This heat exchanger is relatively complicated and has the disadvantage that the fluids do not sweep over the exchange surfaces uniformly, but instead Search for the shortest route (dashed arrows on the left in FIG. 1 of the document) so that no optimal heat exchange takes place.
- the object of the invention is to provide a simple heat exchanger that is very effective.
- the solution according to the invention is that the sheets are arranged in stacks of individual sheets, that the exchange surfaces are arranged obliquely to the stacking direction and that two adjacent sheets on both sides of the stack include channels that alternate on the one side drain channels and inlet channels and on the on the other side form the corresponding inlet channels and outlet channels.
- the heat exchanger Since the heat exchanger is made from stacks of individual sheets, it can be assembled from these individual sheets in various forms as required. Since the exchange surfaces are arranged obliquely to the stacking direction, the channels here have a smaller width than the distance between the sheets in the stacking direction. This gives you better heat exchange. Since the inlet and outlet channels are arranged on opposite sides of the stack, the fluids flow completely through the stack from one side to the other, so that the entire heat exchanger surfaces are covered. Since the channels narrow in the inflow direction or expand in the outflow direction, optimal flow conditions are obtained. In the rear part of the channels, where there is little flow, these channels can be smaller than in the front part, where larger amounts of fluid flow.
- the inlet and outlet channels on one side have a largest cross section, which is equal to the flow cross section of the channels between the exchange surfaces, the channels on the opposite side narrowing to the cross section zero.
- the production is particularly efficient if the heat exchanger consists of the same, but alternately composed, plates. It is therefore only necessary to produce a press for one type of sheet, which is then assembled alternately to form the heat exchanger.
- the channels between the exchange surfaces have a V-shaped cross section when viewed in the inflow or outflow direction.
- an inlet channel and the corresponding outlet channel lie opposite one another on opposite sides of the heat exchanger.
- the heat exchanger area is increased on the one hand. If the corrugations still touch each other, the sheets are supported against each other, which also allows the size to be reduced and thinner sheets to be selected.
- the sheets can be welded together, soldered, in particular hard-soldered.
- the heat exchanger is advantageously covered with a pressure-resistant and heat-insulating layer. If it is arranged in a pressure-tight and pressure-resistant housing, the interior of which has the pressure of the flowing media, the heat exchanger can also be used at very high pressures of these media. It is only necessary to ensure through a small hole or the like that a little of the media under high pressure can get from the heat exchanger into the pressure vessel, so that pressure equalization takes place here. The high operating pressures then no longer need from the thin sheets, but only have to be absorbed by the pressure-resistant container.
- the medium 1 shows a conventional heat exchanger, between the walls 1 of which two media 2 and 3 move in the direction of arrows 4 and 5 in counterflow.
- the medium 2 has an original temperature T2
- the medium 3 has one original temperature T3.
- the temperature profiles in the radial direction are indicated in the figure by a curve 6.
- the temperature initially maintains the original value over most of the width a of the channels.
- a temperature exchange only takes place within the relatively small boundary layer with the width s.
- the cooled or warmed edge areas must first be mixed by the flow with the central areas of the flow, so that they only participate indirectly in the heat exchange, as a result of which the efficiency is reduced.
- FIG. 3 which shows the flow channels in plan view
- walls 1 which have a wave shape
- the heat exchange surface is thereby increased. Since the corrugations e.g. touch at lines 7, the arrangement is very stable even when using thin sheets.
- the flow channels 8 are limited laterally; In this way, a large flow channel is broken down into several smaller ones.
- the heat exchanger consists of a stack of sheets 1 which are essentially V-shaped.
- the legs of the V are relatively close together, so that the width of the flow channels 8 is very small here.
- At the ends of the legs of the V there are angled sheet metal areas which delimit the inlet channels 9 and the outlet channels 10.
- these channels taper to the thickness zero, so that only inflow channels are open from the right in the illustration in FIG. 5, while only outflow channels 10 are open to the left.
- the one medium can be introduced on one end face at the end of one leg of the V and can be withdrawn on the same end face at the end of the other leg of the V.
- the flow pattern is shown in plan view in FIG. 6.
- FIGS. 4 to 6 the heat exchanger of FIGS. 4 to 6 is shown, in which the individual channels 9 and 10 are still provided with connecting pieces 11.
- the heat exchanger 12 itself is surrounded by a heat and pressure-resistant insulating compound 13, which is enclosed by a pressure-resistant housing 14. Through pressure compensation holes, the interior of the pressure housing 14 communicates with the flowing media, so that only very low pressure is present on the relatively thin sheets 1 of the heat exchanger 12 even in cases where both media have very high, but approximately the same pressures.
