EP1191088B1 - Lubrification d'un moteur à piston plongeur - Google Patents

Lubrification d'un moteur à piston plongeur Download PDF

Info

Publication number
EP1191088B1
EP1191088B1 EP01203289A EP01203289A EP1191088B1 EP 1191088 B1 EP1191088 B1 EP 1191088B1 EP 01203289 A EP01203289 A EP 01203289A EP 01203289 A EP01203289 A EP 01203289A EP 1191088 B1 EP1191088 B1 EP 1191088B1
Authority
EP
European Patent Office
Prior art keywords
lubricant
oil
acids
acid
hydroxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01203289A
Other languages
German (de)
English (en)
Other versions
EP1191088A1 (fr
Inventor
Terence Garner
Laurent Chambard
Adrian Dr Dunn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineum International Ltd
Original Assignee
Infineum International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineum International Ltd filed Critical Infineum International Ltd
Priority to EP01203289A priority Critical patent/EP1191088B1/fr
Publication of EP1191088A1 publication Critical patent/EP1191088A1/fr
Application granted granted Critical
Publication of EP1191088B1 publication Critical patent/EP1191088B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M163/00Lubricating compositions characterised by the additive being a mixture of a compound of unknown or incompletely defined constitution and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/087Boron oxides, acids or salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/108Residual fractions, e.g. bright stocks
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/028Overbased salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • C10M2207/123Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms polycarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/129Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/16Naphthenic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/22Acids obtained from polymerised unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/101Condensation polymers of aldehydes or ketones and phenols, e.g. Also polyoxyalkylene ether derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/042Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds between the nitrogen-containing monomer and an aldehyde or ketone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/043Mannich bases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/022Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/024Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of esters, e.g. fats
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/088Neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/089Overbased salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/102Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon only in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • C10M2219/106Thiadiazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/047Thioderivatives not containing metallic elements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • C10N2040/253Small diesel engines

