EP1188222B1 - Organe d'entrainement lineaire magnetique - Google Patents

Organe d'entrainement lineaire magnetique Download PDF

Info

Publication number
EP1188222B1
EP1188222B1 EP00947808A EP00947808A EP1188222B1 EP 1188222 B1 EP1188222 B1 EP 1188222B1 EP 00947808 A EP00947808 A EP 00947808A EP 00947808 A EP00947808 A EP 00947808A EP 1188222 B1 EP1188222 B1 EP 1188222B1
Authority
EP
European Patent Office
Prior art keywords
coil
active part
magnetically active
current
linear drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00947808A
Other languages
German (de)
English (en)
Other versions
EP1188222A1 (fr
Inventor
Karl Mascher
Klaus Schuler
Andreas Arndt
Holger Gerhard Wisken
Wolf Rüdiger CANDERS
Hardo May
Herbert Weh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1188222A1 publication Critical patent/EP1188222A1/fr
Application granted granted Critical
Publication of EP1188222B1 publication Critical patent/EP1188222B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1638Armatures not entering the winding
    • H01F7/1646Armatures or stationary parts of magnetic circuit having permanent magnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/28Power arrangements internal to the switch for operating the driving mechanism using electromagnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1805Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current
    • H01F7/1816Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current making use of an energy accumulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/26Power arrangements internal to the switch for operating the driving mechanism using dynamo-electric motor
    • H01H2003/268Power arrangements internal to the switch for operating the driving mechanism using dynamo-electric motor using a linear motor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • H01H33/6662Operating arrangements using bistable electromagnetic actuators, e.g. linear polarised electromagnetic actuators

