EP1190080A1 - $g(D)6-DESATURASEGENE EXPRIMIERENDE PFLANZEN UND PUFAS ENTHALTENDE ÖLE AUS DIESEN PFLANZEN UND EIN VERFAHREN ZUR HERSTELLUNG UNGESÄTTIGTER FETTSÄUREN - Google Patents

$g(D)6-DESATURASEGENE EXPRIMIERENDE PFLANZEN UND PUFAS ENTHALTENDE ÖLE AUS DIESEN PFLANZEN UND EIN VERFAHREN ZUR HERSTELLUNG UNGESÄTTIGTER FETTSÄUREN

Info

Publication number
EP1190080A1
EP1190080A1 EP00952997A EP00952997A EP1190080A1 EP 1190080 A1 EP1190080 A1 EP 1190080A1 EP 00952997 A EP00952997 A EP 00952997A EP 00952997 A EP00952997 A EP 00952997A EP 1190080 A1 EP1190080 A1 EP 1190080A1
Authority
EP
European Patent Office
Prior art keywords
organism
fatty acids
nucleic acid
desaturase
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00952997A
Other languages
English (en)
French (fr)
Inventor
Ernst Heinz
Thomas Girke
Jodi Scheffler
Oswaldo Da Costa E Silva
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Plant Science GmbH
Original Assignee
BASF Plant Science GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10030976A external-priority patent/DE10030976A1/de
Application filed by BASF Plant Science GmbH filed Critical BASF Plant Science GmbH
Publication of EP1190080A1 publication Critical patent/EP1190080A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6472Glycerides containing polyunsaturated fatty acid [PUFA] residues, i.e. having two or more double bonds in their backbone
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0083Miscellaneous (1.14.99)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone

Definitions

  • the present invention relates to an improved process for the production of unsaturated fatty acids and a process for the production of triglycerides with an increased content of unsaturated fatty acids.
  • the invention relates to the production of a transgenic organism, preferably a transgenic plant or a transgenic microorganism with an increased content of fatty acids, oils or lipids with ⁇ 6 double bonds due to the expression of a ⁇ 6-desaturase from moss.
  • the invention also relates to transgenic organisms which contain a ⁇ 6-desaturase gene, and to the use of the unsaturated fatty acids or triglycerides produced in the process with an increased content of unsaturated fatty acids.
  • Fatty acids and triglycerides have a variety of uses in the food industry, animal nutrition, cosmetics and pharmaceuticals. Depending on whether it is free saturated or unsaturated fatty acids or triglycerides with an increased content of saturated or unsaturated fatty acids, they are suitable for a wide variety of applications, for example polyunsaturated fatty acids are added to baby food to increase the nutritional value.
  • the various fatty acids and triglycerides are mainly obtained from microorganisms such as Mortierella or from oil-producing plants such as soybean, rapeseed, sunflower and others, where they are generally obtained in the form of their triacylglycerides. But they can also be obtained from animals such as fish.
  • the free fatty acids are advantageously produced by saponification.
  • oils with saturated or unsaturated fatty acids are preferred.
  • lipids with unsaturated fatty acids especially polyunsaturated fatty acids, are preferred in human nutrition because they have a positive influence on the cholesterol level in the blood and thus on the possibility of heart disease.
  • Unsaturated fatty acids are also said to have a positive effect on carcinogenesis. They are also important raw materials for the synthesis of compounds that are important biological processes within the Control the organism. They are therefore used in various diet foods or medications.
  • WO 94/11516 claims a ⁇ 12 desaturase. ⁇ 6 desaturases are described in Girke et al. (The Plant Journal, 15, 1998: 39-48), Napier et al. (Biochem. J., 330, 1998: 611-614), Murata et al. (Biosynthesis of ⁇ -linolenic acid in cyanobacterium spirulina
  • membrane-bound proteins are very difficult to isolate and characterize (McKeon et al., Methods in Enzymol. 71, 1981: 12141-12147, Wang et al., Plant Physiol. Biochem., 26, 1988: 777-792).
  • membrane-bound desaturases are characterized by incorporation into one
  • the object was therefore to provide a process for the production of unsaturated fatty acids using genes which code, for example, for desaturase enzymes and which are involved in the synthesis of polyunsaturated fatty acids in the seeds of an oilseed, and thus to increase the content of polyunsaturated fatty acids.
  • This object was achieved by a process for the production of unsaturated fatty acids, characterized in that at least one isolated nucleic acid sequence which codes for a polypeptide with ⁇ -desaturase activity, selected from the group:
  • the attracted organism is introduced into an organism, this organism is attracted, the attracted organism containing at least 1 mol% of unsaturated fatty acids based on the total fatty acid content in the organism.
  • Cultivation of the organism is to be understood as the cultivation of plants as well as the cultivation of eukaryotic or prokaryotic microorganisms such as bacteria, yeasts, fungi, ciliates, algae, cyanobacteria, animal or plant cells or cell groups or the cultivation of animals.
  • eukaryotic or prokaryotic microorganisms such as bacteria, yeasts, fungi, ciliates, algae, cyanobacteria, animal or plant cells or cell groups or the cultivation of animals.
  • the organisms obtained in the process according to the invention generally contain unsaturated fatty acids in the form of bound fatty acids, that is to say the unsaturated fatty acids are predominantly in the form of their mono-, di- or triglycerides, glycolipids, lipoproteins or phospholipids such as oils or lipids or other fatty acids bound as esters or amides.
  • Free fatty acids are also contained in the organisms in the form of the free fatty acids or in the form of their salts.
  • the free or bound unsaturated fatty acids advantageously contain, compared to the starting organisms, an increased content of fatty acids with ⁇ 6 double bonds, such as ⁇ -linolenic acid.
  • the organisms obtained by cultivation in the process according to the invention and the unsaturated fatty acids contained in them can be used directly, for example, for the production of pharmaceutical preparations, agrochemicals, animal feeds or foods or after isolation from the organisms. All stages of the purification of the unsaturated fatty acids can be used, ie from crude extracts of the fatty acids to completely purified fatty acids are suitable for the production of the aforementioned products.
  • the bound fatty acids can be released from, for example, the oils or lipids, for example via basic hydrolysis, for example with NaOH or KOH. These free fatty acids can be used directly in the mixture obtained or after further purification for the production of pharmaceutical preparations, agrochemicals, animal feeds or foods.
  • the bound or free fatty acids can also be used for transesterification or esterification, for example with other mono-, di- or triglycerides or glycerol, in order to increase the proportion of unsaturated fatty acids in these compounds, for example in the triglycerides.
  • a further subject of the invention is a process for the production of triglycerides with an increased unsaturated fatty acid content by triglycerides with saturated or unsaturated or saturated and unsaturated fatty acids with at least one of the protein which is encoded by the sequence SEQ ID NO: 2 , incubated.
  • the process is advantageously carried out in the presence of compounds which can absorb or give off reduction equivalents. The fatty acids can then be released from the triglycerides.
  • organisms for the processes mentioned are plants such as arabidopsis, barley, wheat, rye, oats, corn, soybeans, rice, cotton, sugar beet, tea, carrots, peppers, canola, sunflower, flax, hemp, potatoes, triticale, tobacco, Tomato, rapeseed, coffee, tapioca, cassava, arrowroot, tagetes, alfalfa, peanut, castor bean, coconut, oil palm, safflower (Carthamus tinctorius), lettuce and the various tree, nut and wine species, or cocoa beans, microorganisms such as fungi Mortierella, Saprolegnia or Pythium, bacteria such as the genus Escherichia, cyanobacteria, algae or protozoa such as dinoflagellates such as Crypthecodinium.
  • plants such as arabidopsis, barley, wheat, rye, oats, corn, soybeans, rice, cotton, sugar beet
  • Organisms which can naturally synthesize oils in large quantities such as microorganisms such as fungi such as Mortierella alpina, Pythium insidiosum or plants such as soybean, rapeseed, coconut, oil palm, canola, safflower (Carthamus tinctorius), castor oil, calendula, linseed, borage, peanut, are preferred , Cocoa bean or sunflower, soya, rape or sunflower are particularly preferred.
  • microorganisms such as Mortierella alpina, Pythium insidiosum or plants such as soybean, rapeseed, coconut, oil palm, canola, safflower (Carthamus tinctorius), castor oil, calendula, linseed, borage, peanut, are preferred , Cocoa bean or sunflower, soya, rape or sunflower are particularly preferred.
  • Microorganisms such as bacteria, fungi, ciliates, plant or animal cells are usually in a liquid medium containing a carbon source mostly in the form of sugars, a nitrogen source mostly in the form of organic nitrogen sources such as yeast extract or salts such as ammonium sulfate, trace elements such as iron, Manganese, magnesium salts and possibly vitamins contains, at temperatures between 0 ° C and 100 ° C, preferably between 10 ° C to 60 ° C, depending on the organism, oxygen or in the absence of oxygen.
  • the pH of the nutrient liquid can be kept at a fixed value, i.e.
  • the pH is regulated during cultivation or the pH is not regulated and changes during cultivation.
  • the cultivation can be batch-wise, semi-batch wise or continuous. Nutrients can be added at the start of the fermentation or fed semi-continuously or continuously. Cultivation on solid media is also possible.
  • plants After transformation, plants are generally regenerated and then grown or grown as usual. This can be done in the greenhouse or outdoors.
  • the lipids are usually obtained from the organisms.
  • the organisms can first be digested after harvesting or used directly.
  • the lipids are advantageously mixed with suitable solvents such as apolar
  • Solvents such as hexane or ethanol, isopropanol or mixtures such as hexane / isopropanol, phenol / chloroform / isoamyl alcohol extracted at temperatures between 0 ° C to 80 ° C, preferably between 20 ° C to 50 ° C.
  • the biomass is usually extracted with an excess of solvent, for example an excess of solvent to biomass of 1: 4.
  • the solvent is then removed, for example by distillation.
  • the extraction can also be carried out with supercritical CO 2 . After extraction, the remaining biomass can be removed, for example, by filtration.
  • the crude oil obtained in this way can then be further purified, for example by removing turbidity by adding polar solvents such as acetone or chloroform and then filtering or centrifuging. Further purification using chromatographic processes, distillation or crystallization is also possible.
  • Another object of the invention are unsaturated fatty acids and trigylcerides with an increased content of unsaturated fatty acids, which were prepared by the above methods, and their use for the production of food, animal feed, cosmetics or pharmaceuticals. For this purpose, they are added to the food, animal feed, cosmetics or pharmaceuticals in the usual amounts.
  • a ⁇ 6-desaturase from moss in organisms such as fungi, bacteria, animals or plants, preferably fungi, bacteria and plants, particularly preferably in plants, very particularly preferably in oil crop plants such as rapeseed, canola, linseed, soybean, sunflower , Borage, castor, oil palm, safflower (Carthamus tinctorius), coconut, peanut or cocoa bean receive higher levels of unsaturated fatty acids such as ⁇ -linolenic acid.
  • crops such as corn, wheat, rye, oats, triticale, rice, barley, alfalfa or bush plants (coffee, cocoa, tea) is also advantageous.
  • the expression of a gene which codes for a ⁇ -6-desaturase from moss in the above-mentioned organisms enables contents of unsaturated fatty acids in the organisms of at least 1 mol%, preferably at least 3 mol%, particularly preferably at least 4 mol -%, very particularly preferably at least 5 mol% can be achieved.
  • Derivatives are, for example, functional homologues of the enzymes encoded by SEQ ID NO: 1 or their enzymatic activity, that is to say enzymes which catalyze the same enzymatic reactions as those of SEQ ID NO: 1. These genes also enable advantageous production of unsaturated fatty acids with double bonds in the ⁇ 6 position. Below unsaturated fatty acids are double or polyunsaturated fatty acids which have double bonds, to understand. The double bonds can be conjugated or non-conjugated. The sequence mentioned in SEQ ID NO: 1 codes for an enzyme which has a ⁇ 6-desaturase activity.
  • the enzyme ⁇ 6-desaturase according to the invention advantageously introduces a cis double bond in position C 6 ⁇ C into fatty acid residues of glycerolipids (see SEQ ID NO: 1).
  • the enzyme also has a ⁇ 6-desaturase activity which advantageously only introduces a cis double bond in the 10 position Cg-C into fatty acid residues of glycerolipids.
  • the enzyme with the sequence given in SEQ ID NO: 1, which is a monofunctional ⁇ 6 desaturase also has this activity.
  • nucleic acid sequence (s) used in the method according to the invention can advantageously be used for the isolation of further genomic sequences via homology screening.
  • the derivatives mentioned can be isolated, for example, from other organisms in eukaryotic organisms such as plants such as specifically mosses, dinoflagellates or fungi.
  • derivatives or functional derivatives include
  • allelic variants which have at least 50% homology at the derived amino acid level, advantageously at least 70% homology, preferably at least 80% homology, particularly preferably at least 85% homology, very particularly preferably 90% homology ,
  • amino acid sequence derived from the nucleic acids mentioned can be found in sequence SEQ ID NO: 2.
  • Homology means identity, that is, the amino acid sequences are at least
  • sequences according to the invention are at least 65% homologous, preferably at least 70%, particularly preferably 75%, very particularly preferably at least 80%.
  • allele variants comprise in particular functional variants which can be obtained by deleting, inserting or substituting nucleotides from the sequence shown in SEQ ID NO: 1, wherein the enzymatic activity of the derived synthesized proteins is retained.
  • Such DNA sequences can be started from the DNA sequence described in SEQ ID NO: 1 or parts thereof
  • Isolate sequences for example with conventional hybridization methods or the PCR technique, from other eukaryotes such as those mentioned above. These DNA sequences hybridize to the sequences mentioned under standard conditions. Short oligonucleotides, for example of the conserved regions, which can be determined by comparison with other desaturase genes in a manner known to the person skilled in the art, are advantageously used for the hybridization. The histidine box sequences are advantageously used. However, longer fragments of the nucleic acids according to the invention or the complete sequences can also be used for the hybridization. These standard conditions vary depending on the nucleic acid used: oligonucleotide, longer fragment or complete sequence or depending on the type of nucleic acid DNA or RNA used for the hybridization. For example, the melting temperatures for DNA: DNA hybrids are approx. 10 ° C lower than those of DNA: RNA hybrids of the same length.
  • DNA hybrids are advantageously 0.1 ⁇ SSC and temperatures between approximately 20 ° C. to 45 ° C., preferably between approximately 30 ° C. to 45 ° C.
  • RNA hybrids the hybridization conditions are advantageously 0.1 x SSC and temperatures between about 30 C C and 55 ° C, preferably between about 45 ° C to 55 ° C. These specified temperatures for the hybridization are, for example, calculated melting temperature values for a nucleic acid with a length of approx. 100 nucleotides and a G + C content of 50% in the absence of formamide.
  • the experimental conditions for DNA hybridization are in relevant textbooks of genetics such as Sambrook et al. , "Molecular Cloning", Cold Spring Harbor Laboratory, 1989, and can be calculated according to formulas known to the person skilled in the art, for example depending on the length of the nucleic acids, the type of hybrid or the G + C content. The person skilled in the art can obtain further information on hybridization from the following textbooks: Ausubel et al.
  • homologs of the sequence SEQ ID No: 1 are furthermore to be understood, for example, as eukaryotic homologs, shortened sequences, single-stranded DNA of the coding and non-coding DNA sequence or RNA of the coding and non-coding DNA sequence.
  • homologs of the sequence SEQ ID NO: 1 are to be understood as derivatives such as promoter variants. These variants can be changed by one or more nucleotide exchanges, by insertion (s) and / or deletion (s), but without the functionality or effectiveness of the promoters being impaired. Furthermore, the effectiveness of the promoters can be increased by changing their sequence, or completely replaced by more effective promoters, including organisms of other species.
  • Derivatives are also advantageously to be understood as variants whose nucleotide sequence in the range -1 to -2000 before the start codon has been changed such that the gene expression and / or the protein expression is changed, preferably increased. Derivatives are also to be understood as variants that were changed at the 3 'end.
  • the nucleic acid sequences which code for a ⁇ 6-desaturase can be produced synthetically or obtained naturally or contain a mixture of synthetic and natural DNA components, and can consist of different heterologous ⁇ 6-desaturase gene segments from different organisms.
  • synthetic nucleotide sequences with codons are generated which are preferred by the corresponding host organisms, for example plants. This usually leads to optimal expression of the heterologous genes.
  • plant preferred codons can be determined from the highest protein frequency codons expressed in most interesting plant species.
  • Corynebacterium glutamicum is given in: Wada et al. (1992) Nucleic Acids Res. 20: 2111 to 2118). Such experiments can be carried out using standard methods and are known to the person skilled in the art.
  • Functionally equivalent sequences which code for the ⁇ 6-desaturase gene are those derivatives of the sequence according to the invention which, despite the differing nucleotide sequence, are still the desired ones Functions, that is, possess the enzymatic activity of the proteins.
  • Functional equivalents thus include naturally occurring variants of the sequences described here, as well as artificial, for example chemical nucleotide sequences obtained by chemical synthesis and adapted to the codon use of a plant.
  • artificial DNA sequences are suitable as long as, as described above, they impart the desired property, for example increasing the content of ⁇ 6 double bonds in fatty acids, oils or lipids in the plant by overexpression of the ⁇ 6 desaturase gene in crop plants.
  • Such artificial DNA sequences can be determined, for example, by back-translating proteins constructed using molecular modeling, which have ⁇ 6-desaturase activity, or by in vitro selection. Possible techniques for the in vitro evolution of DNA to change or improve the DNA sequences are described in Patten, P.A. et al. , Current Opinion in Biotechnology 8, 724-733 (1997) or Moore, J.C. et al., Journal of Molecular Biology 272, 336-347 (1997).
  • Coding DNA sequences which are obtained by back-translating a polypeptide sequence in accordance with the odon usage specific for the host plant are particularly suitable.
  • the specific codon usage can easily be determined by a person skilled in plant genetic methods by computer evaluations of other, known genes of the plant to be transformed.
  • Suitable equivalent nucleic acid sequences are sequences which code for fusion proteins, part of the fusion protein being a ⁇ 6-desaturase polypeptide or a functionally equivalent part thereof.
  • the second part of the fusion protein can e.g. be another polypeptide with enzymatic activity or an antigenic polypeptide sequence that can be used to detect ⁇ 6-desaturase expression (e.g. mye-tag or his-tag).
  • this is preferably a regulatory protein sequence, such as e.g. a signal sequence for the ER that directs the ⁇ 6-desaturase protein to the desired site of action.
  • the ⁇ 6-desaturase genes can advantageously be combined in the method according to the invention with other genes of fatty acid biosynthesis.
  • examples of such genes are acetyltransferases, further desaturases or elongases of unsaturated or saturated fatty acids as described in WO 00/12720.
  • the combination with, for example, NADH cytochrome B5 reductases is advantageous, which can absorb or release reduction equivalents.
  • proteins used in the method according to the invention are to be understood as proteins which contain an amino acid sequence shown in the sequence SEQ ID NO: 2 or a sequence obtainable therefrom by substitution, inversion, insertion or deletion of one or 5 more amino acid residues, the enzymatic activity of the protein shown in SEQ ID NO: 2 is retained or is not significantly reduced. Not significantly reduced is to be understood as meaning all enzymes which are still at least 10%, preferably 20%, particularly preferred
  • amino acids can be replaced by those with similar physicochemical properties (space filling, basicity, hydrophobicity, etc.).
  • arginine residues against lysine residues valine residues against isoleucine
  • amino acids 15 residues or aspartic acid residues exchanged for glutamic acid residues.
  • one or more amino acids can also be interchanged, added or removed in their order, or several of these measures can be combined with one another.
  • Derivatives are also to be understood as functional equivalents which in particular also include natural or artificial mutations of an originally isolated sequence coding for ⁇ 6-desaturase, which furthermore show the desired function, that
  • Mutations include substitutions, additions, deletions, exchanges or insertions of one or more nucleotide residues.
  • the present invention also encompasses those nucleotide sequences which are obtained by modifying the ⁇ 6-desaturase nucleotide sequence. The aim of such a modification can e.g. further narrowing down the coding sequence contained therein or e.g. also be the insertion of further restriction enzyme interfaces.
  • nucleic acid sequences used in the method according to the invention are advantageously inserted into an expression cassette for introduction into a host organism.
  • the nucleic acid sequences can also be introduced directly into the host organism.
  • the nucleic acid sequence can advantageously be, for example, a DNA or cDNA sequence. Coding sequences suitable for insertion into an expression cassette are, for example, those which code for a ⁇ 6-desaturase with the sequences described above and which give the host the ability to overproduce fatty acids, oils or lipids with double bonds in the ⁇ 6-position. These sequences can be of homologous or heterologous origin.
  • These regulatory sequences are intended to enable targeted expression of the genes and protein expression. Depending on the host organism, this can mean, for example, that the gene is only expressed and / or overexpressed after induction, or that it is expressed and / or overexpressed immediately.
  • these regulatory sequences are sequences to which inducers or repressors bind and thus regulate the expression of the nucleic acid.
  • the natural regulation of these sequences may still be present before the actual structural genes and may have been genetically modified so that the natural regulation has been switched off and the expression of the genes increased.
  • the gene construct can also have a simpler structure, that is to say no additional regulation signals have been inserted in front of the nucleic acid sequence or its derivatives, and the natural promoter with its regulation has not been removed. Instead, the natural regulatory sequence was mutated in such a way that regulation no longer takes place and / or gene expression is increased.
  • the gene construct can also advantageously contain one or more so-called "enhancer sequences” functionally linked to the promoter, which enable increased expression of the nucleic acid sequence. Additional advantageous sequences, such as further regulatory elements or terminators, can also be inserted at the 3 'end of the DNA sequences.
  • the regulatory sequences or factors can preferably have a positive influence on the gene expression of the introduced genes and thereby increase it.
  • the regulatory elements can advantageously be strengthened at the transcription level by using strong transcription signals such as promoters and / or "enhancers".
  • an increase in translation is also possible, for example, by improving the stability of the mRNA.
  • promoters which can advantageously control the expression of foreign genes in organisms in plants or fungi are suitable as promoters in the expression cassette.
  • a plant promoter or promoters which originate, for example, from a plant virus are preferably used.
  • Advantageous regulatory sequences for the method according to the invention are, for example, in promoters such as cos, tac, trp, tet, trp-tet, lpp, lac, lpp-lac, lacl ⁇ - T7, T5, T3 -, gal-, trc-, ara-, SP6-, ⁇ -P R - or contained in the ⁇ -P L promoter, which are advantageously used in gram-negative bacteria.
  • the expression cassette can also contain a chemically inducible promoter, by means of which the expression of the exogenous ⁇ 6-desaturase gene in the organisms can advantageously be controlled in the plants at a specific point in time.
  • Such advantageous plant promoters are, for example, the PRPl promoter [Ward et al. , Plans. Mol. Biol. 22 (1993), 361-366], one which is inducible by benzenesulfonamide (EP 388186), one which is inducible by tetracycline (Gatz et al., (1992) Plant J. 2,397-404), one inducible by salicylic acid Promoter (WO 95/19443), an abscisic acid-inducible (EP335528) or an ethanol- or cyclohexanone-inducible (WO 93/21334) promoter.
  • plant promoters are, for example, the promoter of the cytosolic FBPase from potato, the ST-LSI promoter from potato (Stockhaus et al., EMBO J. 8 (1989) 2445-245), the promoter of the phosphoribosyl pyrophosphate amidotransferase from Glycine max (see also Genbank Accession Number U87999) or a node-specific promoter as in EP 249676 can advantageously be used. Plant promoters which ensure expression in tissues or plant parts / organs in which fatty acid biosynthesis or its precursors take place, such as, for example, in the endosperm or in the developing embryo, are particularly advantageous.
  • advantageous promoters which ensure seed-specific expression, such as, for example, the USP promoter or derivatives thereof, the LEB4 promoter, the phaseolin promoter or the napin promoter.
  • the 5 and particularly advantageous USP promoter or its derivatives listed according to the invention mediate very early gene expression in seed development (Baeumlein et al., Mol Gen Genet, 1991, 225 (3): 459-67).
  • Further advantageous seed-specific promoters that can be used for monocot and dicot plants are those for dicots
  • suitable promoters such as Napingen promoter from rapeseed (US5, 608, 152), the oleosin promoter from Arabidopsis (WO98 / 45461), the phaseolin promoter from Phaseolus vulgaris (US5, 504, 200), the Bce4- Promoter from Brassica (W091 / 13980) or the legume B4 promoter (LeB4, Baeumlein
  • promoters suitable for monocotyledons such as the promoters, the promoters of the barley Ipt2 or Iptl gene (WO95 / 15389 and WO95 / 23230) or the promoters of the barley Hordein gene, the rice glutelin gene, the rice oryzin gene, the rice prolamin gene, the wheat gliadin
  • promoters are particularly preferred which ensure expression in tissues or parts of plants in which, for example, the biosynthesis of fatty acids, oils and lipids or their precursors takes place. Promoters that ensure seed-specific expression should be mentioned in particular.
  • promoters such as that of the lpt2 or Iptl gene from barley (WO95 / 15389 and WO95 / 23230), which mediat
  • the desaturase genes are advantageously used in the nucleic acid construct.
  • DNA fragments can be manipulated in order to obtain a nucleotide sequence which is expediently read in the correct direction and which is equipped with a correct reading frame.
  • adapters or linkers can be attached to the fragments.
