EP1185439B1 - Energieversorgungssystem für ein sicherheitsrelevantes brems- beziehungsweise lenk- system in einem kraftfahrzeug - Google Patents

Energieversorgungssystem für ein sicherheitsrelevantes brems- beziehungsweise lenk- system in einem kraftfahrzeug Download PDF

Info

Publication number
EP1185439B1
EP1185439B1 EP00947778A EP00947778A EP1185439B1 EP 1185439 B1 EP1185439 B1 EP 1185439B1 EP 00947778 A EP00947778 A EP 00947778A EP 00947778 A EP00947778 A EP 00947778A EP 1185439 B1 EP1185439 B1 EP 1185439B1
Authority
EP
European Patent Office
Prior art keywords
fuel cell
fuel
energy supply
energy
vehicle electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00947778A
Other languages
English (en)
French (fr)
Other versions
EP1185439A1 (de
Inventor
Michael DÖRICHT
Michael Eibl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1185439A1 publication Critical patent/EP1185439A1/de
Application granted granted Critical
Publication of EP1185439B1 publication Critical patent/EP1185439B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • B60T17/221Procedure or apparatus for checking or keeping in a correct functioning condition of brake systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/46The network being an on-board power network, i.e. within a vehicle for ICE-powered road vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings

Definitions

  • the invention relates to energy supply, in particular the emergency electrical supply, a safety-relevant, electrically operated braking or steering system in a motor vehicle.
  • Known electric brake systems have an electrically operated and electronically controlled actuator for generating the braking forces on each wheel brake, which is supplied by a central control unit with target values for the braking forces and then regulates these target values automatically.
  • the driver's deceleration request is detected by sensors on a pedal simulator.
  • the driver himself no longer has the option of applying braking forces via his muscular strength (DE 196 15 186 C1).
  • the use of electrical steering systems is also known in which there are adjusting devices for the steering angle of the wheels on all wheels or at least on the front axle.
  • the steering command coming from the driver is detected by sensors on the steering wheel.
  • setpoints for the actuating devices are determined, which they then set automatically.
  • the driver no longer has the opportunity to act directly on the wheels or steering devices.
  • the invention is based on the technical problem, electrical Energy supply systems for one electrically operated brake system and an electrically operated steering system in a motor vehicle to create that with little control effort at any time if the function of the vehicle electrical system is impaired a reliable electrical emergency supply of the safety-relevant System.
  • Fuel cells have long been known in the art. you The principle is based on an electrochemical cell consisting of two porous electrodes and one ion-conductive Electrolytes that connect the two electrodes electrically to each other connects fuel at the first electrode (anode) Form of hydrogen or hydrogen-containing carrier - for example methane or methanol - and on the second electrode (Cathode) oxidizing agent in the form of oxygen - For some fuel cell types, atmospheric oxygen is sufficient - or supply oxygen-containing carrier. In the fuel cell takes place under the catalytic effect of the electrodes a redox reaction takes place in which hydrogen and Oxygen water is generated.
  • Fuel and oxidant are stored in separate storage tanks - in the following also as a fuel tank or Oxidizer container designated - provided.
  • the energy content of the fuel cell system depends directly of the available fuel and oxidant quantities from.
  • the storage content of the storage container is therefore a direct one Measure of the removable electrical energy content of the system.
  • the determination of the "state of charge” is reduced thus on the determination of the storage contents of the storage containers.
  • a simple one is sufficient for liquid fuels Level determination, with gaseous fuels can Reliable pressure and temperature of the storage tank the memory contents are closed.
  • the fuel cell should not be recharged if it should after being used, the storage containers will be discharged simply replaced with new ones or replenished. Consequently there is no need for an expensive loading device.
  • a failure of the fuel cell system should be noticed immediately and not only when the on-board power supply is impaired.
  • a monitoring device is provided which continuously next to the fill level of the storage tank also the functionality of the fuel cell itself checked, and without using fuel.
  • An electric brake system 1 has four on the wheels of the Vehicle-mounted wheel brake devices 2.
  • Any wheel brake device 2 consists of a wheel brake actuator 3 and one associated electronic control device 4.
  • the actuators 3 are operated electrically and via the electronic Control devices 4 controlled.
  • a pedal simulator 5 sets Movements of a brake pedal 6, d. H. the one exercised by the driver Force and / or the pedal travel into electrical signals, which are fed to a control unit 7.
  • In the control unit 7 are setpoints for the Braking, especially for vehicle deceleration and braking torques to be applied are calculated.
  • the one from the control unit 7 calculated setpoints are via a communication system 8, e.g. via bidirectional data lines or a Bus system, to the control devices 4 of the wheel brake devices 2 transferred.
  • control devices send 4 via this communication system 8 feedback data, such as the actual values of the braking torques to the control unit 7.
  • the operating energy for electrical energy consumers in the system with trouble-free operation of the brake system 1 taken from an electrical system 9 of the vehicle.
  • a Distribution and safety circuit (VSS) 10 takes over the allocation of energy flows to the individual wheel brake devices 2 as well as a short-circuit protection and a Separation of the brake system 1 into two brake circuits.
  • the distribution and safety circuit (VSS) 10 is provided by the control unit 7 controlled.
  • a fuel cell system 11 is used as emergency energy supply intended. It consists of the actual fuel cell 12, containers 13 and 14 for fuel or oxidizing agent and a valve unit 15, which in the connecting lines between the containers 13 and 14 and the electrodes 16, 17 the fuel cell 12 is switched and has valves 18, 19, through which the fuel or oxidant supply is controlled to the fuel cell 12.
  • the fuel cell 12 consists of two porous electrodes - cathode 16 and Anode 17 - and an ion-conductive electrolyte 20, the the two electrodes 16, 17 are electrically conductive with one another combines.
  • the valve unit 15 is controlled electrically and is such that the valves 18, 19 when acted upon with an electrical voltage below one specified minimum permissible operating voltage of the safety-relevant Systems is open.