Definitions

  • the invention relates to a magnetic Linear drive, especially for an electrical switch, with a coil to which a current can be applied, in whose Inside by the current in an axial direction magnetic flux can be generated with an armature that is only movable perpendicular to the axial direction and which has a magnetically active part, the Path of motion through an air gap inside the coil penetrating core or on one end of the Kernes passes, the magnetically active part is unmagnetized or is magnetized such that the magnetic Flow inside the magnetically active part runs parallel or anti-parallel to the axial direction (see GB-A-829 782).
  • US Pat. No. 5,719,451 is also a magnetic one Linear actuator known, for example for use there in liquid pumps.
  • the linear drives shown there is common that a solenoid in an armature Accelerated axial direction of the coil.
  • Such a magnetic linear drive is for example also known from GB 10 68 610.
  • Actuator is an actuator for a valve, at by means of the movement of an anchor, a liquid channel is locked or opened.
  • the armature has a permanent magnet there, the magnetic one Flow inside it in the direction of movement of the armature and aligned perpendicular to the axial direction is.
  • the armature moves against mechanical ones Stops such that one pole of the permanent magnet comes into contact with the stop and that through the magnetic Effect of the permanent magnet on the stop is held.
  • the present invention is based on the object a magnetic linear drive of the aforementioned Kind of creating an instantaneous acceleration of the Anchor with little design effort and little control effort reached.
  • the object is achieved in that the magnetically active part in two end positions permanently positionable and by the action of a current from a first end position can be converted into a second end position is.
  • a current is applied to the coil, then in its Generates a magnetic flux inside in the axial direction, which runs inside the core and in the area of the air gap emerges from the core.
  • a magnetically active part of a Anchor that, for example, ferromagnetically unmagnetized or magnetized, especially permanently magnetized in one Direction anti-parallel to the direction of the magnetic flux the coil is accelerated towards the inside of the coil.
  • a magnet whose inner magnetic flux is parallel to the Flow of the coil is aligned from the inside of the Coil pushed off. This effect drives the Anchor exploited.
  • the magnetic linear drive advantageous as a switch drive for an electrical Switches, for example a high voltage circuit breaker or a vacuum switch can be used.
  • the anchor is in an end position of its movement path such that when the coil current is switched on a small amount of magnetic flux through the coil magnetically active part passes through, this leads to that the armature is accelerated towards the center of the coil until a maximum part of the magnetic flux of the coil through the magnetically active part passes through.
  • the armature is the current flow through the coil by means of a Control device interrupted so that the anchor due its dynamic energy and the dynamic energy of driven masses continues to move beyond the coil, without the magnetic flux of the coil due to the action brake the armature onto the magnetically active part can.
  • a desired acceleration profile of the armature can, for example can be achieved in that the air gap between the core and the trajectory of the magnetically active Partly different width along the trajectory becomes.
  • the anchor is, for example, a drive rod electrical switch connected, which in turn a Switch contact of a breaker unit drives.
  • Mechanical stops can be in the area of the shift rod or be realized in the area of the linear drive itself.
  • An advantageous embodiment of the invention provides that the magnetically active part is magnetized and that in at least an end position of the magnetically active part thereof at least partially in the area of one outside the Coil arranged yoke body is arranged that the out the magnetically active part out or enters it magnetic flux at least in part directly through a the magnetically active part facing boundary surface of the Yoke body passes through.
  • the boundary surface is advantageously essentially vertical aligned with the axial direction.
  • the magnetically active part magnetizes, for example as an electromagnet or permanently magnetized
  • the magnetic flux of the magnetically active part has the Tends to have an air gap adjacent to one another To reduce the yoke body as much as possible.
  • At least one is in the end region of the movement path of the armature Yoke body arranged in which the magnetic flux of the magnetic active part over at least part of the length of the magnetically active part can occur.
  • a force effect thus takes place on the anchor, which strives is as large an overlap as possible between the magnetic to generate the active part and the yoke body in such a way that as much as possible the entire magnetic flux of the magnetically active Partially in the yoke body by as vertical as possible enter the boundary surface arranged to the axial direction can.
  • the force effect in the direction of the path of movement of the anchor is essentially independent of how far the magnetic active part and the yoke body overlap.
  • Such an arrangement can be advantageous for both end positions realized the magnetically active part or the armature his.
  • a further advantageous embodiment of the invention provides before that the coil with respect to the trajectory of the magnetic active part is opposite a second coil with a 6
  • first and the second Coil offset against each other in the direction of movement of the armature are.
  • the anchor against each other can have a certain acceleration profile can be reached along the trajectory.
  • each of the coils for each one of the directions of movement of the armature is used.
  • two yoke bodies are provided, each other with respect to the trajectory opposite of the magnetically active part and the between air gaps form, at least partially from the trajectory of the magnetically active part are penetrated.