- the actual heat exchanger surfaces are not angled, but straight. Apart from this, the conditions are otherwise essentially the same as in the embodiment of FIGS. 4 to 8, so that a detailed explanation can be dispensed with.
- the inflow channels 9 and outflow channels 10 alternate with one another in the cross-sectional area F and narrow toward the ends, so that a medium flows in or out at one of the four ends.
- FIGS. 11 and 12 essentially the sheets of the embodiment of FIGS. 9 and 10 are used, which, however, are no longer stacked in a straight line but rather in a circle. This creates the flow conditions as indicated in FIG. 12.
- One medium can be fed to the inner ring of inlet channels 9 from the left and be withdrawn on the same side of the outer ring of outlet channels 10 '.
- the other medium is introduced from the outside right through the feed channels 9 'and radially removed from the inside of the channels 10.
- radial fans can be used very conveniently for conveying the media.
- a pressure-resistant insulation 11 and a pressure-resistant housing 14 are again provided.
- the plates 1 of the heat exchangers are expediently welded or soldered to one another at the end faces at which the media enter or exit, since here one of the channels narrows to zero width, so the corresponding plates lie directly on top of one another. In this way, a very stable basic structure is obtained, in which only the remaining end faces then have to be soldered or otherwise closed, but this is also easy to achieve because of the corrugations.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Windings For Motors And Generators (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Networks Using Active Elements (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
Die Erfindung betrifft einen Gegenstrom-Wärmetauscher mit aus Blechen bestehenden Austauschflächen, die zwischen sich in Zulaufrichtung verengenden Zulaufkanälen und sich in Ablaufrichtung erweiternden Ablaufkanälen angeordnet sind.The invention relates to a countercurrent heat exchanger with exchange surfaces consisting of sheets, which are arranged between inlet channels narrowing in the inlet direction and outlet channels widening in the outlet direction.
Bei Wärmetauschern, auch bei Gegenstrom-Wärmetauschern, tritt das Problem auf, daß ein Wärmetausch nur in der Nähe der Oberflächen des Wärmetauschers stattfindet. Deswegen findet nur innerhalb eines verhältnismäßig kleinen Bereiches, nämlich innerhalb der Grenzschichtdicke ein Wärmetausch statt. Das so abgekühlte oder erwärmte Medium vermischt sich dann mit dem nicht abgekühlten oder nicht erwärmten Medium. Da dieser Mischvorgang irreversibel ist, tritt insgesamt eine bedeutende Verschlechterung des Wirkungsgrades auf. Wegen der üblichen verhältnismäßig großen Abstände zwischen den Wärmetauscherflächen haben die Wärmetauscher dann auch eine beträchtliche Größe, was wiederum zu Stabilitätsproblemen führt, wenn die Wärmetauscher bei hohen Drucken verwendet werden sollen.With heat exchangers, also with countercurrent heat exchangers, the problem arises that heat exchange takes place only in the vicinity of the surfaces of the heat exchanger. For this reason, heat exchange takes place only within a relatively small range, namely within the boundary layer thickness. The medium which has been cooled or heated in this way then mixes with the medium which has not been cooled or has not been heated. Since this mixing process is irreversible, the overall efficiency deterioration is significant. Because of the usual relatively large distances between the heat exchanger surfaces, the heat exchangers are then also of considerable size, which in turn leads to stability problems when the heat exchangers are to be used at high pressures.
Ein vorbekannter Wärmetauscher, bei dem die Abstände zwischen den Wärmetauscherflächen verhältnismäßig klein sind (US-A-4 042 018) ist aus zickzackförmig gefalteten Blechen hergestellt. Dieser Wärmetauscher ist verhältnismäßig kompliziert aufgebaut und hat den Nachteil, daß die Fluide die Austauschflächen nicht gleichförmig überstreichen, sondern sich den kürzesten Weg suchen (gestrichelte Pfeile links in Fig. 1 der Entgegenhaltung), so daß kein optimaler Wärmeaustausch stattfindet.A known heat exchanger, in which the distances between the heat exchanger surfaces are relatively small (US-A-4 042 018) is made from folded zigzag sheets. This heat exchanger is relatively complicated and has the disadvantage that the fluids do not sweep over the exchange surfaces uniformly, but instead Search for the shortest route (dashed arrows on the left in FIG. 1 of the document) so that no optimal heat exchange takes place.