  • valves 18, 19 When applied with an electrical voltage greater than or equal to that permissible minimum operating voltage of the safety-relevant System is, the valves 18, 19 are closed against it.
  • the Valve unit 15 is directly from the electrical system 9 of the braking system 1 fed. The valve unit 15 will be used later 3 described in detail.
  • the cathode 16 of the fuel cell is connected to the ground line of the brake system 1, the anode 17 is connected via a Vehicle electrical system connection 21 connected to the vehicle electrical system 9.
  • Vehicle electrical system 9 and vehicle electrical system connection 21 are connected to Vehicle electrical system 9 and vehicle electrical system connection 21 .
  • a regenerative protection 22 - in the simplest case a diode - provided that prevents that from the fuel cell system 11 energy in one defective electrical system 9 is fed back.
  • a monitoring circuit 23 which of the Control unit 7 is controlled during the operation of the safety-relevant Continuous monitoring of the systems Fuel cell 12 and the contents of the container 13, 14 before.
  • the fuel cell 12 itself is monitored by a conductivity measurement of the electrolyte 20. If intact Supply lines, proper electrodes 16, 17 and functional Electrolyte 20 must be the total conductance in one specified range of values. If you leave this area, so is on a fault in the fuel cell 12 or in the supply lines, an error message is triggered and the control unit 7 brings the error to the driver, z. B. by activating a warning lamp, for display.
  • the operating voltage for the valve unit drops 15 below the permissible minimum operating voltage of the safety-relevant System.
  • the valves 18, 19 then return back to their rest position and the feed lines from the containers 13, 14 to the electrodes 16, 17 of the fuel cell 12 are released. This gets fuel and Oxidizing agent to the associated electrodes 17 and 16, a chemical redox reaction in which hydrogen and Oxygen water is generated, sets in and gives electrical Free energy for the operation of the brake system 1.
  • the valve unit 15 remains de-energized and thus the valves 18, 19 opened further. to Bridging the switching process are in the distribution and Safety circuit 10 capacitive short-term memory, not shown (Capacitors) are provided.
  • FIG. 2 shows an electric steering system 1 'as a further example for a safety-relevant system in a motor vehicle.
  • A is shown Steering system with steered front wheels.
  • Each steering device 24 consists of a Steering actuator 25, by which the steering forces are generated, and an electronic control device 26.
  • sensors for example for steering angle and steering torque, on the steering wheel 27 of the vehicle, the driver's request is recorded. Based the sensor signals are then transmitted from a control unit 28 Setpoints for the steering forces generated.
  • the rest of the system in particular the fuel cell system 11 corresponds to the system according to Fig. 1.
  • Supply lines are thick in Figures 1 and 2, signal lines thin and communication channels as thin double lines located.
  • valve unit 15 To control the fuel and oxidant supply serves the valve unit 15 with valves 18 and 19, which at Applying a voltage below the allowable Minimum operating voltage of the safety-relevant system is open, in particular in the de-energized state and when excited with a higher voltage conclude.
  • Piezoelectrically operated valves are advantageous According to the principle shown in Fig. 3, the one valve unit 15 shows in the de-energized state.
  • a valve block 30 receives valve pins 31 and a piezo element 32.
  • the Piezo element 32 is preferably constructed in a stacked construction, so that it is with the usual low voltages in the vehicle can be operated. It consists of several geometrical serially arranged, but electrically connected in parallel Individual piezoelectric elements.
  • valve seat elements are also in the valve block 30 33 introduced that the valve opening and Sealing surfaces for the valve pins 31 included.
  • the valve pins 31 are lifted from the seats by springs 34. whereby in the de-energized state inlet and outlet channels for the fuel and oxidizer are open. at Applying a voltage to the piezo element 32 expands it out.
  • the Valve pins 31 are then pressed down against the spring force and close the flow channels.
  • the piezo element 32 and the springs 34 are preferably designed so that the inlet and outlet channels for the fuel and the oxidizing agent are only completely closed when on the piezo element there is a voltage greater than or equal to that permissible minimum operating voltage of the safety-relevant System is.
  • valve unit 15 As an alternative to the described embodiment of the valve unit 15, it is also possible for each of the valves 18 and 19 for the fuel or oxidant supply via its own Control piezo element 32. Is atmospheric oxygen considered If the oxidizing agent is used, the valve unit 15 only the fuel valve 18 on. How it works remains basically unchanged.
  • valves For use in emergency care for safety-related Systems with fuel cells offer such valves considerable Benefits. Because the piezo elements of the valves directly on the on-board power supply of the safety-relevant system is connected the valves are in normal operation, i.e. at functioning electrical system always in the closed state, d. H. the fuel cell becomes no fuel - and possibly Oxidizing agent - supplied. The fuel cell is therefore not in operation and there is no stored energy taken. Is the on-board power supply impaired, so that the vehicle electrical system voltage below the permissible minimum operating voltage of the safety-relevant system falls, so the open Valves automatically, the fuel cell goes into operation and gives electrical energy for the safety-relevant system free. In this way, the electrical energy consumers in the system at least partially from the fuel cell system provided.
  • the electrical system is deliberately taken out of operation, e.g. B. by Disconnecting the vehicle battery for maintenance purposes can result in a Commissioning of the fuel cell system and thus consumption of fuel and possibly oxidizing agent be prevented that the storage container, advantageous via existing connection valves on such Containers. There is no partition for this the container from the supply lines to the fuel cell is necessary.
  • Piezo elements consume in the steady state but almost no electrical energy - They correspond to a charged capacitor. at best dielectric losses and leakage losses due to the low Conductivity of the piezo material occurs. However, they lie many powers of ten under the self-discharge of a vehicle battery, thus affect the discharge of the vehicle battery de facto not.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Power Engineering (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