Definitions

  • This invention relates to a lubricant suitable for use in a trunk piston diesel (compression-ignited) engine. Trunk piston diesel engines are used in marine, power generation and rail traction applications.
  • Trunk piston diesel engines are known for use in water-borne vessels, i.e. for so-called marine applications, including auxiliary power generation, and also for land-based applications such as power-generation. They may be characterised as medium-speed engines, e.g. in contrast to slow-speed cross-head engines requiring separate cylinder lubrication using a marine diesel cylinder lubricant.
  • trunk piston diesel engines may suffer from the high temperatures to which the lubricant is subjected.
  • lubricating oil compositions, or lubricants, for trunk piston diesel engines may give non-optimal performance in their ability to resist formation of piston undercrown deposits.
  • the present invention provides a solution to the problem by using specific additives to enable the oil to resist the adverse effects of high temperature.
  • a lubricant in a trunk piston diesel engine to reduce wear at temperatures above 270°C or to reduce deposits at 320°C, the lubricant having a TBN in the range of from 25 to 55, and comprising, or made by admixing,
  • Phenate-based detergents may benefit the high temperature performance of TPEOs; however their use limits the amount of salicylate-based detergent, necessary for meeting the above-mentioned "black paint” and other problems, that may be used.
  • the present invention by providing high temperature performance benefits other than arising from phenate use, enables more salicylate to be used as the detergent and thereby enables both high temperature performance and "black paint" control requirements to be met.
  • the lubricant may be substantially free of phenate-based detergents and/or comprise salicylate as the sole type of detergent.
  • the trunk piston diesel engine may, for example, be a four-stroke trunk piston diesel engine suitable for use in marine, power generation or rail traction applications.
  • the engines preferably have a power output of 200 or greater, such as 400 or greater, preferably 550 or greater, more preferably in the range of 600 to 100,000, kW. Further, the engines may, for example, have an engine speed in the range of from 200 to 2,000, preferably 400 to 1,000, rpm, and a brake horse-power (BHP) per cylinder of 50 to 10,000, preferably 100 to 7,000.
  • BHP brake horse-power
  • the lubricant may has a TBN in the range of from 25 to 55, such as from 25 or 30 to 55, preferably, 40.
  • the viscosity index of the lubricant is at least 90, more preferably at least 95, and at most 140 such as 120, preferably 110.
  • a preferred viscosity index range is from 95 to 115.
  • the lubricant may, for example, have a kinematic viscosity at 100°C (as measured by ASTM D445) of at least 9, preferably at least 13, more preferably in the range from 14 to 24, for example from 14 to 22, mm 2 s -1 .
  • the base stock is an oil of lubricating viscosity (sometimes referred to as base oil) and may be any oil suitable for the lubrication of a trunk piston engine.
  • the lubricating oil may suitably be an animal, vegetable or a mineral oil.
  • the lubricating oil is a petroleum derived lubricating oil, such as a naphthenic base, paraffinic base or mixed base oil.
  • the lubricating oil may be a synthetic lubricating oil.
  • Suitable synthetic lubricating oils include synthetic ester lubricating oils, which oils include diesters such as di-octyl adipate, di-octyl sebacate and tri-decyl adipate, or polymeric hydrocarbon lubricating oils, for example liquid polyisobutene and poly-alpha olefins. Commonly, a mineral oil is employed.
  • the lubricating oil may generally comprise greater that 60, typically greater than 70%, by mass of the lubricant and typically have a kinematic viscosity at 100°C of from 2 to 40, for example from 3 to 15, mm 2 s -1 , and a viscosity index from 80 to 100, for example from 90 to 95.
  • Hydrocracked oils Another class of lubricating oil is hydrocracked oils, where the refining process further breaks down the middle and heavy distillate fractions in the presence of hydrogen at high temperatures and moderate pressures.
  • Hydrocracked oils typically have kinematic viscosity at 100°C of from 2 to 40, for example from 3 to 15, mm 2 s -1 and a viscosity index typically in the range of from 100 to 110, for example from 105 to 108.
  • 'brightstock' refers to base oils which are solvent-extracted, de-asphalted products from vacuum residuum generally having a kinematic viscosity at 100°C from 28 to 36 mm 2 s -1 and are typically used in a proportion of less that 30, preferably less than 20, more preferably less than 15, most preferably less than 10, such as less than 5, mass %, based on the mass of the lubricant.
  • Overbased metal compounds suitable for use in the lubricant of the present invention include alkali metal and alkaline earth metal additives such as overbased oil-soluble or oil-dispersible calcium, magnesium, sodium or barium salts of a surfactant selected from phenol, sulfonic acid, carboxylic acid, salicylic acid and naphthenic acid, wherein the overbasing is provided by an oil-insoluble salt of the metal, e.g. carbonate, basic carbonate, acetate, formate, hydroxide or oxalate, which is stabilised by the oil-soluble salt of the surfactant.
  • the metal of the oil-soluble surfactant salt may be the same or different from that of the metal of the oil-insoluble salt.
  • the metal, whether the metal of the oil-soluble or oil-insoluble salt is calcium.
  • the TBN of the or each of the overbased metal compounds is at least 100, such as at least 250 and up to 500.
  • Surfactants for the surfactant system of the overbased metal compounds preferably contain at least one hydrocarbyl group, for example, as a substituent on an aromatic ring.
  • hydrocarbyl as used herein means that the group concerned is primarily composed of hydrogen and carbon atoms and is bonded to the remainder of the molecule via a carbon atom but does not exclude the presence of other atoms or groups in a proportion insufficient to detract from the substantially hydrocarbon characteristics of the group.
  • hydrocarbyl groups in surfactants for use in accordance with the invention are aliphatic groups, preferably alkyl or alkylene groups, especially alkyl groups, which may be linear or branched. The total number of carbon atoms in the surfactants should be at least sufficient to impart the desired oil-solubility.
  • Phenols for use in this invention, may be non-sulfurized or, preferably, sulfurized.
  • phenol as used herein includes phenols containing more than one hydroxyl group (for example, alkyl catechols) or fused aromatic rings (for example, alkyl naphthols) and phenols which have been modified by chemical reaction, for example, alkylene-bridged phenols and Mannich base-condensed phenols; and saligenin-type phenols (produced by the reaction of a phenol and an aldehyde under basic conditions).
  • Preferred phenols may be derived from the formula where R represents a hydrocarbyl group and y represents 1 to 4. Where y is greater than 1, the hydrocarbyl groups may be the same or different.
  • Sulfurized hydrocarbyl phenols may typically be represented by the formula: where x is generally from 1 to 4. In some cases, more than two phenol molecules may be linked by S x bridges.
  • hydrocarbyl groups represented by R are advantageously alkyl groups, which advantageously contain 5 to 100, preferably 5 to 40, especially 9 to 12, carbon atoms, the average number of carbon atoms in all of the R groups being at least 9 in order to ensure adequate solubility in oil.
  • Preferred alkyl groups are nonyl (tripropylene) groups.