Die Aufgabe der Erfindung besteht darin, einen einfach aufgebauten Wärmetauscher zu schaffen, der sehr wirkungsvoll ist.The object of the invention is to provide a simple heat exchanger that is very effective.
Die erfindungsgemäße Lösung besteht darin, daß die Bleche in Stapeln von Einzelblechen angeordnet sind, daß die Austauschflächen schräg zur Stapelrichtung angeordnet sind und daß je zwei benachbarte Bleche auf beiden Seiten des Stapels Kanäle einschließen, die abwechselnd auf der einen Seite Ablaufkanäle und Zulaufkanäle und auf der anderen Seite jeweils die entsprechenden Zulaufkanäle und Ablaufkanäle bilden.The solution according to the invention is that the sheets are arranged in stacks of individual sheets, that the exchange surfaces are arranged obliquely to the stacking direction and that two adjacent sheets on both sides of the stack include channels that alternate on the one side drain channels and inlet channels and on the on the other side form the corresponding inlet channels and outlet channels.
Da der Wärmetauscher aus Stapeln von Einzelblechen hergestellt ist, kann er aus diesen Einzelblechen je nach Bedarf in unterschiedlicher Form zusammengesetzt werden. Da die Austauschflächen schräg zur Stapelrichtung angeordnet sind, haben die Kanäle hier eine geringere Breite als dies dem Abstand der Bleche in Stapelrichtung entspricht. Dadurch erhält man einen besseren Wärmetausch. Da die Zu- und Ablaufkanäle auf entgegengesetzten Seiten des Stapels angeordnet sind, fließen die Fluide vollständig durch den Stapel von der einen Seite zur anderen durch, so daß die gesamten Wärmetauscherflächen überstrichen werden. Da die Kanäle sich in Zulaufrichtung verengen bzw. in Ablaufrichtung erweitern, erhält man optimale Strömungsverhältnisse. Im hinteren Teil der Kanäle, wo nur noch wenig Strömung stattfindet, können diese Kanäle kleiner sein als im vorderen Teil, bei dem größere Fluidmengen strömen.Since the heat exchanger is made from stacks of individual sheets, it can be assembled from these individual sheets in various forms as required. Since the exchange surfaces are arranged obliquely to the stacking direction, the channels here have a smaller width than the distance between the sheets in the stacking direction. This gives you better heat exchange. Since the inlet and outlet channels are arranged on opposite sides of the stack, the fluids flow completely through the stack from one side to the other, so that the entire heat exchanger surfaces are covered. Since the channels narrow in the inflow direction or expand in the outflow direction, optimal flow conditions are obtained. In the rear part of the channels, where there is little flow, these channels can be smaller than in the front part, where larger amounts of fluid flow.
Es haben zweckmäßigerweise, um überall gleiche Strömungswiderstände zu erhalten, die Zulauf- und Ablaufkanäle auf einer Seite einen größten Querschnitt, der gleich dem Strömungsquerschnitt der Kanäle zwischen den Austauschoberflächen ist, wobei sich die Kanäle auf der entgegengesetzten Seite bis auf den Querschnitt Null verengen.In order to obtain the same flow resistances everywhere, the inlet and outlet channels on one side have a largest cross section, which is equal to the flow cross section of the channels between the exchange surfaces, the channels on the opposite side narrowing to the cross section zero.
Die Herstellung ist besonders rationell, wenn der Wärmetauscher aus gleichen, aber abwechselnd mit verschiedener Orientierung zusammengesetzten Blechen besteht. Es braucht also nur eine Presse für eine Art von Blechen hergestellt werden, die dann jeweils abwechselnd orientiert zum Wärmetauscher zusammgesetzt werden.The production is particularly efficient if the heat exchanger consists of the same, but alternately composed, plates. It is therefore only necessary to produce a press for one type of sheet, which is then assembled alternately to form the heat exchanger.
Bei einer vorteilhaften Ausführungsform haben die Kanäle zwischen den Austauschoberflächen in Zu- bzw. Ablaufrichtung gesehen V-förmigen Querschnitt. In diesem Fall liegen ein Zulaufkanal und der entsprechende Ablaufkanal auf entgegengesetzten Seiten des Wärmetauschers einander gegenüber.In an advantageous embodiment, the channels between the exchange surfaces have a V-shaped cross section when viewed in the inflow or outflow direction. In this case, an inlet channel and the corresponding outlet channel lie opposite one another on opposite sides of the heat exchanger.