Die Erfindung betrifft die Energieversorgung, insbesondere die elektrische Notversorgung, eines sicherheitsrelevanten, elektrisch betriebenen Brems- oder Lenksystems in einem Kraftfahrzeug.
Aufgrund vielfältiger Vorteile - vor allem was die universelle Regelbarkeit, den Umfang der möglichen Regelfunktionen, den Preis, das Gewicht und den Kraftstoffverbrauch sowie den Herstellungs- und Wartungsaufwand betrifft - setzen sich im Automobilbereich bei sicherheitsrelevanten Funktionen, wie Brems- und Lenkeingriffen, in zunehmendem Maße Systeme durch, die vollständig elektrisch betrieben und elektronisch geregelt werden. Bei derartigen Systemen ist die gesamte Energie für Regelung und Erzeugung der Stellkräfte elektrischer Natur. Ein direkter Eingriff vom Fahrer auf die Stelleinrichtungen ist nicht mehr möglich. Üben diese Stelleinrichtungen sicherheitsrelevante Aufgaben, wie Lenken und Bremsen, aus, kommt der Sicherstellung der elektrischen Energieversorgung für diese Systeme eine außerordentlich große Bedeutung zu.
Bekannte elektrische Bremsanlagen weisen an jeder Radbremse ein elektrisch betriebenes und elektronisch geregeltes Stellglied zur Erzeugung der Bremskräfte auf, das von einer zentralen Steuereinheit mit Sollwerten für die Bremskräfte versorgt wird und diese Sollwerte dann selbsttätig einregelt.
Der Verzögerungswunsch des Fahrers wird über Sensoren an einem Pedalsimulator erfaßt. Der Fahrer selbst hat keine Möglichkeit mehr, Bremskräfte über seine Muskelkraft aufzubringen (DE 196 15 186 C1). Weiterhin ist auch ein Einsatz elektrischer Lenkungen bekannt, bei denen sich an allen Rädern oder zumindest an der Vorderachse Stelleinrichtungen für den Lenkeinschlag der Räder befinden. Über Sensoren am Lenkrad wird der vom Fahrer kommende Lenkbefehl erfaßt. In einer Steuereinheit werden daraus Sollwerte für die Stelleinrichtungen ermittelt, die diese dann selbsttätig einstellen. Auch hier hat der Fahrer keine Möglichkeit mehr, direkt auf die Räder oder Lenkeinrichtungen einzuwirken.
Im Normalbetrieb werden derartige Systeme aus dem Fahrzeug-Bordnetz versorgt. Ist die Funktion des Bordnetzes aufgrund einer Fehlfunktion beeinträchtigt, so daß die Bordnetzspannung unter die Mindestbetriebsspannung des jeweiligen Systems absinkt oder sogar ganz ausfällt, so müssen die Systeme weiterhin betriebsfähig sein, um ihre sicherheitsrelevanten Aufgaben erfüllen zu können. Aus diesem Grund ist für diese Systeme eine elektrische Notversorgung vorzusehen.
Bisherige Lösungen stützen sich auf den Einbau zusätzlicher elektrischer Energiespeicher, wie Akkumulatoren. Diese Akkumulatoren werden während des Normalbetriebs aus dem Bordnetz des Fahrzeugs geladen. Ist die Funktion des Bordnetzes beeinträchtigt, veranlaßt eine Überwachungs- und Umschaltvorrichtung die Versorgung der sicherheitsrelevanten Systeme aus dem zusätzlichen Energiespeicher. Die heute verfügbaren elektrischen Energiespeicher in Form von Akkumulatoren weisen jedoch eine Reihe gewichtiger Nachteile auf.
Bei nicht belastetem Energiespeicher und fehlender Speisung aus dem Bordnetz entladen sich die Akkumulatoren nach einer gewissen Zeit selbständig. Obwohl die sicherheitsrelevanten Systeme bei abgestelltem Fahrzeug nicht in Betrieb sind und somit die Zusatzspeicher nicht belasten, nimmt die im Zusatzspeicher gespeicherte Energiemenge mit zunehmender Dauer kontinuierlich ab. Wird das Fahrzeug für längere Zeit abgestellt, so daß die Zusatzspeicher weitgehend entladen sind, muß bei einem anschließenden Start des Fahrzeugs erst eine ausreichende Ladung der Zusatzspeicher abgewartet werden, bevor das Fahrzeug den sicheren Parkzustand verlassen und sich in den Verkehr begeben kann. Würde das Fahrzeug andernfalls sofort vollständig in Betrieb genommen, bestünde das Risiko, für die Zeit des Nachladens mit nicht oder nur teilweise funktionstüchtigen Energiespeichern für die sicherheitsrelevanten Systeme zu fahren und im Falle eines Absinkens der Bordnetzspannung unter die Mindestbetriebsspannung des sicherheitsrelevanten Systems oder eines Bordnetzausfalls während dieser Zeitspanne keine oder nur unzureichende Betriebsenergie für diese Systeme bereitstellen zu können. Damit würde ein Ausfall dieser Systeme in Kauf genommen. Zum Ausgleich der Selbstentladung ist ein ständiges Nachladen der Speicher aus dem Bordnetz während des Fahrzeugbetriebs erforderlich, was eine entsprechende Vorrichtung zur Laderegelung erfordert. Außerdem muß die Ladung dem Zustand des Akkumulators angepaßt werden, da sowohl ein Unterladen wie auch ein Überladen sich schädlich auf die Lebensdauer und die Speicherkapazität des Akkumulators auswirkt. Dies bedingt eine entsprechend aufwendige Sensorik und Meßtechnik zum Erfassen des Ladezustands. Dennoch kann der Ladezustand selbst mit verhältnismäßig hohem Aufwand nur ziemlich ungenau ermittelt werden.
Herkömmliche Energiespeicher, insbesondere die heute standardmäßig im Fahrzeugbereich verwendeten Blei-Säure- oder Blei-Gel-Systeme, weisen ein erhebliches Gewicht auf, was sich nachteilig auf den Kraftstoffverbrauch des Fahrzeugs auswirkt.
Chemische Prozesse in den Akkumulatoren begründen einen Alterungsprozeß, d. h. auch bei Nichtbelastung des Speichers verringert sich seine Speicherkapazität kontinuierlich mit fortschreitender Gebrauchsdauer.
Die genannten Nachteile schränken den Gebrauchsnutzen derartiger Speicher für sicherheitsrelevante Systeme erheblich ein und führen aus dem Bestreben einer Minimierung von Sicherheitsrisiken heraus zu einer mehrfachen Überdimensionierung der Speicherkapazität mit entsprechend nachteiligem Auswirken auf Gewicht und Kosten.