  • the first yoke body With respect to the path of movement of the magnetically active part, becomes the magnetic circuit for both the flow through the coil as well as for the flow of the magnetically active Partially closed in each of the end positions, so that each a great force effect for both acceleration and is also achieved for the holding force in the end positions.
  • a further advantageous embodiment of the invention provides before, in the control device several rechargeable and occasionally jointly or alternatively connectable to the coil Charging capacitors are provided.
  • the different charging capacitors can be used for different Switching cases (for example different load cases of a circuit breaker to be driven) or different can be used for switching on and off.
  • the invention also relates to a method of operation of a magnetic linear actuator, in which provided is that the coil for driving the armature in different Each direction is charged with a current of the same direction becomes.
  • the method according to the invention can advantageously be designed as a result be that the application of a current ends before the magnetically active part reaches its end position has reached.
  • Another advantageous embodiment provides that the Current flow through the coil is interrupted as soon as due of an electrical oscillation process the supply voltage to her Sign reverses.
  • the coil has an electrical inductance as well as an ohmic Represents resistance and normally by a capacitance is fed, there is an electrical resonant circuit in the control of the linear drive. This leads to Generation of an electrical oscillation, so that at the Coil applied supply voltage reverses its sign at some point.
  • the current flow is diverted to a charging capacitor as soon as the supply voltage due to an electrical vibration process you Sign reverses.
  • FIG. 1 shows a magnetic linear drive, with an anchor 1 made of a rod 2 made of glass fiber reinforced Plastic and a magnetically active part 3 consists of a permanent magnetic material and to the at one end a shift rod 4 is coupled, which is only schematic shown and with a drivable switch contact 5 the interrupter unit of a high-voltage circuit breaker connected is.
  • the linear drive generates movements in Direction of the double arrow 6.
  • the armature 1 moves in the air gap 7 between one first yoke body 8 and a second yoke body 9, each other mirror image of the movement path of the armature 1 are opposite.
  • Each of the yoke bodies has an annular recess, in each of which a coil 10, 11 is introduced.
  • the spools 10, 11 are each provided with electrical connections and can be supplied with a current by means of a control device.
  • the current direction is such that in the upper part of the coil 10, the current in the plane of the drawing runs in and in the lower part of the coil the current from the Drawing level emerges as illustrated by point 12 becomes.
  • part 16 of the magnetic flux 13 already occurs of the coils 10, 11 through an edge region of the magnetically active Part 3 of the anchor through.
  • the magnetic flux tends to be magnetic to accelerate active part 3 downwards in the display, so that the magnetic flux 13 of the coils 10, 11 on the greatest possible length of the magnetically active part 3 passes through it and antiparallel to the inside of the magnetically active part 3 prevailing magnetic flux 17 runs.
  • the anchor keeps moving because of the dynamic energy, until that a second, dashed end position 36 of the magnetically active part 3 is reached.
  • the magnetic flux 17 within the magnetically active part 3 the endeavor to have the smallest possible air gap in one of the yoke bodies 8, 9 and exit it again.
  • Part of the magnetic flux 17 inside the magnetic active part 3 can directly into the yoke body 8 enter through the boundary surface 35, the flow over the second yoke body 9 with the interposition of the inevitable Air gap is closed, so that from there magnetic flux reenter the magnetically active part 3 can.
  • the magnetic force on the armature 1 is here largely regardless of how far the magnetically active Part 3 with the part of the yoke body 8 above the coil 10 already overlapped. Therefore, the holding force on the anchor is in the end position largely independent of mechanical tolerances.
  • FIG. 1 also shows that both yoke bodies 8, 9 in the area of the cores 14, 15 along the movement path of the magnetically active part are profiled such that the Air gap between the armature 3 and the yoke bodies 8, 9 after becomes wider at the top. This means that the force effect on the magnetically active part 3 during its movements decreases upwards. This way when you turn off the Break unit at the start of the movement high acceleration and towards the end a weakening one Acceleration can be achieved. It is also conceivable that for example the second coil 11 opposite the first coil 10 offset down along the path of movement of the armature 1 is, so that when switching off, d. H. a movement the armature 1 from bottom to top, first the second coil 11 would bear the brunt of acceleration and later the first coil 10.
  • FIG. 2 shows a control circuit with a Charging capacitor 19, which has a first IGBT (insulatedgate bipolar transistor) 20 and a second IGBT 21 with the Coil 22 connectable within the magnetic linear drive is.
  • IGBT insulatedgate bipolar transistor
  • FIG. 2 shows a control circuit with a Charging capacitor 19, which has a first IGBT (insulatedgate bipolar transistor) 20 and a second IGBT 21 with the Coil 22 connectable within the magnetic linear drive is.
  • IGBT insulatedgate bipolar transistor
  • the capacitor 19 discharges, the voltage at the drops Coil 22 and a counter voltage is induced there, the endeavors to maintain the current of the current 24.
  • the counter voltage on the coil 22 is the supply voltage opposite, so that there is a voltage zero crossing results.
  • the IGBTs 21, 22 are turned off, d. H. they shut off the electricity.
  • FIG. 3 shows schematically the energy supply of a linear drive via three different control units 31, 32, 33, each of which has its own charging capacitor, where the charging capacitors have different capacitances can have. This makes for different switching cases each have a different amount of energy in the form of electrical field energy stored in the charging capacitors made available.
  • the different controls 31, 32, 33 can also used for quick successive off-on-off switching become