Wenn die Austauschoberflächen gewellt sind, wird einerseits die Wärmetauscherfläche vergrößert. Wenn sich die Wellungen noch berühren, so stützen sich die Bleche gegenseitig ab, wodurch ebenfalls die Baugröße verkleinert werden kann und dünnere Bleche gewählt werden können.If the exchange surfaces are corrugated, the heat exchanger area is increased on the one hand. If the corrugations still touch each other, the sheets are supported against each other, which also allows the size to be reduced and thinner sheets to be selected.
Wenn die Stapelung der Bleche nicht geradlinig erfolgt, sondern kreisförmig ist, so erhält man einen kreisförmigen Wärmetauscher, bei dem die Zuführung und Abführung der Medien durch Radialgebläse in besonders einfacher Weise bewirkt werden kann.If the sheets are not stacked in a straight line but are circular, a circular heat exchanger is obtained in which the media can be supplied and removed by radial fans in a particularly simple manner.
Die Bleche können miteinander verschweißt, verlötet, insbesondere hart verlötet werden.The sheets can be welded together, soldered, in particular hard-soldered.
Vorteilhafterweise ist der Wärmetauscher mit einer durckfesten und wärmedämmenden Isolierschicht ummantelt. Wenn er in einem druckdichten und druckfesten Gehäuse angeordnet ist, dessen Innenraum den Druck der strömenden Medien aufweist, so ist der Wärmetauscher auch bei sehr hohen Drücken dieser Medien verwendbar. Es ist lediglich durch eine kleine Bohrung oder dergleichen dafür zu sorgen, daß ein wenig eines der unter hohem Druck stehenden Medien aus dem Wärmetauscher in den Druckbehälter gelangen kann, so daß hier Druckausgleich stattfindet. Die hohen Betriebsdrücke brauchen dann nicht mehr von den dünnen Blechen, sondern müssen nur noch vom druckfesten Behälter aufgenommen werden.The heat exchanger is advantageously covered with a pressure-resistant and heat-insulating layer. If it is arranged in a pressure-tight and pressure-resistant housing, the interior of which has the pressure of the flowing media, the heat exchanger can also be used at very high pressures of these media. It is only necessary to ensure through a small hole or the like that a little of the media under high pressure can get from the heat exchanger into the pressure vessel, so that pressure equalization takes place here. The high operating pressures then no longer need from the thin sheets, but only have to be absorbed by the pressure-resistant container.
Die Erfindung wird im folgenden anhand von vorteilhaften Ausführungsformen unter Bezugnahme auf die beigefügten Zeichnungen beschrieben. Es zeigen:
- Fig. 1 im Querschnitt das Prinzip der Wirkungsweise eines konventionellen Wärmetauschers;
- Fig. 2 im Querschnitt das Prinzip der Wirkungsweise des erfindungsgemäßen Wärmetauschers;
- Fig. 3 eine besondere Art der Ausbildung der Wärmetauscherflächen;
- Fig. 4 eine Ausführungform des erfindungsgemäßen Wärmetauschers im Querschnitt entlang der Linie E-E von Fig. 5;
- Fig. 5 den Wärmetauscher der Fig. 4 im Querschnitt entlang der Linie A-A;
- Fig. 6 den Wärmetauscher der Fig. 4 und 5 in Draufsicht;
- Fig. 7 in einem Schnitt entlang der Linie B-B der Fig. 8 den funktionsfertigen Wärmetauscher;
- Fig. 8 den Wärmetauscher der Fig. 7 im Schnitt entlang der Linie C-C;
- Fig. 9 eine andere Ausführungsform des Wärmetauschers im Schnitt entlang der Linie F-F von Fig. 10;
- Fig. 10 den Wärmetauscher der Fig. 9 im Schnitt entlang der Linie D-D;
- Fig. 11 eine weitere Ausführungsform des Wärmetauschers in radialem Querschnitt entlang der Linie G-G von Fig. 12; und
- Fig. 12 einen Radialschnitt des Wärmetauschers der Fig. 10.
- Figure 1 in cross section the principle of operation of a conventional heat exchanger.
- 2 shows in cross section the principle of operation of the heat exchanger according to the invention;
- 3 shows a special type of design of the heat exchanger surfaces;
- FIG. 4 shows an embodiment of the heat exchanger according to the invention in cross section along the line EE from FIG. 5;
- Fig. 5 shows the heat exchanger of Figure 4 in cross section along the line AA.
- Fig. 6 shows the heat exchanger of Figures 4 and 5 in plan view.