Ein Energieversorgungssystem für elektrisch betriebene Systeme in kraftfahrzen mit Notenergieversorgung durch ein Brennstoffzellensystem ist aus der US 5 488 283 bekannt (nächstkommender Stand der Technik).
Der Erfindung liegt das technische Problem zugrunde, elektrische Energieversorgungssysteme für ein elektrisch betriebenes Bremssystem und ein elektrisch betriebenes Lenksystem in einem Kraftfahrzeug zu schaffen, die mit geringem regelungstechnischem Aufwand bei einer Beeinträchtigung der Funktion des Bordnetzes jederzeit eine zuverlässige elektrische Notversorgung des sicherheitsrelevanten Systems gewährleisten.
Dieses Problem wird durch ein Energieversorgungssystem mit den Merkmalen des Anspruchs 1 beziehungsweise 2 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen niedergelegt.
In der Technik sind Brennstoffzellen seit langem bekannt. Ihr Prinzip beruht darauf, einer elektrochemischen Zelle, bestehend aus zwei porösen Elektroden und einem ionenleitfähigen Elektrolyten, der die beiden Elektroden elektrisch miteinander verbindet, an der ersten Elektrode (Anode) Brennstoff in Form von Wasserstoff oder wasserstoffhaltigem Trägerstoff - beispielsweise Methan oder Methanol - und an der zweiten Elektrode (Kathode) Oxidationsmittel in Form von Sauerstoff - bei einigen Brennstoffzellenarten genügt Luftsauerstoff - oder sauerstoffhaltigem Trägerstoff zuzuführen. In der Brennstoffzelle findet unter der katalytischen Wirkung der Elektroden eine Redoxreaktion statt, bei der aus Wasserstoff und Sauerstoff Wasser erzeugt wird. Durch die räumliche Trennung der Reaktionspartner mittels des Elektrolyten unterbleibt die übliche Knallgasreaktion und die bei der Reaktion frei werdende Energie fällt als elektrische Energie und Wärmeenergie an. Dabei erreichen Brennstoffzellen sehr hohe Wirkungsgrade für die Umsetzung der chemischen Energie in elektrische Energie - übliche Wirkungsgrade liegen bei ca. 60%. Somit wird durch den Einsatz der Brennstoffzelle ein Gewichtsvorteil erzielt, da die nutzbaren Energiedichten bei Brennstoffzellen etwa zehnmal höher liegen als bei Blei-Säure- oder Blei-Gel-Systemen.
Brennstoff und Oxidationsmittel werden in getrennten Speicherbehältern - im folgenden auch als Brennstoffbehälter bzw. Oxidationsmittelbehälter bezeichnet - bereitgestellt. Der Energieinhalt des Brennstoffzellensystems hängt unmittelbar von den verfügbaren Brennstoff- und Oxidationsmittel-Mengen ab. Der Speicherinhalt der Speicherbehälter ist somit ein direktes Maß für den entnehmbaren elektrischen Energieinhalt des Systems. Die Bestimmung des "Ladezustands" reduziert sich damit auf die Bestimmung der Speicherinhalte der Speicherbehälter. Bei flüssigen Brennstoffen genügt dazu eine einfache Füllstandsermittlung, bei gasförmigen Brennstoffen kann aus Druck und Temperatur des Speicherbehälters zuverlässig auf den Speicherinhalt geschlossen werden.
Da die Brennstoffzelle nur dann chemische Energie in elektrische Energie umwandelt, wenn ihr Brennstoff und Oxidationsmittel zugeführt wird, läßt sich eine Selbstentladung auf einfache Weise dadurch vollständig unterbinden, daß bei Nichtbenutzung der Zelle die Zufuhr von Brennstoff und Oxidationsmittel zu den Elektroden über geeignete Ventile unterbrochen wird. Somit bleibt der nutzbare Energieinhalt auch bei sehr langen Stillstandszeiten unverändert erhalten. Wird Luftsauerstoff als Oxidationsmittel eingesetzt, ist eine Unterbrechung der Brennstoffzufuhr ausreichend.
Ein Nachladen der Brennstoffzelle erfolgt nicht, sollte sie nach Inanspruchnahme entladen sein, werden die Speicherbehälter einfach durch neue ersetzt oder wieder aufgefüllt. Somit entfällt eine aufwendige Ladevorrichtung.
Ein Ausfall des Brennstoffzellensystems soll sofort bemerkt werden und nicht erst bei einer Beeinträchtigung der Bordnetzversorgung. Dazu ist eine Überwachungsvorrichtung vorgesehen, die fortlaufend neben dem Füllstand der Speicherbehälter auch die Funktionstüchtigkeit der Brennstoffzelle selbst überprüft, und zwar ohne dafür Brennstoff zu verbrauchen.
Ausführungsbeispiele der Erfindung werden im folgenden anhand der Figuren erläutert. Es zeigen:
Figur 1
eine schematische Darstellung eines elektrisch betriebenen Bremssystems
Figur 2
eine schematische Darstellung eines elektrisch betriebenen Lenksystems und
Figur 3
eine schematische Darstellung einer piezoelektrisch betriebenen Ventileinheit.
Ein elektrisches Bremssystem 1 weist vier an den Rädern des Fahrzeugs angebrachte Radbremseinrichtungen 2 auf. Jede Radbremseinrichtung 2 besteht aus einem Radbremsaktor 3 und einer zugehörigen elektronischen Regeleinrichtung 4. Die Aktoren 3 werden elektrisch betrieben und über die elektronischen Regeleinrichtungen 4 gesteuert. Ein Pedalsimulator 5 setzt Bewegungen eines Bremspedals 6, d. h. die von dem Fahrer ausgeübte Kraft und/oder den Pedalweg in elektrische Signale um, die einer Steuereinheit 7 zugeführt werden. In der Steuereinheit 7 werden auf Basis dieser Signale Sollwerte für die Bremsen, insbesondere für die Fahrzeugverzögerung und die aufzubringenden Bremsmomente berechnet. Die von der Steuereinheit 7 berechneten Sollwerte werden über ein Kommunikationssystem 8, z.B. über bidirektionale Datenleitungen oder ein Bus-System, an die Regeleinrichtungen 4 der Radbremseinrichtungen 2 übertragen. Umgekehrt senden die Regeleinrichtungen 4 über dieses Kommunikationssystem 8 Rückmeldedaten, wie beispielsweise die Istwerte der Bremsmomente an die Steuereinheit 7. Die Betriebsenergie für die elektrischen Energieverbraucher im System wird bei störungsfreiem Betrieb des Bremssystems 1 aus einem Bordnetz 9 des Fahrzeugs entnommen. Eine Verteilungs- und Sicherheitsschaltung (VSS) 10 übernimmt dabei die Zuteilung der Energieströme zu den einzelnen Radbremseinrichtungen 2 sowie eine Kurzschlußabsicherung und eine Trennung des Bremssystems 1 in zwei Bremskreise. Die Verteilungs- und Sicherheitsschaltung (VSS) 10 wird von der Steuereinheit 7 gesteuert.