  • the promoter and the terminator regions can expediently in the transcription direction with a linker or polylinker which has one or more restriction sites for the
  • the linker has 1 to 10, usually 1 to 8, preferably 2 to 6, restriction sites. In general, the linker has a size of less than 100 bp, often less than 60 bp, but at least 5 bp within the regulatory ranges.
  • the promoter can be native or homologous as well as foreign or heterologous to the host organism, for example to the host plant.
  • the expression cassette contains in the 5 '-3' transcription direction the promoter, a DNA sequence which codes for a ⁇ 6-desaturase gene used in the method according to the invention and a region for the transcriptional termination. Different termination areas are interchangeable.
  • Preferred polyadenylation signals are plant polyadenylation signals, preferably those which essentially correspond to T-DNA polyadenylation signals from Agrobacterium tumefaciens, in particular gene 3 of T-DNA (octopine synthase) of the Ti plasmid pTiACH5 (Gielen et al., EMBO J. 3 (1984), 835 ff) or corresponding functional equivalents.
  • An expression cassette is produced by fusing a suitable promoter with a suitable ⁇ 6-desaturase DNA sequence and a polyadenylation signal according to common recombination and cloning techniques, as described, for example, in T. Maniatis, E.F. Fritsch and J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) and in T.J. Silhavy, M.L. Ber an and L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) and in Ausubel, F.M. et al. , Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley-Interscience (1987).
  • the DNA sequence coding for a ⁇ 6-desaturase from Phsyco-mitrella patens contains all the sequence features which are necessary in order to achieve a localization correct for the location of the fatty acid, lipid or oil biosynthesis. Therefore no further targeting sequences per se are necessary. However, such a localization can be desirable and advantageous and can therefore be artificially modified or reinforced, so that such fusion constructs are also a preferred advantageous embodiment of the invention.
  • nucleic acid sequences coding for ⁇ 6-desaturase genes are advantageously cloned together with at least one reporter gene into an expression cassette which is introduced into the organism via a vector or directly into the genome. This reporter gene should be easy to detect via a
  • an expression cassette comprises upstream, i.e. at the 5 'end of the coding sequence, a promoter and downstream, i.e. at the 3 'end, a polyadenylation signal and optionally further regulatory elements which are operatively linked to the coding sequence for the ⁇ 6-desaturase DNA sequence in between.
  • An operative link is understood to mean the sequential arrangement of promoter, coding sequence, terminator and, if appropriate, further regulatory elements in such a way that each of the regulatory elements can perform its function as intended in the expression of the coding sequence.
  • the sequences preferred for the operative linkage are targeting sequences to ensure subcellular localization in plastids. But also targeting sequences to ensure subcellular localization in the mitochondrion, in the endoplasmic reticulum
  • ER in the cell nucleus, in oil corpuscles or other compartments can be used if necessary, and translation enhancers such as the 5 'guiding sequence from the tobacco mosaic virus (Gallie et al., Nucl. Acids Res. 15 (1987), 8693- 8711).
  • An expression cassette can contain, for example, a constitutive promoter (preferably the USP or Napin promoter), the gene to be expressed and the ER retention signal.
  • the amino acid sequence KDEL lysine, aspartic acid, glutamic acid, leucine
  • the expression cassette is advantageously inserted into a vector such as, for example, a plasmid, a phage or other DNA, which enables optimal expression of the genes in the host organism.
  • Suitable plasmids are, for example, in E.
  • Advantageous yeast vectors are, for example, 2 ⁇ M, pAG-1, YEp6, YEpl3 or pEMBLYe23.
  • Examples of algae or plant promoters are pLGV23, pGHlac + , pBIN19, pAK2004, pVKH or pDH51 (see Schmidt, R. and Willmitzer, L., 1988).
  • the above-mentioned vectors or derivatives of the above-mentioned vectors represent a small selection of the possible plasmids.
  • vectors are also understood to mean all other vectors known to the person skilled in the art, such as phages, viruses such as SV40, CMV, baculovirus, adenovirus, transposons, IS elements, phasmids, phagemids, cosmids, linear or circular DNA.
  • phages viruses
  • viruses such as SV40, CMV, baculovirus, adenovirus, transposons, IS elements, phasmids, phagemids, cosmids, linear or circular DNA.
  • viruses such as SV40, CMV, baculovirus, adenovirus, transposons, IS elements, phasmids, phagemids, cosmids, linear or circular DNA.
  • viruses such as SV40, CMV, baculovirus, adenovirus, transposons, IS elements, phasmids, phagemids, cosmids, linear or circular DNA.
  • the expression cassette according to the invention can also advantageously be
  • nucleic acid sequence according to the invention can also be introduced into an organism on its own.
  • nucleic acid sequence according to the invention can all be introduced into the organism together with a reporter gene in a single vector or each individual gene with a reporter gene in each vector or several genes together in different vectors, the different vectors can be introduced simultaneously or successively.
  • the vector advantageously contains at least one copy of the nucleic acid sequences which code for a ⁇ 6-desaturase and / or the expression cassette.
  • the plant expression cassette can be transformed into the transformation vector pRT ((a) Toepfer et al., 1993, Methods Enzymol., 217: 66-78; (b) Toepfer et al. 1987, Nucl. Acids. Res. 15: 5890 ff. ) to be built in.
  • pRT transformation vector
  • Fusion vectors used in prokaryotes frequently use inducible systems with and without fusion proteins or fusion oligopeptides, it being possible for these fusions to take place both at the N-terminal and at the C-terminal or other usable domains of a protein.
  • Such fusion vectors usually serve: i.) To increase the expression rate of the RNA ii.) To increase the achievable protein synthesis rate, iii.) To increase the solubility of the protein, iv. ) or to simplify purification by means of a binding sequence which can be used for affinity chromatography.
  • proteolytic cleavage sites are also introduced via fusion proteins, which enables a part of the fusion protein to be split off, also for purification.
  • recognition sequences for Identifying proteases are, for example, factor Xa, thrombin and enterokinase.
  • Typical advantageous fusion and expression vectors are pGEX [Pharmacia Biotech Ine; Smith, D.B. and Johnson, K.S. (1988) Gene 67: 31-40], pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) which contains glutathione S-transferase (GST), maltose binding protein, or protein A.
  • GST glutathione S-transferase
  • E. coli expression vectors are pTrc
  • vectors for use in yeast are pYepSecl (Baldari, et al., (1987) Embo J. 6: 229-234), pMFa (Kurjan and Herskowitz, (1982) Cell 30: 933-943), pJRY88 (Schultz et al., (1987) Gene 54: 113-123), and pYES derivatives (Invitrogen Corporation, San Diego, CA).
  • Vectors for use in filamentous mushrooms are described in: van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer Systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, J.F. Peberdy, et al., Eds., P. 1-28, Cambridge University Press: Cambridge.
  • insect cell expression vectors can also be used advantageously, e.g. for expression in Sf 9 cells. These are e.g. the vectors of the pAc series (Smith et al. (1983) Mol. Cell Biol. 3: 2156-2165) and the pVL series (Lucklow and Summers (1989) Virology 170: 31-39).
  • plant cells or algal cells can advantageously be used for gene expression.
  • plant expression vectors can be found in Becker, D., et al. (1992) "New plant binary vectors with selectable markers located proximal to the left border", Plant Mol. Biol. 20: 1195-1197 or in Bevan, M.W. (1984) "Binary ⁇ gebbacte ium vectors for plant transformation", Nucl. Acid. Res. 12: 8711-8721.
  • nucleic acid sequences coding for the ⁇ 6-desaturase can be expressed in mammalian cells.
  • Examples of corresponding expression vectors are pCDM8 and pMT2PC mentioned in: Seed, B. (1987) Nature 329: 840 or Kaufman et al. (1987) EMBO J. 6: 187-195).
  • promoters to be used are preferably of viral origin, such as promoters of the polyoma, adenovirus 2, cytomegalovirus or Simian virus 40.
  • Others prokaryotic and eukaryotic expression systems are mentioned in chapters 16 and 17 in Sambrook et al. , Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 5 1989.
  • nucleic acids according to the invention can in principle be carried out by all methods known to the person skilled in the art.
  • transformation The transfer of foreign genes into the genome of a plant is called transformation.
  • the methods described for the transformation and regeneration of plants from 5 plant tissues or plant cells for transient or stable transformation are used. Suitable methods are protoplast transformation by polyethylene glycol-induced DNA uptake, the biolistic method with the gene cannon - the so-called particle bombardment method -, electroporation, the incubation of dry embryos in DNA-containing solution, microinjection and the gene transfer mediated by Agrobacterium.
  • the methods mentioned are described, for example, in B. Jenes et al. , Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, edited by SD Kung and R. 5 Wu, Academy Press (1993) 128-143 and in Potrykus Annu. Rev.
  • the construct to be expressed is preferably cloned into a vector which is suitable for transforming Agrobacterium tumefaciens, for example pBin19 (Bevan et al., Nucl. Acids Res. 0 12 (1984) 8711).
  • Agrobacteria transformed with such a vector can then be used in a known manner for transforming plants, in particular crop plants, such as tobacco plants, for example, by bathing wounded leaves or leaf pieces in an agrobacterial solution and then cultivating them in suitable media.
  • the transformation of plants with Agrobacterium tumefaciens is described, for example, by Höfgen and Willmitzer in Nucl. Acid Res.
  • Agrobacteria transformed with an expression vector as described above can also be used in a known manner to transform plants such as test plants such as Arabidopsis or crop plants such as cereals, corn, oats, rye, barley, wheat, soybeans, rice, cotton, sugar beet, canola, triticale, rice, Sunflower, flax, hemp, potato, tobacco, tomato, coffee, cocoa, tea, carrot, paprika, rapeseed, tapioca, cassava, arrowroot, tagetes, alfalfa, lettuce and the various tree, nut and wine species, especially oil containing crops such as soy, peanut, castor, borage, flax, sunflower,
  • Canola, cotton, flax, rapeseed, coconut, oil palm, safflower (Carthamus tinctorius) or cocoa bean can be used, e.g. by bathing wounded leaves or leaf pieces in an agrobacterial solution and then cultivating them in suitable media.
  • the genetically modified plant cells can be regenerated using all methods known to the person skilled in the art. Appropriate methods can be found in the above-mentioned writings by S.D. Kung and R. Wu, Potrykus or Höfgen and Willmitzer can be found.
  • all organisms which are able to synthesize fatty acids, especially unsaturated fatty acids or are suitable for the expression of recombinant genes are advantageously suitable as organisms or host organisms for the nucleic acids used, the expression cassette or the vector used.
  • Examples include plants such as Arabidopsis, Asteraceae such as Calendula or crops such as soybean, peanut, castor oil, sunflower, maize, cotton, flax, rapeseed, coconut, oil palm, safflower (Carthamus tinctorius) or cocoa bean, microorganisms such as fungi, for example the genus Mortierella, Saprolegnia or Pythium, bacteria such as the genus Escherichia, cyanobacteria, ciliates, Thrausto- or Schizichytria, algae or protozoa such as dinoplagellates such as Crypthecodinium.
  • crops such as soybean, peanut, castor oil, sunflower, maize, cotton, flax, rapeseed, coconut, oil palm, safflower (Carthamus tinctorius) or cocoa bean
  • microorganisms such as fungi, for example the genus Mortierella, Saprolegnia or Pythium,
  • Organisms which can naturally synthesize oils in large quantities such as fungi of the genera Mortierella or Pythium, such as Mortierella alpina, Pythium insidiosum, or plants, such as soybean, rapeseed, coconut, oil palm, color safflower, castor oil, calendula, peanut, cocoa bean or sunflower, are particularly preferred be soybean, rapeseed, sunflower, castor oil, or Mortierella Pythium.
  • transgenic animals are also suitable as host organisms, for example C. elegans.
  • Usable expression strains e.g. those which have a lower protease activity are described in: Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 119-128.
  • the expression of the ⁇ 6-desaturase gene can take place specifically in the leaves, in the seeds, in the tubers or in other parts of the plant.
  • Such fatty acids, oils or lipids with ⁇ 6 double bonds overproducing transgenic plants, their reproductive material and their plant cells, tissue or parts are a further subject of the present invention.
  • a preferred object according to the invention is transgenic plants, for example crop plants such as corn, oats, rye, wheat, barley, corn, rice, soybeans, sugar beet, canola, triticale, sunflower, flax, hemp, tobacco, tomato, coffee, cocoa, tea, Carrot, bell pepper, rapeseed, tapioca, cassava, arrowroot, tagetes, alfalfa, lettuce and the various tree, nut and wine species, potato, in particular oil-containing crops, such as soybean, peanut, castor oil, borage, flax, sunflower, canola , Cotton, flax, rapeseed, coconut, oil palm, safflower (Carthamus tinctorius) or cocoa bean, test plants such as Arabidopsis or other plants such as moss or algae containing a functional nucleic acid sequence according to the invention or a functional expression cassette.
  • Functional means here that an enzymatically active enzyme is formed.
  • the expression cassette or the nucleic acid sequences according to the invention containing a ⁇ 6-desaturase gene sequence can also be used to transform the above-mentioned organisms such as bacteria, cyanobacteria, filamentous fungi, ciliates, animals or algae with the aim of increasing the content of fatty acids, oils or lipids ⁇ 6 double bonds can be used.
  • Preferred transgenic organisms are bacteria, cyanobacteria, filamentous fungi or algae.
  • Transgenic organisms are understood to mean organisms which contain a foreign nucleic acid from another organism which codes for a ⁇ 6-desaturase used in the process according to the invention.
  • Transgenic organisms are also understood to mean organisms which have a nucleic acid which comes from the same organism and which codes for a ⁇ 6-desaturase, whereby this nucleic acid is contained as an additional gene copy or is not contained in the natural nucleic acid environment of the ⁇ 6-desaturase gene.
  • Transgenic organisms are also organisms in which the natural 3 'and / or 5' region of the ⁇ 6-desaturase gene has been changed by targeted genetic engineering changes compared to the parent organism.
  • Transgenic organisms in which a foreign DNA has been introduced are preferred.
  • Transgenic plants into which foreign DNA has been introduced are particularly preferred.
  • Transgenic plants are understood to mean individual plant cells and their cultures, such as callus cultures on solid media or in liquid culture, plant parts and whole plants.
  • transgenic organisms selected from the group of plants, fungi, ciliates, algae, bacteria, cyanobacteria or animals, preferably transgenic plants or algae, which contain at least one isolated nucleic acid sequence which codes for a polypeptide with ⁇ 6-desaturase activity from the group:
  • ⁇ 6 double bonds mean, for example, the artificially acquired ability of an increased biosynthesis capacity through functional overexpression of the ⁇ 6-desaturase gene in the organisms according to the invention advantageously in the transgenic plants according to the invention compared to the non-genetically modified starting plants, at least for the duration of at least one plant generation.
  • the biosynthesis site of fatty acids, oils or lipids is generally the seed or cell layers of the seed, so that a seed-specific expression of the ⁇ 6-desaturase gene is useful.
  • biosynthesis of fatty acids, oils or lipids need not be limited to the seed tissue, but also in all other parts of the plant - for example in epidermal cells or in the tubers - tissue can take place specifically.
  • constitutive expression of the exogenous ⁇ 6-desaturase gene is advantageous.
  • inducible expression may also appear desirable.
  • the effectiveness of the expression of the ⁇ 6-desaturase gene can be determined, for example, in vitro by proliferation of the shoot meristem.
  • a change in the type and level of expression of the ⁇ 6-desaturase gene and its effect on the fatty acid, oil or lipid biosynthesis performance on test plants can be tested in greenhouse experiments.
  • the invention relates to transgenic plants transformed with a nucleic acid sequence which codes for a ⁇ 6-desaturase, a vector or an expression cassette containing a ⁇ 6-desaturase gene sequence or DNA sequences which hybridize therewith, and transgenic cells, tissue , Parts and propagation material of such plants.
  • Transgenic crop plants as described above are particularly preferred.
  • Plants in the sense of the invention are mono- and dicotyledonous plants or algae.
  • SEQ ID N0: 1 sequence or hybridizing DNA sequences for the production of fungi, bacteria, animals or plants, preferably plants with an increased content of fatty acids, oils or lipids with ⁇ 6 double bonds by expression of this ⁇ 6-desaturase DNA sequence in plants ,
  • the cloning processes such as Restriction cleavage, agarose gel electrophoresis, purification of DNA fragments, transfer
  • the sequencing of recombinant DNA molecules was carried out with a laser fluorescence DNA sequencer from ABI according to the method of Sanger (Sanger et al. (1977) Proc. Natl. Acad. Sci. USA74, 5463-5467). Fragments resulting from a polymerase chain reaction were sequenced and checked to avoid polymerase errors in constructs to be expressed.
  • Example 3 Lipid analysis from the protonema of P. patens and from yeast cells
  • Yeast cultures transformed with pYES2 (control) and pYESdelta ⁇ ( ⁇ 6-desaturase cDNA) were grown on uracil-dop-out medium with 2% raffinose and 1% tergitol NP-40 (for stabilizing the fatty acids).
  • fatty acids were solubilized in 5% tergitol and added at a final concentration of 0.0003%. The results of the expression are shown in Table I.
  • fatty acids with a double bond at position 6 is only possible in the presence of the expression construct with the ⁇ 6-desaturase cDNA.
  • This ⁇ 6-desaturase enzyme has a greater activity towards fatty acids which already contain a double bond at position 9 or 12 (in relation to the carbon atom in the chain).
  • the fatty acid methyl esters of the entire lipid of the yeast were analyzed by GC.
  • the individual fatty acids synthesized are given in the table in mol% of the total fatty acids.
  • Example 6 Isolation of ⁇ 6-desaturase cDNA and genomic 10 clones from P. patens
  • fragments of a ⁇ 6-desaturase gene were cloned at 20 72 ° C., 5 min.
  • poly (A) RNA was isolated from P. patens Protonema culture 12 days old. The PCR described above was carried out with this poly (A) RNA. Fragments of the expected fragment length (500 to 600 bp) were cloned into pUC18 and
  • the nucleotide sequence is given in SEQ ID NO: 1.
  • the deduced amino acid sequence can be found in SEQ ID NO: 2.
  • the associated genomic sequence is given in SEQ ID NO: 1.
  • Table II shows the results of the comparison between the new P. patens ⁇ 6-desaturase over the entire nucleic acid sequence with the following known ⁇ 6-desaturase: Borago officinalis (U79010), Synechocystis sp (L11421), Spirulina platensis 5 (X87094), Caenorhabiditis elegans ( AF031477), Mortierella alpina (WO 98/46764), Homo sapiens (Cho et al., J. Biol. Chem., 274, 1999: 471-477), Rattus norvegicus (AB021980) and Mus musculus (Cho et al., J. Biol.
  • the genomic ⁇ 6-acyllipid desaturase from Physcomitrella patens was modified based on the published sequence (Girke et al., Plant J., 15, 1998: 39-48) by means of polymerase chain reaction and cloning, isolated and used for the method according to the invention.
  • a desaturase fragment was first isolated using a polymerase chain reaction using two gene-specific primers and into which Girke et al. (see above) Desaturasegen described.
  • Primer TG5 5 '- ccgctcgagcgaggttgttgtggagcggc and primer TG3: 5 ⁇ -ctgaaatagtcttgctcc-3'
  • the promoter-desaturase fragment obtained was cloned into the vector pJH3 by terminating the plasmid pSK with Xhol, treatment with T4-DNA polymerase and PstI restriction.
  • the vector BamHI was cut and the overhangs were filled in with Klenow enzyme and then cut again with PstI. It was created by ligation of the
  • the expression cassette from pJH7 was cut with Bspl20l and Notl and cloned into the binary vector pRE.
  • the plasmid pRE-Ppdes ⁇ was formed.
  • the ⁇ 6-desaturase cDNA from P. patens according to the invention was used as a template in a PCR reaction. With the help of the oligonucleotides listed below, a BamHI restriction site before the start codon and three adenine nucleotides were introduced into the ⁇ 6-desaturase cDNA as consensus translation sequence for eukaryotes. A 1512 base pair fragment of the ⁇ 6-desaturase was amplified and sequenced.
  • Pp-d6Desl 5 '- CC GGTACC aaaatggtattcgcgggcggtg -3'
  • Pp-d6Desl 5 '- CC GGTACC ttaactggtggtagcatgct -3'
  • reaction mixtures contained approx. 1 ng / micro 1 matrices
  • DNA 0.5 UM of the oligonucleotides and, 200 ⁇ M deoxy nucleotides (Pharmacia), 50 mM KC1, 10 mM Tris-HCl (pH 8.3 at 25 ° C, 1.5 mM MgCl 2 > and 0.02 U / ⁇ l Pwo polymerase (Boehringer Mannheim) and are incubated in a PCR machine from Perkin Elmer with the following temperature program:
  • Annealing temperature 50 ° C, 30 sec
  • Elongation temperature 72 ° C, 90 sec
  • the fragment of approximately 1.5 kB base pairs obtained was ligated into the vector pBluescript SK- (Stratagene) which had been cleaved with EcoRV and was available as BamHI fragment for further cloning.
  • pBin-USP contains the BamHI fragment of the ⁇ 6-desaturase.
  • pBin-USP is a derivative of the plasmid pBinl9.
  • pBinUSP originated from pBinl9 by using pBinl9 [Bevan et al. (1980) Nucl. Acids Res. 12, 8711], a USP promoter was inserted as an EcoRI-BaMHI fragment.
  • the polyadenylation signal is that of gene 3 of the T-DNA of the Ti plasmid pTiACH5 (Gielen et al., (1984) EMBO J.
  • nucleotides 11749-11939 being isolated as a PvuII-HindIII fragment and after addition of Sphl -Linkers cloned to the PvuII interface between the SpHI-HindIII interface of the vector.
  • the USP promoter corresponds to nucleotides 1-684 (Genbank Accession X56240), with part of the non-coding region of the USP gene being contained in the promoter.
  • the 684 base pair promoter fragment was amplified using a commercially available T7 standard primer (Stratagene) and using a synthesized primer via a PCR reaction using standard methods (primer sequence: 5 '-GTCGACCCGCGGACTAGTG- GGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA.
  • the PCR fragment was cut with EcoRI / SalI and inserted into the vector pBin19 with OCS terminator.
  • the plasmid called pBinUSP was created.
  • a construct was created using the v-ATPase-cl promoter.
  • the promoter was cloned as an EcoRI / Kpnl fragment into the plasmid pBinl9 with OCS terminator and the ⁇ 6-desaturase gene from P. patens between promoter and via BamHI Terminator advertises.
  • the promoter corresponds to a 1153 base pair fragment from beta-Vulgaris (Plant Mol Biol, 1999, 39: 463-475).
  • the construct was used to transform Arabidopsis thaliana and oilseed rape plants.
  • Example 8 Generation of transgenic rape plants (modified after
  • Petioles or hypocotyledons of freshly sprouted sterile rape plants were incubated in a petri dish with a 1:50 agrobacterial dilution for 5-10 minutes. This was followed by a 3-day incubation in the dark at 25 ° C. on 3MS medium with 0.8% Bacto agar. The cultivation was continued after 3 days with 16 hours of light / 8 hours of darkness and on a weekly basis on MS medium with 500 mg / 1 claforan (Cefotaxi e-sodium), 50 mg / 1 kanamycin, 20 ⁇ M benzylaminopurine ( BAP) and 1.6 g / 1 glucose continued. Growing shoots were transferred to MS medium with 2% sucrose, 250 mg / 1 Claforan and 0.8% Bacto agar. If no roots formed after three weeks, 2-indolebutyric acid was added to the medium as root for growth.
  • 2-indolebutyric acid was added to the medium as root for growth.
  • Regenerated shoots were obtained on 2MS medium with kanamycin and claforan, transferred to soil after rooting and after cultivation, grown in a climatic chamber or in a greenhouse for two weeks, brought to flower, ripe seeds were harvested and analyzed for ⁇ 6-desaturase expression using lipid analyzes. Lines with increased levels or double bonds at the ⁇ 6 position would be identified. In the stably transformed transgenic lines, which functionally expressed the transgene, an increased content of double bonds at the ⁇ 6 position was found in comparison to untransformed control plants.
  • Example 8 Lipid extraction from seeds
  • the plant material was first mechanically homogenized using mortars to make it more accessible for extraction.
  • the cell sediment was hydrolyzed with 1 N methanolic sulfuric acid and 2% dimethoxypropane at 90 ° C. and the lipids were transmethylated.
  • the resulting fatty acid methyl esters (FAME) were extracted into petroleum ether.
  • the extracted FAME were analyzed by gas liquid chromatography with a capillary column (chrome pack, WCOT fused silica, CP-Wax-52 CB, 25 m, 0.32 mm) and a temperature gradient from 170 ° C to 240 ° C in 20 min and 5 min at 240 ° C analyzed.
  • the identity of the fatty acid methyl ester was confirmed by comparison with corresponding FAME standards (Sigma).
  • the identity and the position of the double bond could be determined by suitable chemical derivatization of the FAME mixtures e.g. to 4,4-dimethoxyoxazoline derivatives (Christie, 1997, in: Advances in Lipid Methodology, 4th edition: Christie, Oily Press, Dundee, 119-169, and 1998, gas chromatography-mass spectrometry method, lipids 33: 343- 353) can be further analyzed using GC-MS.
  • the GC analyzes of the fatty acid methyl esters from the transgenic rapeseed, which expressed the ⁇ 6-desaturase in a seed-specific manner, are shown in Table III.
  • the transgenic rapeseed has at least 4.95% ⁇ -linolenic acid in the seed.
  • Table III shows the GC analyzes of the fatty acid methyl esters from mature, transgenic rapeseed which express ⁇ 6-desaturase in a seed-specific manner.
  • the fatty acid composition is given in [mol%] of the total fatty acids. It should be noted that individual plants of the T2 generation, which were obtained from positively transformed and self-grown plants, contain up to 4.95% ⁇ -linolenic acid.
  • Table III GC analyzes of the fatty acid methyl esters of rapeseed