- Fig. 7 in a section along the line BB of Figure 8, the functional heat exchanger.
- Fig. 8 shows the heat exchanger of Figure 7 in section along the line CC.
- 9 shows another embodiment of the heat exchanger in section along the line FF from FIG. 10;
- Fig. 10 shows the heat exchanger of Figure 9 in section along the line DD.
- 11 shows a further embodiment of the heat exchanger in radial cross section along the line GG of FIG. 12; and
- 12 is a radial section of the heat exchanger of FIG. 10th
In Fig. 1 ist ein konventioneller Wärmetauscher gezeigt, zwischen dessen Wänden 1 sich im Gegenstrom zwei Medien 2 und 3 in Richtung der Pfeile 4 und 5 bewegen. Das Medium 2 hat dabei eine ursprüngliche Temperatur T₂, das Medium 3 hat eine ursprüngliche Temperatur T₃. Die Temperaturverläufe in Radialrichtung sind in der Fig. durch eine Kurve 6 angedeutet. Wie man sieht, behält die Temperatur über den größten Teil der Breite a der Kanäle zunächst den ursprünglichen Wert. Ein Temperaturaustausch findet nur innerhalb der verhältnismäßig kleinen Grenzschicht mit der Breite s statt. Anschließend müssen dann die abgekühlten bzw. erwärmten Randbereiche durch die Strömung erst mit den zentralen Bereichen der Strömung vermischt werden, so daß diese nur indirekt am Wärmetausch teilnehmen, wodurch der Wirkungsgrad kleiner wird.1 shows a conventional heat exchanger, between the
Bei der erfindungsgemäßen Ausführungsform gemäß Fig. 2 treten diese Problemen nicht mehr auf. Alle Teile der strömenden Medien nehmen direkt am Wärmeaustausch teil, da die Breite a der Strömungslanäle nicht wesentlich größer ist als die Grenzschichtdicke S.These problems no longer occur in the embodiment according to the invention according to FIG. 2. All parts of the flowing media participate directly in the heat exchange, since the width a of the flow channels is not significantly larger than the boundary layer thickness S.
Werden nun gemäß Fig. 3, die die Strömungskanäle in Draufsicht zeigt, nicht parallele Wände 1 verwendet, sondern Wände 1, die Wellenform haben, so wird dadurch die Wärmetauschfläche vergrößert. Da sich die Wellungen z.B. bei Linien 7 berühren, wird die Anordnung auch bei Verwendung dünner Bleche sehr stabil. Die Strömungskanäle 8 sind dadurch seitlich begrenzt; ein großer Strömungskanal wird auf diese Weise in mehrere kleinere zerlegt.If, according to FIG. 3, which shows the flow channels in plan view, not
Bei der Ausführungsform der Fig. 4 bis 6 besteht der Wärmetauscher aus einem Stapel von Blechen 1, die im wesentlichen V-Form haben. Die Schenkel des V liegen dabei verhältnismäßig dicht beieinander, so daß hier die Breite der Strömungskanäle 8 sehr klein ist. An den Enden der Schenkel des V befinden sich abgewinkelte Blechbereiche, die die Zulaufkanäle 9 und die Ablaufkanäle 10 begrenzen. Dabei wechseln sich in der Mitte des Wärmetauschers in der Schnittebene E-E übereinander immer ein Zulaufkanal 9 und ein Ablaufkanal 10 ab. Nach den Seiten verjüngen sich aber diese Kanäle bis zur Dicke Null, so daß in der Darstellung der Fig. 5 von rechts nur Zuströmkanäle offen sind, während nach links nur Abströmkanäle 10 offen sind.In the embodiment of FIGS. 4 to 6, the heat exchanger consists of a stack of
Aus diesem Grunde kann das eine Medium auf einer Endfläche am Ende des einen Schenkels des V eingeführt werden und auf derselben Endfläche am Ende des anderen Schenkels des V wieder abgezogen werden. Entsprechendes gilt für das andere Medium. Der Strömungsverlauf ist dabei in Fig. 6 in Draufsicht dargestellt.For this reason, the one medium can be introduced on one end face at the end of one leg of the V and can be withdrawn on the same end face at the end of the other leg of the V. The same applies to the other medium. The flow pattern is shown in plan view in FIG. 6.
