EP1181531A1 - Verfahren und anordnung zur messung des brennwertes und/oder des wobbeindexes von brenngas, insbesondere von erdgas - Google Patents
Verfahren und anordnung zur messung des brennwertes und/oder des wobbeindexes von brenngas, insbesondere von erdgasInfo
- Publication number
- EP1181531A1 EP1181531A1 EP00910660A EP00910660A EP1181531A1 EP 1181531 A1 EP1181531 A1 EP 1181531A1 EP 00910660 A EP00910660 A EP 00910660A EP 00910660 A EP00910660 A EP 00910660A EP 1181531 A1 EP1181531 A1 EP 1181531A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- measuring
- calorific value
- arrangement
- fuel gas
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 62
- 239000003345 natural gas Substances 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims abstract description 22
- 239000007789 gas Substances 0.000 title abstract description 31
- 230000005855 radiation Effects 0.000 claims abstract description 33
- 238000011156 evaluation Methods 0.000 claims abstract description 9
- 239000002737 fuel gas Substances 0.000 claims description 28
- 238000005259 measurement Methods 0.000 claims description 20
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 10
- 238000000862 absorption spectrum Methods 0.000 claims description 6
- 150000002430 hydrocarbons Chemical class 0.000 claims description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 5
- 239000001569 carbon dioxide Substances 0.000 claims description 5
- 229930195733 hydrocarbon Natural products 0.000 claims description 5
- 230000003287 optical effect Effects 0.000 claims description 4
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 239000000203 mixture Substances 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 4
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000000446 fuel Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3504—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/22—Fuels; Explosives
- G01N33/225—Gaseous fuels, e.g. natural gas
Definitions
- the invention relates to a method and an arrangement for measuring the calorific value and / or the Wobbe index of fuel gas, in particular natural gas, according to the preamble of the independent claims.
- the calorific value of natural gas must be measured for billing purposes when it is handed over from the supplier to the customer.
- the calorific value is determined in practice by means of gas chromatographs or calorimeters. With gas meters, especially turbine meters, the volume flow is measured and the amount of energy for billing is determined.
- the volume flow of natural gas is usually measured using diaphragm gas meters.
- the amount of energy is determined from the volume flow and an average calorific value to be recorded separately for the supply area.
- a direct energy measurement in the household has so far not been technically feasible.
- the calorific value can be the molar, the mass-related or the volume-related calorific value.
- the Wobbe index is the quotient of the volume-related calorific value and the square root of the relative density of the gas.
- the Wobbe index is used in industry to regulate or keep the amount of energy supplied to gas appliances. A simple combustion-free measuring method for such purposes has not been available to date.
- the known combustion-free methods for measuring the calorific value or the Wobbe index include indirect and correlative methods.
- the gas composition is analyzed.
- the calorific value of the fuel gas can then be determined from the composition of the gas using the calorific values for the pure substances.
- a method for infrared absorption is known from DE-A-19650302. It is used to determine the methane number of natural gases. If the methane number is known, the undesired knocking of piston engines powered by natural gas can be avoided by taking appropriate measures.
- the fuel gas is exposed to infrared radiation. The proportion of infrared radiation absorbed by the gas mixture is measured by means of a radiation detector and the methane number of the fuel gas is determined from this.
- the methane number is determined by means of an optical filter which captures a section of the absorption spectrum, in which the hydrocarbons contribute to the absorption in a weighting which is approximately proportional to the methane number of the natural gas.
- the method can be put into practice relatively simply because, on the one hand, the components of the corresponding infrared sensors are inexpensively available on the market and, on the other hand, the infrared detectors deliver a very precise measurement signal and have good practical suitability. It was not technically possible to determine the calorific value of natural gases by means of infrared absorption using the previously known methods.
- the various natural gases can also contain nitrogen.