  • hydrocarbyl-substituted phenols will for convenience be referred to as alkyl phenols.
  • a sulfurizing agent for use in preparing a sulfurized phenol or phenate may be any compound or element which introduces -(S) x - bridging groups between the alkyl phenol monomer groups, wherein x is generally from 1 to about 4.
  • the reaction may be conducted with elemental sulfur or a halide thereof, for example, sulfur dichloride or, more preferably, sulfur monochloride. If elemental sulfur is used, the sulfurization reaction may be effected by heating the alkyl phenol compound at from 50 to 250, preferably at least 100, °C. The use of elemental sulfur will typically yield a mixture of bridging groups -(S)x- as described above.
  • the sulfurization reaction may be effected by treating the alkyl phenol at from -10 to 120, preferably at least 60, °C.
  • the reaction may be conducted in the presence of a suitable diluent.
  • the diluent advantageously comprises a substantially inert organic diluent, for example mineral oil or an alkane.
  • the reaction is conducted for a period of time sufficient to effect substantial reaction. It is generally preferred to employ from 0.1 to 5 moles of the alkyl phenol material per equivalent of sulphurizing agent.
  • sulfurizing agent it may be desirable to use a basic catalyst, for example, sodium hydroxide or an organic amine, preferably a heterocyclic amine (e.g., morpholine).
  • a basic catalyst for example, sodium hydroxide or an organic amine, preferably a heterocyclic amine (e.g., morpholine).
  • sulfurized alkyl phenols useful in preparing overbased metal compounds generally comprise diluent and unreacted alkyl phenols and generally contain from 2 to 20, preferably 4 to 14, and most preferably 6 to 12, mass % sulfur based on the mass of the sulfurized alkyl phenol.
  • phenol as used herein includes phenols that have been modified by chemical reaction with, for example, an aldehyde, and Mannich base-condensed phenols.
  • Aldehydes with which phenols may be modified include, for example, formaldehyde, propionaldehyde and butyraldehyde.
  • the preferred aldehyde is formaldehyde.
  • Aldehyde-modified phenols suitable for use are described in, for example, US-A-5 259 967.
  • Mannich base-condensed phenols are prepared by the reaction of a phenol, an aldehyde and an amine. Examples of suitable Mannich base-condensed phenols are described in GB-A-2 121 432.
  • the phenols may include substituents other than those mentioned above provided that such substituents do not detract significantly from the surfactant properties of the phenols.
  • substituents are methoxy groups and halogen atoms.
  • Salicylic acids used in accordance with the invention may be non-sulfurized or sulfurized, and may be chemically modified and/or contain additional substituents, for example, as discussed above for phenols. Processes similar to those described above may also be used for sulfurizing a hydrocarbyl-substituted salicylic acid, and are well known to those skilled in the art. Salicylic acids are typically prepared by the carboxylation, by the Kolbe-Schmitt process, of phenoxides, and in that case, will generally be obtained (normally in a diluent) in admixture with uncarboxylated phenol.
  • Preferred substituents in oil-soluble salicylic acids from which overbased detergents in accordance with the invention may be derived are the substituents represented by R in the above discussion of phenols.
  • the alkyl groups advantageously contain 5 to 100, preferably 9 to 30, especially 14 to 20, carbon atoms.
  • Sulfonic acids used in accordance with the invention are typically obtained by sulfonation of hydrocarbyl-substituted, especially alkyl-substituted, aromatic hydrocarbons, for example, those obtained from the fractionation of petroleum by distillation and/or extraction, or by the alkylation of aromatic hydrocarbons.
  • alkyl-substituted aromatic hydrocarbons for example, those obtained from the fractionation of petroleum by distillation and/or extraction, or by the alkylation of aromatic hydrocarbons.
  • alkylating benzene, toluene, xylene, naphthalene, biphenyl or their halogen derivatives for example, chlorobenzene, chlorotoluene or chloronaphthalene.
  • Alkylation of aromatic hydrocarbons may be carried out in the presence of a catalyst with alkylating agents having from 3 to more than 100 carbon atoms, such as, for example, haloparaffins, olefins that may be obtained by dehydrogenation of paraffins, and polyolefins, for example, polymers of ethylene, propylene, and/or butene.
  • alkylaryl sulphonic acids usually contain from 7 to 100 or more carbon atoms. They preferably contain from 16 to 80, or 12 to 40, carbon atoms per alkyl-substituted aromatic moiety, depending on the source from which they are obtained.
  • hydrocarbon solvents and/or diluent oils may also be included in the reaction mixture, as well as promoters and viscosity control agents.
  • Such sulfonic acids can be sulfurized. Whether sulfurized or non-sulfurized these sulfonic acids are believed to have surfactant properties comparable to those of sulfonic acids, rather than surfactant properties comparable to those of phenols.
  • Sulfonic acids suitable for use in accordance with the invention also include alkyl sulfonic acids, such as alkenyl sulfonic acids.
  • alkyl group suitably contains 9 to 100, advantageously 12 to 80, especially 16 to 60, carbon atoms.
  • Carboxylic acids that may be used in accordance with the invention include mono-and dicarboxylic acids.
  • Preferred monocarboxylic acids are those containing 1 to 30, especially 8 to 24, carbon atoms. (Where this specification indicates the number of carbon atoms in a carboxylic acid, the carbon atom(s) in the carboxylic group(s) is/are included in that number.)
  • Examples of monocarboxylic acids are iso-octanoic acid, stearic acid, oleic acid, palmitic acid and behenic acid. Iso-octanoic acid may, if desired, be used in the form of the mixture of C 8 acid isomers sold by Exxon Chemicals under the trade name "Cekanoic".
  • Suitable acids are those with tertiary substitution at the ⁇ -carbon atom and dicarboxylic acids with more than 2 carbon atoms separating the carboxylic groups. Further, dicarboxylic acids with more than 35, for example, 36 to 100, carbon atoms are also suitable. Unsaturated carboxylic acids can be sulphurized. Although salicylic acids contain a carboxylic group, for the purposes of the present invention they are considered to be a separate group of surfactants, and are not considered to be carboxylic acid surfactants. (Nor, although they contain a hydroxyl group, are they considered to be phenol surfactants.)
  • naphthenic acids especially naphthenic acids containing one or more alkyl groups
  • dialkylphosphonic acids dialkylthiophosphonic acids
  • dialkyldithiophosphoric acids dialkyldithiophosphoric acids
  • high molecular weight (preferably ethoxylated) alcohols preferably ethoxylated) alcohols
  • dithiocarbamic acids thiophosphines
  • dispersants of these types are well known to those skilled in the art.
  • detergents useful in the present invention are optionally sulfurized alkaline earth metal hydrocarbyl phenates that have been modified by carboxylic acids such as stearic acid, for examples as described in EP-A- 271 262 (LZ-Adibis); and phenolates as described in EP-A- 750 659 (Chevron).
  • overbased metal compounds preferably overbased calcium detergents, that contain at least two surfactant groups, such as phenol, sulfonic acid, carboxylic acid, salicylic acid and naphthenic acid, that may be obtained by manufacture of a hybrid material in which two or more different surfactant groups are incorporated during the overbasing process.
  • surfactant groups such as phenol, sulfonic acid, carboxylic acid, salicylic acid and naphthenic acid