In den Fig. 7 und 8 ist der Wärmeaustauscher der Fig. 4 bis 6 gezeigt, bei dem noch die einzelnen Kanäle 9 und 10 mit Anschlußstücken 11 versehen sind. Der Wärmetauscher 12 selber ist durch eine wärme- und druckfeste Isoliermasse 13 umgeben, die von einem druckfesten Gehäuse 14 eingeschlossen ist. Durch Druckausgleichsbohrungen steht dabei der Innenraum des Druckgehäuses 14 mit den strömenden Medien in Verbindung, so daß auf den verhältnismäßg dünnen Blechen 1 des Wärmetauschers 12 nur sehr geringer Druck auch in Fällen lastet, in denen beide Medien sehr hohe, aber annähernd gleiche Drucke aufweisen.7 and 8, the heat exchanger of FIGS. 4 to 6 is shown, in which the
Bei der Ausführungsform der Fig. 9 und 10 sind die eigentlichen Wärmetauscherflächen nicht abgewinkelt, sondern geradlinig. Abgesehen davon sind die Verhältnisse ansonsten aber im wesentlichen gleich wie bei der Ausführungsform der Fig. 4 bis 8, so daß auf eine dataillierte Erläuterung verzichtet werden kann. Auch hier wechseln in der Querschnittsfläche F Zuströmkanäle 9 und Abströmkanäle 10 miteinander ab und verengen sich zu den Enden hin, so daß jeweils an einem der vier Enden ein Medium einströmt oder ausströmt.In the embodiment of FIGS. 9 and 10, the actual heat exchanger surfaces are not angled, but straight. Apart from this, the conditions are otherwise essentially the same as in the embodiment of FIGS. 4 to 8, so that a detailed explanation can be dispensed with. Here too, the
Beim Wärmetauscher der Fig. 11 und 12 werden im wesentlichen die Bleche der Ausführungsform der Fig. 9 und 10 verwendet, die allerdings nicht mehr geradlinig übereinander gestapelt sind, sondern kreisförmig. Dies schafft die Strömungsverhältnisse, wie sie in Fig. 12 angedeutet sind. Das eine Medium kann an dem Innenring von Zulaufkanälen 9 von links zugeführt werden und auf derselben Seite beim außen liegenden Ring von Ablaufkanälen 10′ wieder abgezogen werden. Das andere Medium wird von rechts außen durch die Zuführkanäle 9′ eingeführt und innen aus den Kanälen 10 radial abgeführt. Für die Förderung der Medien können bei dieser Ausführungsform in sehr zweckmäßigerweise Radialgebläse eingesetzt werden. Auch bei der Ausführungsform der Fig. 11 und 12 ist wieder eine druckfeste Isolierung 11 und ein druckfestes Gehäuse 14 vorgesehen.11 and 12, essentially the sheets of the embodiment of FIGS. 9 and 10 are used, which, however, are no longer stacked in a straight line but rather in a circle. This creates the flow conditions as indicated in FIG. 12. One medium can be fed to the inner ring of
Die Bleche 1 der Wärmetauscher werden zweckmäßigerweise an den Stirnflächen miteinander verschweißt oder verlötet, an denen die Medien eintreten oder austreten, da sich hier jeweils einer der Kanäle auf die Breite Null verengt, die entsprechenden Bleche also direkt aufeinanderliegen. Auf diese Weise wird eine sehr stabile Grundstruktur erhalten, bei der dann nur noch die restlichen Stirnflächen verlötet bzw. sonstwie verschlossen werden müssen, was aber wegen der Wellungen ebenfalls einfach zu bewirken ist.The
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT89900222T ATE74200T1 (en) | 1987-12-10 | 1988-12-01 | COUNTERFLOW HEAT EXCHANGER. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19873741869 DE3741869A1 (en) | 1987-12-10 | 1987-12-10 | COUNTERFLOW HEAT EXCHANGER |
DE3741869 | 1987-12-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0386131A1 EP0386131A1 (en) | 1990-09-12 |
EP0386131B1 true EP0386131B1 (en) | 1992-03-25 |
Family
ID=6342292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19890900222 Expired - Lifetime EP0386131B1 (en) | 1987-12-10 | 1988-12-01 | Countercurrent heat-exchanger |
Country Status (11)
Country | Link |
---|---|
US (1) | US5121792A (en) |
EP (1) | EP0386131B1 (en) |
JP (1) | JP2602969B2 (en) |
KR (1) | KR0128254B1 (en) |
AT (1) | ATE74200T1 (en) |
AU (1) | AU623873B2 (en) |
DE (2) | DE3741869A1 (en) |
DK (1) | DK165652C (en) |
FI (1) | FI902871A0 (en) |
NO (1) | NO902593L (en) |
