EP1181531A1 - Verfahren und anordnung zur messung des brennwertes und/oder des wobbeindexes von brenngas, insbesondere von erdgas - Google Patents

Verfahren und anordnung zur messung des brennwertes und/oder des wobbeindexes von brenngas, insbesondere von erdgas

Info

Publication number
EP1181531A1
EP1181531A1 EP00910660A EP00910660A EP1181531A1 EP 1181531 A1 EP1181531 A1 EP 1181531A1 EP 00910660 A EP00910660 A EP 00910660A EP 00910660 A EP00910660 A EP 00910660A EP 1181531 A1 EP1181531 A1 EP 1181531A1
Authority
EP
European Patent Office
Prior art keywords
measuring
calorific value
arrangement
fuel gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00910660A
Other languages
English (en)
French (fr)
Inventor
Peter Schley
Manfred Jaeschke
Manfred Hoppe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EOn Ruhrgas AG
Original Assignee
Ruhrgas AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19921167A external-priority patent/DE19921167A1/de
Application filed by Ruhrgas AG filed Critical Ruhrgas AG
Publication of EP1181531A1 publication Critical patent/EP1181531A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives
    • G01N33/225Gaseous fuels, e.g. natural gas

Definitions

  • the invention relates to a method and an arrangement for measuring the calorific value and / or the Wobbe index of fuel gas, in particular natural gas, according to the preamble of the independent claims.
  • the calorific value of natural gas must be measured for billing purposes when it is handed over from the supplier to the customer.
  • the calorific value is determined in practice by means of gas chromatographs or calorimeters. With gas meters, especially turbine meters, the volume flow is measured and the amount of energy for billing is determined.
  • the volume flow of natural gas is usually measured using diaphragm gas meters.
  • the amount of energy is determined from the volume flow and an average calorific value to be recorded separately for the supply area.
  • a direct energy measurement in the household has so far not been technically feasible.
  • the calorific value can be the molar, the mass-related or the volume-related calorific value.
  • the Wobbe index is the quotient of the volume-related calorific value and the square root of the relative density of the gas.
  • the Wobbe index is used in industry to regulate or keep the amount of energy supplied to gas appliances. A simple combustion-free measuring method for such purposes has not been available to date.
  • the known combustion-free methods for measuring the calorific value or the Wobbe index include indirect and correlative methods.
  • the gas composition is analyzed.
  • the calorific value of the fuel gas can then be determined from the composition of the gas using the calorific values for the pure substances.
  • a method for infrared absorption is known from DE-A-19650302. It is used to determine the methane number of natural gases. If the methane number is known, the undesired knocking of piston engines powered by natural gas can be avoided by taking appropriate measures.
  • the fuel gas is exposed to infrared radiation. The proportion of infrared radiation absorbed by the gas mixture is measured by means of a radiation detector and the methane number of the fuel gas is determined from this.
  • the methane number is determined by means of an optical filter which captures a section of the absorption spectrum, in which the hydrocarbons contribute to the absorption in a weighting which is approximately proportional to the methane number of the natural gas.
  • the method can be put into practice relatively simply because, on the one hand, the components of the corresponding infrared sensors are inexpensively available on the market and, on the other hand, the infrared detectors deliver a very precise measurement signal and have good practical suitability. It was not technically possible to determine the calorific value of natural gases by means of infrared absorption using the previously known methods.
  • the various natural gases can also contain nitrogen.
  • the infrared signal is very sensitive to the hydrocarbon and carbon dioxide components, but not to the nitrogen component. This leads to unacceptable measurement inaccuracies; because the nitrogen content in natural gas is subject to large fluctuations and has a major influence on the calorific value.
  • the object of the invention is accordingly to provide a method for the combustion-free measurement of the calorific value and / or the Wobbe index of a fuel gas which, on the one hand, can be easily implemented and, on the other hand, offers sufficient accuracy, in particular for control purposes and household billing.
  • Another object of the invention is to provide a simple and practical arrangement for measuring the calorific value and / or the Wobbe index.
  • the invention is based on the knowledge that in addition to the infrared signal, a further characteristic input variable is required for the unambiguous determination of the calorific value or the Wobbe index of fuel gas, in particular natural gas.