  • hybrid materials are an overbased calcium salt of surfactants phenol and sulfonic acid; an overbased calcium salt of surfactants phenol and carboxylic acid; an overbased calcium salt of surfactants phenol, sulfonic acid and salicylic acid; and an overbased calcium salt of surfactants phenol and salicylic acid.
  • an “overbased calcium salt of surfactants” is meant an overbased detergent in which the metal cations of the oil-insoluble metal salt are essentially calcium cations. Small amounts of other cations may be present in the oil-insoluble metal salt, but typically at least 80, more typically at least 90, for example at least 95, mole %, of the cations in the oil-insoluble metal salt, are calcium ions. Cations other than calcium may be derived, for example, from the use in the manufacture of the overbased detergent of a surfactant salt in which the cation is a metal other than calcium.
  • the metal salt of the surfactant is also calcium.
  • the TBN of the overbased metal detergent is at least 330, such as at least 350, more preferably at least 400, most preferably in the range of from 400 to 600, such as up to 500.
  • any suitable proportions by mass may be used, preferably the mass to mass proportion of any one overbased metal compound to any other metal overbased compound is in the range of from 5:95 to 95:5; such as from 90:10 to 10:90; more preferably from 20:80 to 80:20; especially from 70:30 to 30:70; advantageously from 60:40 to 40:60.
  • hybrid materials include, for example, those described in WO-A- 97/46643; WO-A- 97/46644; WO-A- 97/46645; WO-A- 97/46646; and WO-A- 97/46647.
  • the amount of overbased metal compound in the lubricant is at least 0.5, particularly in the range of from 0.5 to 20, such as from 3 to 12 or 2 to 7, mass % based on active ingredient per mass of lubricant.
  • the overbased metal compounds of the present invention may be borated, and typically the boron contributing compound, e.g the metal borate, is considered to form part of the overbasing.
  • the use of a borated dispersant and/or an oil-soluble or oil-dispersible boron compound may, or may not, be necessary provided the lubricant composition comprising the borated overbased metal compound has a viscosity index and TBN as defined herein.
  • non-borated dispersants are not excluded in the present invention in combination with a borated overbased metal compound.
  • the overbased metal compounds preferably have a sulfated ash content (as determined by ASTM D874) of at least 0.85%, more preferably at least 1.0% and even more preferably at least 1.2%.
  • such components are "ashless” by which is meant that it is a non-metallic organic material that forms substantially no ash on combustion, in contrast to metal-containing and hence, ash forming compounds.
  • the auxiliary additive component (C1) is an oil-soluble sulfurized alkylphenols
  • Component (C2) is an amine phosphate, which preferably includes the neutralisation or partial neutralisation products of acidic phosphorus-containing intermediates and amines.
  • the acidic intermediates are preferably formed from a hydroxy-substituted triester of a phosphorothioic acid with an inorganic phosphorus reagent selected from the group consisting of phosphorus acids, phosphorus oxides, and phosphorus halides.
  • the amine phosphates may, for example, be amine dithiophosphates.
  • the hydroxy-substituted triesters of phosphorothioic acids include principally those having the structural formula in which R is selected from the class consisting of substantially hydrocarbon radicals and hydroxy-substituted substantially hydrocarbon radicals, at least one of the R radicals being a hydroxy-substituted substantially hydrocarbon radical, and X is selected from the class consisting of sulphur and oxygen, at least one of the X radicals being sulphur.
  • the substantially hydrocarbon radicals include aromatic, aliphatic, and cycloaliphatic radicals such as aryl, alkyl, aralkyl, alkaryl, and cycloalkyl radicals.
  • radicals may contain a polar substituent such as chloro, bromo, iodo, alkoxy, aryloxy, nitro, keto, or aldehydo group. In most instances there should be no more than one such polar group in a radical.
  • substantially hydrocarbon radical examples include methyl, ethyl, isopropyl, secondary-butyl, isobutyl, n-pentyl, dodecyl, polyisobutene radical (molecular weight of 1500), cyclohexyl, cyclopentyl, 2-heptyl-cyclohexyl, phenyl, naphthyl, xenyl, p-heptylphenyl, 2,6-di-tertiary-butylphenyl, benzyl, phenylethyl, 3,5-dodecylphenyl, chlorophenyl, alpha-methoxy-beta-naphthyl, p-nitrophenyl, p-phenoxyphenyl, 2-bromomethyl, 3-chlorocyclohexyl, and polypropylene (molecular weight of 300)-substituted phenyl radical.
  • polyisobutene radical
  • the hydroxy-substituted substantially hydrocarbon radicals include principally the above-illustrated substantially hydrocarbon radicals containing a hydroxy group. Those having less than 8 carbon atoms are preferred because of the convenience in preparing such hydroxy-substituted triesters.
  • radicals examples include hydroxymethyl, hydroxyethyl, 2-hydroxypropyl, 3-hydroxypropyl, 2-hydroxycyclohexyl, 2-hydroxycyclopentyl, 2-hydroxy-1-octyl, 1-hydroxy-3-octyl, 1-hydroxy-2-octyl, 2-hydroxy-3-phenyl-cyclohexyl, 1-hydroxy-2-phenylethyl, 2-hydroxy-1-phenylethyl, 2-hydroxy-1-p-tolylethyl, and 2-hydroxy-3-butyl radicals.
  • hydroxy-substituted substantially hydrocarbon radicals are exemplified by 2,5-dihydroxyphenyl, alpha-hydroxy-beta-naphthyl, 3-hydroxy-4-dodecyl, 3-hydroxy-6-octadecyl, and p-(p-hydroxyphenyl)-phenyl radicals.
  • a preferred class of the hydroxy-substituted triesters comprises those having the structural formula in which R" is a substantially hydrocarbon radical illustrated above and R' is a bivalent substantially hydrocarbon radical such as alkylene or arylene radicals derived from the previously illustrated substantially hydrocarbon radicals.
  • R" is a substantially hydrocarbon radical illustrated above
  • R' is a bivalent substantially hydrocarbon radical such as alkylene or arylene radicals derived from the previously illustrated substantially hydrocarbon radicals.
  • a convenient method for preparing such esters involves the reaction of a phosphorodithioic acid with an epoxide or a glycol. Such reaction is known in the art. The following equations are illustrative of the reaction. in which is an epoxide and HO - R' - OH is a glycol.
  • aliphatic epoxides having less than about 8 carbon atoms and styrene oxides are preferred for use in the above process.
  • Especially useful epoxides are exemplified by ethylene oxide, propylene oxide, styrene oxide, alphamethylstyrene oxide, p-methylstyrene oxide, cyclohexene oxide, cyclopentene oxide, dodecene oxide, octadecene oxide, 2,3-butene oxide, 1,2-butene oxide, 1,2-octene oxide, 3,4-pentene oxide, and 4-phenyl-1,2-cyclohexene oxide.
  • Glycols include both aliphatic and aromatic di-hydroxy compounds. The latter are exemplified by hydroquinone, catechol, resorcinol, and 1,2-dihydroxynaphthalene. Aliphatic glycols are especially useful such as ethylene glycol, trimethylene glycol, tetramethylene glycol, decamethylene glycol, di-ethylene glycol, triethylene glycol, and pentaethylene glycol.
  • Another convenient method for preparing the hydroxy-substituted triesters comprises the addition of a phosphorodithioic acid to an unsaturated alcohol such as allyl alcohol, cinnamyl alcohol, or oleyl alcohol such as is described in US-A-2,528,723. Still another method involves the reaction of a metal phosphorothiate with a halogen-substituted alcohol described in US RE-A- 20,411.
  • the phosphorodithioic acids from which the hydroxy-substituted triesters can be derived are likewise well-known. They are prepared by the reaction of phosphorus pentasulfide with an alcohol or a phenol. The reaction involves 4 moles of the alcohol or phenol per mole of phosphorus pentasulfide and may be carried out within the temperature range from about 50°C to 200°C.