Als Notenergieversorgung ist ein Brennstoffzellensystem 11 vorgesehen. Es besteht aus der eigentlichen Brennstoffzelle 12, Behältern 13 und 14 für Brennstoff bzw. Oxidationsmittel und einer Ventileinheit 15, die in die Verbindungsleitungen zwischen den Behältern 13 und 14 und den Elektroden 16, 17 der Brennstoffzelle 12 geschaltet ist und Ventile 18, 19 aufweist, durch die die Brennstoff- bzw. Oxidationsmittelzufuhr zur Brennstoffzelle 12 gesteuert wird. Die Brennstoffzelle 12 besteht dabei aus zwei porösen Elektroden - Kathode 16 und Anode 17 - und einem ionenleitfähigen Elektrolyten 20, der die beiden Elektroden 16, 17 elektrisch leitend miteinander verbindet. Die Ventileinheit 15 wird elektrisch angesteuert und ist so beschaffen, daß die Ventile 18, 19 bei Beaufschlagung mit einer elektrischen Spannung, die unterhalb einer vorgegebenen zulässigen Mindestbetriebsspannung des sicherheitsrelevanten Systems liegt, offen sind. Bei Beaufschlagung mit einer elektrischen Spannung, die größer oder gleich der zulässigen Mindestbetriebsspannung des sicherheitsrelevanten Systems ist, sind die Ventile 18, 19 dagegen geschlossen. Die Ventileinheit 15 wird direkt aus dem Bordnetz 9 des Bremssystems 1 gespeist. Die Ventileinheit 15 wird später unter Zuhilfenahme von Fig. 3 noch detailliert beschrieben.
Die Kathode 16 der Brennstoffzelle ist mit der Masseleitung des Bremssystems 1 verbunden, die Anode 17 ist über einen Bordnetzanschluß 21 mit dem Bordnetz 9 verbunden. Zwischen Bordnetz 9 und Bordnetzanschluß 21 ist ein Rückspeiseschutz 22 - im einfachsten Fall eine Diode - vorgesehen, der verhindert, daß aus dem Brennstoffzellensystem 11 Energie in ein schadhaftes Bordnetz 9 zurückgespeist wird.
Weiterhin nimmt eine Überwachungsschaltung 23, die von der Steuereinheit 7 gesteuert wird, während des Betriebs des sicherheitsrelevanten Systems eine fortlaufende Überwachung der Brennstoffzelle 12 und des Inhalts der Behälter 13, 14 vor. Die Überwachung der Brennstoffzelle 12 selbst erfolgt durch eine Leitfähigkeitsmessung des Elektrolyten 20. Bei intakten Zuleitungen, ordnungsgemäßen Elektroden 16, 17 und funktionstüchtigem Elektrolyten 20 muß der Gesamtleitwert in einem vorgegebenen Wertebereich liegen. Wird dieser Bereich verlassen, so ist auf einen Fehler in der Brennstoffzelle 12 oder in den Zuleitungen zu schließen, eine Fehlermeldung wird ausgelöst und die Steuereinheit 7 bringt den Fehler dem Fahrer, z. B. über das Aktivieren einer Warnlampe, zur Anzeige.
Die Überwachung des Inhalts von Brennstoff- und Oxidationsmittelbehälter 13 bzw. 14 erfolgt bei flüssigen Stoffen unmittelbar durch eine Füllstandsmessung, bei gasförmigen Stoffen indirekt über eine Druck- und Temperaturmessung. Wird ein bestimmter Speicherinhalt unterschritten, wird eine Warnmeldung ausgelöst, die dem Fahrer durch die Steuereinheit 7 zur Anzeige gebracht wird. Dabei wird die Brennstoffzelle 12 im Falle eines intakten Bordnetzes 9 völlig ohne Verbrauch an Brennstoff überwacht. Die notwendige elektrische Energie für den Betrieb der Leitfähigkeitsmessung und der Füllstandsoder Druck- und Temperatur-Sensoren in den Behältern 13, 14 wird unmittelbar aus dem Bordnetz 9 entnommen. Befindet sich das Fahrzeug in einem sicheren Zustand, z. B. abgestelltes Fahrzeug, wird das sicherheitsrelevante System außer Betrieb gesetzt und es findet keine Überwachung der Brennstoffzelle 12 und der Inhalte der Speicherbehälter 13, 14 statt.
Ist die Funktion des Bordnetzes 9 aufgrund einer Fehlfunktion beeinträchtigt, fällt die Betriebsspannung für die Ventileinheit 15 unter die zulässige Mindestbetriebsspannung des sicherheitsrelevanten Systems. Die Ventile 18, 19 kehren daraufhin in ihre Ruhestellung zurück und die Zuleitungen von den Behältern 13, 14 zu den Elektroden 16, 17 der Brennstoffzelle 12 werden freigegeben. Dadurch gelangen Brennstoff und Oxidationsmittel an die zugehörigen Elektroden 17 bzw. 16, eine chemische Redoxreaktion, bei der aus Wasserstoff und Sauerstoff Wasser erzeugt wird, setzt ein und gibt elektrische Energie für den Betrieb des Bremssystems 1 frei. Wegen des Rückspeiseschutzes 22, der einen Energieeintrag in das schadhafte Bordnetz 9 verhindert, bleibt die Ventileinheit 15 stromlos und somit die Ventile 18, 19 weiter geöffnet. Zur Überbrückung des Umschaltprozesses sind in der Verteiler- und Sicherheitsschaltung 10 nicht dargestellte kapazitive Kurzzeitspeicher (Kondensatoren) vorgesehen.
Wird eine Brennstoffzelle eingesetzt, die mit Luftsauerstoff als Oxidationsmittel betrieben wird, ist aufgrund der nahezu unbegrenzten Verfügbarkeit des Oxidationsmittels weder ein Oxidationsmittelbehälter 14 noch ein eigenes Ventil 19 für das Oxidationsmittel erforderlich. Die Ventileinheit 15 weist dann lediglich das Brennstoffventil 18 auf und die verfügbare Energiemenge ist unmittelbar vom Füllstand des Brennstoffbehälters 13 abhängig.