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Nutrition Science (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

Die vorliegende Erfindung betrifft ein verbessertes Verfahren zur Herstellung von ungesättigten Fettsäuren sowie ein Verfahren zur Herstellung von Triglyceriden mit einem erhöhten Gehalt an ungesättigten Fettsäuren. Die Erfindung betrifft die Herstellung eines transgenen Organismuses bevorzugt einer transgenen Pflanze oder eines transgenen Mikroorganismus mit erhöhtem Gehalt an Fettsäuren, Ölen oder Lipiden mit Δ6-Doppelbindungen aufgrund der Expression einer Δ-6-Desaturase aus Moos. Ausserdem betrifft die Erfindung transgene Organismen, die ein Δ6-Desaturasegen enthalten, sowie die Verwendung der im Verfahren hergestellten ungesättigten Fettsäuren bzw. Triglyceride mit einem erhöhten Gehalt an ungesättigten Fettsäuren.

Description

Δ6-Desaturasegene exprimierende Pflanzen und PUFAS enthaltende Öle aus diesen Pflanzen und ein Verfahren zur Herstellung ungesättigter Fettsäuren
Beschreibung
Die vorliegende Erfindung betrifft ein verbessertes Verfahren zur Herstellung von ungesättigten Fettsäuren sowie ein Verfahren zur Herstellung von Triglyceriden mit einem erhöhten Gehalt an ungesättigten Fettsäuren. Die Erfindung betrifft die Herstellung eines transgenen Organismusses bevorzugt einer transgenen Pflanze oder eines transgenen Mikroorganismus mit erhöhtem Gehalt an Fettsäuren, Ölen oder Lipiden mit Δ6-Doppelbindungen aufgrund der Expression einer Δ-6-Desaturase aus Moos.
Außerdem betrifft die Erfindung transgene Organismen, die ein Δ6-Desaturasegen enthalten, sowie die Verwendung der im Verfahren hergestellten ungesättigten Fettsäuren bzw. Triglyceride mit einem erhöhten Gehalt an ungesättigten Fettsäuren.
Fettsäuren und Triglyceride haben eine Vielzahl von Anwendungen in der Lebensmittelindustrie, der Tierernährung, der Kosmetik und im Phar abereich. Je nachdem ob es sich um freie gesättigte oder ungesättigte Fettsäuren oder um Triglyceride mit einem erhöhten Gehalt an gesättigten oder ungesättigten Fettsäuren handelt, sind sie für die unterschiedlichsten Anwendungen geeignet, so werden beispielsweise mehrfach ungesättigte Fettsäuren Babynahrung zur Erhöhung des Nährwertes zugesetzt. Hauptsächlich werden die ver- schiedenen Fettsäuren und Triglyceride aus Mikroorganismen wie Mortierella oder aus Öl-produzierenden Pflanzen wie Soja, Raps, Sonnenblume und weiteren gewonnen, wobei sie in der Regel in Form ihrer Triacylglyceride anfallen. Sie können aber auch aus Tieren wie Fischen gewonnen werden. Die freien Fettsäuren werden vor- teilhaft durch Verseifung hergestellt.
Je nach Anwendungszweck sind Öle mit gesättigten oder ungesättigten Fettsäuren bevorzugt, so sind z.B. in der humanen Ernährung Lipide mit ungesättigten Fettsäuren speziell mehrfach ungesättig- ten Fettsäuren bevorzugt, da sie einen positiven Einfluß auf den Cholesterinspiegel im Blut und damit auf die Möglichkeit einer Herzerkrankung haben. Auch eine positive Wirkung auf die Carcino- genese wird den ungesättigten Fettsäuren zugeschrieben. Sie sind außerdem wichtige Ausgangsstoffe für die Synthese von Verbindungen, die wichtige biologische Vorgänge innerhalb des Organismus steuern. Sie finden deshalb in verschiedenen diätischen Lebensmitteln oder Medikamenten Anwendung.
Aufgrund ihrer positiven Eigenschaften hat es in der Vergangen- 5 heit nicht an Ansätzen gefehlt, Gene, die an der Synthese von Fettsäuren bzw. Triglyceriden beteiligt sind, für die Herstellung von Ölen in verschiedenen Organismen mit geändertem Gehalt an ungesättigten Fettsäuren verfügbar zu machen. So wird in WO 91/13972 und seinem US-Äquivalent eine Δ9-Desaturase
10 beschrieben. In WO 93/11245 wird eine Δ15-Desaturase in
WO 94/11516 wird eine Δ12-Desaturase beansprucht. Δ6-Desaturasen werden in Girke et al . (The Plant Journal, 15, 1998: 39-48), Napier et al . (Biochem. J., 330, 1998: 611-614), Murata et al . (Biosynthesis of γ-linolenic acid in cyanobacterium Spirulina
15 patensis, pp 22-32, In: γ-linolenic acid, metabolism an its roles in nutrition and medicine, Huang, Y. and Milles, D.E. [eds.], AOC Press, Champaign, Illinois), Sayanova et al . (Proc. Natl. Acad. Sei. USA, 94, 1997: 4211-4216), WO 98/46764, Cho et al . (J. Biol . Che ., 274, 1999: 471-477), Aki et al . (Biochem. Biophys . Res .
20 Commun., 255, 1999: 575-579), und Reddy et al . (Plant Mol. Biol., 27, 1993: 293-300) beschrieben. Weitere Desaturasen werden beispielsweise in EP-A-0 550 162, WO 94/18337, WO 97/30582, WO 97/21340, WO 95/18222, EP-A-0 794 250, Stukey et al . , J. Biol. Che ., 265, 1990: 20144-20149, Wada et al . , Nature 347, 1990:
25 200-203 oder Huang et al . , Lipids 34, 1999: 649-659 beschrieben. Weitere Δ6-Desaturasen werden in WO 93/06712, US 5,614,393, US5,614,393, WO 96/21022, WO00/21557 und WO 99/27111 beschrieben. Die biochemische Charakterisierung der verschiedenen Desaturasen ist jedoch bisher nur unzureichend erfolgt, da die Enzyme als
30 membrangebundene Proteine nur sehr schwer zu isolieren und charakterisieren sind (McKeon et al . , Methods in Enzymol . 71, 1981: 12141-12147, Wang et al., Plant Physiol. Biochem., 26, 1988: 777-792). In der Regel erfolgt die Charakterisierung membrangebundener Desaturasen durch Einbringung in einen
35 geeigneten Organismus, der anschließend auf Enzymaktivität mittels Edukt- und Produktanalyse untersucht wird. Die Anwendung zur Produktion in transgenen Organismen beschrieben wie in WO 98/46763 W098/46764, W098/46765. Dabei wird auch die Expression verschiedener Desaturasen wie in W099/64616 oder 0 W098/46776 und Bildung polyungesättigter Fettsäuren beschrieben und beansprucht. Bezüglich der Effektivität der Expression von Desaturasen und ihren Einfluß auf die Bildung polyungesättigter Fettsäuren ist anzumerken, daß durch Expression einer einzelnen Desaturase wie im vorgenannten Stand der Technik beschrieben 5 lediglich geringe Gehalte an ungesättigten Fettsäuren beispielsweise an Δ-6 ungesättigten Fettsäuren/Lipiden wie z.B. γ-Linolen- säure erreicht wurden und werden. Nach wie vor besteht daher ein großer Bedarf an neuen und besser geeigneten Genen, die für Enzyme codieren, die an der Biosynthese ungesättigter Fettsäuren beteiligt sind und es ermöglichen, diese in einem technischen Maßstab herzustellen. Weiterhin besteht nach wie vor ein Bedarf an verbesserten Verfahren zur Gewinnung möglichst hoher Gehalte an polyungesättigten Fettsäuren.
Es bestand daher die Aufgabe ein Verfahren zur Herstellung von ungesättigten Fettsäuren unter Verwendung von Genen, die beispielsweise für Desaturase-Enzyme codieren und die an der Synthese mehrfach ungesättigter Fettsäuren in den Samen einer Ölsaat beteiligt sind, bereitzustellen und so den Gehalt polyungesättigter Fettsäuren zu erhöhen. Diese Aufgabe wurde durch ein Verfahren zur Herstellung von ungesättigten Fettsäuren gelöst, dadurch gekennzeichnet, daß mindestens eine isolierte Nukleinsäuresequenz , die für ein Polypeptid mit Δδ-Desaturase- aktivität codiert, ausgewählt aus der Gruppe:
a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 1 dar- gestellten Sequenz,
b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 1 ableiten
c) Derivate der in SEQ ID NO: 1 dargestellten Nukleinsäuresequenz, die für Polypeptide mit der in SEQ ID NO: 2 dargestellten Aminosäuresequenzen codieren und mindestens 50 % Homologie auf Aminosäureebene aufweisen, ohne daß die enzymatische Wirkung der Polypeptide wesentlich reduziert ist,
in einen Organismus eingebracht wird, dieser Organismus angezogen wird, wobei der angezogene Organismus mindestens 1 Mol-% ungesättigte Fettsäuren bezogen auf den gesamten Fettsäuregehalt im Organismus enthält.
Unter Anzucht des Organismus ist die Kultivierung von Pflanzen ebenso zu verstehen wie die Anzucht von eukaryontisehen oder prokaryontisehen Mikroorganismen wie Bakterien, Hefen, Pilzen, Ciliaten, Algen, Cyanobakterien, tierischen oder pflanzlichen Zellen oder Zellverbänden oder die Anzucht von Tieren.
Die in den im erfindungsgemäßen Verfahren gewonnenen Organismen enthalten in der Regel ungesättigte Fettsäuren in Form von gebundenen Fettsäuren, das heißt die ungesättigten Fettsäuren liegen überwiegend in Form ihrer Mono-, Di- oder Triglyceride, Glycolipide, Lipoproteine oder Phospholipide wie Öle oder Lipide oder sonstig als Ester oder Amide gebundenen Fettsäuren vor. Auch freie Fettsäuren sind in den Organismen in Form der freien Fettsäuren oder in Form ihrer Salze enthalten. Die freien oder gebundenen ungesättigten Fettsäuren enthalten vorteilhaft gegen- über den Ausgangsorganismen einen erhöhten Gehalt an Fettsäuren mit Δ6-Doppelbindungen wie vorteilhaft γ-Linolensäure . Die durch Anzucht im erfindungsgemäßen Verfahren gewonnenen Organismen und die in ihnen enthaltenen ungesättigten Fettsäuren können direkt beispielsweise zur Herstellung von pharmazeutischen Zubereitungen, von Agrochemikalien, Futtermitteln oder Lebensmitteln verwendet werden oder aber nach Isolierung aus den Organismen. Dabei können alle Stufen der Aufreinigung der ungesättigten Fettsäuren verwendet werden, das heißt von Rohextrakten der Fettsäuren bis zu vollständig gereinigten Fettsäuren sind für die Herstellung der vorgenannten Produkte geeignet . In einer vorteilhaften Ausführungsform können die gebundenen Fettsäuren aus beispielsweise den Ölen bzw. Lipiden beispielsweise über eine basische Hydrolyse z.B. mit NaOH oder KOH freigesetzt werden. Diese freien Fettsäuren können direkt im erhaltenen Gemisch oder nach weiterer Aufreinigung zur Herstellung von pharmazeutischen Zubereitungen, von Agrochemikalien, Futtermitteln oder Lebensmitteln verwendet werden. Auch können die gebundenen oder freien Fettsäuren zur Umesterung oder Veresterung beispielsweise mit anderen Mono-, Di- oder Triglyceriden oder Glycerin verwendet werden, um den Anteil an ungesättigten Fettsäuren in diesen Verbindungen beispielsweise in den Triglyceriden zu erhöhen.
Ein weiterer erfindungsgemäßer Gegenstand ist ein Verfahren zur Herstellung von Triglyceriden mit einem erhöhten Gehalt an unge- sättigten Fettsäuren, indem man Triglyceride mit gesättigten oder ungesättigten oder gesättigten und ungesättigten Fettsäuren mit mindestens einem der Protein, das durch die Sequenz SEQ ID NO: 2 codiert wird, inkubiert. Vorteilhaft wird das Verfahren in Gegenwart von Verbindungen durchgeführt, die Reduktionsäquivalente aufnehmen oder abgeben können. Anschließend können die Fettsäuren aus den Triglyceriden freigesetzt werden.
Die oben genannten Verfahren ermöglichen vorteilhaft die Synthese von Fettsäuren oder gebundenen Fettsäuren wie Triglyceriden mit einem erhöhten Gehalt an Fettsäuren mit Δ6-Doppelbindungen.
Als Organismen für die genannten Verfahren seien beispielhaft Pflanzen wie Arabidopsis, Gerste, Weizen, Roggen, Hafer, Mais, Soja, Reis, Baumwolle, Zuckerrübe, Tee, Karotte, Paprika, Canola, Sonnenblume, Flachs, Hanf, Kartoffel, Triticale, Tabak, Tomate, Raps, Kaffee, Tapioka, Maniok, Pfeilwurz, Tagetes, Alfalfa, Erdnuß, Rizinus, Kokosnuß, Ölpalme, Färbersaflor (Carthamus tinctorius) , Salat und den verschiedenen Baum-, Nuß- und Weinspezies, oder Kakaobohne, Mikroorganismen wie Pilze Mortierella, Saprolegnia oder Pythium, Bakterien wie die Gattung Escherichia, Cyanobakterien, Algen oder Protozoen wie Dinoflagellaten wie Crypthecodinium genannt. Bevorzugt werden Organismen, die natürlicherweise Öle in größeren Mengen synthetisieren können wie Mikroorganismen wie Pilze wie Mortierella alpina, Pythium insidiosum oder Pflanzen wie Soja, Raps, Kokosnuß, Ölpalme, Canola, Färbersaflor (Carthamus tinctorius), Rizinus, Calendula, Lein, Borretsch, Erdnuß, Kakaobohne oder Sonnenblume, besonders bevorzugt werden Soja, Raps oder Sonnenblume.
Die in den Verfahren verwendeten Organismen werden je nach Wirtsorganismus in dem Fachmann bekannter Weise angezogen bzw. gezüchtet. Mikroorganismen wie Bakterien, Pilze, Ciliaten, pflanzliche oder tierische Zellen werden in der Regel in einem flüssigen Medium, das eine Kohlenstoffquelle meist in Form von Zuckern, eine Stickstoffquelle meist in Form von organischen Stickstoffquellen wie Hefeextrakt oder Salzen wie Ammoniumsulfat, Spurenelemente wie Eisen-, Mangan-, Magnesiumsalze und gegebenenfalls Vitamine enthält, bei Temperaturen zwischen 0°C und 100°C, bevorzugt zwischen 10°C bis 60°C unter je nach Organismus Sauerstoffbegasung oder in Abwesenheit von Sauerstoff angezogen. Dabei kann der pH der Nährflüssigkeit auf einen festen Wert gehalten werden, das heißt der pH wird während der Anzucht reguliert oder der pH wird nicht reguliert und verändert sich während der Anzucht. Die Anzucht kann batch weise, semi batch weise oder kontinuierlich erfolgen. Nährstoffe können zu beginn der Fermentation vorgelegt oder semikontinuierlich oder kontinuier- lieh nach gefüttert werden. Auch eine Anzucht auf festen Medien ist möglich.
Pflanzen werden nach Transformation in der Regel zunächst regeneriert und anschließend wie üblich angezogen bzw. angebaut. Dies kann im Gewächshaus oder im Freiland erfolgen.
Aus den Organismen werden nach Anzucht die Lipide in üblicherweise gewonnen. Hierzu können die Organismen nach Ernte zunächst aufgeschlossen werden oder direkt verwendet werden. Die Lipide werden vorteilhaft mit geeigneten Lösungsmitteln wie apolare
Lösungsmittel wie Hexan oder Ethanol, Isopropanol oder Gemischen wie Hexan/Isopropanol, Phenol/Chloroform/Isoamylalkohol bei Temperaturen zwischen 0°C bis 80°C, bevorzugt zwischen 20°C bis 50°C extrahiert. Die Biomasse wird in der Regel mit einem Über- schuß an Lösungsmittel extrahiert beispielsweise einem Überschuß von Lösungsmittel zu Biomasse von 1:4. Das Lösungsmittel wird anschließend beispielsweise über eine Destillation entfernt . Die Extraktion kann auch mit superkritischem CO2 erfolgen. Nach Extraktion kann die restliche Biomasse beispielsweise über Filtration entfernt werden.
Das so gewonnene Rohöl kann anschließend weiter aufgereinigt werden, beispielsweise in dem Trübungen über das Versetzen mit polaren Lösungsmittel wie Aceton oder Chloroform und anschließender Filtration oder Zentrifugation entfernt werden. Auch eine weitere Reinigung über chromatographische Verfahren, Destillation oder Kristallisation ist möglich.
Zur Gewinnung der freien Fettsäuren aus den Triglyceriden werden diese in üblicher Weise, wie oben beschrieben, verseift.
Ein weiterer Gegenstand der Erfindung sind ungesättigte Fettsäuren sowie Trigylceride mit einem erhöhten Gehalt an ungesättigten Fettsäuren, die nach den oben genannten Verfahren hergestellt wurden, sowie deren Verwendung zur Herstellung von Nahrungsmitteln, Tierfutter, Kosmetika oder Pharmazeutika . Hierzu werden diese den Nahrungsmitteln, dem Tierfutter, den Kosmetika oder Pharmazeutika in üblichen Mengen zugesetzt.
Im erfindungsgemäßen Verfahren wurden durch Expression einer Δ6-Desaturase aus Moos in Organismen wie Pilze, Bakterien, Tieren oder Pflanzen, bevorzugt Pilzen, Bakterien und Pflanzen, besonders bevorzugt in Pflanzen, ganz besonders bevorzugt in Ölfruchtpflanzen wie Raps, Canola, Lein, Soja, Sonnenblume, Borretsch, Rizinus, Ölpalme, Färbersaflor (Carthamus tinctorius), Kokosnuß, Erdnuß oder Kakaobohne höhere Gehalte an ungesättigten Fettsäuren wie γ-Linolensäure erhalten. Auch die Expression in Feldfrüchten, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Alfalfa, oder Buschpflanzen (Kaffee, Kakao, Tee) ist vorteilhaft. Durch die Expression eines Gens, das für eine Δ-6-Desaturase aus Moos codiert, in den oben genannten Organismen können Gehalte an ungesättigten Fettsäuren in den Organismen von mindestens 1 Mol-%, bevorzugt mindestens 3 Mol-%, besonders bevorzugt mindestens 4 Mol-%, ganz besonders bevorzugt mindestens 5 Mol-% erreicht werden.
Unter Derivate (n) sind beispielsweise funktioneile Homologe der von SEQ ID NO: 1 codierten Enzyme oder deren enzymatischer Aktivität, das heißt Enzyme, die dieselben enzymatischen Reaktionen wie die von SEQ ID NO: 1 katalysieren, zu verstehen. Diese Gene ermöglichen ebenfalls eine vorteilhafte Herstellung von ungesättigten Fettsäuren mit Doppelbindungen in Δ6-Position. Unter ungesättigten Fettsäuren sind im folgenden doppelt oder mehrfach ungesättigte Fettsäuren, die Doppelbindungen aufweisen, zu verstehen. Die Doppelbindungen können konjugiert oder nicht konjugiert sein. Die in SEQ ID NO : 1 genannte Sequenz codiert für ein Enzym, das eine Δ6-Desaturase-Aktivität aufweist.
5 Das erfindungsgemäße Enzym Δ6-Desaturase führt vorteilhaft in Fettsäurereste von Glycerolipiden eine cis-Doppelbindung in Position C6~C ein (siehe SEQ ID NO : 1) . Das Enzym hat außerdem eine Δ6-Desaturase-Aktivität , die vorteilhaft in Fettsäurereste von Glycerolipiden ausschließlich eine cis-Doppelbindung in 10 Position Cg-C einführt. Diese Aktivität hat auch das Enzym mit der in SEQ ID NO: 1 genannten Sequenz, bei dem es sich um eine monofunktionelle Δ6-Desaturase handelt.
Die im erfindungsgemäßen Verfahren verwendeten Nukleinsäure- 15 sequenz (en) (für die Anmeldung soll der singular den plural umfassen und umgekehrt) oder Fragmente davon können vorteilhaft zur Isolierung weiterer genomischer Sequenzen über Homologie- screening verwendet werden.
20 Die genannten Derivate lassen sich beispielsweise aus anderen Organismen eukaryontisehen Organismen wie Pflanzen wie speziell Moosen, Dinoflagellaten oder Pilze isolieren.
Weiterhin sind unter Derivaten bzw. funktioneilen Derivaten der
25 in SEQ ID NO: 1 genannten Sequenz beispielsweise Allelvarianten zu verstehen, die mindestens 50 % Homologie auf der abgeleiteten Aminosäureebene, vorteilhaft mindestens 70 % Homologie, bevorzugt mindestens 80 % Homologie, besonders bevorzugt mindestens 85 % Homologie, ganz besonders bevorzugt 90 % Homologie aufweisen.
30 Die Homologie wurde über den gesamten Aminosäurebereich berechnet. Es wurde das Programm PileUp, BESTFIT, GAP, TRANSLATE bzw. BACKTRANSLATE (= Bestandteil des Programmpaketes UWGCG, Wisconsin Package, Version 10.0-UNIX, January 1999, Genetics Computer Group, Inc., Deverux et al . , Nucleic. Acid Res . , 12,
35 1984: 387-395) verwendet (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al . , CABIOS, 5 1989: 151-153). Die von den genannten Nukleinsäuren abgeleitete Aminosäuresequenz ist Sequenz SEQ ID NO: 2 zu entnehmen. Unter Homologie ist Identität zu verstehen, das heißt die Aminosäuresequenzen sind zu mindestens
40 50 % identisch. Die erfindungsgemäßen Sequenzen sind auf Nuklein- säureebene mindestens 65 % homolog, bevorzugt mindestens 70 %, besonders bevorzugt 75 %, ganz besonders bevorzugt mindestens 80 %.
45 Allelvarianten umfassen insbesondere funktioneile Varianten, die durch Deletion, Insertion oder Substitution von Nukleotiden aus der in SEQ ID NO : 1 dargestellten Sequenz erhältlich sind, wobei die enzymatische Aktivität der abgeleiteten synthetisierten Proteine erhalten bleibt.
Solche DNA-Sequenzen lassen sich ausgehend von der in SEQ ID NO: 1 beschriebenen DNA-Sequenz oder Teilen dieser
Sequenzen, beispielsweise mit üblichen Hybridisierungsverfahren oder der PCR-Technik aus anderen Eukaryonten wie beispielsweise den oben genannt isolieren. Diese DNA-Sequenzen hybridisieren unter Standardbedingungen mit den genannten Sequenzen. Zur Hybridisierung werden vorteilhaft kurze Oligonukleotide beispielsweise der konservierten Bereiche, die über Vergleiche mit anderen Desaturasegenen in dem Fachmann bekannter Weise ermittelt werden können, verwendet. Vorteilhaft werden die Histidin-Box- Sequenzen verwendet. Es können aber auch längere Fragmente der erfindungsgemäßen Nukleinsäuren oder die vollständigen Sequenzen für die Hybridisierung verwendet werden. Je nach der verwendeten Nukleinsäure : Oligonukleotid, längeres Fragment oder vollständige Sequenz oder je nachdem welche Nukleinsäureart DNA oder RNA für die Hybridisierung verwendet werden, variieren diese Standard- bedingungen. So liegen beispielsweise die Schmelztemperaturen für DNA: DNA-Hybride ca. 10°C niedriger als die von DNA:RNA-Hybriden gleicher Länge .