  • the preparation of O,O'-di-n-hexylphosphorodithioic acid involves the reaction of phosphorus pentasulfide with 4 moles of n-hexyl alcohol at 100°C for 2 hours. Hydrogen sulfide is liberated and the residue is the defined acid.
  • the preparation of the phosphoromonothioic acid may be effected by treatment of corresponding phosphorodithioic acid with steam.
  • Phosphorotrithioic acids and phosphorotetrathioic acids can be obtained by the reaction of phosphorus pentasulfide with mercaptans or mixtures of mercaptans and alcohols.
  • the inorganic phosphorus reagent useful in the reaction with the hydroxy-substituted triesters of phosphorothioic acids is preferably phosphorus pentoxide.
  • Other phosphorus oxides such as phosphorus trioxide and phosphorus tetroxide likewise are useful.
  • Also useful are phosphorus acids, and phosphorus halides.
  • phosphoric acid pyrophosphoric acid, metaphosphoric acid, hypophosphoric acid, phosphorous acid, pyrophosphorous acid, metaphosphorous acid, hypophosphorous acid, phosphorous trichloride, phosphorus tribromide, phosphorous pentachloride, monobromophosphorus tetrachloride, phosphorus oxychloride, and phosphorus triiodide.
  • the reaction of the hydroxy-substituted triesters of phosphorothioic acids with the inorganic phosphorus reagent results in an acidic product.
  • the chemical constitution of the acidic product depends to a large measure on the nature of the inorganic phosphorus reagent used. In most instances the product is a complex mixture the precise composition of which is not known. It is known, however, that the reaction involves the hydroxy radical of the triester with the inorganic phosphorus reagent. In this respect the reaction may be likened to that of an alcohol or a phenol with the inorganic phosphorus reagent.
  • the reaction of the hydroxy-substituted triester with phosphorus pentoxide is believed to result principally in acidic phosphates, i.e., mono- or di-esters of phosphoric acid in which the ester radical is the residue obtained by the removal of the hydroxy radical of the phosphorothioic triester reactant.
  • the product may also contain phosphonic acids and phosphinic acids in which one or two direct carbon-to-phosphorus linkages are present.
  • the acidic product of the reaction between the hydroxy-substituted triester with phosphorus oxyhalide or phosphoric acid is believed to result in similar mixtures of acidic phosphates, phosphonic acids, and/or phosphinic acids.
  • the reaction of the hydroxy-substituted triester with phosphorus trichloride or phosphorus acid is believed to result principally in acidic organic phosphites.
  • Still other products may be obtained from the use of other inorganic phosphorus reagents illustrated previously.
  • the product is acidic and as such is useful as the intermediate for the preparation of the neutralized products useful in invention.
  • reaction of the hydroxy-substituted triester with the inorganic phosphorus reagent to produce the acidic intermediate can be effected simply by mixing the two reactants at a temperature above about room temperature, preferably above 50° C. A higher temperature such as 100°C or 150°C may be used but ordinarily is unnecessary.
  • the amines useful for neutralizing the acidic intermediate may be aliphatic amines, aromatic amines, cycloaliphatic amines, heterocyclic amines, or carbocyclic amines.
  • Amines having from 4 to 30 aliphatic carbon atoms are preferred and aliphatic primary amines containing at least 8 carbon atoms and having the formula, R" - NH 2 , where R" is, for example, an aliphatic radical such as tert-octyl, tert-dodecyl, tert-tetradecyl, tert-octadecyl, cetyl, behenyl, stearyl, eicosyl, docosyl, tetracosyl, hexatriacontanyl, and pentahexacontanyl, are especially useful.
  • Examples of other aliphatic amines include cyclohexyl amine, n-hexylamine, dodecylamine, di-dodecylamine, tridodecylamine, N-methyl-octylamine, butylamine, behenylamine, stearyl amine, oleyl amine, myristyl amine, and N-dodecyl trimethylene diamine, aniline, o-toluidine, benzidine, phenylene diamine, N,N'-di-sec-butylphenylene diamine, beta-naphthylamine, alpha-naphthylamine, morpholine, piperazine, menthane diamine, cyclopentyl amine, ethylene diamine, hexamethylene tetramine, octamethylene diamine, and N,N'-dibutyl-phenylene diamine.
  • hydroxy-substituted amines such as ethanolamine, diethanolamine, triethanolamine, isopropanolamine, para-aminophenol, 4-amino-naphthol-1, 8-amino-naphthol-1, beta-aminoalizarin, 2-amino-2-ethyl-1,3-propandiol, 4-amino-4'-hydroxy-diphenyl ether, 2-amino-resorcinol, etc.
  • hydroxy-substituted amines such as ethanolamine, diethanolamine, triethanolamine, isopropanolamine, para-aminophenol, 4-amino-naphthol-1, 8-amino-naphthol-1, beta-aminoalizarin, 2-amino-2-ethyl-1,3-propandiol, 4-amino-4'-hydroxy-diphenyl ether, 2-amino-resorcinol, etc.
  • hydroxy-substituted amines Of the various available hydroxy-substituted amines that can be employed, a preference is expressed for hydroxy-substituted aliphatic amines, particularly those that conform for the most part to the formula in which R" is as previously defined;
  • A is a lower alkylene radical such as methylene, ethylene, propylene-1,2, tri-methylene, butylene-1,2, tetramethylene, amylene-1,3, pentamethylene, etc.;
  • x is 1-10, inclusive; and
  • Q is hydrogen, (AO) x H, or R".
  • the use of such hydroxy-substituted aliphatic amines in many instances imparts improved rust-inhibiting characteristics.
  • Examples of such preferred hydroxy-substituted aliphatic amines include N-4-hydroxybutyl-dodecyl amine, N-2-hydroxyethyl-n-octylamine, N-2-hydroxypropyl dinonylamine, N,N-di-(3-hydroxypropyl)-tert-dodecyl amine, N-hydroxytrieth-oxyethyl-tert-tetradecyl amine, N-2-hydroxyethyl-tert-dodecyl amine, N-hydroxyhexa-propoxypropyl-tert-octadecyl amine, N-5-hydroxypentyl di-n-decyl amine, etc.
  • a convenient and economical method for the preparation of such hydroxy-substituted aliphatic amines involves the known reaction of an aliphatic primary or secondary amine with at least about an equimolecular amount of an epoxide, preferably in the presence of a suitable catalyst such as sodium methoxide, sodamide, sodium metal, etc.
  • R N-monohydroxyalkyl substituted mono-tertiary-alkyl amines of the formula tert-R - NHAOH, wherein tert-R is a tertiary-alkyl radical containing from 11 to 24 carbon atoms.
  • tert-R - NHAOH In lieu of a single compound of the formula tert-R - NHAOH, it is often convenient and desirable to use a mixture of such compounds prepared, for example, by the reaction of an epoxide, such as ethylene oxide, propylene oxide, or butylene oxide, with a commercial mixture of tertiary-alkyl primary amines such as C 11 -C 14 tertiary-alkyl primary amines, C 13 -C 22 tertiary-alkyl primary amines, etc.
  • an epoxide such as ethylene oxide, propylene oxide, or butylene oxide
  • tertiary-alkyl primary amines such as C 11 -C 14 tertiary-alkyl primary amines, C 13 -C 22 tertiary-alkyl primary amines, etc.
  • the neutralization of the acidic intermediate with the amine is in most instances exothermic and can be carried out simply by mixing the reactants at ordinary temperatures, preferably from 0°C to 200°C.
  • the chemical constitution of the neutralized product of the reaction depends to a large extent upon the temperature.
  • the product comprises predominantly a salt of the amine with the acid.
  • the product may contain amides, amidines, or mixtures thereof.
  • the reaction of the acidic intermediate with a tertiary amine results only in a salt.