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Electromagnets (AREA)

Abstract

L'invention concerne un organe d'entraînement linéaire magnétique comprenant une bobine (10, 11) à l'intérieur de laquelle un courant peut produire un flux magnétique (13) dans une direction axiale (34). Cet organe d'entraînement linéaire magnétique comprend également un induit (1) pouvant se déplacer uniquement perpendiculairement à la direction axiale (34) et présentant une partie active magnétiquement (3) qui est aimantée en particulier antiparallèlement à la direction axiale (34). L'induit est entraîné par une impulsion électrique qui accélère la partie active magnétiquement (3), indépendamment de la position initiale de cette dernière, vers le centre de la bobine.

Claims (11)

  1. Dispositif d'entraínement linéaire magnétique, notamment pour un commutateur électrique, comprenant une bobine (10, 11) qui peut être alimentée en un courant et à l'intérieur de laquelle peut être produit par le courant dans une direction (34) axiale un flux (13) magnétique, une armature (1) qui est mobile exclusivement perpendiculairement à la direction (34) axiale et qui a une partie (3) active magnétiquement dont le trajet de déplacement passe dans un entrefer (7) à l'intérieur d'un noyau (14, 15) passant dans la bobine (10, 11) ou passe devant une face frontale du noyau (14, 15), la partie (3) active magnétiquement étant démagnétisée ou étant magnétisée de façon à ce que le flux (17) magnétique s'étende à l'intérieur de la partie (3) active magnétiquement parallèlement ou antiparallèlement à la direction (34) axiale,
       caractérisé en ce que la partie active magnétiquement peut être mise en position permanente en deux positions d'extrémité et peut passer par l'action d'un courant d'une première position d'extrémité à une deuxième position d'extrémité.
  2. Dispositif d'entraínement linéaire magnétique suivant la revendication 1,
       caractérisé en ce que la partie (3) active magnétiquement est magnétisée, et en ce que dans au moins l'une des positions d'extrémité de la partie (3) active magnétiquement, celle-ci est disposée au moins en partie dans la zone d'une culasse (8, 9) disposée à l'extérieur de la bobine, de façon à ce que la partie (3) active magnétiquement sorte ou entre dans ce flux (17) magnétique entrant au moins en partie directement par une surface (35) de démarcation de la culasse qui est tournée vers la partie active magnétiquement.
  3. Dispositif d'entraínement linéaire magnétique suivant l'une des revendications 1 ou 2,
       caractérisé en ce qu'à la bobine (10) est opposé en ce qui concerne le trajet de déplacement de la partie (3) active magnétiquement une deuxième bobine (11) qui peut être alimentée avec la première bobine (10) en un courant ayant le même sens que la première bobine (10).
  4. Dispositif d'entraínement linéaire magnétique suivant la revendication 1, 2 ou 3,
       caractérisé en ce que la première et la deuxième bobine (10, 11) sont décalées l'une par rapport à l'autre dans la direction du déplacement de l'armature (1).
  5. Dispositif d'entraínement linéaire magnétique suivant l'une des revendications 1 à 4,
       caractérisé en ce qu'il est prévu deux culasses (8, 9) qui sont opposées l'une à l'autre en ce qui conceme le trajet de déplacement de la partie (3) active magnétiquement et qui forment entre elles des entrefers (7) qui sont traversés au moins en partie par le trajet de déplacement de la partie (3) active magnétiquement.
  6. Dispositif d'entraínement linéaire magnétique suivant l'une des revendications 1 à 5 ayant un dispositif de commande,
       caractérisé en ce qu'il est prévu dans le dispositif (31, 32, 33) de commande plusieurs condensateurs (19) de charge pouvant être chargés et pouvant être reliés cas par cas en commun ou en alternance à une bobine.
  7. Procédé pour faire fonctionner un dispositif d'entraínement linéaire magnétique suivant la revendication 1,
       caractérisé en ce que l'on alimente la bobine (10, 11) pour l'entraínement de l'armature (1) dans des directions différentes, respectivement en un courant de même sens.
  8. Procédé suivant la revendication 7,
       caractérisé en ce que l'on met fin à l'alimentation en un courant avant que la partie (3) active magnétiquement ait atteint sa position d'extrémité.
  9. Procédé suivant la revendication 8,
       caractérisé en ce qu'on interrompt le flux de courant dans la bobine (10, 11) dès que, en raison d'un processus électrique d'oscillation, la tension d'alimentation change de sens.
  10. Procédé suivant la revendication 8,
       caractérisé en ce que l'on dévie le flux de courant vers un condensateur (19) de charge dès que la tension d'alimentation change son sens en raison d'un processus électrique d'oscillation.
  11. Procédé pour faire fonctionner un dispositif d'entraínement linéaire magnétique suivant la revendication 1,
       caractérisé en ce qu'on produit d'abord un courant dans la bobine (10, 11) dont le flux magnétique résultant dans la bobine (10, 11) est dirigé antiparallèlement à une magnétisation de la partie (3) active magnétiquement pour autant que celle-ci est magnétisée, et en ce qu'après que la partie (3) active magnétiquement a atteint sur son trajet de déplacement l'emplacement où l'intensité du champ magnétique de la bobine (10, 11) est la plus grande, on inverse le sens du courant dans la bobine (10, 11).
EP00947808A 1999-06-22 2000-06-20 Organe d'entrainement lineaire magnetique Expired - Lifetime EP1188222B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19929572A DE19929572A1 (de) 1999-06-22 1999-06-22 Magnetischer Linearantrieb
DE19929572 1999-06-22
PCT/DE2000/001981 WO2000079672A1 (fr) 1999-06-22 2000-06-20 Organe d'entrainement lineaire magnetique