Unter Standardbedingungen sind beispielsweise je nach Nuklein- säure Temperaturen zwischen 42 und 58°C in einer wäßrigen Pufferlösung mit einer Konzentration zwischen 0,1 bis 5 x SSC (1 X SSC - 0,15 M NaCl, 15 M Natriumeitrat, pH 7,2) oder zusätzlich in Gegenwart von 50 % Formamid wie beispielsweise 42°C in 5 x SSC, 50 % Formamid zu verstehen. Vorteilhafterweise liegen die Hybridisierungsbedingungen für DNA: DNA-Hybride bei 0,1 x SSC und Temperaturen zwischen etwa 20°C bis 45 °C, bevorzugt zwischen etwa 30°C bis 45°C. Für DNA:RNA-Hybride liegen die Hybridisierungsbedingungen vorteilhaft bei 0,1 x SSC und Temperaturen zwischen etwa 30CC bis 55°C, bevorzugt zwischen etwa 45°C bis 55°C. Diese angegebenen Temperaturen für die Hybridisierung sind beispielhaft kalkulierte Schmelztemperaturwerte für eine Nukleinsäure mit einer Länge von ca. 100 Nukleotiden und einem G + C-Gehalt von 50 % in Abwesenheit von Formamid. Die experimentellen Bedingungen für die DNA-Hybridisierung sind in einschlägigen Lehrbüchern der Genetik wie beispielsweise Sambrook et al . , "Molecular Cloning" , Cold Spring Harbor Laboratory, 1989, beschrieben und lassen sich nach dem Fachmann bekannten Formeln beispielsweise abhängig von der Länge der Nukleinsäuren, der Art der Hybride oder dem G + C-Gehalt berechnen. Weitere Informationen zur Hybridisierung kann der Fachmann folgenden Lehrbüchern entnehmen: Ausubel et al .
(eds) , 1985, Current Protocols in Molecular Biology, John Wiley & Sons, New York; Harnes and Higgins (eds) , 1985, Nucleic Acids Hybridization: A Practical Approach, IRL Press at Oxford University Press, Oxford; Brown (ed) , 1991, Essential Molecular Biology: A Practical Approach, IRL Press at Oxford University Press, Oxford.
Weiterhin sind unter Derivaten Homologe der Sequenz SEQ ID No : 1 beispielsweise eukaryontische Homologe, verkürzte Sequenzen, Einzelstrang-DNA der codierenden und nichtcodierenden DNA-Sequenz oder RNA der codierenden und nichtcodierenden DNA-Sequenz zu verstehen.
Außerdem sind unter Homologen der Sequenz SEQ ID NO: 1 Derivate wie beispielsweise Promotorvarianten zu verstehen. Diese Varianten können durch ein oder mehrere Nukleotidaustausche, durch Insertion(en) und/oder Deletion(en) verändert sein, ohne daß aber die Funktionalität bzw. Wirksamkeit der Promotoren beeinträchtigt sind. Des weiteren können die Promotoren durch Veränderung ihrer Sequenz in ihrer Wirksamkeit erhöht oder komplett durch wirksamere Promotoren auch artfremder Organismen ausgetauscht werden.
Unter Derivaten sind auch vorteilhaft Varianten zu verstehen, deren Nukleotidsequenz im Bereich -1 bis -2000 vor dem Startcodon so verändert wurden, daß die Genexpression und/oder die Proteinexpression verändert, bevorzugt erhöht wird. Weiterhin sind unter Derivaten auch Varianten zu verstehen, die am 3 ' -Ende verändert wurden.
Die Nukleinsäuresequenzen, die für eine Δ6-Desaturase codiert, können synthetisch hergestellt oder natürlich gewonnen sein oder eine Mischung aus synthetischen und natürlichen DNA-Bestandteilen enthalten, sowie aus verschiedenen heterologen Δ6-Desaturase-Gen- abschnitten verschiedener Organismen bestehen. Im allgemeinen werden synthetische Nukleotid-Sequenzen mit Codons erzeugt, die von den entsprechenden Wirtsorganismen beispielsweise Pflanzen bevorzugt werden. Dies führt in der Regel zu einer optimalen Expression der heterologen Gene. Diese von Pflanzen bevorzugten Codons können aus Codons mit der höchsten Proteinhäufigkeit bestimmt werden, die in den meisten interessanten Pflanzenspezies exprimiert werden. Ein Beispiel für Corynebacterium glutamicum ist gegeben in: Wada et al . (1992) Nucleic Acids Res . 20:2111-2118). Die Durchführung solcher Experimente sind mit Hilfe von Standardmethoden durchführbar und sind dem Fachmann auf dem Gebiet bekannt .
Funktioneil äquivalente Sequenzen, die für das Δ6-Desaturase-Gen codieren, sind solche Derivate der erfindungsgemäßen Sequenz, welche trotz abweichender Nukleotidsequenz noch die gewünschten Funktionen, das heißt die enzymatische Aktivität der Proteine besitzen. Funktionelle Äquivalente umfassen somit natürlich vorkommende Varianten der hierin beschriebenen Sequenzen sowie künstliche, z.B. durch chemische Synthese erhaltene, an den Codon-Gebrauch einer Pflanze angepaßte, künstliche Nukleotidsequenzen.
Außerdem sind artifizielle DNA-Sequenzen geeignet, solange sie, wie oben beschrieben, die gewünschte Eigenschaft beispiels- weise der Erhöhung des Gehaltes von Δ6-Doppelbindungen in Fettsäuren, Ölen oder Lipiden in der Pflanze durch Überexpression des Δ6-Desaturase-Gens in Kulturpflanzen vermitteln. Solche artifiziellen DNA-Sequenzen können beispielsweise durch Rückübersetzung mittels Molecular Modelling konstruierter Proteine, die Δ6-Desaturase-Aktivität aufweisen oder durch in vitro- Selektion ermittelt werden. Mögliche Techniken zur in vitro- Evolution von DNA zur Veränderung bzw. Verbesserung der DNA- Sequenzen sind beschrieben bei Patten, P.A. et al . , Current Opinion in Biotechnology 8, 724-733 ( 1997) oder bei Moore, J.C. et al., Journal of Molecular Biology 272, 336-347 (1997). Besonders geeignet sind codierende DNA-Sequenzen, die durch Rückübersetzung einer Polypeptidsequenz gemäß der für die Wirtspflanze spezifischen odon-Nutzung erhalten werden. Die spezifische Codon-Nutzung kann ein mit pflanzengenetischen Methoden vertrauter Fachmann durch Computerauswertungen anderer, bekannter Gene der zu transformierenden Pflanze leicht ermitteln.
Als weitere geeignete äquivalente Nukleinsäure-Sequenzen sind zu nennen Sequenzen, welche für Fusionsproteine codieren, wobei Bestandteil des Fusionsproteins ein Δ6-Desaturase-Polypeptid oder ein funktioneil äquivalenter Teil davon ist. Der zweite Teil des Fusionsproteins kann z.B. ein weiteres Polypeptid mit enzymatischer Aktivität sein oder eine antigene Polypeptidsequenz mit deren Hilfe ein Nachweis auf Δ6-Desaturase-Expression mög- lieh ist (z.B. mye-tag oder his-tag) . Bevorzugt handelt es sich dabei jedoch um eine regulative Proteinsequenz, wie z.B. ein Signalsequenz für das ER, das das Δ6-Desaturase-Protein an den gewünschten Wirkort leitet.
Vorteilhaft können die Δ6-Desaturase-Gene im erfindungsgemäßen Verfahren mit weiteren Genen der Fettsäurebiosynthese kombiniert werden. Beispiele für derartige Gene sind die Acetyltransferasen, weitere Desaturasen oder Elongasen ungesättigter oder gesättigter Fettsäuren wie in WO 00/12720 beschrieben. Für die in-vivo und speziell in-vitro Synthese ist die Kombination mit z.B. NADH- Cytochrom B5 Reduktasen vorteilhaft, die Reduktionsäquivalente aufnehmen oder abgeben können. Unter den im erfindungsgemäßen Verfahren verwendeten Proteine sind Proteine zu verstehen, die eine in der Sequenz SEQ ID NO: 2 dargestellte Aminosäuresequenz oder eine daraus durch Substitution, Inversion, Insertion oder Deletion von einem oder 5 mehreren Aminosäureresten erhältliche Sequenz enthalten, wobei die enzymatische Aktivität des in SEQ ID NO : 2 dargestellten Proteins erhalten bleibt bzw. nicht wesentlich reduziert wird. Unter nicht wesentlich reduziert sind alle Enzyme zu verstehen, die noch mindestens 10 %, bevorzugt 20 %, besonders bevorzugt
10 30 % der enzymatischen Aktivität des Ausgangsenzyms aufweisen. Dabei können beispielsweise bestimmte Aminosäuren durch solche mit ähnlichen physikochemischen Eigenschaften (Raumerfüllung, Basizität, Hydrophobizität etc.) ersetzt werden. Beispielsweise werden Argininreste gegen Lysinreste, Valinreste gegen Isoleucin-
15 reste oder Asparaginsäurereste gegen Glutaminsäurereste ausgetauscht . Es können aber auch ein oder mehrere Aminosäuren in ihrer Reihenfolge vertauscht, hinzugefügt oder entfernt werden, oder es können mehrere dieser Maßnahmen miteinander kombiniert werden .
20
Unter Derivaten sind auch funktioneile Äquivalente zu verstehen, die insbesondere auch natürliche oder künstliche Mutationen einer ursprünglich isolierten für Δ6-Desaturase codierende Sequenz beinhalten, welche weiterhin die gewünschte Funktion zeigen, das
25 heißt das deren enzymatische Aktivität nicht wesentlich reduziert ist. Mutationen umfassen Substitutionen, Additionen, Deletionen, Vertauschungen oder Insertionen eines oder mehrerer Nukleotid- reste. Somit werden beispielsweise auch solche Nukleotidsequenzen durch die vorliegende Erfindung mit umfaßt, welche man durch 0 Modifikation der Δ6-Desaturase Nukleotidsequenz erhält. Ziel einer solchen Modifikation kann z.B. die weitere Eingrenzung der darin enthaltenen codierenden Sequenz oder z.B. auch die Einfügung weiterer Restriktionsenzym-Schnittstellen sein.
5 Funktionelle Äquivalente sind auch solche Varianten, deren Funktion, verglichen mit dem Ausgangsgen bzw. Genfragment, abgeschwächt (= nicht wesentlich reduziert) oder verstärkt ist (= Enzymaktivität ist stärker als die Aktivität des Ausgangsenzym, das heißt Aktivität ist höher als 100 %, bevorzugt höher 0 als 110 %, besonders bevorzugt höher als 130 %) .
Die im erfindungsgemäßen Verfahren verwendeten oben genannten Nukleinsäuresequenzen werden vorteilhaft zum Einbringen in einen Wirtsorganismus in eine Expressionskassette inseriert . 5 Die Nukleinsäuresequenzen können jedoch auch direkt in den Wirtsorganismus eingebracht werden. Die Nukleinsäuresequenz kann dabei vorteilhaft beispielsweise eine DNA- oder cDNA-Sequenz sein. Zur Insertion in eine Expressionskassette geeignete codierende Sequenzen sind beispielsweise solche, die für eine Δ6-Desaturase mit den oben beschriebenen Sequenzen codieren und die dem Wirt die Fähigkeit zur Überproduktion von Fettsäuren, Ölen oder Lipiden mit Doppelbindungen in Δ6-Position verleihen. Diese Sequenzen können homologen oder heterologen Ursprungs sein.
Unter einer Expressionskassette (= Nukleinsäurekonstrukt oder -fragment) ist die in SEQ ID NO: 1 genannte Sequenz, die sich als Ergebnis des genetischen Codes und/oder deren funktioneilen oder nicht funktioneilen Derivate zu verstehen, die mit einem oder mehreren Regulationssignalen vorteilhafterweise zur Erhöhung der Genexpression funktioneil verknüpft wurden und welche die Expression der codierenden Sequenz in der Wirtszelle steuern. Diese regulatorischen Sequenzen sollen die gezielte Expression der Gene und der Proteinexpression ermöglichen. Dies kann beispielsweise je nach Wirtsorganismus bedeuten, daß das Gen erst nach Induktion exprimiert und/oder überexprimiert wird, oder daß es sofort exprimiert und/oder überexprimiert wird. Beispielsweise handelt es sich bei diesen regulatorischen Sequenzen um Sequenzen an die Induktoren oder Repressoren binden und so die Expression der Nukleinsäure regulieren. Zusätzlich zu diesen neuen Regulationssequenzen oder anstelle dieser Sequenzen kann die natürliche Regulation dieser Sequenzen vor den eigentlichen Struktur- genen noch vorhanden sein und gegebenenfalls genetisch verändert worden sein, so daß die natürliche Regulation ausgeschaltet und die Expression der Gene erhöht wurde. Das Genkonstrukt kann aber auch einfacher aufgebaut sein, das heißt es wurden keine zusätzlichen Regulationssignale vor die Nukleinsäuresequenz oder dessen Derivate inseriert und der natürliche Promotor mit seiner Regulation wurde nicht entfernt. Stattdessen wurde die natürliche Regulationssequenz so mutiert, daß keine Regulation mehr erfolgt und/oder die Genexpression gesteigert wird. Diese veränderten Promotoren können in Form von Teilsequenzen (= Promotor mit Teilen der erfindungsgemäßen Nukleinsäuresequenzen) auch allein vor das natürliche Gen zur Steigerung der Aktivität gebracht werden. Das Genkonstrukt kann außerdem vorteilhafterweise auch eine oder mehrere sogenannte "enhancer Sequenzen" funktioneil verknüpft mit dem Promotor enthalten, die eine erhöhte Expression der Nukleinsäuresequenz ermöglichen. Auch am 3 ' -Ende der DNA- Sequenzen können zusätzliche vorteilhafte Sequenzen inseriert werden wie weitere regulatorische Elemente oder Terminatoren. Das Δ6-Desaturase-Gen kann in einer oder mehreren Kopien in der Expressionskassette (= Genkonstrukt) enthalten sein. Auch eventuell mit exprimierte Gene, die vorteilhaft an der Fettsäurebiosynthese beteiligt sind, können in einer oder mehreren Kopien in der Expressionskassette vorhanden sein. Die regulatorischen Sequenzen bzw. Faktoren können dabei wie oben beschrieben vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird.
Als Promotoren in der Expressionskassette sind grundsätzlich alle Promotoren geeignet, die die Expression von Fremdgenen in Organismen vorteilhaft in Pflanzen oder Pilzen steuern können. Vorzugsweise verwendet man insbesondere einen pflanzlichen Promotor oder Promotoren, die beispielsweise aus einem Pflanzen- virus entstammen. Vorteilhafte Regulationssequenzen für das erfindungsgemäße Verfahren sind beispielsweise in Promotoren wie cos-, tac-, trp-, tet-, trp-tet-, lpp-, lac-, lpp-lac-, lacl^-- T7-, T5-, T3-, gal-, trc-, ara-, SP6-, λ-PR- oder im λ-PL-Promotor enthalten, die vorteilhafterweise in gram-negativen Bakterien Anwendung finden. Weitere vorteilhafte Regulationssequenzen sind beispielsweise in den gram-positiven Promotoren amy und SP02 , in den Hefe- oder Pilzpromotoren ADC1, MFα, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH oder in den Pflanzenpromotoren wie CaMV/35S [Franck et al . , Cell 21(1980) 285-294], RUBISCO SSU, OCS, B33, nos (= Nopalin Synthase Promotor) oder im Ubiquitin-Promotor enthalten. Die Expressionskassette kann auch einen chemisch induzierbaren Promotor enthalten, durch den die Expression des exogenen Δ6-Desaturase-Gens in den Organismen vorteilhaft in den Pflanzen zu einem bestimmten Zeitpunkt gesteuert werden kann. Derartige vorteilhafte Pflanzenpromotoren sind beispielsweise der PRPl-Promotor [Ward et al . , Plant. Mol. Biol. 22 (1993), 361-366], ein durch Benzensulfonamid-induzierbarer (EP 388186), ein durch Tetrazyklin-induzierbarer (Gatz et al . , (1992) Plant J. 2,397-404), ein durch Salizylsäure induzierbarer Promotor (WO 95/19443) , ein durch Abscisinsäure-induzierbarer (EP335528) bzw. ein durch Ethanol- oder Cyclohexanon-induzierbarer (WO 93/21334) Promotor. Weitere Pflanzenpromotoren sind beispielsweise der Promotor der cytosolischen FBPase aus Kartoffel, der ST-LSI Promotor aus Kartoffel (Stockhaus et al . , EMBO J. 8 (1989) 2445-245), der Promotor der Phosphoribosylpyrophosphat Amidotransferase aus Glycine max (siehe auch Genbank Accession Nummer U87999) oder ein Nodien-spezifischen Promotor wie in EP 249676 können vorteilhaft verwandt werden. Vorteilhaft sind insbesondere solche pflanzliche Promotoren, die die Expression in Geweben oder Pflanzenteilen/-Organen sicherstellen, in denen die Fettsäurebiosynthese bzw. dessen Vorstufen stattfindet wie beispielsweise im Endosperm oder im sich entwickelnden Embryo. Ins- besondere zu nennen sind vorteilhafte Promotoren, die eine samenspezifische Expression gewährleisten wie beispielsweise der USP- Promotor oder Derivate davon, der LEB4-Promotor , der Phaseolin- Promotor oder der Napin-Promotor . Der erfindungsgemäß aufgeführte 5 und besonders vorteilhafte USP-Promotor oder dessen Derivate vermitteln in der Samenentwicklung eine sehr früh Genexpression (Baeumlein et al . , Mol Gen Genet , 1991, 225 (3): 459-67). Weitere vorteilhafte samenspezifische Promotoren, die für monokotyle und dikotyle Pflanzen verwendet werden können, sind die für Dikotyle
10 geeignete Promotoren wie ebenfalls beispielhaft ausgeführte Napingen-Promotor aus Raps (US5 , 608 , 152 ) , der Oleosin-Promotor aus Arabidopsis (W098/45461) , der Phaseolin-Promotor aus Phaseolus vulgaris (US5 , 504 , 200) , der Bce4-Promotor aus Brassica (W091/13980) oder der Leguminosen B4-Promotor (LeB4, Baeumlein
15 et al., Plant J., 2, 2, 1992: 233 - 239) oder für Monokotyle geeignete Promotoren wie die Promotoren die Promotoren des lpt2- oder Iptl-Gens aus Gerste (W095/15389 und WO95/23230) oder die Promotoren des Gersten Hordein-Gens , des Reis Glutelin-Gens , des Reis Oryzin-Gens, des Reis Prolamin-Gens , des Weizen Gliadin-
20 Gens, des Weizen Glutelin-Gens, des Mais Zein-Gens, des Hafer Glutelin-Gens, des Sorghum Kasirin-Gens oder des Roggen Secalin- Gens, die in W099/16890 beschrieben werden.
Weiterhin sind insbesondere solche Promotoren bevorzugt, die 25 die Expression in Geweben oder Pflanzenteilen sicherstellen, in denen beispielsweise die Biosynthese von Fettsäuren, Ölen und Lipiden bzw. deren Vorstufen stattfindet. Insbesondere zu nennen sind Promotoren, die eine samenspezifische Expression gewährleisten. Zu nennen sind der Promotor des Napin-Gens aus Raps 30 (US 5,608,152), des USP-Promotor aus Vicia faba (USP=unbekanntes Samenprotein, Baeumlein et al . , Mol Gen Genet, 1991, 225 (3): 459-67), des Oleosin-Gens aus Arabidopsis (W098/45461) , des Phaseolin-Promotors (US 5,504,200) oder der Promotor des Legumin B4-Gens (LeB4; Baeumlein et al . , 1992, Plant Journal, 2 (2): 35 233-9) . Weiterhin sind zu nennen Promotoren, wie der des lpt2 oder Iptl-Gens aus Gerste (W095/15389 und WO95/23230) , die in monokotylen Pflanzen samenspezifische Expression vermitteln.
In der Expressionskassette (= Genkonstrukt, Nukleinsäurekon- 40 strukt) können wie oben beschrieben noch weitere Gene, die in die Organismen eingebracht werden sollen, enthalten sein. Diese Gene können unter getrennter Regulation oder unter der gleichen Regulationsregion wie das Δ6-Desaturase-Gen liegen. Bei diesen Genen handelt es sich beispielsweise um weitere Biosynthesegene 5 vorteilhaft der Fettsäurebiosynthese, die eine gesteigerte
Synthese ermöglichen. Beispielsweise seien die Gene für die Δ15-, Δ12-, Δ9-, Δ5-, Δ4-Desaturase, die verschiedenen Hydroxylasen, die Acyl-ACP-Thioesterasen, ß-Ketoacyl-Synthasen oder ß-Ketoacyl- Reductasen genannt. Vorteilhaft werden die Desaturasegene im Nukleinsäurekonstrukt verwendet .
Prinzipiell können alle natürlichen Promotoren mit ihren Regulationssequenzen wie die oben genannten für die erfindungsgemäße Expressionskassette und das erfindungsgemäße Verfahren, wie unten beschrieben, verwendet werden. Darüberhinaus können auch synthetische Promotoren vorteilhaft verwendet werden.
Es können verschiedene DNA-Fragmente manipuliert werden, um eine Nukleotid-Sequenz zu erhalten, die zweckmäßigerweise in der korrekten Richtung gelesen wird und die mit einem korrekten Leseraster ausgestattet ist. Für die Verbindung der DNA-Fragmente (= erfindungsgemäße Nukleinsäuren) miteinander können an die Fragmente Adaptoren oder Linker angesetzt werden.
Zweckmäßigerweise können die Promotor- und die Terminator- Regionen in Transkriptionsrichtung mit einem Linker oder Poly- linker, der eine oder mehrere Restriktionsstellen für die
Insertion dieser Sequenz enthält, versehen werden. In der Regel hat der Linker 1 bis 10, meistens 1 bis 8, vorzugsweise 2 bis 6 Restriktionsstellen. Im allgemeinen hat der Linker innerhalb der regulatorischen Bereiche eine Größe von weniger als 100 bp, häufig weniger als 60 bp, mindestens jedoch 5 bp . Der Promotor kann sowohl nativ bzw. homolog als auch fremdartig bzw. hetero- log zum Wirtsorganismus beispielsweise zur Wirtspflanze sein. Die Expressionskassette beinhaltet in der 5 ' -3 ' -Transkriptionsrichtung den Promotor, eine DNA-Sequenz, die für ein im er- findungsgemäßen Verfahren verwendetes Δ6-Desaturase-Gen codiert und eine Region für die transkriptionale Termination. Verschiedene Terminationsbereiche sind gegeneinander beliebig austauschbar .