- the infrared signal is very sensitive to the hydrocarbon and carbon dioxide components, but not to the nitrogen component. This leads to unacceptable measurement inaccuracies; because the nitrogen content in natural gas is subject to large fluctuations and has a major influence on the calorific value.
- the object of the invention is accordingly to provide a method for the combustion-free measurement of the calorific value and / or the Wobbe index of a fuel gas which, on the one hand, can be easily implemented and, on the other hand, offers sufficient accuracy, in particular for control purposes and household billing.
- Another object of the invention is to provide a simple and practical arrangement for measuring the calorific value and / or the Wobbe index.
- the invention is based on the knowledge that in addition to the infrared signal, a further characteristic input variable is required for the unambiguous determination of the calorific value or the Wobbe index of fuel gas, in particular natural gas.
- a sensitivity test showed that the infrared absorption in connection with either the speed of sound or the density of the fuel gas represents a particularly favorable combination for determining the calorific value, because with nitrogen-containing fuel gases both the density and the speed of sound are sufficiently sensitive to the nitrogen content.
- the speed of sound can be derived directly from the ultrasonic signal of an ultrasonic gas meter.
- Ultrasonic gas meters are increasingly used for volume flow measurement both in large gas measurement and in the home.
- the speed of sound can also be determined with a measuring device specially developed for this purpose.
- a particular advantage of the speed of sound compared to the density as an input variable for calorific value determination is the much weaker dependence of the speed of sound on the gas temperature or gas pressure. At low gas pressures, e.g. B. less than 5 bar, a pressure measurement is not required when measuring the speed of sound.
- the gas temperature can be specified as an average.
- the density is used as an input variable, it is advantageous if, in step a), the temperature and / or the pressure of the fuel gas is additionally measured or specified as an average.
- the absorption spectrum of the hydrocarbons can be recorded in a first measurement in step b) and the absorption spectrum of the carbon dioxide can be recorded in a second measurement.
- the method according to the invention can also be used to measure the amount of energy.
- the fuel gas is passed through a volume flow meter in step a) and the volume flow is measured.
- the arrangement according to the invention is characterized for a very particularly advantageous solution to the problem, characterized in that a partial flow of the fuel gas is fed to a measuring system, that a measuring device for measuring the speed of sound and a sensor arrangement are integrated in the measuring arrangement, the sensor arrangement essentially consisting of one Radiation source for infrared radiation and a radiation detector assigned to the radiation source, and that the signals from the measuring device and the sensor arrangement are fed to an evaluation unit in which the calorific value and / or the Wobbe index are determined by means of a correlation.
- the radiation detector can be designed as a multi-channel detector, to which various optical filters can be connected upstream for the selection measurement of individual components of the fuel gas.
- Another arrangement for measuring the calorific value of fuel gas, in particular natural gas is characterized in that an ultrasonic counter which is gas line is integrated, has a signal output for the speed of sound and a sensor arrangement consisting of a radiation source for infrared radiation and a radiation detector assigned to the radiation source, the signal for the speed of sound and the signal of the sensor arrangement being fed to an evaluation unit in which the calorific value and / or the Wobbe index is determined.
- Figure 1 is a schematic view of an arrangement for measuring the amount of energy.
- FIG. 2 shows a schematic view of an arrangement for measuring the Wobbe index
- FIG. 3 shows a diagram with the representation of the signals from the measurement of the calorific value of an example 3-component fuel
- Fig. 4 is a diagram with the signals of another measurement of an example 3-component fuel.
- the natural gas line 1 shows a natural gas line 1, in which a volume flow meter in the form of an ultrasonic gas meter is integrated.
- the natural gas line is a gas supply line in a private household.
- the natural gas line 1 is practically under atmospheric pressure.
- a sensor device 3 known from DE-A-19650302 is integrated in the ultrasonic gas meter 2.
- This essentially consists of a radiation source (not shown) and a radiation detector assigned to the radiation source.
- the radiation detector is assigned a plurality of optical filters (not shown) for the selective measurement of individual components of the fuel gas.