  • the relative proportions of the acidic intermediate and the amines used in the reaction are preferably such that a substantial portion of the acidic intermediate is neutralized.
  • the lower limit as to the amount of amine used in the reaction is based primarily upon a consideration of the utility of the product formed. In most instances, enough amine should be used as to neutralize at least 50% of the acidity of the intermediate. For use as additives in hydrocarbon oils, substantially neutral products such as are obtained by neutralization of at least 90% of the acidity of the intermediate are desirable.
  • the amount of the amine used may vary within wide ranges depending upon the acidity desired in the product and also upon the acidity of the intermediate as determined by, for example, ASTM procedure designation D-664 or D-974.
  • a particularly preferred amine phosphate is when the acidic intermediate is derived from the reaction of P 2 O 5 with hydroxypropyl O,O-di(4-methyl-2-pentyl) phosphorodithioate. This acidic intermediate may then be neutralised or partially neutralised with a C 12 to C 14 tertiary aliphatic primary amine.
  • An example of such an amine may be commercially purchased under the trade name of Primene 81R.
  • the preferred component (C2) is an amine dithiophosphate.
  • Component (C1) may, for example, be present in the lubricant is an amount of at least 0.1, preferably at least 0.3, 0.5, 1.5 or 2, and preferably up to 20, 15, 10, 8, 5 mass %; and component (C2) may, for example, be present in the lubricant in an amount of at least 0.1, for example up to 10, preferably in the range of 0.4 to 5, or more preferably 0.6 to 2, mass % .
  • the lubricants may include an antiwear agent as a co-additive and may also contain other co-additives, for example, antioxidants, antifoaming agents and/or rust inhibitors. Further details of particular co-additives are as follows.
  • Oxidation inhibitors reduce the tendency of mineral oils to deteriorate in service, evidence of such deterioration being, for example, the production of varnish-like deposits on metal surfaces and of sludge, and viscosity increase.
  • Suitable oxidation inhibitors include sulphurized alkyl phenols and alkali or alkaline earth metal salts thereof; diphenylamines; phenyl-naphthylamines; and phosphosulphurized or sulphurized hydrocarbons.
  • oxidation inhibitors or antioxidants that may be used in the lubricant comprise oil-soluble copper compounds.
  • the copper may be blended therein as any suitable oil-soluble copper compound.
  • oil-soluble is meant that the compound is oil-soluble under normal blending conditions in the base stock or an additive package.
  • the copper may, for example, be in the form of a copper dihydrocarbyl thio- or dithio-phosphate.
  • the copper may be added as the copper salt of a synthetic or natural carboxylic acid, for example, a C 8 to C 18 fatty acid, an unsaturated acid, or a branched carboxylic acid.
  • oil-soluble copper dithiocarbamates, sulphonates, phenates, and acetylacetonates are basic, neutral or acidic copper Cu I and/or Cu II salts derived from alkenyl succinic acids or anhydrides.
  • Additional detergents and metal rust inhibitors include the metal salts, which may be overbased and have a TBN less than 300, of sulphonic acids, alkyl phenols, sulphurized alkyl phenols, alkyl salicylic acids, thiophosphonic acids, naphthenic acids, and other oil-soluble mono- and dicarboxylic acids.
  • the TBN of the metal salts may be less than 200.
  • Zinc dihydrocarbyl dithiophosphates are very widely used as antiwear agents.
  • ZDDPs are those of the formula Zn[SP(S)(OR 1 )(OR 2 )] 2 wherein R 1 and R 2 represent hydrocarbyl groups such as alkyl groups that contain from 1 to 18, preferably 2 to 12, carbon atoms.
  • Pour point depressants otherwise known as lube oil flow improvers, lower the minimum temperature at which the fluid will flow or can be poured. Such additives are well known.
  • Foam control may be provided by an antifoamant of the polysiloxane type, for example, silicone oil or polydimethyl siloxane.
  • Typical proportions for additives for a TPEO (a trunk piston engine oil), additional to additives (C) of this invention are as follows: Additive Mass % Mass % a.i.* a.i.* (Broad) (Preferred) Detergent(s) 0.5-15 2-7 Dispersant(s) 0.5-5 1-3 Anti-wear agent(s) 0.1-1.5 0.3-1.3 Anti-oxidant 0.1-3 0.5-1.5 Rust Inhibitor 0.03-0.15 0.05-0.1 Pour point depressant 0.03-0.15 0.05-0.1 Mineral or synthetic base oil Balance Balance * Mass % active ingredient based on the final oil. Stabilisers and/or rust inhibitors may also be included.
  • additive package(s) When a plurality of additives is employed it may be desirable, although not essential, to prepare one or more additive packages or concentrates comprising the additives, whereby several additives can be added simultaneously to the base stock to form the lubricant. Dissolution of the additive package(s) into the base stock may be facilitated by solvents and by mixing accompanied with mild heating, but this is not essential.
  • the additive package(s) will typically be formulated to contain the additive(s) in proper amounts to provide the desired concentration, and/or to carry out the intended function, in the final lubricant when the additive package(s) is/are combined with a predetermined amount of base stock.
  • components (B) and (C) in accordance with the present invention may be admixed with small amounts of base stock or other compatible solvents together with other desirable additives to form additive packages containing active ingredients in an amount, based on the additive package, of, for example, from 2.5 to 90 and preferably from 5 to 75 and most preferably from 8 to 60, mass %, with the remainder being base stock.
  • the final lubricant may typically contain about 5 to 40 mass % of the additive package(s), including diluent, with the remainder being base stock.
  • FIG. 1 represents, as the results of an HFRR test to be described below, a trace in graphical form where the x-axis represents temperature in °C and the y-axis represents coefficient of friction.
  • a first sample of TPEO was prepared by admixing with the basestock A 1 , the detergent B 1 and the stabiliser D 1 . This was a comparison sample and is designated as SAMPLE Z.
  • Second and third samples of TPEO's were prepared by admixing with the basestock A 1 , the detergent B 1 and the stabiliser D 1 , in the same proportions as in SAMPLE Z, and also compound C 1 (3 mass % based on the lubricant mass) in the second sample and compound C 2 (0.8 mass % based on the lubricant mass) in the third sample.
  • the second and third samples are examples included in the invention and are designated as SAMPLES 1 and 2 respectively.
  • the admixing was carried out by blending the components and the basestock at 60°C for one hour.
  • HFRR High Frequency Reciprocating Rig
  • Sample Z the results are shown in Figure 1, from which it is seen that the friction coefficient fell from about 0.16 at 75°C to about 0.1 at around 200°C, and fell, less steeply, to about 0.08 at around 280°C. Above 280°C, the coefficient arose steeply to about 0.25 or above and remained on or about 0.25 up to 350°C.
  • Sample 1 the results are shown in Figure 2, from which it is seen that the friction coefficient remained on or about 0.15 from 75°C to 190°C and fell to about 0.1 at 200°C. It remained just above, or about, 0.1 from 200 to 325°C. The coefficient rose at 325 to 350°C, but not exceeding 0.15.
  • SAMPLES X and Y Additional TPEO samples, included in the invention, designated as SAMPLES X and Y were prepared each to a TBN of 33 as generally described above. Each sample was tested in the HFRR as described above and also in the Komatsu Hot Tube test at 320°C which is known and accepted in the art.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Claims (9)