  • a sensitivity test showed that the infrared absorption in connection with either the speed of sound or the density of the fuel gas represents a particularly favorable combination for determining the calorific value, because with nitrogen-containing fuel gases both the density and the speed of sound are sufficiently sensitive to the nitrogen content.
  • the speed of sound can be derived directly from the ultrasonic signal of an ultrasonic gas meter.
  • Ultrasonic gas meters are increasingly used for volume flow measurement both in large gas measurement and in the home.
  • the speed of sound can also be determined with a measuring device specially developed for this purpose.
  • a particular advantage of the speed of sound compared to the density as an input variable for calorific value determination is the much weaker dependence of the speed of sound on the gas temperature or gas pressure. At low gas pressures, e.g. B. less than 5 bar, a pressure measurement is not required when measuring the speed of sound.
  • the gas temperature can be specified as an average.
  • the density is used as an input variable, it is advantageous if, in step a), the temperature and / or the pressure of the fuel gas is additionally measured or specified as an average.
  • the absorption spectrum of the hydrocarbons can be recorded in a first measurement in step b) and the absorption spectrum of the carbon dioxide can be recorded in a second measurement.
  • the method according to the invention can also be used to measure the amount of energy.
  • the fuel gas is passed through a volume flow meter in step a) and the volume flow is measured.
  • the arrangement according to the invention is characterized for a very particularly advantageous solution to the problem, characterized in that a partial flow of the fuel gas is fed to a measuring system, that a measuring device for measuring the speed of sound and a sensor arrangement are integrated in the measuring arrangement, the sensor arrangement essentially consisting of one Radiation source for infrared radiation and a radiation detector assigned to the radiation source, and that the signals from the measuring device and the sensor arrangement are fed to an evaluation unit in which the calorific value and / or the Wobbe index are determined by means of a correlation.
  • the radiation detector can be designed as a multi-channel detector, to which various optical filters can be connected upstream for the selection measurement of individual components of the fuel gas.
  • Another arrangement for measuring the calorific value of fuel gas, in particular natural gas is characterized in that an ultrasonic counter which is gas line is integrated, has a signal output for the speed of sound and a sensor arrangement consisting of a radiation source for infrared radiation and a radiation detector assigned to the radiation source, the signal for the speed of sound and the signal of the sensor arrangement being fed to an evaluation unit in which the calorific value and / or the Wobbe index is determined.
  • Figure 1 is a schematic view of an arrangement for measuring the amount of energy.
  • FIG. 2 shows a schematic view of an arrangement for measuring the Wobbe index
  • FIG. 3 shows a diagram with the representation of the signals from the measurement of the calorific value of an example 3-component fuel
  • Fig. 4 is a diagram with the signals of another measurement of an example 3-component fuel.
  • the natural gas line 1 shows a natural gas line 1, in which a volume flow meter in the form of an ultrasonic gas meter is integrated.
  • the natural gas line is a gas supply line in a private household.
  • the natural gas line 1 is practically under atmospheric pressure.
  • a sensor device 3 known from DE-A-19650302 is integrated in the ultrasonic gas meter 2.
  • This essentially consists of a radiation source (not shown) and a radiation detector assigned to the radiation source.
  • the radiation detector is assigned a plurality of optical filters (not shown) for the selective measurement of individual components of the fuel gas.
  • the ultrasonic gas meter has a signal output 4 for the speed of sound, which is connected to an evaluation electronics 5.
  • the signal from the sensor arrangement 3 is also fed to the evaluation electronics 5.
  • the calorific value is determined from the two signals with the aid of a simple correlation.
  • FIG. 2 shows an arrangement of a second exemplary embodiment for measuring the Wobbe index of a fuel gas for regulating the supply of energy to an industrial burner.
  • the natural gas line 1 is a high-pressure line which is under an overpressure of approx. 50 bar.
  • a partial flow of a measuring arrangement 8 is supplied via a branch line 6 with a pressure reduction 7.
  • the measuring arrangement 8 essentially consists of a measuring device 9 for the speed of sound and a sensor arrangement 3.
  • the measuring device for the speed of sound can also be an ultrasonic gas meter.
  • the sensor arrangement 3 has already been described in connection with FIG. 1. Both signals are fed to evaluation electronics 5, in which the calorific value and the Wobbe index are determined by means of a correlation.
  • FIG. 3 and 4 graphically show how the calorific value of a 3-component mixture of two input signals, namely infrared signal IR and speed of sound w in FIG. 3 or infrared signal IR and density p in FIG. 4 can be determined and the resulting total uncertainties for the calorific value.