- the ultrasonic gas meter has a signal output 4 for the speed of sound, which is connected to an evaluation electronics 5.
- the signal from the sensor arrangement 3 is also fed to the evaluation electronics 5.
- the calorific value is determined from the two signals with the aid of a simple correlation.
- FIG. 2 shows an arrangement of a second exemplary embodiment for measuring the Wobbe index of a fuel gas for regulating the supply of energy to an industrial burner.
- the natural gas line 1 is a high-pressure line which is under an overpressure of approx. 50 bar.
- a partial flow of a measuring arrangement 8 is supplied via a branch line 6 with a pressure reduction 7.
- the measuring arrangement 8 essentially consists of a measuring device 9 for the speed of sound and a sensor arrangement 3.
- the measuring device for the speed of sound can also be an ultrasonic gas meter.
- the sensor arrangement 3 has already been described in connection with FIG. 1. Both signals are fed to evaluation electronics 5, in which the calorific value and the Wobbe index are determined by means of a correlation.
- FIG. 3 and 4 graphically show how the calorific value of a 3-component mixture of two input signals, namely infrared signal IR and speed of sound w in FIG. 3 or infrared signal IR and density p in FIG. 4 can be determined and the resulting total uncertainties for the calorific value.
- the nitrogen content (N 2 ) is plotted on the abscissa axis and the ethane content (C 2 H 2 ) on the ordinate axis.
- the third component, not shown, is methane (CH). The methane portion corresponds to the rest of the portion of the mixture to get 100%.
- Lines for the calorific values H s +1%, H s +2% or H s -1% and H s -2% are drawn in parallel.
- Lines also run through the reference point, for which the input variables IR and w in FIG. 3 or IR and p in FIG. 4 assume constant values.
- the outer, thin lines represent the uncertainty band of the input variables.
- the resulting uncertainty for the calorific value results from the intersection of the uncertainty bands of the input variables (hatched parallelogram in FIGS. 3 and 4).
- the uncertainty for the calorific value is about 2% in both pictures.
- a mixture of methane, nitrogen and ethane was chosen as an example, which are the main components of natural natural gases.
- Other components of the natural gas include. a. Carbon dioxide and hydrocarbon compounds, primarily n-alkanes.
- the proportion of carbon dioxide in natural gas is low and is subject to only slight fluctuations, so that an average can be specified here.
- the proportion of n-alkanes in natural gas decreases with increasing number of carbon atoms, so that they only need to be taken into account up to hexane (C 6 H 14 ) or octane (C 8 H 18 ).
- the proportions of the n-alkanes are subject to a regular distribution and can be calculated using a suitable correlation (e.g. from the IR signal).
- the resulting uncertainties for the calorific value shown in FIGS. 3 and 4 can also approximately be transferred to natural natural gases.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Pathology (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
Claims
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19908046 | 1999-02-24 | ||
DE19908046 | 1999-02-24 | ||
DE19921167 | 1999-05-07 | ||
DE19921167A DE19921167A1 (de) | 1999-02-24 | 1999-05-07 | Verfahren und Anordnung zur Messung des Brennwertes und/oder des Wobbeindexes von Brenngas, insbesondere von Erdgas |