Fig. 2 zeigt ein elektrisches Lenksystem 1' als weiteres Beispiel für ein sicherheitsrelevantes System in einem Kraftfahrzeug. Dabei sind einzelne Komponenten, so weit sie funktionell mit den Teilen der Figur 1 übereinstimmen, durch dieselben Bezugszeichen gekennzeichnet. Dargestellt ist ein Lenksystem mit gelenkten Vorderrädern. Für jedes gelenkte Rad gibt es eine elektrisch betriebene und elektronisch geregelte Lenkeinrichtung 24. Jede Lenkeinrichtung 24 besteht aus einem Lenkaktor 25, durch den die Lenkkräfte erzeugt werden, und einer elektronischen Regeleinrichtung 26. Mit Hilfe von Sensoren, beispielsweise für Lenkwinkel und Lenkmoment, am Lenkrad 27 des Fahrzeugs wird der Fahrerwunsch erfaßt. Auf Basis der Sensorsignale werden dann von einer Steuereinheit 28 Sollwerte für die Lenkkräfte erzeugt. Der Rest des Systems, insbesondere das Brennstoffzellensystem 11 entspricht dem System nach Fig. 1.
Versorgungsleitungen sind in den Figuren 1 und 2 dick, Signalleitungen dünn und Kommunikationskanäle als dünne Doppellinien eingezeichnet.
Zur Steuerung der Brennstoff- und Oxidationsmittelzufuhr dient die Ventileinheit 15 mit Ventilen 18 und 19, welche bei Beaufschlagung mit einer Spannung, die unterhalb der zulässigen Mindestbetriebsspannung des sicherheitsrelevanten Systems liegt, also insbesondere im stromlosen Zustand, geöffnet sind und bei Erregung mit einer höheren elektrischen Spannung schließen. Vorteilhaft sind piezoelektrisch betriebene Ventile nach dem in Fig. 3 dargestellten Prinzip, das eine Ventileinheit 15 im spannungslosen Zustand zeigt. Ein Ventilblock 30 nimmt Ventilstifte 31 und ein Piezoelement 32 auf. Das Piezoelement 32 ist dabei vorzugsweise in Stapelbauweise aufgebaut, damit es mit den im Fahrzeug üblichen Niederspannungen betrieben werden kann. Es besteht aus mehreren geometrisch seriell angeordneten, aber elektrisch parallel geschalteten Piezoeinzelelementen. Durch diese Anordnung bleibt die Betriebsspannung gering und die geometrischen Ausdehnungen der Einzelelemente bei Anlegen der Betriebsspannung addieren sich zu der Gesamtausdehnung des Stapel-Piezoelements 32. Die genaue Funktionsweise von Piezoelementen in Stapelbauweise sind an sich bekannt und deshalb hier nicht näher beschrieben . In den Ventilblock 30 sind weiterhin Ventilsitzelemente 33 eingebracht, die die Ventilöffnung und die Dichtflächen für die Ventilstifte 31 enthalten. Die Ventilstifte 31 werden durch Federn 34 von den Sitzen abgehoben. wodurch im spannungslosen Zustand Ein- und Auslaßkanäle für den Brennstoff und das Oxidationsmittel geöffnet sind. Bei Anlegen einer Spannung an das Piezoelement 32 dehnt sich dieses aus. Über einen Hebelmechanismus 35, welcher die kleinen Auslenkungen des Piezoelements 32 vervielfacht, werden die Ventilstifte 31 dann entgegen der Federkraft nach unten gedrückt und schließen die Strömungskanäle. Das Piezoelement 32 und die Federn 34 sind dabei vorzugsweise so ausgelegt, daß die Ein- und Auslaßkanäle für den Brennstoff und das Oxidationsmittel nur dann vollständig geschlossen sind, wenn am Piezoelement eine Spannung anliegt, die größer oder gleich der zulässigen Mindestbetriebsspannung des sicherheitsrelevanten Systems ist.
Alternativ zu der beschriebenen Ausführungsform der Ventileinheit 15 ist es auch möglich, jedes der Ventile 18 und 19 für die Brennstoff- bzw. Oxidationsmittelzufuhr über ein eigenes Piezoelement 32 zu steuern. Wird Luftsauerstoff als Oxidationsmittel eingesetzt, so weist die Ventileinheit 15 lediglich das Brennstoffventil 18 auf. Die Funktionsweise bleibt aber grundsätzlich unverändert.
Für den Einsatz in der Notversorgung für sicherheitsrelevante Systeme mit Brennstoffzellen bieten derartige Ventile erhebliche Vorteile. Da die Piezoelemente der Ventile direkt an die Bordnetzversorgung des sicherheitsrelevanten Systems angeschlossen sind, sind die Ventile im Normalbetrieb, also bei funktionierendem Bordnetz stets im geschlossenen Zustand, d. h. der Brennstoffzelle wird kein Brennstoff - und gegebenenfalls Oxidationsmittel - zugeführt. Die Brennstoffzelle ist somit nicht in Betrieb und es wird keine gespeicherte Energie entnommen. Ist die Bordneizversorgung beeinträchtigt, so daß die Bordnetzspannung unter die zulässige Mindestbetriebsspannung des sicherheitsrelevanten Systems fällt, so öffnen die Ventile automatisch, die Brennstoffzelle geht in Betrieb und gibt elektrische Energie für das sicherheitsrelevante System frei. Auf diese Weise werden die elektrischen Energieverbraucher im System zumindest teilweise aus dem Brennstoffzellensystem versorgt.
Wird das Bordnetz bewußt außer Betrieb gesetzt, z. B. durch Abklemmen der Fahrzeugbatterie zu Wartungszwecken, kann eine Inbetriebnahme des Brennstoffzellensystems und damit ein Verbrauch an Brennstoff und gegebenenfalls Oxidationsmittel dadurch verhindert werden, daß die Speicherbehälter, vorteilhaft über ohnehin vorhandene Anschlußventile an derartigen Behältern, verschlossen werden. Hierzu ist keine Abtrennung der Behälter von den Zuleitungen zur Brennstoffzelle notwendig.
Bei abgestelltem Fahrzeug wird die Betriebsenergie für die Ventile dem Bordnetz entnommen. Piezoelemente verbrauchen im stationären Zustand aber so gut wie keine elektrische Energie - sie entsprechen einem aufgeladenen Kondensator. Allenfalls dielektrische Verluste und Ableitverluste durch die geringe Leitfähigkeit des Piezomaterials fallen an. Sie liegen jedoch um viele Zehnerpotenzen unter der Selbstentladung einer Fahrzeugbatterie, beeinflussen also die Entladung der Fahrzeugbatterie de facto nicht.