  • the nitrogen content (N 2 ) is plotted on the abscissa axis and the ethane content (C 2 H 2 ) on the ordinate axis.
  • the third component, not shown, is methane (CH). The methane portion corresponds to the rest of the portion of the mixture to get 100%.
  • Lines for the calorific values H s +1%, H s +2% or H s -1% and H s -2% are drawn in parallel.
  • Lines also run through the reference point, for which the input variables IR and w in FIG. 3 or IR and p in FIG. 4 assume constant values.
  • the outer, thin lines represent the uncertainty band of the input variables.
  • the resulting uncertainty for the calorific value results from the intersection of the uncertainty bands of the input variables (hatched parallelogram in FIGS. 3 and 4).
  • the uncertainty for the calorific value is about 2% in both pictures.
  • a mixture of methane, nitrogen and ethane was chosen as an example, which are the main components of natural natural gases.
  • Other components of the natural gas include. a. Carbon dioxide and hydrocarbon compounds, primarily n-alkanes.
  • the proportion of carbon dioxide in natural gas is low and is subject to only slight fluctuations, so that an average can be specified here.
  • the proportion of n-alkanes in natural gas decreases with increasing number of carbon atoms, so that they only need to be taken into account up to hexane (C 6 H 14 ) or octane (C 8 H 18 ).
  • the proportions of the n-alkanes are subject to a regular distribution and can be calculated using a suitable correlation (e.g. from the IR signal).
  • the resulting uncertainties for the calorific value shown in FIGS. 3 and 4 can also approximately be transferred to natural natural gases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Die Erfindung betrifft ein Verfahren und eine Anordnung zur Messung des Brennwertes und/oder Wobbeindexes von Brenngas, insbesondere von Erdgas, wobei a) die Schallgeschwindigkeit oder die Dichte des Brenngases gemessen wird, b) die Infrarotabsorption des Brenngases mittels einer Sensoranordnung gemessen wird, c) und dass aus den beiden Messsignalen der Brennwert und/oder der Wobbeindex abgeleitet wird. Bei der Anordnung zur Messung des Brennwertes wird einer Messanordnung (8) ein Teilstrom des Brenngases zugeführt. In der Messanordnung (8) ist ein Messgerät (9) zur Messung der Schallgeschwindigkeit und eine Sensoranordnung (3) integriert, wobei die Sensoranordnung im wesentlichen aus einer Strahlungsquelle für Infrarotstrahlung und einem der Strahlungsquelle zugeordneten Strahlungsdetektor besteht. Die Signale des Messgerätes (9) und der Sensoranordnung (3) werden einer Auswerteinheit (5) zugeführt, in der der Brennwert und/oder der Wobbeindex mittels einer Korrelation bestimmt wird.

Description

Verfahren und Anordnung zur Messung des
Brennwertes und/oder des Wobbeindexes von Brenngas, insbesondere von Erdgas
Die Erfindung betrifft ein Verfahren und eine Anordnung zur Messung des Brennwertes und/oder des Wobbeindexes von Brenngas, insbesondere von Erdgas nach dem Oberbegriff der unabhängigen Ansprüche.
Der Brennwert von Erdgas muß zu Abrechnungszwecken bei der Übergabe vom Lieferanten auf den Kunden gemessen werden. An Übergabestationen, beispielsweise zwischen zwei Gasversorgungsunternehmen, wird der Brennwert in der Praxis mittels Gaschromatographen oder Kalorimetern ermittelt. Mit Gaszählern, insbesondere Turbinen- radzählem, wird der Volumenstrom gemessen und die Energiemenge für die Abrechnung bestimmt.
Für die Abrechnung des Gasverbrauches in privaten Haushalten wird der bezogene Volumenstrom des Erdgases in der Regel mittels Balgengaszählern gemessen. Die Energiemenge wird aus dem Volumenstrom und einem durchschnittlichen separat für das Versorgungsgebiet zu erfassenden Brennwert bestimmt. Eine direkte Energiemessung im Haushalt konnte bisher technisch nicht realisiert werden.