PCT/EP2000/001054 WO2000050874A1 (de) | 1999-02-24 | 2000-02-10 | Verfahren und anordnung zur messung des brennwertes und/oder des wobbeindexes von brenngas, insbesondere von erdgas |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1181531A1 true EP1181531A1 (de) | 2002-02-27 |
Family
ID=26052038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00910660A Withdrawn EP1181531A1 (de) | 1999-02-24 | 2000-02-10 | Verfahren und anordnung zur messung des brennwertes und/oder des wobbeindexes von brenngas, insbesondere von erdgas |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1181531A1 (de) |
WO (1) | WO2000050874A1 (de) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10054023B2 (en) | 2014-02-28 | 2018-08-21 | Scania Cv Ab | Exhaust treatment system and method for treatment of an exhaust stream |
US10344647B2 (en) | 2015-08-27 | 2019-07-09 | Scania Cv Ab | Method and system for a first and a second supply of additive to an exhaust gas stream from an internal combustion engine |
US10495569B2 (en) | 2015-06-05 | 2019-12-03 | Scania Cv Ab | Method and a system for determining a composition of a gas mix in a vehicle |
US10724460B2 (en) | 2015-08-27 | 2020-07-28 | Scania Cv Ab | Method and system for treatment of an exhaust gas stream |
US10807041B2 (en) | 2015-08-27 | 2020-10-20 | Scania Cv Ab | Exhaust treatment system and method for treatment of an exhaust gas stream |
US10837338B2 (en) | 2015-08-27 | 2020-11-17 | Scania Cv Ab | Method and exhaust treatment system for treatment of an exhaust gas stream |
US10920632B2 (en) | 2015-08-27 | 2021-02-16 | Scania Cv Ab | Method and exhaust treatment system for treatment of an exhaust gas stream |
US11007481B2 (en) | 2015-08-27 | 2021-05-18 | Scania Cv Ab | Exhaust treatment system and method for treatment of an exhaust gas stream |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2827961B1 (fr) | 2001-07-30 | 2004-01-23 | Dalkia | Methode de determination d'au moins une propriete energetique d'un melange combustible gazeux par mesure de proprietes physiques du melange gazeux |
GB2427280A (en) * | 2005-06-15 | 2006-12-20 | Polymeters Response Internat L | A gas meter with means for detecting non-combustable contaminants |
ITMI20071047A1 (it) * | 2007-05-23 | 2008-11-24 | Nuovo Pignone Spa | Metodo ed apparato per il controllo della combustione in una turbina a gas |
EP3961195A1 (de) * | 2020-08-28 | 2022-03-02 | Siemens Aktiengesellschaft | Messeinrichtung zur brenn- oder heizwertbestimmung eines kohlenwasserstoffhaltigen brenngases |
CN114509398B (zh) * | 2021-11-24 | 2024-10-29 | 浙江省计量科学研究院 | 一种基于天然气热物性—热值模型的能量计量表 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19707659A1 (de) * | 1997-02-26 | 1998-08-27 | Betr Forsch Inst Angew Forsch | Verfahren und Vorrichtung zum Messen verbrennungstechnischer Eigenschaften von Gasen |
EP0882977A1 (de) * | 1997-06-06 | 1998-12-09 | Gaz De France | Verfahren und Vorrichtung zur Echtzeit-Bestimmung des Heizwertes eines natürlichen Gases auf optischem Wege |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4246773A (en) * | 1978-03-31 | 1981-01-27 | Osaka Gas Company Ltd. | Combustion property of gas measuring apparatus |
DE2928739C2 (de) * | 1979-07-17 | 1981-03-19 | Ruhrgas Ag, 4300 Essen | Verfahren und Vorrichtung zur verbrennungslosen Messung und/oder Regelung der Wärmemengenzufuhr zu Gasverbrauchseinrichtungen |
DE4336174C2 (de) * | 1993-10-22 | 2003-09-18 | Ruhrgas Ag | Verfahren zur verbrennungslosen Messung und/oder Regelung der Wärmemengenzufuhr zu Gasverbrauchseinrichtungen |