Ferner können Manipulationen, die passende Restriktionsschnittstellen bereitstellen oder die überflüssige DNA oder Restriktionsschnittstellen entfernen, eingesetzt werden. Wo Insertionen, Deletionen oder Substitutionen wie z.B. Transitionen und Transversionen in Frage kommen, können in vitro-Mutagenese, -primer- repair-, Restriktion oder Ligation verwendet werden. Bei geeigneten Manipulationen, wie z.B. Restriktion, -chewing-back- oder Auffüllen von Überhängen für -bluntends-, können komplementäre Enden der Fragmente für die Ligation zur Verfügung gestellt werden . Von Bedeutung für eine vorteilhafte hohe Expression kann u.a. das Anhängen des spezifischen ER-Retentionssignals SEKDEL sein (Schouten, A. et al . , Plant Mol. Biol. 30 (1996), 781-792), die durchschnittliche Expressionshöhe wird damit verdreifacht bis vervierfacht. Es können auch andere Retentionssignale, die natürlicherweise bei im ER lokalisierten pflanzlichen und tierischen Proteinen vorkommen, für den Aufbau der Kassette eingesetzt werden .
Bevorzugte Polyadenylierungssignale sind pflanzliche Poly- adenylierungssignale, vorzugsweise solche, die im wesentlichen T-DNA-Polyadenylierungssignale aus Agrobacterium tumefaciens, insbesondere des Gens 3 der T-DNA (Octopin Synthase) des Ti-Plasmids pTiACH5 entsprechen (Gielen et al . , EMBO J.3 (1984), 835 ff) oder entsprechende funktionelle Äquivalente.
Die Herstellung einer Expressionskassette erfolgt durch Fusion eines geeigneten Promotors mit einer geeigneten Δ6-Desaturase- DNA-Sequenz sowie einem Polyadenylierungssignal nach gängigen Rekombinations- und Klonierungstechniken, wie sie beispielsweise in T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) sowie in T.J. Silhavy, M.L. Ber an und L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, F.M. et al . , Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley-Interscience (1987) beschrieben werden.
Die DNA Sequenz codierend für eine Δ6-Desaturase aus Phsyco- mitrella patens beinhaltet alle Sequenzmerkmale, die notwendig sind, um eine dem Ort der Fettsäure-, Lipid- oder Ölbiosynthese korrekte Lokalisation zu erreichen. Daher sind keine weiteren Targetingsequenzen per se notwendig. Allerdings kann eine solche Lokalisation wünschenswert und vorteilhaft sein und daher künst- lieh verändert oder verstärkt werden, sodaß auch solche Fusions- konstrukte eine bevorzugte vorteilhafte Ausführungsform der Erfindung sind.
Insbesondere bevorzugt sind Sequenzen, die ein Targeting in Piastiden gewährleisten. Unter bestimmten Umständen kann auch ein Targeting in andere Kompartimente (referiert: Kermode, Crit. Rev. Plant Sei. 15, 4 (1996), 285-423) z.B. in in die Vakuole, in das Mitochondrium, in das Endoplasmatische Retikulum (ER) , Peroxisomen, Lipidkörper oder durch ein Fehlen entsprechender operativer Sequenzen ein Verbleib im Kompartiment des Entstehens, dem Zytosol, wünschenswert sein. Vorteilhafterweise werden die für Δ6-Desaturase-Gene codierenden Nukleinsäuresequenzen zusammen mit mindestens einem Reportergen in eine Expressionskassette kloniert, die in den Organismus über einen Vektor oder direkt in das Genom eingebracht wird. Dieses Reportergen sollte eine leichte Detektierbarkeit über einen
Wachstums-, Fluoreszenz-, Chemo-, Biolumineszenz- oder Resistenz- assay oder über eine photometrische Messung ermöglichen. Beispielhaft seien als Reportergene Antibiotika-oder Herbizidresistenzgene, Hydrolasegene, Fluoreszenzproteingene, Biolumin- eszenzgene, Zucker- oder Nukleotidstoffwechselgene oder Biosynthesegene wie das Ura3-Gen, das Ilv2-Gen, das Luciferasegen, das ß-Galactosidasegen, das gfp-Gen, das 2-Desoxyglucose-6- phosphat-Phosphatasegen, das ß-Glucuronidase-Gen, ß-Lactamasegen, das Neomycinphosphotransferasegen, das Hygromycinphosphotrans- ferasegen oder das BASTA (= Gluphosinatresistenz) -Gen genannt. Diese Gene ermöglichen eine leichte Meßbarkeit und Quantifizier- barkeit der Transkriptionsaktivität und damit der Expression der Gene. Damit lassen sich Genomstellen identifizieren, die eine unterschiedliche Produktivität zeigen.
Gemäß einer bevorzugten Ausführungsform umfaßt eine Expressions- kassette stromaufwärts, d.h. am 5 ' -Ende der codierenden Sequenz, einen Promotor und stromabwärts, d.h. am 3 '-Ende, ein Poly- adenylierungssignal und gegebenenfalls weitere regulatorische Elemente, welche mit der dazwischenliegenden codierenden Sequenz für die Δ6-Desaturase DNA Sequenz operativ verknüpft sind. Unter einer operativen Verknüpfung versteht man die sequenzielle Anordnung von Promotor, codierender Sequenz, Terminator und ggf. weiterer regulativer Elemente derart, daß jedes der regulativen Elemente seine Funktion bei der Expression der codierenden Sequenz bestimmungsgemäß erfüllen kann. Die zur operativen Verknüpfung bevorzugten Sequenzen sind Targeting-Sequenzen zur Gewährleistung der subzellulären Lokalisation in Piastiden. Aber auch Targeting-Sequenzen zur Gewährleistung der subzellulären Lokalisation im Mitochondrium, im Endoplasmatischen Retikulum
(= ER) , im Zellkern, in Ölkörperchen oder anderen Kompartimenten sind bei Bedarf einsetzbar sowie Translationsverstärker wie die 5 '-Führungssequenz aus dem Tabak-Mosaik-Virus (Gallie et al . , Nucl. Acids Res . 15 (1987), 8693-8711).
Eine Expressionskassette kann beispielsweise einen konstitutiven Promotor (bevorzugt den USP- oder Napin-Pro otor) , das zu exprimierende Gen und das ER-Retentionssignal enthalten. Als ER-Retentionssignal wird bevorzugt die Aminosäuresequenz KDEL (Lysin, Asparaginsäure , Glutaminsäure, Leucin) verwendet. Die Expressionskassette wird zur Expression in einem pro- karyontischen oder eukaryontisehen Wirtsorganismus beispielsweise einem Mikroorganismus wie einem Pilz oder einer Pflanze vorteilhafterweise in einen Vektor wie beispielsweise einem Plasmid, einem Phagen oder sonstiger DNA inseriert, der eine optimale Expression der Gene im Wirtsorganismus ermöglicht. Geeignete Plasmide sind beispielsweise in E. coli pLG338, pACYC184, pBR- Serie wie z.B. pBR322, pUC-Serie wie pUC18 oder pUC19, M113mp- Serie, pKC30, pRep4, pHSl, pHS2 , pPLc236, pMBL24, pLG200, pUR290, pIN-III113-Bl, λgtll oder pBdCI, in Streptomyces pIJlOl, pIJ364, PIJ702 oder pIJ361, in Bacillus pUBllO, pC194 oder pBD214, in Corynebacterium pSA77 oder pAJ667, in Pilzen pALSl, pIL2 oder pBBllδ, weitere vorteilhafte Pilzvektoren werden von Romanos, M.A. et al . , [(1992) "Foreign gene expression in yeast: a review" , Yeast 8: 423-488] und von van den Hondel, C.A.M.J.J. et al . [(1991) "Heterologous gene expression in filamentous fungi] sowie in More Gene Manipulations in Fungi [J.W. Bennet & L.L. Lasure, eds., p. 396-428: Academic Press: San Diego] und in "Gene transfer Systems and vector development for filamentous fungi" [van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) in: Applied
Molecular Genetics of Fungi, Peberdy, J.F. et al . , eds., p. 1-28, Cambridge University Press: Cambridge] beschrieben. Vorteilhafte Hefevektoren sind beispielsweise 2μM, pAG-1, YEp6, YEpl3 oder pEMBLYe23. Beispiele für Algen- oder Pflanzenpromotoren sind pLGV23, pGHlac+, pBIN19, pAK2004, pVKH oder pDH51 (siehe Schmidt, R. and Willmitzer, L., 1988). Die oben genannten Vektoren oder Derivate der vorstehend genannten Vektoren stellen eine kleine Auswahl der möglichen Plasmide dar. Weitere Plasmide sind dem Fachmann wohl bekannt und können beispielsweise aus dem Buch Cloning Vectors (Eds. Pouwels P.H. et al . Elsevier, Amsterdam-New York-Oxford, 1985, ISBN 0 444 904018) entnommen werden. Geeignete pflanzliche Vektoren werden unter anderem in "Methods in Plant Molecular Biology and Biotechnology" (CRC Press), Kap. 6/7, S.71-119 beschrieben. Vorteilhafte Vektoren sind sog. shuttle- Vektoren oder binäre Vektoren, die in E. coli und Agrobacterium replizieren.
Unter Vektoren sind außer Plasmiden auch alle anderen dem Fachmann bekannten Vektoren wie beispielsweise Phagen, Viren wie SV40, CMV, Baculovirus, Adenovirus, Transposons, IS-Elemente, Phasmide, Phagemide, Cosmide, lineare oder zirkuläre DNA zu verstehen. Diese Vektoren können autonom im Wirtsorganismus repliziert oder chromosomal repliziert werden, bevorzugt ist eine chromoso ale Replikation. In einer weiteren Ausgestaltungsform des Vektors kann die erfindungsgemäße Expressionskassette auch vorteilhafterweise in Form einer linearen DNA in die Organismen eingeführt werden und über heterologe oder homologe Rekombination in das Genom des Wirtsorganismus integriert werden. Diese lineare DNA kann aus einem linearisierten Plasmid oder nur aus der Expressionskassette als Vektor oder den erfindungsgemäßen Nukleinsäuresequenzen bestehen.
In einer weiteren vorteilhaften Ausführungsform kann die erfindungsgemäße Nukleinsäuresequenz auch alleine in einen Organismus eingebracht werden.
Sollen neben der erfindungsgemäßen Nukleinsäuresequenz weitere Gene in den Organismus eingeführt werden, so können alle zusammen mit einem Reportergen in einem einzigen Vektor oder jedes einzelne Gen mit einem Reportergen in je einem Vektor oder mehrere Gene zusammen in verschiedenen Vektoren in den Organismus eingebracht werden, wobei die verschiedenen Vektoren gleichzeitig oder sukzessive eingebracht werden können.
Der Vektor enthält vorteilhaft mindestens eine Kopie der Nukleinsäuresequenzen, die für eine Δ6-Desaturase codieren, und/oder der Expressionskassette .
Beispielhaft kann die pflanzliche Expressionskassette in den Transformationsvektor pRT ( (a) Toepfer et al . , 1993, Methods Enzymol., 217: 66-78; (b) Toepfer et al . 1987, Nucl. Acids. Res . 15: 5890 ff.) eingebaut werden.
Alternativ kann ein rekombinanter Vektor (= Expressionsvektor ) auch in-vitro transkribiert und translatiert werden, z.B. durch Nutzung des T7 Promotors und der T7 RNA Polymerase.
In Prokaryoten verwendete Expressionsvektoren nutzen häufig induzierbare Systeme mit und ohne Fusionsproteinen bzw Fusions- oligopeptiden, wobei diese Fusionen sowohl N-terminal als auch C-terminal oder anderen nutzbaren Domänen eines Proteins erfolgen können. Solche Fusionsvektoren dienen in der Regel dazu: i.) die Expressionsrate der RNA zu erhöhen ii.) die erzielbare Proteinsyntheserate zu erhöhen, iii.) die Löslichkeit des Proteins zu erhöhen, iv. ) oder die Reinigung durch einen für die Affinitäts- chromatographie nutzbare Bindesequenz zu vereinfachen. Häufig werden auch proteolytische Spaltstellen über Fusionsproteine eingeführt, was die Abspaltung eines Teils des Fusionsproteins auch der Reinigung ermöglicht. Solche ErkennungsSequenzen für Proteasen erkennen sind z.B. Faktor Xa, Thrombin und Enterokinase .
Typische vorteilhafte Fusions- und Expressionsvektoren sind pGEX [Pharmacia Biotech Ine ; Smith, D.B. and Johnson, K.S. (1988) Gene 67: 31-40], pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) welches Glutathion S-transferase beinhaltet (GST) , Maltose Bindeprotein, oder Protein A.
Weitere Beispiele für E. coli Expressionsvektoren sind pTrc
[Amann et al . , (1988) Gene 69:301-315] und pET Vektoren [Studier et al . , Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 60-89; Stratagene, Amsterdam, Niederlande] .
Weitere vorteilhafte Vektoren zur Verwendung in Hefe sind pYepSecl (Baldari, et al . , (1987) Embo J. 6:229-234), pMFa (Kurjan and Herskowitz, (1982) Cell 30:933-943), pJRY88 (Schultz et al., (1987) Gene 54 : 113-123 ) , and pYES-Derivate (Invitrogen Corporation, San Diego, CA) . Vektoren für die Nutzung in fila- mentösen Pilzen sind beschrieben in: van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer Systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, J.F. Peberdy, et al . , eds., p. 1-28, Cambridge University Press: Cambridge.
Alternativ können auch vorteilhaft Insektenzellexpressionsvektoren genutzt werden z.B. für die Expression in Sf 9 Zellen. Dies sind z.B. die Vektoren der pAc Serie (Smith et al . (1983) Mol . Cell Biol . 3:2156-2165) und der pVL series (Lucklow and Summers (1989) Virology 170:31-39) .
Des weiteren können zur Genexpression vorteilhaft Pflanzenzellen oder Algenzellen genutzt werden. Beispiele für Pflanzen- expressionsvektoren finden sich in Becker, D. , et al . (1992) "New plant binary vectors with selectable markers located proximal to the left border", Plant Mol . Biol . 20: 1195-1197 oder in Bevan, M.W. (1984) "Binary Ägrobacte ium vectors for plant transformation" , Nucl . Acid . Res . 12: 8711-8721.
Weiterhin können die für die Δ6-Desaturase codierenden Nukleinsäuresequenzen in Säugerzellen exprimiert werden. Beispiel für entsprechende Expressionsvektoren sind pCDM8 und pMT2PC genannt in: Seed, B. (1987) Nature 329:840 oder Kaufman et al. (1987) EMBO J. 6: 187-195). Dabei sind vorzugsweise zu nutzende Promotoren viralen Ursprungs wie z.B. Promotoren des Polyoma, Adenovirus 2, Cytomegalovirus oder Simian Virus 40. Weitere prokaryotische und eukaryotische Expressionssysteme sind genannt in Kapitel 16 und 17 in Sambrook et al . , Molecular Cloning: A Laboratory Manual . 2nd, ed. , Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 5 1989.
Das Einbringen der erfindungsgemäßen Nukleinsäuren, der Expressionskassette oder des Vektors in Organismen beispielsweise in Pflanzen kann prinzipiell nach allen dem Fachmann 0 bekannten Methoden erfolgen.
Für Mikroorganismen kann der Fachmann entsprechende Methoden den Lehrbüchern von Sambrook, J. et al . (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, von 5 F.M. Ausubel et al . (1994) Current protocols in molecular biology, John Wiley and Sons, von D.M. Glover et al . , DNA Cloning Vol.l, (1995), IRL Press (ISBN 019-963476-9), von Kaiser et al . (1994) Methods in Yeast Genetics, Cold Spring Habor Laboratory Press oder Guthrie et al . Guide to Yeast Genetics and Molecular 0 Biology, Methods in Enzymology, 1994, Academie Press entnehmen.
Die Übertragung von Fremdgenen in das Genom einer Pflanze wird als Transformation bezeichnet. Es werden dabei die beschriebenen Methoden zur Transformation und Regeneration von Pflanzen aus 5 Pflanzengeweben oder Pflanzenzellen zur transienten oder stabilen Transformation genutzt. Geeignete Methoden sind die Protoplasten- transformation durch Polyethylenglykol-induzierte DNA-Aufnahme, das biolistische Verfahren mit der Genkanone - die sogenannte particle bombardment Methode -, die Elektroporation, die Inku- 0 bation trockener Embryonen in DNA-haltiger Lösung, die Mikro- injektion und der durch Agrobacterium vermittelte Gentransfer. Die genannten Verfahren sind beispielsweise in B. Jenes et al . , Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von S.D. Kung und R. 5 Wu, Academie Press (1993) 128-143 sowie in Potrykus Annu. Rev. Plant Physiol. Plant Molec . Biol. 42 (1991) 205-225) beschrieben. Vorzugsweise wird das zu exprimierende Konstrukt in einen Vektor kloniert, der geeignet ist, Agrobacterium tumefaciens zu transformieren, beispielsweise pBinl9 (Bevan et al . , Nucl. Acids Res . 0 12 (1984) 8711) . Mit einem solchen Vektor transformierte Agro- bakterien können dann in bekannter Weise zur Transformation von Pflanzen, insbesondere von Kulturpflanzen, wie z.B. von Tabakpflanzen, verwendet werden, indem beispielsweise verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeigneten Medien kultiviert werden. Die Transformation von Pflanzen mit Agrobacterium tumefaciens wird beispielsweise von Höfgen und Willmitzer in Nucl . Acid Res . (1988) 16, 9877 beschrieben oder ist unter anderem bekannt aus F.F. White, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academie Press, 1993, S. 15-38.
Mit einem wie oben beschriebenen Expressionsvektor transformierte Agrobakterien können ebenfalls in bekannter Weise zur Transformation von Pflanzen wie Testpflanzen wie Arabidopsis oder Kulturpflanzen wie Getreide, Mais, Hafer, Roggen, Gerste, Weizen, Soja, Reis, Baumwolle, Zuckerrübe, Canola, Triticale, Reis, Sonnenblume, Flachs, Hanf, Kartoffel, Tabak, Tomate, Kaffee, Kakao, Tee, Karotte, Paprika, Raps, Tapioka, Maniok, Pfeilwurz, Tagetes, Alfalfa, Salat und den verschiedenen Baum-, Nuß- und Weinspezies, insbesondere von Öl-haltigen Kulturpflanzen, wie Soja, Erdnuß, Rizinus, Borretsch, Lein, Sonnenblume,
Canola, Baumwolle, Flachs, Raps, Kokosnuß, Ölpalme, Färbersaflor (Carthamus tinctorius) oder Kakaobohne verwendet werden, z.B. indem verwundete Blätter oder Blattstücke in einer Agrobakterien- lösung gebadet und anschließend in geeigneten Medien kultiviert werden.
Die genetisch veränderten Pflanzenzellen können über alle dem Fachmann bekannten Methoden regeneriert werden. Entsprechende Methoden können den oben genannten Schriften von S.D. Kung und R. Wu, Potrykus oder Höfgen und Willmitzer entnommen werden.
Als Organismen bzw. Wirtsorganismen für die erfindungsgemäßen Verfahren verwendeten Nukleinsäuren, die verwendete Expressionskassette oder den verwendeten Vektor eignen sich prinzipiell vorteilhaft alle Organismen, die in der Lage sind Fettsäuren speziell ungesättigte Fettsäuren zu synthetisieren bzw. für die Expression rekombinanter Gene geeignet sind. Beispielhaft seien Pflanzen wie Arabidopsis, Asteraceae wie Calendula oder Kulturpflanzen wie Soja, Erdnuß, Rizinus, Sonnenblume, Mais, Baum- wolle, Flachs, Raps, Kokosnuß, Ölpalme, Färbersaflor (Carthamus tinctorius) oder Kakaobohne, Mikroorganismen wie Pilze beispielsweise die Gattung Mortierella, Saprolegnia oder Pythium, Bakterien wie die Gattung Escherichia, Cyanobakterien, Ciliaten, Thrausto- oder Schizichytrien, Algen oder Protozoen wie Dino- flagellaten wie Crypthecodinium genannt . Bevorzugt werden Organismen, die natürlicherweise Öle in größeren Mengen synthetisieren können wie Pilze der Gattungen Mortierella oder Pythium wie Mortierella alpina, Pythium insidiosum oder Pflanzen wie Soja, Raps, Kokosnuß, Ölpalme, Färbersaflor, Rizinus, Calendula, Erdnuß, Kakaobohne oder Sonnenblume, besonders bevorzugt werden Soja, Raps, Sonnenblume, Rizinus, Mortierella oder Pythium. Prinzipiell sind als Wirtsorganismen auch transgene Tiere geeignet beispielsweise C. elegans .
Nutzbare Wirtszellen sind weiterhin genannt in: Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academie Press, San Diego, CA (1990) .
Verwendbare Expressionsstämme z.B. solche, die eine geringere Proteaseaktivität aufweisen sind beschrieben in: Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academie Press, San Diego, California (1990) 119-128.
Dabei kann je nach Wahl des Promotors die Expression des Δ6-Desaturase-Gens spezifisch in den Blättern, in den Samen, den Knollen oder anderen Teilen der Pflanze erfolgen. Solche Fettsäuren, Öle oder Lipide mit Δ6-Doppelbindungen überproduzierenden transgenen Pflanzen, deren Vermehrungsgut, sowie deren Pflanzenzellen, -gewebe oder -teile, sind ein weiterer Gegenstand der vorliegenden Erfindung. Ein bevorzugter erfindungsgemäßer Gegen- stand sind transgene Pflanzen beispielsweise Kulturpflanzen wie Mais, Hafer, Roggen, Weizen, Gerste, Mais, Reis, Soja, Zuckerrübe, Canola, Triticale, Sonnenblume, Flachs, Hanf, Tabak, Tomate, Kaffee, Kakao, Tee, Karotte, Paprika, Raps, Tapioka, Maniok, Pfeilwurz, Tagetes, Alfalfa, Salat und den verschiedenen Baum-, Nuß- und Weinspezies, Kartoffel, insbesondere Öl-haltige Kulturpflanzen, wie Soja, Erdnuß, Rizinus, Borretsch, Lein, Sonnenblume, Canola, Baumwolle, Flachs, Raps, Kokosnuß, Ölpalme, Färbersaflor (Carthamus tinctorius) oder Kakaobohne, Testpflanzen wie Arabidopsis oder sonstige Pflanzen wie Moose oder Algen ent- haltend eine erfindungsgemäße funktionelle Nukleinsäuresequenz oder eine funktionelle Expressionskassette. Funktioneil bedeutet hierbei, daß ein enzymatisch aktives Enzym gebildet wird.
Die Expressionskassette oder die erfindungsgemäßen Nukleinsäure- Sequenzen enthaltend eine Δ6-Desaturasegensequenz kann darüber hinaus auch zur Transformation der oben beispielhaft genannten Organismen wie Bakterien, Cyanobakterien, filamentösen Pilzen, Ciliaten, Tiere oder Algen mit dem Ziel einer Erhöhung des Gehaltes an Fettsäuren, Ölen oder Lipiden Δ6-Doppelbindungen ein- gesetzt werden. Bevorzugte transgene Organismen sind Bakterien, Cyanobakterien, filamentöse Pilze oder Algen.