WO (1) | WO1989005432A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE9000712L (en) * | 1990-02-28 | 1991-08-29 | Alfa Laval Thermal | PERMANENT COMBINED PLATE HEAT EXCHANGER |
DE59309277D1 (en) * | 1993-03-25 | 1999-02-18 | Sulzer Chemtech Ag | Packing element designed as a heat exchanger for mass transfer or mass conversion processes |
JP2642308B2 (en) * | 1993-12-28 | 1997-08-20 | リンナイ株式会社 | Solution heat exchanger for absorption refrigerator |
AUPN123495A0 (en) * | 1995-02-20 | 1995-03-16 | F F Seeley Nominees Pty Ltd | Contra flow heat exchanger |
IL114613A (en) * | 1995-07-16 | 1999-09-22 | Tat Ind Ltd | Parallel flow condenser heat exchanger |
SE510938C2 (en) * | 1998-03-20 | 1999-07-12 | Stellan Grunditz | Heat exchanger built up of capped plates |
NL1016104C1 (en) * | 2000-09-05 | 2002-03-07 | 3F Holding B V | Heat exchanger and heating system equipped with it. |
GB0129040D0 (en) * | 2001-12-05 | 2002-01-23 | Semikron Ltd | Heat sinks for electrical or other apparatus |
FR2848653B1 (en) * | 2002-12-13 | 2005-03-11 | Technologies De L Echange Ther | THERMAL EXCHANGER METHODS AND MEANS FOR MANUFACTURING THIS EXCHANGER |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR476682A (en) * | 1913-09-24 | 1915-08-24 | Anders Johan Ericsson Munters | Apparatus suitable for cooling or heating liquids |
US1710818A (en) * | 1928-01-18 | 1929-04-30 | William F Fosbury | Feed-water heater or condenser |
GB532473A (en) * | 1939-08-10 | 1941-01-24 | Edward Samuel Symonds | Improvements in plate heat-exchange apparatus for treating fluids, applicable also for treating gases with liquids |
GB567880A (en) * | 1943-02-05 | 1945-03-07 | James Frank Belaieff | Improvements in, or relating to, plate heat exchange apparatus |
FR900326A (en) * | 1943-07-30 | 1945-06-26 | Heat exchanger system for aircraft engines and other applications | |
BE650355A (en) * | 1964-06-26 | |||
GB1126066A (en) * | 1965-07-28 | 1968-09-05 | Janusz Gutkowski | Improvements in heat exchangers |
US3525390A (en) * | 1968-08-12 | 1970-08-25 | United Aircraft Corp | Header construction for a plate-fin heat exchanger |
US4042018A (en) * | 1975-09-29 | 1977-08-16 | Des Champs Laboratories Incorporated | Packaging for heat exchangers |
SE7903535L (en) * | 1979-04-23 | 1980-10-24 | Sigurd Hultgren | VERMEVEXLARE |
SE424143B (en) * | 1980-12-08 | 1982-07-05 | Alfa Laval Ab | Plate evaporator |
US4512397A (en) * | 1982-05-27 | 1985-04-23 | Walter Stark | Housing for cross flow heat exchanger |
JPS5997491A (en) * | 1982-11-25 | 1984-06-05 | Japan Vilene Co Ltd | Heat exchanger with gas flow branching part |
US4556105A (en) * | 1983-10-24 | 1985-12-03 | Boner Alan H | Parallel heat exchanger with interlocking plate arrangement |
-
1987
- 1987-12-10 DE DE19873741869 patent/DE3741869A1/en not_active Ceased
-
1988
- 1988-12-01 AU AU28156/89A patent/AU623873B2/en not_active Ceased
- 1988-12-01 US US07/499,382 patent/US5121792A/en not_active Expired - Fee Related
- 1988-12-01 JP JP1500719A patent/JP2602969B2/en not_active Expired - Lifetime
- 1988-12-01 AT AT89900222T patent/ATE74200T1/en not_active IP Right Cessation
- 1988-12-01 KR KR1019890701492A patent/KR0128254B1/en not_active IP Right Cessation
- 1988-12-01 DE DE8989900222T patent/DE3869620D1/en not_active Expired - Lifetime
- 1988-12-01 EP EP19890900222 patent/EP0386131B1/en not_active Expired - Lifetime
- 1988-12-01 WO PCT/EP1988/001095 patent/WO1989005432A1/en active IP Right Grant
-
1990
- 1990-06-08 FI FI902871A patent/FI902871A0/en not_active IP Right Cessation
- 1990-06-08 DK DK140490A patent/DK165652C/en not_active IP Right Cessation
- 1990-06-11 NO NO90902593A patent/NO902593L/en unknown
Non-Patent Citations (1)
Title |
---|
Extrait de Brevet Russe (Derwent) Nr. 182697, & SU, A, 182697 (KAGAN) Bul. 12/9.6.1966 * |
Also Published As
Publication number | Publication date |
---|---|
FI902871A0 (en) | 1990-06-08 |
DK140490A (en) | 1990-06-08 |
EP0386131A1 (en) | 1990-09-12 |
DK165652B (en) | 1992-12-28 |
US5121792A (en) | 1992-06-16 |
DE3741869A1 (en) | 1989-06-22 |
NO902593D0 (en) | 1990-06-11 |