DE19650302A1 (de) * | 1996-12-04 | 1998-06-10 | Ruhrgas Ag | Verfahren sowie Vorrichtung zur Bestimmung der Gasbeschaffenheit einer Gasmischung |
-
2000
- 2000-02-10 EP EP00910660A patent/EP1181531A1/de not_active Withdrawn
- 2000-02-10 WO PCT/EP2000/001054 patent/WO2000050874A1/de active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19707659A1 (de) * | 1997-02-26 | 1998-08-27 | Betr Forsch Inst Angew Forsch | Verfahren und Vorrichtung zum Messen verbrennungstechnischer Eigenschaften von Gasen |
EP0882977A1 (de) * | 1997-06-06 | 1998-12-09 | Gaz De France | Verfahren und Vorrichtung zur Echtzeit-Bestimmung des Heizwertes eines natürlichen Gases auf optischem Wege |
US6157455A (en) * | 1997-06-06 | 2000-12-05 | Gaz De France | Method and apparatus for determining the calorific value of a natural gas optically and in real time |
Non-Patent Citations (2)
Title |
---|
LUEPTOW RICHARD M ET AL.: "Acoustic sensor for determining combustion properties of natural gas", MEAS. SCI. TECHNOL., vol. 5, no. 11, 1 November 1994 (1994-11-01), BRISTOL, GB, pages 1375 - 1381, XP020065812, ISSN: 0957-0233 * |
See also references of WO0050874A1 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10626769B2 (en) | 2014-02-28 | 2020-04-21 | Scania Cv Ab | Exhaust treatment system and method for treatment of an exhaust stream |
US10260391B2 (en) | 2014-02-28 | 2019-04-16 | Scania Cv Ab | Exhaust treatment system and method for treatment of an exhaust stream |
US10260392B2 (en) | 2014-02-28 | 2019-04-16 | Scania Cv Ab | Method and system for controlling nitrogen oxide emissions from a combustion engine |
US10267197B2 (en) | 2014-02-28 | 2019-04-23 | Scania Cv Ab | System and method for purification of an exhaust stream by use of two reduction catalysts |
US10267198B2 (en) | 2014-02-28 | 2019-04-23 | Scania Cv Ab | Device and method for impacting the amount of nitrogen oxides in exhaust gases from an internal combustion engine |
US10273852B2 (en) | 2014-02-28 | 2019-04-30 | Scania Cv Ab | Exhaust treatment system and method for treatment of an exhaust stream |
US10273850B2 (en) | 2014-02-28 | 2019-04-30 | Scania Cv Ab | Method and system for controlling nitrogen oxide emissions from a combustion engine |
US10273851B2 (en) | 2014-02-28 | 2019-04-30 | Scania Cv Ab | Exhaust treatment system and method for treatment of an exhaust stream |
US10054023B2 (en) | 2014-02-28 | 2018-08-21 | Scania Cv Ab | Exhaust treatment system and method for treatment of an exhaust stream |
US10364724B2 (en) | 2014-02-28 | 2019-07-30 | Scania Cv Ab | Device and method comprising double reducing devices and a catalytically coated particle filter for treatment of an exhaust stream |
US10495569B2 (en) | 2015-06-05 | 2019-12-03 | Scania Cv Ab | Method and a system for determining a composition of a gas mix in a vehicle |
US10344647B2 (en) | 2015-08-27 | 2019-07-09 | Scania Cv Ab | Method and system for a first and a second supply of additive to an exhaust gas stream from an internal combustion engine |
US10724460B2 (en) | 2015-08-27 | 2020-07-28 | Scania Cv Ab | Method and system for treatment of an exhaust gas stream |
US10807041B2 (en) | 2015-08-27 | 2020-10-20 | Scania Cv Ab | Exhaust treatment system and method for treatment of an exhaust gas stream |
US10837338B2 (en) | 2015-08-27 | 2020-11-17 | Scania Cv Ab | Method and exhaust treatment system for treatment of an exhaust gas stream |
US10920632B2 (en) | 2015-08-27 | 2021-02-16 | Scania Cv Ab | Method and exhaust treatment system for treatment of an exhaust gas stream |