Claims (11)

  1. Energieversorgungssystem für ein elektrisch betriebenes sicherheitsrelevantes Bremssystem (1) in einem Kraftfahrzeug, bei dem elektrische Energieverbraucher (2, 24) des Bremssystems (1) im Normalbetrieb über ein Bordnetz (9) und bei Beeinträchtigung der Funktion des Bordnetzes (9) zumindest teilweise über eine Notenergieversorgung, die als Brennstoffzellensystem (11) ausgebildet ist, mit Energie versorgt werden, dadurch gekennzeichnet, daß das Brennstoffzellensystem (11) eine Brennstoffzelle (12) aufweist, die bei funktionierendem Bordnetz außer Betrieb ist und automatisch in Betrieb geht, wenn die Bordnetzversorgung beeinträchtigt ist.
  2. Energieversorgungssystem für ein elektrisch betriebenes sicherheitsrelevantes Lenksystem (1) in einem Kraftfahrzeug, bei dem elektrische Energieverbraucher (2, 24) des Lenksystems (1) im Normalbetrieb über ein Bordnetz (9) und bei Beeinträchtigung der Funktion des Bordnetzes (9) zumindest teilweise über eine Notenergieversorgung, die als Brennstoffzellensystem (11) ausgebildet ist, mit Energie versorgt werden, dadurch gekennzeichnet, daß das Brennstoffzellensystem (11) eine Brennstoffzelle (12) aufweist, die bei funktionierendem Bordnetz außer Betrieb ist und automatisch in Betrieb geht, wenn die Bordnetzversorgung beeinträchtigt ist.
  3. Energieversorgungssytem nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Brennstoffzellensystem (11) aufweist
    einen Brennstoffbehälter (13) zum Speichern von Brennstoff
    einen Oxidationsmittelbehälter (14) zum Speichern von Oxidationsmittel,
    eine Brennstoffzelle (12) zum Erzeugen von Energie aufgrund einer chemischen Reaktion zwischen dem Brennstoff und dem Oxidationsmittel und
    eine steuerbare Ventileinheit (15) mit einem Brennstoffventil (18) zum Steuern der Brennstoffzufuhr und einem Oxidationsmittelventil (19) zum Steuern der Oxidationsmittelzufuhr zur Brennstoffzelle (12).
  4. Energieversorgungssystem nach Anspruch 1 oder 2, dadurch gekenn zeichnet, daß das Brennstoffzellensystem (11) aufweist
    einen Brennstoffbehälter (13) zum Speichern von Brennstoff
    eine Brennstoffzelle (12) zum Erzeugen von Energie aufgrund einer chemischen Reaktion zwischen dem Brennstoff und einem Oxidationsmittel, wobei als Oxidationsmittel Luftsauerstoff dient, und
    eine steuerbare Ventileinheit (15) mit einem Brennstoffventil (18) zum Steuern der Brennstoffzufuhr zur Brennstoffzelle (12).
  5. Energieversorgungssystem nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß die Brennstoffzelle (12) aufweist
    eine Kathode (16), die mit der Masseleitung des sicherheitsrelevanten Systems (1, 1') verbunden ist,
    eine Anode (17), die über einen Bordnetzanschluß (21) an das Bordnetz (9) angeschlossen ist, und
    einen Elektrolyten (20), der Kathode (16) und Anode (17) elektrisch leitend miteinander verbindet.
  6. Energieversorgungssystem nach Anspruch 5, dadurch gekennzeichnet, daß zwischen das Bordnetz (9) und den Bordnetzanschluß (21) ein Rückspeiseschutz (22) geschaltet ist.
  7. Energieversorgungssystem nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, daß die Ventile (18, 19) der Ventileinheit (15) im stromlosen Zustand geöffnet sind.
  8. Energieversorgungssystem nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, daß die Ventileinheit (15) piezoelektrisch betrieben wird.
  9. Energieversorgungssystem nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, daß es eine Überwachungsschaltung (23) aufweist, durch die die Brennstoffzelle (12) und/oder die Speicherbehälter (13, 14) während des Betriebs des sicherheitsrelevanten Systems fortlaufend überwacht werden.
  10. Energieversorgungssystem nach Anspruch 9, dadurch gekennzeichnet, daß durch die Überwachungsschaltung (23)
    die Leitfähigkeit des Elektrolyten (20) der Brennstoffzelle (12) gemessen wird,
    der Leitwert mit einem vorgegebenen Wertebereich verglichen wird und
    bei Leitwerten außerhalb des Wertebereichs auf einen Fehler in der Brennstoffzelle (12) geschlossen wird und eine Fehlermeldung ausgelöst wird.
  11. Energieversorgungssystem nach Anspruch 9, dadurch gekennzeichnet, daß durch die Überwachungsschaltung (23)
    der Speicherinhalt der Speicherbehälter (13, 14) abhängig von
    einer Füllstandsmessung bei flüssigen Brennstoffen oder Oxidationsmitteln oder
    einer Druck- und Temperaturmessung bei gasförmigen Brennstoffen oder Oxidationsmitteln
    bestimmt wird,
    der Speicherinhalt mit einem vorgegebenen Grenzwert verglichen wird und
    bei Unterschreiten des Grenzwertes eine Warnmeldung ausgelöst wird.
EP00947778A 1999-06-10 2000-06-05 Energieversorgungssystem für ein sicherheitsrelevantes brems- beziehungsweise lenk- system in einem kraftfahrzeug Expired - Lifetime EP1185439B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19926495A DE19926495C2 (de) 1999-06-10 1999-06-10 Energieversorgungssystem für sicherheitsrelevante Systeme in einem Kraftfahrzeug
DE19926495 1999-06-10
PCT/DE2000/001820 WO2000076810A1 (de) 1999-06-10 2000-06-05 Energieversorgungssystem für sicherheitsrelevante systeme in einem kraftfahrzeug