  1. Utilisation d'un lubrifiant dans un moteur diesel à piston fourreau pour réduire l'usure à des températures supérieures à 270°C ou pour réduire les dépôts à 320°C, le lubrifiant ayant un acide de basicité totale (TBN) dans l'intervalle de 25 à 55 et comprenant, ou étant préparé en mélangeant
    (A) une huile de base de viscosité propre à la lubrification, en une quantité dominante ;
    (B) au moins un détergent métallique surbasique, ayant de préférence une teneur en cendres d'au moins 0,85 % de cendres sulfatées, en une petite quantité ; et
    (C) au moins un constituant additif auxiliaire, sans cendres ou dépourvu de métaux, en une petite quantité, et qui est différent de (B), choisi entre :
    (C1) un alkylphénol sulfuré soluble dans l'huile et/ou
    (C2) un phosphate d'amine.
  2. Utilisation suivant la revendication 1, dans laquelle le détergent métallique surbasique est le calcium.
  3. Utilisation suivant la revendication 1 ou 2, dans laquelle le métal dans le détergent métallique surbasique est le salicylate de calcium.
  4. Utilisation suivant l'une quelconque des revendications précédentes, dans laquelle l'alkylphénol sulfuré est un sulfure d'alkylphénol.
  5. Utilisation suivant l'une quelconque des revendications précédentes, dans laquelle (C1) est présent dans le lubrifiant en une quantité d'au moins 0,1, de préférence d'au moins 0,3 et de préférence en une quantité allant jusqu'à 20 % en masse.
  6. Utilisation suivant l'une quelconque des revendications précédentes, dans laquelle (C2) est sous forme d'un dithiophosphate d'amine.
  7. Utilisation suivant l'une quelconque des revendications précédentes, dans laquelle (C2) est présent dans le lubrifiant en une quantité d'au moins 0,1, avantageusement jusqu'à 10, plus avantageusement dans l'intervalle de 0,4 à 5 et encore plus avantageusement dans l'intervalle de 0,6 à 2 % en masse.
  8. Utilisation suivant l'une quelconque des revendications précédentes, dans laquelle le lubrifiant comprend en outre un fuel-oil avec une teneur en carburant résiduel, en une petite quantité.
  9. Utilisation suivant l'une quelconque des revendications précédentes, dans laquelle le lubrifiant est pratiquement dépourvu de détergent du type phénate.
EP01203289A 2000-09-22 2001-08-28 Lubrification d'un moteur à piston plongeur Expired - Lifetime EP1191088B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01203289A EP1191088B1 (fr) 2000-09-22 2001-08-28 Lubrification d'un moteur à piston plongeur