US11007481B2 (en) | 2015-08-27 | 2021-05-18 | Scania Cv Ab | Exhaust treatment system and method for treatment of an exhaust gas stream |
Also Published As
Publication number | Publication date |
---|---|
WO2000050874A1 (de) | 2000-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1193488B1 (de) | Verfahren und Vorrichtung zum Ermitteln der Gasbeschaffenheit eines Erdgases | |
EP0343143B1 (de) | Verfahren zur Messung des Lambda und/oder Luft-Kraftstoffverhältnisses und Einrichtung zur Durchführung des Verfahrens | |
AT397435B (de) | Verfahren und vorrichtung zum selbsttätigen einstellen der betriebsparameter eines mit einem alkohol-benzin-gemisch gespeisten verbrennungsmotors | |
DE3932838C2 (de) | Nichtdispersiver Infrarot-Gasanalysator | |
EP1181531A1 (de) | Verfahren und anordnung zur messung des brennwertes und/oder des wobbeindexes von brenngas, insbesondere von erdgas | |
DE10302487A1 (de) | Verfahren zur Echtzeit-Bestimmung einer Brenngas-Zusammensetzung | |
DE3115295A1 (de) | Anlage zur gekoppelten messung des energiegehalts und der stroemungsrate eines gasgemisches in fernleitungen | |
DE2928739B1 (de) | Verfahren und Vorrichtung zur verbrennungslosen Messung und/oder Regelung der Waermemengenzufuhr zu Gasverbrauchseinrichtungen | |
EP3362790A1 (de) | Verfahren zum bestimmen von eigenschaften eines kohlenwasserstoffhaltigen gasgemisches und vorrichtung dafür | |
DE68909260T2 (de) | Vorrichtung für die Messung der Wärmekapazität einer Brennstoffströmung. | |
DE19921167A1 (de) | Verfahren und Anordnung zur Messung des Brennwertes und/oder des Wobbeindexes von Brenngas, insbesondere von Erdgas | |
EP1141677B1 (de) | Gasqualitätsbestimmung | |
WO2018082875A1 (de) | Verfahren zum bestimmen von eigenschaften eines kohlenwasserstoffhaltigen gasgemisches und vorrichtung dafür | |
WO2018177651A1 (de) | Verfahren zum bestimmen der methanzahl eines kohlenwasserstoffhaltigen brenngasgemischs | |
DE1945236A1 (de) | Verfahren und Vorrichtung zum Analysieren von Gasen | |
DE19949439C1 (de) | Gasqualitätsbestimmung | |
DE19808213A1 (de) | Verfahren zur Messung der Gasbeschaffenheit und Gasbeschaffenheitsmeßgerät | |
DE4121928A1 (de) | Verfahren und anordnung zur indirekten massendurchflussbestimmung | |
DE69935818T2 (de) | Auspuffgasanalysevorrichtung und modales Massenanalyseverfahren durch Gasspurverfahren unter Benutzung dieser Analysevorrichtung | |
DE19841877A1 (de) | Verfahren und Vorrichtung zur Ermittlung der Rußbeladung eines Verbrennungsraums | |
DE1648613A1 (de) | Verfahren und Vorrichtung zur Feststellung der Verbrennungsqualitaet eines Brennstoffs | |
DE10121641A1 (de) | Verfahren und Vorrichtung zum Ermitteln der Gasbeschaffenheit eines Erdgases | |
EP1154258A1 (de) | Verfahren und Vorrichtung zur Verbrennungslosen Bestimmung des Brennwertes oder der Wobbezahl eines Erdgases | |
WO2004008136A1 (de) | Bestimmung der gasbeschaffenheit von brenngasen durch messung von wärmeleitfähigkeit, wärmekapazität und kohlendioxidanteil | |
DE802104C (de) | Verfahren zur Bestimmung von Bestandteilen in Gasgemischen mittels Strahlungsabsorption |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20011206 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SCHLEY, PETER Inventor name: JAESCHKE, MANFRED Inventor name: HOPPE, MANFRED |
|
17Q | First examination report despatched |
Effective date: 20040625 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: E.ON RUHRGAS AG |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20080903 |