Unter transgenen Organismen sind Organismen zu verstehen, die eine Fremde aus einem anderen Organismus stammende Nuklein- säure, die für eine im erfindungsgemäßen Verfahren verwendete Δ6-Desaturase codiert, enthalten. Unter transgenen Organismen sind auch Organismen zu verstehen, die eine Nukleinsäure, die aus demselben Organismus stammt und die für eine Δ6-Desaturase codiert, enthält, wobei diese Nukleinsäure als zusätzliche Genkopie enthalten ist oder nicht in der natürlichen Nuklein- säureumgebung des Δ6-Desaturase-Gens enthalten ist. Transgene Organismen sind auch Organismen bei denen die natürliche 3'- und/oder 5 ' -Region des Δ6-Desaturase-Gens durch gezielte gentechnologische Veränderungen gegenüber dem Ausgangsorganismus verändert wurde. Bevorzugt sind transgene Organismen bei denen eine Fremd-DNA eingebracht wurde. Besonders bevorzugt sind trans- gene Pflanzen, in die Fremd-DNA eingebracht wurde. Unter transgenen Pflanzen sind einzelne Pflanzenzellen und deren Kulturen wie beispielsweise Kalluskulturen auf Festmedien oder in Flüssigkultur, Pflanzenteile und ganze Pflanzen zu verstehen.
Ein weiterer Erfindungsgegenstand sind transgene Organismen ausgewählt aus der Gruppe Pflanzen, Pilze, Ciliaten, Algen, Bakterien, Cyanobakterien oder Tiere, bevorzugt transgene Pflanzen oder Algen, die mindestens eine isolierte Nukleinsäuresequenz enthalten, die für ein Polypeptid mit Δ6-Desaturase- aktivität codiert, ausgewählt aus der Gruppe:
a) einer Nukleinsäuresequenz mit der in SEQ ID NO : 1 dargestellten Sequenz,
b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 1 ableiten
c) Derivate der in SEQ ID NO: 1 dargestellten Nukleinsäuresequenz, die für Polypeptide mit der in SEQ ID NO : 2 dargestellten Aminosäuresequenzen codieren und mindestens 50 % Homologie auf Aminosäureebene aufweisen, ohne daß die enzymatische Wirkung der Polypeptide wesentlich reduziert ist .
Erhöhung des Gehaltes von Fettsäuren, Ölen oder Lipiden mit
Δ6-Doppelbindungen bedeutet im Rahmen der vorliegenden Erfindung beispielsweise die künstlich erworbene Fähigkeit einer erhöhten Biosyntheseleistung durch funktionelle Überexpression des Δ6-Desaturase-Gens in den erfindungsgemäßen Organismen vorteil- haft in den erfindungsgemäßen transgenen Pflanzen gegenüber den nicht gentechnisch modifizierten Ausgangspflanzen zumindest für die Dauer mindestens einer Pflanzengeneration.
Der Biosyntheseort von Fettsäuren, Ölen oder Lipiden beispiels- weise ist im allgemeinen der Samen oder Zellschichten des Samens, so daß eine samenspezifische Expression des Δ6-Desaturase-Gens sinnvoll ist. Es ist jedoch naheliegend, daß die Biosynthese von Fettsäuren, Ölen oder Lipiden nicht auf das Samengewebe beschränkt sein muß, sondern auch in allen übrigen Teilen der Pflanze - beispielsweise in Epidermiszellen oder in den Knollen -gewebe spezifisch erfolgen kann.
Darüberhinaus ist eine konstitutive Expression des exogenen Δ6-Desaturase-Gens von Vorteil. Andererseits kann aber auch eine induzierbare Expression wünschenswert erscheinen.
Die Wirksamkeit der Expression des Δ6-Desaturase-Gens kann beispielsweise in vi tro durch Sproßmeristemvermehrung ermittelt werden. Zudem kann eine in Art und Höhe veränderte Expression des Δ6-Desaturase-Gens und deren Auswirkung auf die Fettsäure-, Öl- oder Lipidbiosyntheseleistung an Testpflanzen in Gewächshaus- versuchen getestet werden.
Gegenstand der Erfindung sind wie oben beschrieben transgene Pflanzen, transformiert mit einer Nukleinsäuresequenz, die für eine Δ6-Desaturase codiert, einem Vektor oder einer Expressions- kassette enthaltend eine Δ6-Desaturase-Gensequenz oder mit dieser hybridisierende DNA-Sequenzen, sowie transgene Zellen, Gewebe, Teile und Vermehrungsgut solcher Pflanzen. Besonders bevorzugt sind dabei transgene Kulturpflanzen wie oben beschrieben.
Pflanzen im Sinne der Erfindung sind mono- und dikotyle Pflanzen oder Algen.
Weitere Gegenstände der Erfindung sind:
- Verwendung einer Δ6-Desaturase-DNA-Gensequenz mit der in
SEQ ID N0:1 genannten Sequenz oder mit dieser hybridisierende DNA-Sequenzen zur Herstellung von Pilzen, Bakterien, Tieren oder Pflanzen bevorzugt Pflanzen mit erhöhtem Gehalt an Fettsäuren, Ölen oder Lipiden mit Δ6-Doppelbindungen durch Expression dieser Δ6-Desaturase DNA-Sequenz in Pflanzen.
- Verwendung der Proteine mit den Sequenzen SEQ ID NO: 2 zur
Herstellung von ungesättigten Fettsäuren in Pflanzen, Pilzen, Bakterien oder Tieren bevorzugt Pflanzen. Die Erfindung wird durch die folgenden Beispiele näher erläutert:
Beispiele
5 Beispiel 1: Allgemeine Klonierungsverfahren und Anzuchtsverfahren:
Die Klonierungsverfahren wie z.B. Restriktionsspaltungen, Agarose-Gelelektrophorese, Reinigung von DNA-Fragmenten, Transfer
10 von Nukleinsäuren auf Nitrozellulose und Nylon Membranen, Verknüpfen von DNA-Fragmenten, Transformation von Escherichia coli Zellen, Anzucht von Organismen und die Sequenzanalyse rekombinan- ter DNA wurden wie bei Sambrook et al . (1989) (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) beschrieben durchgeführt.
15 Das Protonema von Physcomitrella patens (= P. patens) wurde in Flüssigmedium, wie von Reski et al . (Mol. Gen. Genet., 244, 1994: 352-359) beschrieben, angezogen.
Beispiel 2 : Sequenzanalyse rekombinanter DNA
20
Die Sequenzierung rekombinanter DNA-Moleküle erfolgte mit einem Laserfluoreszenz-DNA-Sequenzierer der Firma ABI nach der Methode von Sanger (Sanger et al . (1977) Proc . Natl. Acad. Sei. USA74, 5463-5467) . Fragmente resultierend aus einer Polymerase Ketten- 25 reaktion wurden zur Vermeidung von Polymerasefehlern in zu exprimierenden Konstrukten sequenziert und überprüft.
Beispiel 3: Lipidanalyse aus dem Protonema von P. patens und aus Hefezellen
30
Die Lipide wurden mit Chloroform/Methanol wie bei Siebertz et al. (Eur. J. Biochem., 101, 1979: 429-438) beschrieben aus dem Protonema von S. patens oder aus Hefezellen extrahiert und über Dünnschichtchromatographie (= TLC) mit Diethylether ge-
35 reinigt . Die erhaltenen Fettsäuren wurden zu den entsprechenden Methylestern transmethyliert und mit Gaschromatographie (= GC) analysiert. Die verschiedenen Methylester wurden mit den entsprechenden Standards identifiziert. Entsprechende Fettsäure- pyrrolididen wurden, wie bei Anderson et al . (Lipids, 9, 1974:
40 185-190) beschrieben, erhalten und mit GC-MS bestimmt.
45 Beispiel 4 Funktionelle Expression der Δ6-Desaturase cDNA von P. patens in Hefen
Die Expression-Experimente in Hefen wurden mit PPDES6-cDNA durch- geführt. Knock-out-Exprimente hatten gezeigt (Daten und Versuchsdurchführung nicht gezeigt bzw. beschrieben) , daß der Knock-out zu einem Verlust an 20 : 311- 14< 17- , 20 : 45<8, n, 14_ , 20 : 45 1!- 14< 17- und 20:55 ' 8 ' 1:L ' 14 ' 17-Fettsäuren führt. Gleichzeitig steigen die 18:29 ' 12- und 18 : 39 ' 1 ' 15-Fettsäuren an. Für die Expression in Hefe wurde der PPDES6-cDNA in den Hefe-Expressionsvektor pYES2 (Invitrogen) subkloniert. Der erhaltene Vektor erhielt die Bezeichnung pYES- deltaβ. Mit pYES2 (Kontrolle) und pYESdeltaδ (Δ6-Desaturase-cDNA) transformierte Hefekulturen wurden auf Uracil-dop-out Medium mit 2 % Raffinose und 1 % Tergitol NP-40 (zur Stabilisierung der Fettsäuren) angezogen. Für die Expression wurden die Zellen mit Galactose (Endkonzentration 2 %) bis zu einer optischen Dichte (= OD) von 0,5 bei 600nm angezogen. In Fütterungsexperimenten wurden Fettsäuren in 5 % Tergitol solubilisiert und mit einer Endkonzentration von 0,0003 % zugesetzt. Die Ergebnisse der Expression sind Tabelle I zu entnehmen. Die Synthese von Fettsäuren mit einer Doppelbindung an Position 6 ist nur in Gegenwart des Expressionskonstrukts mit der Δ6-Desaturase-cDNA möglich. Dieses Δ6-Desaturase-Enzym hat eine größere Aktivität gegenüber Fettsäuren, die schon eine Doppelbindung an Position 9 oder 12 (Bezug auf Kohlenstoffatom in der Kette) enthalten. Es wurden die Fettsäuremethylester des gesamten Lipids der Hefen mit GC analysiert. Die einzelnen synthetisierten Fettsäuren werden in der Tabelle in Mol-% der gesamten Fettsäuren angegeben.
Tabelle I: Fettsäurezusammensetzung in transformierten Hefen gegenüber der Kontrolle
Beispiel 5: Transformation von P. patens
Die Polyethylenglycol vermittelte direkte DNA-Transformation von Protoplasten wurde, wie von Schäfer et al . (Mol. Gen. Genet., 5 226, 1991: 418-424) beschrieben, durchgeführt. Die Selektion der Transformanten erfolgte auf G418-enthaltenden Medium (Girke et al., The Plant Journal, 15, 1998: 39-48).
Beispiel 6 : Isolierung von Δ6-Desaturase cDNA und genomischen 10 Clonen von P. patens
Mit Hilfe eines PCR-Ansatzes mit den folgenden degenerierten Oligonukleotiden als Primer:
15 A: TGGTGGAA(A/G)TGGA(C/A)ICA(T/C)AA und
B: GG(A/G)AA(A/C/G/T)A(A/G) (G/A) TG (G/A) TG (C/T) TC]
und dem folgenden Temperaturprogramm:
94°C, 3 min; [94°C, 20 sec; 45°C, 30 sec; 72°C, 1 min], 30 Zyklen;
20 72°C, 5 min, wurden schließlich Fragmente einer Δ6-Desaturase-Gen kloniert. Für die Klonierung wurde poly(A)RNA aus 12 Tage alten P. patens Protonema-Kultur isoliert. Mit dieser poly(A)RNA wurde die oben beschriebene PCR durchgeführt. Fragmente der erwarteten Fragmentlänge (500 bis 600 bp) wurden in pUC18 kloniert und
25 sequenziert. Die abgeleitete Aminosäuresequenz eines PCR-Frag- ments zeigte Ähnlichkeiten zu bekannten Δ6-Desaturasen. Da bekannt war, daß P. patens eine Δ6-Desaturase besitzt, wurde angenommen, daß dieser Klon für einen Teil einer Δ6-Desaturase codiert .
30 Ein vollständiger cDNA-Klon (= PPDES6-CDNA) wurde aus einer
P. patens cDNA-Bank von 12 Tage alten Protonemata mit Hilfe des oben genannten PCR-Fragments isoliert . Die Nukleotidsequenz wird in SEQ ID NO:l wiedergegeben. Die abgeleitete Aminosäuresequenz ist SEQ ID NO: 2 zu entnehmen. Die zugehörige genomische Sequenz
35 (= PPDES6-Gen) konnte mit Hilfe der PCR und den folgenden Oligonukleotiden als Primer isoliert werden:
C: CCGAGTCGCGGATCAGCC
D : CAGTACATTCGGTCATTCACC : 0
Tabelle II gibt die Ergebnisse des Vergleichs zwischen der neuen P. patens Δ6-Desaturase über die gesamte Nukleinsäuresequenz mit folgenden bekannten Δ6-Desaturase wieder: Borago officinalis (U79010), Synechocystis sp (L11421) , Spirulina platensis 5 (X87094) , Caenorhabiditis elegans (AF031477), Mortierella alpina (WO 98/46764), Homo sapiens (Cho et al . , J. Biol. Chem., 274, 1999: 471-477), Rattus norvegicus (AB021980) und Mus musculus (Cho et al., J. Biol. Chem., 274, 1999: 471-477). Die Analyse wurde mit dem Gap Programm (GCG-Package, Version 9,1) und den folgenden Analysenparametern durchgeführt: scoring matrix, blosum62, gap creation penalty, 12; gap extension penalty, 4. Die Ergebnisse geben die bestimmte Identität oder Ähnlichkeit [] in Prozent (%) im Vergleich zur P. patens-Sequenz wieder.
Tabelle II: Sequenzvergleich zwischen P. patens Δ6-Desaturase und anderen Δ6-Desaturasen
Beispiel 7 : Klonierung der Δ6-Desaturase aus Physcomitrella patens
Die genomische Δ6-Acyllipid-Desaturase aus Physcomitrella patens wurde auf Grundlage der veröffentlichten Sequenz (Girke et al . , Plant J., 15, 1998: 39-48) mittels Polymerasekettenreaktion und Klonierung modifiziert, isoliert und für das erfindungsgemäße Verfahren eingesetzt. Dazu wurde zunächst mittels Polymerasekettenreaktion unter Verwendung von zwei genspezifischen Primern ein Desaturase-Fragment isoliert und in das bei Girke et al . (siehe oben) beschriebene Desaturasegen eingesetzt.
Primer TG5 5 ' - ccgctcgagcgaggttgttgtggagcggc und Primer TG3 : 5 λ -ctgaaatagtcttgctcc-3 '
dienten zunächst zur Amplifizierung eines Genfragmentes mittels Polymerasekettenreaktion (30 Zyklen, 30 sek. 94° V, 30 sek. 50°C, 60 sek. 72°C, 10 min Nachinkubation bei 72°C, in einem Perkin Eimer Thermocycler) . a) Klonierung eines Expressionsplasmids, das die Δ6-Desaturase unter Kontrolle des 35S CaMV Promotors exprimiert:
Durch Primer TG5 wurde eine Xhol Schnittstelle in das Fragment eingeführt. Ein XhoI/Eco47lII Fragment wurde durch
Restriktion erhalten und in die bei Girke et al . beschriebene PPDES6-Gensequenz nach analoger Restriktion mit XhoI/Eco47III ausgetauscht. Das Konstrukt erhielt den Namen pZK. Das Insert von pZK wurde als Xhol/Hindlll Fragment nach Auffüllen der Hindlll-Schnittstelle mit Nukleotiden durch Behandlung mit dem Klenow Fragment der DNA Polymerase I in die Xhol/Smal Schnittstellen von pRT99/35S kloniert. Das resultierende Plasmid pSK enthält den 35S-Promotor [Cauliflower-Mosaik-Vi- rus, Franck et al . (1980) Cell 21, 285], die Δ6-Desaturase aus Moos und den 35S-Terminator im Vektor pRT.
b) Konstruktion eines Expressionskonstruktes unter Kontrolle des Napin-Promotors :
Durch Schneiden des Plasmides pSK mit Xhol, Behandlung mit T4-DNA Polymerase und Pstl-Restriktion wurde das erhaltene Promotor-Desaturase-Fragment mit Terminator in den Vektor pJH3 kloniert. Dazu wurde der Vektor BamHI geschnitten und mit Klenow-Enzym die Überhänge aufgefüllt sowie anschließend mit PstI nachgeschnitten. Es entstand durch Ligation des
Desaturase-Terminator-Fragmentes in den Vektor das Plasmid pJH7 , das einen Napin-Promotor beinhaltet (Scofield et al . , 1987, J. Biol. Chem. 262, 12202-8) . Die Expressionskassette aus pJH7 wurde mit Bspl20l und Notl geschnitten und in den binären Vektor pRE kloniert. Es entstand das Plasmid pRE- Ppdesδ .
In einer PCR Reaktion wurde die erfindungsgemäße Δ6-Desaturase cDNA aus P. patens als Matrize verwendet. Mithilfe der nachfolgend aufgeführten Oligonukleotide wurde eine BamHI-Restriktionsschnittstelle vor dem Startcodon und drei Adeninnukleotide als Konsensustranslationssequenz für Eukaryoten in die Δ6-Desaturase cDNA eingeführt . Es wurde ein 1512 Basenpaarfragment der Δ6-Desaturase amplifiziert und sequenziert.
Pp-d6Desl: 5 ' - CC GGTACC aaaatggtattcgcgggcggtg -3' Pp-d6Des2: 3 ' - CC GGTACC ttaactggtggtagcatgct -3'
Die Reaktionsgemische enthielten ca. 1 ng/micro 1 Matrizen
DNA, 0,5 UM der Oligonukleotide und, 200 μM Desoxy-Nukleotide (Pharmacia), 50 mM KC1, 10 mM Tris-HCl (pH 8,3 bei 25°C, 1,5 mM MgCl2> und 0,02 U/μl Pwo Polymerase (Boehringer Mannheim) und werden in einer PCR-Maschine der Firma Perkin Eimer mit folgendem Temperaturprogramm inkubiert:
Anlagerungstemperatur: 50°C, 30 sec
Denaturierungstemperatur : 95°C, 30 sec
Elongationstemperatur : 72°C, 90 sec
Anzahl der Zyklen: 30
c) Konstruktion eines Expressionskonstruktes unter Kontrolle des USP-Promotors :
Das erhaltene Fragment von ca. 1,5 kB Basenpaaren wurde in den mit EcoRV gespaltenen Vektor pBluescript SK- (Stratagene) ligiert und stand für weitere Klonierungen als BamHI Fragment zur Verfügung .
Für die Transformation von Pflanzen wurde ein weiterer Transformationsvektor auf Basis von pBin-USP erzeugt, der das BamHI-Fragment der Δ6-Desaturase enthält. pBin-USP ist ein Derivat des Plasmides pBinl9. pBinUSP entstand aus pBinl9, indem in pBinl9 [Bevan et al . (1980) Nucl. Acids Res. 12, 8711] ein USP-Promotor als EcoRI-BaMHI-Fragment inseriert wurde. Das Polyadenylierungssignal ist das des Gens 3 der T-DNA des Ti-Plasmides pTiACH5 (Gielen et al . , (1984) EMBO J. 3, 835), wobei Nukleotide 11749-11939 als PvuII-Hindlll- Fragment isoliert und nach Addition von Sphl-Linkern an die PvuII-Schnittstelle zwischen die SpHI-Hindlll Schnittstelle des Vektors kloniert. Der USP-Promotor entspricht den Nukleo- tiden 1-684 (Genbank Accession X56240) , wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert (Primersequenz: 5 ' -GTCGACCCGCGGACTAGTG- GGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA-3 ' ) . Das PCR- Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pBinl9 mit OCS Terminator eingesetzt . Es entstand das Plasmid mit der Bezeichnung pBinUSP.
d) Konstruktion eines Expressionskonstruktes unter Kontrolle des vATPase-Cl-Promotors aus Beta vulgaris :
Analog zum Expressionsplasmid mit dem USP-Promotor wurde ein Konstrukt unter Verwendung des v-ATPase-cl-Promotors erstellt. Der Promotor wurde als EcoRI/Kpnl Fragment in das Plasmid pBinl9 mit OCS Terminator kloniert und über BamHI das Δ6-Desaturasegen aus P. patens zwischen Promotor und Terminator inseriert. Der Promotor entspricht einem 1153 Basenpaarfragment aus beta-Vulgaris (Plant Mol Biol, 1999, 39:463-475) .
Das Konstrukt wurde zur Transformation von Arabidopsis thaliana und Rapspflanzen eingesetzt.
Beispiel 8: Erzeugung transgener Rapspflanzen (verändert nach
Moloney et al . , 1992, Plant Cell Reports, 8:238-242)
Zur Erzeugung transgener Rapspflanzen wurden binäre Vektoren in Agrobacterium tumefaciens C58C1 :pGV2260 oder Escherichia coli genutzt (Deblaere et al , 1984, Nucl. Acids. Res. 13, 4777-4788). Zur Transformation von Rapspflanzen (Var. Drakkar, NPZ Nord- deutsche Pflanzenzucht, Hohenlieth, Deutschland), wurde eine 1:50 Verdünnung einer Übernachtkultur einer positiv transformierten Agrobakterienkolonie in Murashige-Skoog Medium (Murashige und Skoog 1962 Physiol. Plant. 15, 473) mit 3 % Saccharose (SMS- Medium) benutzt . Petiolen oder Hypokotyledonen frisch gekeimter steriler Rapspflanzen (zu je ca. 1 cm2) wurden in einer Petri- schale mit einer 1:50 Agrobakterienverdünnung für 5-10 Minuten inkubiert. Es folgte eine 3-tägige Inkubation in Dunkelheit bei 25°C auf 3MS-Medium mit 0,8 % Bacto-Agar. Die Kultivierung wurde nach 3 Tagen mit 16 Stunden Licht/8 Stunden Dunkelheit weiter- geführt und in wöchentlichem Rhythmus auf MS-Medium mit 500 mg/1 Claforan (Cefotaxi e-Natrium) , 50 mg/1 Kanamycin, 20 μM Benzyl- aminopurin (BAP) und 1,6 g/1 Glukose weitergeführt. Wachsende Sprosse wurden auf MS-Medium mit 2 % Saccharose, 250 mg/1 Claforan und 0,8 % Bacto-Agar überführt. Bildeten sich nach drei Wochen keine Wurzeln, so wurde als Wachstumshormon 2-Indol- buttersäure zum Bewurzeln zum Medium zugegeben.
Regenerierte Sprosse wurden auf 2MS-Medium mit Kanamycin und Claforan erhalten, nach Bewurzelung in Erde überführt und nach Kultivierung für zwei Wochen in einer Klimakammer oder im Gewächshaus angezogen, zur Blüte gebracht, reife Samen geerntet und auf Δ6-Desaturase-Expression mittels Lipidanalysen untersucht. Linien mit erhöhten Gehalten an oder Doppelbindungen an der Δ6-Position würden identifiziert. Es konnte in den stabil transformierten transgenen Linien, die das Transgen funktioneil exprimierten, ein erhöhter Gehalt von Doppelbindungen an der Δ6-Position im Vergleich zu untransformierten Kontrollpflanzen feststellt werden. Beispiel 8 : Lipidextraktion aus Samen
Das Pflanzenmaterial wurde zunächst mechanisch durch Mörsern homogenisiert, um es einer Extraktion zugänglicher zu machen.
Dann wurde es 10 min bei 100°C abgekocht und nach dem Abkühlen auf Eis sedimentiert . Das Zellsediment wurde mit 1 N methanolischer Schwefelsäure und 2 % Dimethoxypropan lh bei 90°C hydrolysiert und die Lipide transmethyliert . Die resultierenden Fettsäure- methylester (FAME) wurden in Petrolether extrahiert. Die extrahierten FAME wurden durch Gasflüssigkeitschromatographie mit einer Kapillarsäule (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 m, 0,32 mm) und einem Temperaturgradienten von 170°C auf 240°C in 20 min und 5 min bei 240°C analysiert. Die Identität der Fett- säuremethylester wurde durch Vergleich mit entsprechenden FAME- Standards (Sigma) bestätigt. Die Identität und die Position der Doppelbindung konnte durch geeignete chemische Derivatisierung der FAME-Gemische z.B. zu 4, 4-Dimethoxyoxazolin-Derivaten (Christie, 1997, in: Advances in Lipid Methodology, 4. Auflage: Christie, Oily Press, Dundee, 119-169, und 1998, Gaschromato- graphie-Massenspektrometrie Verfahren, Lipide 33:343-353) mittels GC-MS weiter analysiert werden. Die GC-Analysen der Fettsäuremethylester aus den transgenen Rapssamen, die samenspezifisch die Δ6-Desaturase exprimierten sind in Tabelle III dargestellt. Die transgenen Rapssamen weisen mindestens 4,95 % γ-Linolensäure im Samen auf .
Tabelle III gibt die GC-Analysen der Fettsäuremethylester aus reifen, transgenen Rapssamen, die Δ6-Desaturase samen- spezifisch exprimieren, wieder. Die Fettsäurezusammensetzung ist in [mol %] der Gesamtfettsäuren angegeben. Es ist festzustellen, daß einzelne Pflanzen der T2 Generation, die aus positiv transformierten und geselbsteten Pflanzen erhalten wurden, bis zu ca. 4,95 % γ-Linolensäure enthalten.
Tabelle III: GC-Analysen der Fettsäuremethylester von Raps