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP00203292 2000-09-22
EP00203292 2000-09-22
EP01203289A EP1191088B1 (fr) 2000-09-22 2001-08-28 Lubrification d'un moteur à piston plongeur

Publications (2)

Publication Number Publication Date
EP1191088A1 EP1191088A1 (fr) 2002-03-27
EP1191088B1 true EP1191088B1 (fr) 2006-03-15

Family

ID=26072707

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01203289A Expired - Lifetime EP1191088B1 (fr) 2000-09-22 2001-08-28 Lubrification d'un moteur à piston plongeur

Country Status (1)

Country Link
EP (1) EP1191088B1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8703676B2 (en) 2009-05-01 2014-04-22 Infineum International Limited Marine engine lubrication
BE1021477B1 (fr) * 2011-11-17 2015-11-27 Infineum International Limited Lubrification de moteurs marins

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7124728B2 (en) * 2003-01-24 2006-10-24 Exxonmobil Research And Engineering Company Modification of lubricant properties in an operating all loss lubricating system
US7598212B2 (en) 2003-07-18 2009-10-06 Exxonmobil Research And Engineering Company Lubricating composition suitable for diesel engines
EP1630223A1 (fr) * 2004-08-26 2006-03-01 Infineum International Limited Compositions d'huiles lubrifiantes
DE102009034983A1 (de) * 2008-09-11 2010-04-29 Infineum International Ltd., Abingdon Verfahren zum Vermindern von Asphaltenablagerung in einem Motor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4849118A (en) * 1987-09-30 1989-07-18 Amoco Corporation Chlorine-free silver protective lubricant composition (III)
GB8826961D0 (en) * 1988-11-18 1988-12-21 Castrol Ltd Lubricant compositions
GB9319648D0 (en) * 1993-09-23 1993-11-10 Bp Chemicals Additives Lubricating oil compositions
US5370805A (en) * 1993-11-18 1994-12-06 Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. Chlorine-free diesel engine lubricating composition
GB9400417D0 (en) * 1994-01-11 1994-03-09 Bp Chemicals Additives Lubricating oil composition
EP0725129B1 (fr) * 1995-02-01 2001-12-12 The Lubrizol Corporation Composition lubrificante à faible teneur en cendre
GB9503993D0 (en) * 1995-02-28 1995-04-19 Bp Chem Int Ltd Lubricating oil compositions
US5719107A (en) * 1996-08-09 1998-02-17 Exxon Chemical Patents Inc Crankcase lubricant for heavy duty diesel oil
GB9800436D0 (en) * 1998-01-09 1998-03-04 Exxon Chemical Patents Inc Marine lubricant compositions
GB9908771D0 (en) * 1999-04-17 1999-06-09 Infineum Uk Ltd Lubricity oil composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8703676B2 (en) 2009-05-01 2014-04-22 Infineum International Limited Marine engine lubrication
BE1021477B1 (fr) * 2011-11-17 2015-11-27 Infineum International Limited Lubrification de moteurs marins

Also Published As

Publication number Publication date
EP1191088A1 (fr) 2002-03-27

Similar Documents

Publication Publication Date Title
US6521571B1 (en) Trunk piston engine lubrication
US6596673B1 (en) Marine diesel cylinder lubrication
CA2379492C (fr) Composition d'huile lubrifiante a faible volatilite exempte de molybdene
US4283294A (en) Lubricating oil composition
EP1728849B1 (fr) Procédé de lubrification des chemises de cylindre et des carters dans des moteurs marins Diesel de type à crosse
US6277794B1 (en) Lubricant compositions
CN101121909B (zh) 润滑油组合物
EP0141839B1 (fr) Sels metalliques contenant du phosphore/compositions de phenates sulfures/triazoles substitues aromatiques, concentres et fluides fonctionnels les contenant
EP1652910A2 (fr) Sels métalliques surbasiques utiles comme additifs pour des carburants et des lubrifiants
EP1229101A1 (fr) Lubrifiant pour un moteur diesel marin
EP0312313A1 (fr) Composition surbasique de sulfonate de métal
EP1548089A1 (fr) Composition d'huile lubrifiante contenant un sel de métal alcalin d'acide salicylique
JP3242403B2 (ja) 熱安定性組成物および潤滑剤、およびそれらを含有する機能流体
EP1191088B1 (fr) Lubrification d'un moteur à piston plongeur
CA2315707C (fr) Compositions lubrifiantes
CA2486328C (fr) Methode pour reduire la formation de depot dans un systeme centrifuge de moteur diesel a piston fourreau
EP0465118B1 (fr) Additifs pour huile lubrifiante
EP1173534B1 (fr) Fluide hydraulique
CA1273344A (fr) Complexes de type succinimide d'alkylcatechols borates et produits lubrifiants contenant ceux-ci
EP1085076A1 (fr) Composition lubrifiante pour cylindres de moteurs diesel marins à deux temps
EP0211689B1 (fr) Détermination de l'origine d'un métal dans une huile usée
US4683070A (en) Determination of metal source in used oil
US20070191237A1 (en) Hydraulic fluid
EP1528099A1 (fr) Methode pour la réduction de la formation de dépôts dans un moteur à piston fourreau
US5284594A (en) Dialkylamine complexes of borated alkyl catechols and lubricating oil compositions containing the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010828

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20040629

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060315

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060315

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060315

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060315

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060315

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060315

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060315

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60117913

Country of ref document: DE

Date of ref document: 20060511

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060615

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061218

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060828

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060616

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060828

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060315

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060315