Die Kenntnis der Gasbeschaffenheitsgrößen, Brennwert oder Wobbeindex wird auch für verschiedene industrielle Anwendungen benötigt, insbesondere zu Regelungszwek- ken. Der Brennwert kann der molare, der massenbezogene oder der volumenbezogene Brennwert sein. Der Wobbeindex ist der Quotient des volumenbezogenen Brennwertes und der Quadratwurzel aus der relativen Dichte des Gases. Der Wobbeindex wird in der Industrie zur Regelung bzw. Konstanthaltung der Energiemengenzufuhr zu Gasverbrauchseinrichtungen benutzt. Ein einfaches verbrennungsloses Meßverfahren für derartige Zwecke steht bisher nicht zur Verfügung.
Zu den bekannten verbrennungslosen Verfahren zur Messung des Brennwertes bzw. des Wobbeindexes gehören indirekte und korrelative Verfahren. Bei den indirekten Verfahren wird die Gaszusammensetzung analysiert. Aus der Zusammensetzung des Gases kann dann mit den Brennwerten für die reinen Stoffe der Brennwert des Brenngases bestimmt werden. Diese Verfahren (z. B. die Gaschromatographie) liefern sehr gute Ergebnisse, sind aber technisch kompliziert und liefern kein kontinuierliches Ausgangssignal, weshalb sie sich für Regelungszwecke nicht eignen.
Bei den korrelativen Verfahren zur Messung des Brennwertes bzw. zur Energiemengenmessung werden mehrere physikalische oder chemische Größen gemessen und der Brennwert berechnet. Diese Verfahren wurden zu Abrechnungszwecken im Hochdruckbereich entwickelt. Der Meßaufwand ist relativ hoch, um die notwendige Meßgenauigkeit des Brennwertes für Abrechnungszwecke zu erreichen.
Ein Verfahren zur Infrarotabsorption ist aus der DE-A-19650302 bekannt. Es wird benutzt, um die Methanzahl von Erdgasen zu bestimmen. Bei Kenntnis der Methanzahl kann das unerwünschte Motorklopfen von erdgasbetriebenen Kolbenmotoren durch entsprechende Maßnahmen vermieden werden. Das Brenngas wird einer Infrarotstrahlung ausgesetzt. Mittels eines Strahlungsdetektors wird der von der Gasmischung absorbierte Anteil der Infrarotstrahlung gemessen und hieraus die Methanzahl des Brenngases bestimmt.
Die Bestimmung der Methanzahl erfolgt über einen optischen Filter, der einen Ausschnitt des Absorptionsspektrums erfaßt, indem die Kohlenwasserstoffe in einer Ge- wichtung zur Absorption beitragen, die näherungsweise proportional zur Methanzahl des Erdgases ist. Das Verfahren kann relativ einfach in die Praxis umgesetzt werden, weil zum einen die Komponenten der entsprechenden Infrarotsensoren preiswert am Markt erhältlich sind und zum anderen die Infrarotdetektoren ein sehr präzises Meßsignal liefern und eine gute Praxistauglichkeit besitzen. Eine Bestimmung des Brennwertes von Erdgasen mittels Infrarotabsorption konnte mit den bisher bekannten Verfahren technisch nicht realisiert werden. Die verschiedenen Erdgase können neben Kohlenwasserstoffen wie Methan, Ethan usw. auch Stickstoff enthalten. Das Infrarotsignal reagiert, in Abhängigkeit des gefilterten Absorptionsspektrums, sehr empfindlich auf die Anteile der Kohlenwasserstoffe und auf den Kohlendioxidanteil, nicht jedoch auf den Stickstoffanteil. Dies führt zu nicht vertretbaren Meß- ungenauigkeiten; denn der Stickstoffanteil im Erdgas unterliegt großen Schwankungen und hat einen großen Einfluß auf den Brennwert.
Aufgabe der Erfindung ist es demgemäß, ein Verfahren zur verbrennungslosen Messung des Brennwertes und/oder des Wobbeindexes eines Brenngases zur Verfügung zu stellen, das zum einen einfach realisiert werden kann und zum anderen eine ausreichende Genauigkeit insbesondere für Regelungszwecke und die haushaltliche Abrechnung bietet. Aufgabe der Erfindung ist es weiterhin, eine einfache und praktisch einsetzbare Anordnung zur Messung des Brennwertes und/oder des Wobbeindexes zu schaffen.
Diese Aufgabe wird erfindungsgemäß durch die in Anspruch 1 aufgeführten kennzeichnenden Merkmale gelöst.