Publications (2)

Publication Number Publication Date
EP1188222A1 EP1188222A1 (fr) 2002-03-20
EP1188222B1 true EP1188222B1 (fr) 2003-05-02

Family

ID=7912818

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00947808A Expired - Lifetime EP1188222B1 (fr) 1999-06-22 2000-06-20 Organe d'entrainement lineaire magnetique

Country Status (6)

Country Link
US (1) US6888269B1 (fr)
EP (1) EP1188222B1 (fr)
CN (1) CN1242534C (fr)
AU (1) AU6148600A (fr)
DE (2) DE19929572A1 (fr)
WO (1) WO2000079672A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103178685A (zh) * 2013-03-04 2013-06-26 中国科学院国家天文台南京天文光学技术研究所 用于天文望远镜镜面主动支撑的电磁式力促动器
DE102013201084A1 (de) 2013-01-24 2014-07-24 Siemens Aktiengesellschaft Elektrische Maschine

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6497676B1 (en) 2000-02-10 2002-12-24 Baxter International Method and apparatus for monitoring and controlling peritoneal dialysis therapy
DE10132553A1 (de) 2001-07-04 2003-01-23 Siemens Ag Elektrodynamischer Linearantrieb
US7175606B2 (en) 2002-05-24 2007-02-13 Baxter International Inc. Disposable medical fluid unit having rigid frame
US7153286B2 (en) 2002-05-24 2006-12-26 Baxter International Inc. Automated dialysis system
US7238164B2 (en) 2002-07-19 2007-07-03 Baxter International Inc. Systems, methods and apparatuses for pumping cassette-based therapies
DE10309697B3 (de) * 2003-02-26 2004-09-02 Siemens Ag Magnetischer Linearantrieb
EP1680155B2 (fr) 2003-10-28 2015-11-04 Baxter International Inc. Machine de dialyse avec un test d'intégrité amelioré
GB0411802D0 (en) * 2004-05-26 2004-06-30 Electro Magnetic Rams Ltd Switchgear system
EP1975960A1 (fr) * 2007-03-30 2008-10-01 Abb Research Ltd. Actionneur bistable magnétique, circuit de commande électronique et procédé pour faire fonctionner cet actionneur
DE102007030391A1 (de) * 2007-06-29 2009-01-02 Siemens Ag Herstellungsverfahren für einen Stößel und derartiger Stößel
FR2934923B1 (fr) * 2008-08-11 2013-05-31 Schneider Electric Ind Sas Actionneur electromagnetique hybride a bobine fixe
GB2467363A (en) * 2009-01-30 2010-08-04 Imra Europ S A S Uk Res Ct A linear actuator
FR2943170B1 (fr) * 2009-03-10 2013-03-22 Areva T & D Sa Circuit actionneur magnetique
EP2367189B1 (fr) * 2010-03-18 2013-09-04 ABB Technology AG Schaltereinheit und dazugehöriges Verfahren
CN104205280A (zh) * 2012-04-06 2014-12-10 株式会社日立制作所 气体断路器
CN104247184B (zh) * 2012-04-18 2016-07-06 株式会社日立制作所 开闭装置
CN105374584B (zh) * 2015-12-22 2017-09-05 福州大学 可快速动作、有效缓冲、稳定保持或具磁悬浮效应的装置
CN105513844B (zh) * 2015-12-22 2018-04-13 福州大学 基于故障电流能量与变化率的快速电磁拉力机构及其应用
US11179516B2 (en) 2017-06-22 2021-11-23 Baxter International Inc. Systems and methods for incorporating patient pressure into medical fluid delivery