Publications (2)

Publication Number Publication Date
EP1185439A1 EP1185439A1 (de) 2002-03-13
EP1185439B1 true EP1185439B1 (de) 2004-02-11

Family

ID=7910807

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00947778A Expired - Lifetime EP1185439B1 (de) 1999-06-10 2000-06-05 Energieversorgungssystem für ein sicherheitsrelevantes brems- beziehungsweise lenk- system in einem kraftfahrzeug

Country Status (3)

Country Link
EP (1) EP1185439B1 (de)
DE (2) DE19926495C2 (de)
WO (1) WO2000076810A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103359015A (zh) * 2012-03-30 2013-10-23 瓦尔达微电池有限责任公司 机动车辆的应急系统
WO2024055351A1 (zh) * 2022-09-14 2024-03-21 浙江万安科技股份有限公司 车辆供电系统及其控制方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10111234A1 (de) 2001-03-08 2002-09-26 Still Gmbh Vorrichtung und Verfahren zur Sicherstellung der Lenkbarkeit eines Flurförderzeugs
DE10133580A1 (de) * 2001-07-11 2003-01-30 P21 Gmbh Elektrisches System
JP4154883B2 (ja) 2001-11-01 2008-09-24 株式会社日立製作所 ブレーキ装置
DE10350550A1 (de) 2003-10-29 2005-06-02 Robert Bosch Gmbh Fahrzeug mit einem Verbrennungsmotor und einer Brennstoffzellenanlage
EP1817217A1 (de) * 2004-11-29 2007-08-15 Siemens Aktiengesellschaft Elektromechanische bremsanlage
DE102005004426A1 (de) * 2005-01-31 2006-08-10 P21 - Power For The 21St Century Gmbh Brennstoffzellensystem mit Druckluftbetrieb
DE102009047072A1 (de) * 2009-11-24 2011-06-16 Robert Bosch Gmbh Elektrisches Bremssystem, insbesondere elektromechanisches Bremssystem
DE102018210538A1 (de) * 2018-06-28 2020-01-02 Robert Bosch Gmbh Hydraulisches Bremssystem für ein Fahrzeug mit mindestens zwei Achsen
CN110194134A (zh) * 2019-05-21 2019-09-03 西安翔迅科技有限责任公司 多厢连挂无轨电车制动系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19615186C1 (de) * 1996-04-17 1997-08-21 Siemens Ag Bremsanlage für ein Kraftfahrzeug

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3022802C2 (de) * 1980-06-19 1982-11-11 Deutsche Forschungs- Und Versuchsanstalt Fuer Luft- Und Raumfahrt E.V., 5300 Bonn Vorrichtung zum Speichern von flüssigem Wasserstoff
DE3502100C2 (de) * 1985-01-23 1996-04-11 Wabco Gmbh Druckmittelbremsanlage für Kraftfahrzeuge
US5047298A (en) * 1990-11-13 1991-09-10 Perry Oceanographics, Inc. Closed loop reactant/product management system for electrochemical galvanic energy devices
DE4322765C1 (de) * 1993-07-08 1994-06-16 Daimler Benz Ag Verfahren und Vorrichtung zur dynamischen Leistungsregelung für ein Fahrzeug mit Brennstoffzelle
US5488283A (en) * 1993-09-28 1996-01-30 Globe-Union, Inc. Vehicle battery system providing battery back-up and opportunity charging
DE19523109C2 (de) * 1995-06-26 2001-10-11 Daimler Chrysler Ag Kraftfahrzeug mit Brennkraftmaschine und einem Stromerzeugungssystem
DE19732229A1 (de) * 1996-09-19 1998-03-26 Bosch Gmbh Robert Vorrichtung und Verfahren zur Steuerung des Anstriebsstrangs eines Kraftfahrzeugs
DE19703171A1 (de) * 1997-01-29 1998-08-06 Bayerische Motoren Werke Ag Fahrzeug mit einem Antriebs-Verbrennungsmotor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19615186C1 (de) * 1996-04-17 1997-08-21 Siemens Ag Bremsanlage für ein Kraftfahrzeug

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103359015A (zh) * 2012-03-30 2013-10-23 瓦尔达微电池有限责任公司 机动车辆的应急系统
WO2024055351A1 (zh) * 2022-09-14 2024-03-21 浙江万安科技股份有限公司 车辆供电系统及其控制方法

Also Published As

Publication number Publication date
WO2000076810A1 (de) 2000-12-21
DE19926495A1 (de) 2000-12-21
DE50005264D1 (de) 2004-03-18
DE19926495C2 (de) 2002-06-20
EP1185439A1 (de) 2002-03-13

Similar Documents

Publication Publication Date Title
DE102013204632B4 (de) Beweglicher Körper
DE112008000096B4 (de) Brennstoffzellensystem und Steuerverfahren für ein Brennstoffzellensystem
DE10305357B4 (de) Vorrichtung zur Energieversorgung eines mit sicherheitsrelevanten Komponenten ausgestatteten Zweispannungs-Bordnetzes
DE102005042772B4 (de) Brennstoffzellensystem und Verfahren zur Abschaltung eines Brennstoffzellensystems
DE112007002405B4 (de) Verfahren zum Ausspülen von Wasser aus einem Brennstoffzellensystem
DE102013204633B4 (de) Beweglicher Körper
EP1185439B1 (de) Energieversorgungssystem für ein sicherheitsrelevantes brems- beziehungsweise lenk- system in einem kraftfahrzeug
DE19954306A1 (de) Vorrichtung zur elektrischen Energieerzeugnung mit einer Brennstoffzelle in einem Fahrzeug und Verfahren zum Betrieb einer derartigen Vorrichtung
DE112010002074T5 (de) Brennstoffzellensystem und Verfahren zum Steuern eines Brennstoffzellensystems
WO2010128066A2 (de) System zum speichern von energie
WO2010088944A9 (de) Energiespeicheranordnung und verfahren zum betrieb einer derartigen anordnung
WO2013092064A2 (de) Batteriesystem und verfahren
DE112006003266T5 (de) Brennstoffzellensystem
DE102020202468A1 (de) Verfahren zum Betrieb eines Bordnetzes für ein Elektrofahrzeug sowie Elektrofahrzeug
DE112009005108B4 (de) Brennstoffzellensystem
DE112011105797T5 (de) Ausgabesteuervorrichtung für eine Brennstoffzelle
DE19758289A1 (de) Energieversorgung einer elektrischen Feststellbremse für Kraftfahrzeuge
DE102012022646A1 (de) Stromversorgungssystem und Antriebssystem für ein elektrisch betriebenes Fahrzeug sowie Verfahren zum Betreiben eines elektrisch betriebenen Fahrzeugs
DE102010023049A1 (de) Intelligentes Batterie Baukasten System
DE102018216316A1 (de) Elektrochemisches Batteriesystem
EP1511665B1 (de) Dynamischer, sicherheitsrelevanter hochstromverbraucher in einem kraftfahrzeugbordnetz
DE112008000310B4 (de) Brennstoffzellensystem, das eine Ablaufsteuerung der Gegenmaßnahme bei niedrigen Temperaturen ausführen kann
DE102004001424B4 (de) Brennstoffzellenanlage mit einer Kontrolleinheit
DE112012006334B4 (de) Brennstoffzellensystem
DE19827455C2 (de) Bremsanlage für ein Kraftfahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011121

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20021018

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: ENERGY SUPPLY SYSTEM FOR A SAFETY CRITICAL BRAKE- OR STEERING-SYSTEM IN A MOTOR VEHICLE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50005264

Country of ref document: DE

Date of ref document: 20040318

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050101

26N No opposition filed

Effective date: 20041112

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130703

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630