Die Erfindung beruht auf der Erkenntnis, daß zur eindeutigen Bestimmung des Brennwertes oder des Wobbeindexes von Brenngas, insbesondere Erdgas, neben dem Infrarotsignal eine weitere charakteristische Eingangsgröße benötigt wird. Eine Empfindlichkeitsuntersuchung ergab, daß die Infrarotabsorption in Verbindung mit entweder der Schallgeschwindigkeit oder der Dichte des Brenngases eine besonders günstige Kombination zur Bestimmung des Brennwertes darstellt, weil bei stickstoffhaltigen Brenngasen sowohl die Dichte als auch die Schallgeschwindigkeit hinreichend empfindlich auf den Stickstoffanteil reagieren.
Obwohl die Schallgeschwindigkeit meßtechnisch besser erfaßbar ist als die Dichte, sind Betriebsmeßgeräte für die Dichte von Gasen weiter verbreitet als für die Schallgeschwindigkeit. Die Begründung hierfür ist, daß die Dichte bei der Messung des Volumenstroms benötigt wird, um diesen vom Betriebs- auf den Normzustand umzuwerten.
Die Schallgeschwindigkeit kann aus dem Ultraschallsignal eines Ultraschallgaszählers direkt abgeleitet werden. Ultraschallgaszähler werden zunehmend für die Volumenstrommessung sowohl in der Großgasmessung als auch im Haushalt eingesetzt. Alternativ kann die Schallgeschwindigkeit auch mit einem speziell zu diesem Zweck entwickelten Meßgerät bestimmt werden.
Ein besonderer Vorteil der Schallgeschwindigkeit gegenüber der Dichte als Eingangsgröße für die Brennwertbestimmung ist die wesentlich schwächere Abhängigkeit der Schallgeschwindigkeit von der Gastemperatur oder vom Gasdruck. Bei niedrigen Gasdrücken, z. B. weniger als 5 bar, ist bei der Messung der Schallgeschwindigkeit eine Druckmessung nicht erforderlich. Die Gastemperatur kann als Mittelwert vorgegeben werden.
Falls die Dichte als Eingangsgröße verwendet wird, ist es vorteilhaft, wenn im Schritt a) zusätzlich die Temperatur und/oder der Druck des Brenngases gemessen oder als Mittelwert vorgegeben wird.
Zur Verbesserung der Genauigkeit der Messung kann im Schritt b) in einer ersten Messung das Absorptionsspektrum der Kohlenwasserstoffe erfaßt und in einer zweiten Messung das Absorptionsspektrum des Kohlenstoffdioxids erfaßt werden.
Das erfindungsgemäße Verfahren kann auch zur Messung der Energiemenge verwendet werden. Dazu wird im Schritt a) das Brenngas durch einen Volumenstromzähler geleitet und der Volumenstrom gemessen.
Die Anordnung nach der Erfindung ist zur ganz besonders vorteilhaften Lösung der gestellten Aufgabe dadurch gekennzeichnet, daß einer Meßordnung ein Teilstrom des Brenngases zugeführt wird, daß in der Meßanordnung ein Meßgerät zur Messung der Schallgeschwindigkeit und eine Sensoranordnung integriert sind, wobei die Sensoranordnung im wesentlichen aus einer Strahlungsquelle für Infrarotstrahlung und einem der Strahlungsquelle zugeordneten Strahlungsdetektor besteht, und daß die Signale des Meßgerätes und der Sensoranordnung einer Auswerteeinheit zugeführt werden, in der der Brennwert und/oder der Wobbeindex mittels einer Korrelation bestimmt werden.
Der Strahlungsdetektor kann als Mehrkanaldetektor ausgebildet sein, dem verschieden optische Filter zur Selektion Messung einzelner Komponenten des Brenngases vor- schaltbar sind.
Eine weitere Anordnung zur Messung des Brennwertes von Brenngas, insbesondere von Erdgas ist dadurch gekennzeichnet, daß ein Ultraschallzähler, der in eine Brenn- gasleitung eingebunden ist, einen Sigπalausgang für die Schallgeschwindigkeit und eine Sensoranordnung aufweist, die aus einer Strahlungsquelle für Infrarotstrahlung und einem der Strahlungsquelle zugeordneten Strahlungsdetektor besteht, wobei das Signal für die Schallgeschwindigkeit und das Signal der Sensoranordnung einer Auswerteeinheit zugeführt werden, in der der Brennwert und/oder der Wobbeindex bestimmt wird.