Claims

Patentansprüche
1. Verfahren zur Herstellung von ungesättigten Fettsäuren, da- durch gekennzeichnet, daß mindestens eine isolierte Nukleinsäuresequenz, die für ein Polypeptid mit Δ6-Desaturase- aktivität codiert, ausgewählt aus der Gruppe:
a) einer Nukleinsäuresequenz mit der in SEQ ID NO : 1 dar- gestellten Sequenz,
b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 1 ableiten
c) Derivate der in SEQ ID NO : 1 dargestellten Nukleinsäuresequenz, die für Polypeptide mit der in SEQ ID NO : 2 dargestellten Aminosäuresequenzen codieren und mindestens
50 % Homologie auf Aminosäureebene aufweisen, ohne daß die enzymatische Wirkung der Polypeptide wesentlich reduziert ist,
in einen Organismus eingebracht wird, dieser Organismus angezogen wird, wobei der angezogene Organismus mindestens 1 Mol-% ungesättigte Fettsäuren bezogen auf den gesamten Fettsäuregehalt im Organismus enthält .
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Nukleinsäuresequenz von einer Pflanze oder Alge stammt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Nukleinsäuresequenz von Physcomitrella patens stammt .
4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekenn- zeichnet, daß es sich bei dem Organismus um ein Organismus ausgewählt aus der Gruppe Bakterium, Pilz, Ciliat, Alge, Cyanobakterium, Tier oder Pflanze handelt.
5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekenn- zeichnet, daß es sich bei dem Organismus um eine Pflanze oder Alge handelt .
6. Verfahren nach den Ansprüchen 1 bis 5 , dadurch gekennzeichnet, daß es sich bei dem Organismus um eine Ölfruchtpflanzen handelt.
7. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß der angezogene Organismus mindestens 5 Gew-% ungesättigte Fettsäuren bezogen auf den gesamten Fettsäuregehalt im Organismus enthält.
8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die ungesättigten Fettsäuren aus dem Organismus isoliert werden.
9. Transgener Organismus ausgewählt aus der Gruppe Pflanzen, Pilze, Ciliaten, Algen, Bakterien, Cyanobakterien oder Tiere, die mindestens eine isolierte Nukleinsäuresequenz enthalten, die für ein Polypeptid mit Δ6-Desaturaseaktivität codiert, ausgewählt aus der Gruppe:
a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 1 dargestellten Sequenz,
b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO : 1 ableiten
c) Derivate der in SEQ ID NO: 1 dargestellten Nukleinsäuresequenz, die für Polypeptide mit der in SEQ ID NO: 2 dargestellten AminosäureSequenzen codieren und mindestens 50 % Homologie auf Aminosäureebene aufweisen, ohne daß die enzymatische Wirkung der Polypeptide wesentlich reduziert ist.
10. Transgener Organismus nach Anspruch 9, dadurch gekenn- zeichnet, daß es sich bei dem Organismus um eine Pflanze oder Alge handelt .
11. Öl, Lipide oder Fettsäuren oder eine Fraktion davon, hergestellt durch das Verfahren nach einem der Ansprüche 1 bis 8.
12. Verwendung der Öl-, Lipid- oder Fettsäurezusammensetzung nach Anspruch 11 oder transgene Organismen nach Anspruch 9 in Futtermitteln, Nahrungsmitteln, Kosmetika oder Pharmazeutika.
EP00952997A 1999-07-06 2000-07-04 $g(D)6-DESATURASEGENE EXPRIMIERENDE PFLANZEN UND PUFAS ENTHALTENDE ÖLE AUS DIESEN PFLANZEN UND EIN VERFAHREN ZUR HERSTELLUNG UNGESÄTTIGTER FETTSÄUREN Withdrawn EP1190080A1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US34753199A 1999-07-06 1999-07-06
US347531 1999-07-06
DE10030976 2000-06-30
DE10030976A DE10030976A1 (de) 2000-06-30 2000-06-30 DELTA6-Desaturasegene exprimierende Pflanzen und PUFAS enthaltende Öle aus diesen Pflanzen und ein Verfahren zur Herstellung ungesättigter Fettsäuren
PCT/EP2000/006223 WO2001002591A1 (de) 1999-07-06 2000-07-04 Δ6-desaturasegene exprimierende pflanzen und pufas enthaltende öle aus diesen pflanzen und ein verfahren zur herstellung ungesättigter fettsäuren

Publications (1)

Publication Number Publication Date
EP1190080A1 true EP1190080A1 (de) 2002-03-27

Family

ID=26006195

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00952997A Withdrawn EP1190080A1 (de) 1999-07-06 2000-07-04 $g(D)6-DESATURASEGENE EXPRIMIERENDE PFLANZEN UND PUFAS ENTHALTENDE ÖLE AUS DIESEN PFLANZEN UND EIN VERFAHREN ZUR HERSTELLUNG UNGESÄTTIGTER FETTSÄUREN

Country Status (4)

Country Link
EP (1) EP1190080A1 (de)
AU (1) AU776417B2 (de)
CA (1) CA2378423A1 (de)
WO (1) WO2001002591A1 (de)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10102338A1 (de) * 2001-01-19 2002-07-25 Basf Plant Science Gmbh Verfahren zur Expression von Biosynthesegenen in pflanzlichen Samen unter Verwendung von neuen multiplen Expressionskonstrukten
GB2385852A (en) * 2002-02-27 2003-09-03 Rothamsted Ex Station Delta 6-desaturases from Primulaceae
US7700833B2 (en) 2002-03-01 2010-04-20 Cornell University Process for the production of unsaturated fatty acids
DE10208812A1 (de) * 2002-03-01 2003-09-11 Basf Plant Science Gmbh Verfahren zur Herstellung von ungesättigten Fettsäuren
DE10219203A1 (de) * 2002-04-29 2003-11-13 Basf Plant Science Gmbh Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in Pflanzen
EP1716229A2 (de) * 2004-02-17 2006-11-02 The University Of York Desaturase-enzyme
EP2357243B1 (de) 2004-04-22 2018-12-12 Commonwealth Scientific and Industrial Research Organisation Synthese von langkettigen polyungesättigten Fettsäuren durch rekombinante Zellen
DK1756280T3 (en) 2004-04-22 2015-02-02 Commw Scient Ind Res Org SYNTHESIS OF CHAIN, polyunsaturated fatty acids BY RECOMBINANT CELLS
DK1766023T3 (da) 2004-06-04 2010-12-13 Fluxome Sciences As Metabolisk manipulerede celler til fremstillingen af polyumættede fedtsyrer
US8629195B2 (en) 2006-04-08 2014-01-14 Bayer Materialscience Ag Production of polyurethane foams
EP2059588A4 (de) 2006-08-29 2010-07-28 Commw Scient Ind Res Org Fettsäuresynthese
CA2989798C (en) 2008-07-01 2019-11-05 Basf Plant Science Gmbh Promoters from brassica napus for seed specific gene expression
CN113957105B (zh) 2008-11-18 2024-11-01 联邦科学技术研究组织 产生ω-3脂肪酸的酶和方法
WO2010130725A1 (en) 2009-05-13 2010-11-18 Basf Plant Science Company Gmbh Acyltransferases and uses thereof in fatty acid production
CN102597242B (zh) 2009-06-08 2016-03-02 罗特哈姆斯泰德研究有限公司 新脂肪酸延伸组合物及其用途
AU2010272536B2 (en) 2009-07-17 2016-09-08 Basf Plant Science Company Gmbh Novel fatty acid desaturases and elongases and uses thereof
CA2772267A1 (en) 2009-08-31 2011-03-03 Basf Plant Science Company Gmbh Regulatory nucleic acid molecules for enhancing seed-specific gene expression in plants promoting enhanced polyunsaturated fatty acid synthesis
EP2504427B1 (de) 2009-11-24 2018-06-27 BASF Plant Science Company GmbH Neuartige fettsäuredesaturase und ihre verwendung
US9347049B2 (en) 2009-11-24 2016-05-24 Basf Plant Science Company Gmbh Fatty acid elongase and uses thereof
CA2804925A1 (en) 2010-06-25 2011-12-29 Basf Plant Science Company Gmbh Acyltransferases from thraustochytrium species and uses thereof in fatty acid production
US9458477B2 (en) 2010-10-21 2016-10-04 Basf Plant Science Company Gmbh Fatty acid desaturases, elongases, elongation components and uses thereof
UA127917C2 (uk) 2012-06-15 2024-02-14 Коммонвелт Сайнтіфік Енд Індастріел Рісерч Організейшн Рекомбінантна клітина brassica napus, яка містить довголанцюгові поліненасичені жирні кислоти, трансгенна рослина та насіння brassica napus, спосіб отримання екстрагованого ліпіду рослин, харчового продукту та етилового ефіру поліненасичених жирних кислот
EP2880050B1 (de) 2012-08-03 2018-07-04 BASF Plant Science Company GmbH Neuartige enzyme, enzymbestandteile und verwendungen davon
US9725399B2 (en) 2013-12-18 2017-08-08 Commonwealth Scientific And Industrial Research Organisation Lipid comprising long chain polyunsaturated fatty acids
KR102527795B1 (ko) 2014-06-27 2023-05-02 커먼웰쓰 사이언티픽 앤 인더스트리알 리서치 오거니제이션 도코사펜타에노산을 포함하는 지질

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5614393A (en) * 1991-10-10 1997-03-25 Rhone-Poulenc Agrochimie Production of γ-linolenic acid by a Δ6-desaturase
WO1998046764A1 (en) * 1997-04-11 1998-10-22 Calgene Llc Methods and compositions for synthesis of long chain polyunsaturated fatty acids in plants
GB9724783D0 (en) * 1997-11-24 1998-01-21 Inst Arable Crops Research Novel polypeptides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0102591A1 *

Also Published As

Publication number Publication date
AU6560700A (en) 2001-01-22
AU776417B2 (en) 2004-09-09
WO2001002591A1 (de) 2001-01-11
CA2378423A1 (en) 2001-01-11

Similar Documents

Publication Publication Date Title
DE60309136T2 (de) Delta 6-desaturase aus primulacaea, pflanzen, exprimierende pflanzen, und öle, welche mehrfach ungesättigte fettsäuren enthalten
EP1613744B1 (de) Delta-4-desaturasen aus euglena gracilis, exprimierende pflanzen und pufa enthaltende öle
EP1181373B1 (de) Delta6-acetylenase und delta6-desaturase aus ceratodon purpureus
EP1190080A1 (de) $g(D)6-DESATURASEGENE EXPRIMIERENDE PFLANZEN UND PUFAS ENTHALTENDE ÖLE AUS DIESEN PFLANZEN UND EIN VERFAHREN ZUR HERSTELLUNG UNGESÄTTIGTER FETTSÄUREN
EP1599582B1 (de) Verfahren zur herstellung mehrfach ungesättigter fettsäuren
EP2180046B1 (de) Verfahren zur Herstellung von mehrfach ungesättigten langkettigen Fettsäuren in transgenen Organismen
EP1356067B1 (de) Verfahren zur herstellung mehrfach ungesaettigter fettsaeuren, neue biosynthesegene sowie neue pflanzliche expressionskonstrukte
DE10219203A1 (de) Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in Pflanzen
EP1945775B1 (de) Verfahren zur herstellung von gamma-linolensäure und/oder stearidonsäure in transgenen brassicaceae und linaceae
DE10102338A1 (de) Verfahren zur Expression von Biosynthesegenen in pflanzlichen Samen unter Verwendung von neuen multiplen Expressionskonstrukten
WO2008009600A1 (de) Verfahren zur herstellung von arachidonsäure und/oder eicosapentaensäure in pflanzen
US9611441B2 (en) Plants expressing Δ6-desaturase genes and oils from these plants containing PUFAS and method for producing unsaturated fatty acids
DE19962409A1 (de) DELTA6-Acetylenase und DELTA6-Desaturase aus Ceratodon purpureus
Napier et al. Novel Method For The Production Of Polyunsaturated Fatty Acids (Patent EP 1576166 B1)
DE10205607A1 (de) Neues Elongasegen und Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren
WO2004007732A1 (de) Klonierung und charakterisierung einer lipoxygenase aus phaeodactylum tricornutum
DE10203713A1 (de) Neues Elongasegen und Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren
DE10023893A1 (de) Neues Elongasegen und Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren
DE102004017518A1 (de) Verfahren zur Herstellung von mehrfach ungesättigten Fettsäuren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100722