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7432801U (de) * 1975-03-27 Siemens Ag Elektromagnet mit Linearantrieb des Ankers
GB829782A (en) * 1956-03-23 1960-03-09 Chausson Usines Sa An electro-magnetically driven oscillating movement compressor
US3203447A (en) * 1963-10-09 1965-08-31 Skinner Prec Ind Inc Magnetically operated valve
US3379214A (en) 1965-01-15 1968-04-23 Skinner Prec Ind Inc Permanent magnet valve assembly
DE3376912D1 (en) * 1983-06-01 1988-07-07 Ibm Deutschland Electromagnetic driving element
US4817494A (en) * 1987-04-06 1989-04-04 The United States Of America As Represented By The United States Department Of Energy Magnetic reconnection launcher
DE3942542A1 (de) 1989-12-22 1991-06-27 Lungu Cornelius Bistabiler magnetantrieb mit permanentmagnetischem hubanker
JP3121948B2 (ja) 1993-03-18 2001-01-09 河西工業株式会社 クリップ取付座
GB9409988D0 (en) * 1994-05-18 1994-07-06 Huntleigh Technology Plc Linear magnetic actuator
US5729067A (en) * 1995-08-30 1998-03-17 Eaton Corporation Method and apparatus for closed loop position control in a linear motor system
NL1006087C2 (nl) * 1997-05-20 1998-11-23 Bogey Venlo B V Actuatormechanisme.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013201084A1 (de) 2013-01-24 2014-07-24 Siemens Aktiengesellschaft Elektrische Maschine
CN103178685A (zh) * 2013-03-04 2013-06-26 中国科学院国家天文台南京天文光学技术研究所 用于天文望远镜镜面主动支撑的电磁式力促动器
CN103178685B (zh) * 2013-03-04 2015-08-05 中国科学院国家天文台南京天文光学技术研究所 用于天文望远镜镜面主动支撑的电磁式力促动器

Also Published As

Publication number Publication date
DE19929572A1 (de) 2001-01-04
US6888269B1 (en) 2005-05-03
CN1242534C (zh) 2006-02-15
AU6148600A (en) 2001-01-09
DE50001984D1 (de) 2003-06-05
EP1188222A1 (fr) 2002-03-20
CN1357166A (zh) 2002-07-03
WO2000079672A1 (fr) 2000-12-28

Similar Documents

Publication Publication Date Title
EP1188222B1 (fr) Organe d'entrainement lineaire magnetique
DE10146899A1 (de) Elektromagnetischer Aktuator, insbesondere elektromagnetischer Antrieb für ein Schaltgerät
EP0898780B1 (fr) Commutateur electrique a entrainement magnetique
DE10128616A1 (de) Schaltvorrichtung
DE4304921C1 (de) Bistabiler magnetischer Antrieb für einen elektrischen Schalter
DE69830808T2 (de) Betätigungseinrichtung zum antrieb und steuerung eines schaltgeräts
DE60000739T2 (de) Steuervorrichtung zum öffnen und/oder zum schliessen, insbesondere für ein schaltgerät wie ein schutzschalter, und ein schutzschalter ausgerüstet mit dieser vorrichtung
DE10309697B3 (de) Magnetischer Linearantrieb
EP1402546B1 (fr) Entrainement lineaire electrodynamique
EP0996135A2 (fr) Dispositif de commande pour le contact mobile d'un interrupteur électrique
EP0405191A1 (fr) Dispositif électromagnétique de positionnement
EP1604445B1 (fr) Entrainement lineaire magnetique
DE102011081893B3 (de) Magnetischer Aktor und Verfahren zu dessen Betrieb
DE102017211257B4 (de) Elektromagnetischer Antrieb und damit ausgestattetes Ventil
DE3633775C2 (fr)
DE102006013013B9 (de) Kraft-Erzeuger-Einheit
DE102013105670A1 (de) Bistabiler Elektro-Permanent-Aktuator
DE102018216223B3 (de) Aktor und Verfahren zur Betätigung eines Hochspannungsschalters
DE102010041728A1 (de) Resonanter Magnetaktor
EP0135055A1 (fr) Dispositif d'entraînement à fonctionnement pas à pas
DE1253821B (de) Kolbenhubmagnet mit drei oder mehreren stabilen, permanentmagnetischen Raststellungen
DE10142670C1 (de) Elektromechanischer Aktuator für Ventiltrieb
DE9411153U1 (de) Elektromagnetisch betätigbarer Zentralverschluß für photographische Kameras
WO2016139176A1 (fr) Dispositif comprenant un moteur électrique pourvu d'un rotor magnétique doux et dispositif comprenant au moins un induit, fait d'un matériau magnétique doux, d'un actionneur magnétique
DE102012204322A1 (de) Bidirektionale elektromagnetische Stellvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010921

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REF Corresponds to:

Ref document number: 50001984

Country of ref document: DE

Date of ref document: 20030605

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1188222E

Country of ref document: IE

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070607

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070822

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070906

Year of fee payment: 8

Ref country code: GB

Payment date: 20070607

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070626

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070629

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080620

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080621