JPH03501645A (en) | 1991-04-11 |
ATE74200T1 (en) | 1992-04-15 |
NO902593L (en) | 1990-06-11 |
AU623873B2 (en) | 1992-05-28 |
AU2815689A (en) | 1989-07-05 |
DK165652C (en) | 1993-05-17 |
DE3869620D1 (en) | 1992-04-30 |
KR0128254B1 (en) | 1998-04-03 |
JP2602969B2 (en) | 1997-04-23 |
KR900700838A (en) | 1990-08-17 |
WO1989005432A1 (en) | 1989-06-15 |
DK140490D0 (en) | 1990-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69704173T2 (en) | PLATE HEAT EXCHANGER WITH REINFORCED ENTRANCE AND EXIT CHAMBERS | |
DE69004220T2 (en) | Heat exchanger with a circumferential circulation. | |
EP1152204B1 (en) | Plate type heat exchanger | |
DE60130274T2 (en) | Heat exchanger with parallel fluid flow | |
DE69513824T2 (en) | PLATE HEAT EXCHANGER WITH THREE CIRCUITS | |
DE102006048305B4 (en) | Plate heat exchanger | |
DE69422207T2 (en) | Plate heat exchangers and corresponding plates | |
DE69720506T2 (en) | Heat Exchanger | |
EP1856734B1 (en) | Micro-heat exchanger | |
DE817760C (en) | Plate heat exchanger | |
DE10118625A1 (en) | Corrugated lamella with partial offset for plate heat exchanger; has adjacent rows of wave shapes, with each row offset transversely to wave direction, where legs of waves have recesses at edges | |
DE2244752A1 (en) | HEAT EXCHANGER | |
DE2946804A1 (en) | HEAT EXCHANGER | |
DE112011101673T5 (en) | heat exchangers | |
DE2657307B2 (en) | Heat exchanger | |
EP0386131B1 (en) | Countercurrent heat-exchanger | |
DE2639371A1 (en) | PLATE HEAT EXCHANGER | |
DE19709601A1 (en) | Plate heat convector for especially oil/coolant coolers | |
DE3508834A1 (en) | OIL FILTER WITH INTEGRATED HEAT EXCHANGER | |
EP0681156A1 (en) | Heat exchanger | |
EP1477761B1 (en) | Plate heat exchanger | |
DE2536657B2 (en) | Heat exchangers for preheating combustion air, in particular for oil-heated industrial furnaces | |
DE3834941A1 (en) | HEAT EXCHANGER | |
DE2306426A1 (en) | HEAT EXCHANGER | |
DD144601A5 (en) | EXCHANGER |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19900608 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
17Q | First examination report despatched |
Effective date: 19910325 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 74200 Country of ref document: AT Date of ref document: 19920415 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3869620 Country of ref document: DE Date of ref document: 19920430 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: SITA MASCHINENBAU- UND FORSCHUNGS GMBH |
|
RIN2 | Information on inventor provided after grant (corrected) |
Free format text: SCHUKEY, JUERGEN RICHARD |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
BECN | Be: change of holder's name |
Effective date: 19920325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19921231 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
EAL | Se: european patent in force in sweden |
Ref document number: 89900222.4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20000526 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20001201 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20010618 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20010622 Year of fee payment: 13 Ref country code: CH Payment date: 20010622 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20010625 Year of fee payment: 13 Ref country code: SE Payment date: 20010625 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20010626 Year of fee payment: 13 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20001201 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20010821 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011231 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011231 |
|
BERE | Be: lapsed |
Owner name: SITA MASCHINENBAU- UND FORSCHUNGS G.M.B.H. Effective date: 20011231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020702 |
|
EUG | Se: european patent has lapsed |
Ref document number: 89900222.4 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020830 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20020701 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051201 |