Im folgenden wird das erfindungsgemäße Verfahren und die Anordnung zur verbrennungslosen Messung des Brennwertes anhand der Zeichnung näher erläutert.
In der Zeichnung zeigen:
Fig. 1 eine schematische Ansicht einer Anordnung zur Messung der Energiemenge;
Fig. 2 eine schematische Ansicht einer Anordnung zur Messung des Wobbeindexes;
Fig. 3 ein Diagramm mit der Darstellung der Signale aus der Messung des Brennwertes eines beispielsweisen 3-Komponenten-Brennstoffes;
Fig. 4 ein Diagramm mit den Signalen einer anderen Messung eines beispielsweisen 3-Komponenten-Brennstoffes.
Fig. 1 zeigt eine Erdgasleitung 1 , in der ein Volumeπstromzähler in Form eines Ultraschallgaszählers eingebunden ist. Es handelt sich bei der Erdgasleitung um eine Gasversorgungsleitung in einem privaten Haushalt. Die Erdgasleitung 1 steht praktisch unter Atmosphärendruck.
Im Ultraschallgaszähler 2 ist eine aus der DE-A-19650302 bekannte Sensoreinrichtung 3 integriert. Diese besteht im wesentlichen aus einer nicht dargestellten Strahlungsquelle und einem der Strahlungsquelle zugeordneten Strahlungsdetektor. Dem Strahlungsdetektor sind mehrere nicht dargestellte optische Filter zur selektiven Messung einzelner Komponenten des Brenngases zugeordnet. Der Ultraschallgaszähler weist einen Signalausgang 4 für die Schallgeschwindigkeit auf, der mit einer Auswerteelektronik 5 verbunden ist. Das Signal der Sensoranordnung 3 wird ebenfalls der Auswerteelektronik 5 zugeführt. In der Auswertelektronik 5 wird mit Hilfe einer einfachen Korrelation der Brennwert aus den beiden Signalen bestimmt.
Fig. 2 zeigt eine Anordnung eines zweiten Ausführungsbeispiels zur Messung des Wobbeindexes eines Brenngases zur Regelung der Energiemengenzufuhr zu einem Industriebrenner.
Bei der Erdgasleitung 1 handelt es sich um eine Hochdruckleitung, die unter einem Überdruck von ca. 50 bar steht. Über eine Zweigleitung 6 mit einer Druckreduzierung 7 wird ein Teiistrom einer Meßanordnung 8 zugeführt.
Die Meßanordnung 8 besteht im wesentlichen aus einem Meßgerät 9 für die Schallgeschwindigkeit und einer Sensoranordnung 3. Bei dem Meßgerät für die Schallgeschwindigkeit kann es sich auch um einen Ultraschallgaszähler handeln. Die Sensoranordnung 3 ist bereits im Zusammenhang mit Fig. 1 beschrieben worden. Beide Signale werden einer Auswerteelektronik 5, in der der Brennwert und der Wobbeindex mittels einer Korrelation bestimmt werden, zugeführt.
In den Fig. 3 und 4 ist graphisch dargestellt, wie der Brennwert eines 3-Komponenten- Gemisches aus zwei Eingangssignalen, und zwar Infrarotsignal IR und Schallgeschwindigkeit w in Fig. 3 bzw. Infrarotsignal IR und Dichte p in Fig. 4 bestimmt werden kann und welche resultierenden Gesamtunsicherheiten sich für den Brennwert ergeben.
In den Fig. 3 und 4 ist auf der Abzissenachse der Stickstoffanteil (N2) und auf der Ordi- natenachse der Ethananteil (C2H2) aufgetragen. Die dritte nicht dargestellte Komponente ist Methan (CH ). Der Methan-Anteil entspricht dem Rest des Anteiles des Gemisches um zu 100 % zu gelangen.
In den Diagrammen wurde als Bezugspunkt willkürlich die Zusammensetzung N2 = 4 mol% und C2H6 = 6 mol% gewählt. Durch diesen Bezugspunkt wird eine Linie konstanten Brennwertes eingezeichnet (Hs = const). Parallel dazu sind Linien für die Brennwerte Hs +1 %, Hs +2 % bzw. Hs -1 % und Hs -2 % eingezeichnet. Ebenfalls durch den Bezugspunkt verlaufen Linien, für die die Eingangsgrößen IR und w in Fig. 3 bzw. IR und p in Fig. 4, konstante Werte annehmen. Die äußeren, dünnen Linien, geben dabei das Unsicherheitsband der Eingangsgrößen wieder. Die resultierende Unsicherheit für den Brennwert ergibt sich aus der Schnittfläche der Unsicherheitsbänder der Eingangsgrößen (schraffiertes Parallelogramm in den Fig. 3 und 4). Die Unsicherheit für den Brennwert beträgt in beiden Bildern etwa 2 %.
Als 3-Komponenten-Gemisch wurde beispielhaft ein Gemisch aus Methan, Stickstoff und Ethan gewählt, welche die Hauptbestandteile von natürlichen Erdgasen sind. Weitere Bestandteile des Erdgases sind u. a. Kohlendioxid sowie Kohlenwasserstoffverbindungen, vorwiegend n-Alkane.
Der Kohlendioxidanteil im Erdgas ist gering und unterliegt nur geringen Schwankungen, so daß hier ein Mittelwert vorgegeben werden kann. Der Anteil der n-Alkane im Erdgas nimmt mit zunehmender Anzahl an C-Atomen ab, so daß diese nur bis zum Hexan (C6H14) oder Oktan (C8H18) berücksichtigt werden brauchen. Zudem unterliegen die Anteile der n-Alkane einer regelmäßigen Verteilung und können über eine geeignete Korrelation berechnet werden (z. B. aus dem IR-Signal). Aufgrund dieser Überlegungen lassen sich die in den Fig. 3 und 4 dargestellten resultierenden Unsicherheiten für den Brennwert näheruπgsweise auch auf natürliche Erdgase übertragen.

Claims

1. Verfahren zur Messung des Brennwertes und/oder des Wobbeindexes von Brenngas, insbesondere von Erdgas, wobei a) die Schallgeschwindigkeit oder die Dichte des Brenngases gemessen wird, b) das Brenngas einer Infrarotstrahlung ausgesetzt und der von dem Brenngas absorbierte Anteil der Infrarotstrahlung mittels einer Sensoranordnung gemessen wird c) und daß aus den beiden Meßsignalen der Brennwert und/oder der Wobbeindex abgeleitet wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß im Schritt a) zusätzlich die Temperatur und/oder der Druck des Brenngases gemessen oder als Mittelwert vorgegeben wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß im Schritt b) in einer ersten Messung ein Teil des Absorptionsspektrums der Kohlenwasserstoffe und in einer zweiten Messung ein Teil des Absorptionsspektrums des Kohlenstoffdioxids erfaßt werden.
4. Verfahren zur Messung der Energiemenge von Brenngas, insbesondere von Erdgas nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß im Schritt a) das Brenngas durch einen Volumenstromzähler geleitet und der Volumenstrom gemessen wird.
5. Anordnung zur Messung des Brennwertes und/oder des Wobbeindexes von Brenngas, insbesondere von Erdgas, dadurch gekennzeichnet, daß einer Meßanordnung (3) ein Teilstrom des Brenngases zugeführt wird, daß in der Meßanordnung (8) ein Meßgerät (9) zur Messung der Schallgeschwindigkeit und eine Sensoranordnung (3) integriert sind, wobei die Sensoranordnung im wesentlichen aus einer Strahlungsquelle für Infrarotstrahlung und einem der Strahlungsquelle zugeordneten Strahlungsdetektor besteht und daß die Signale des Meßgerätes (9) und der Sensoranordnung (3) einer Auswerteeinheit (5) zugeführt werden, in der der Brennwert und/oder der Wobbeindex mittels einer Korrelation bestimmt wird.
6. Anordnung nach Anspruch 5, dadurch gekennzeichnet, daß der Strahlungsdetektor als Mehrkanaldetektor ausgebildet ist, dem verschiedene optische Filter zur selektiven Messung einzelner Komponenten des Brenngases vorschaltbar sind.
7. Anordnung zur Messung des Brennwertes und/oder des Wobbeindexes von Brenngas, insbesondere von Erdgas dadurch gekennzeichnet, daß ein Ultraschallzähler (2), der in eine Brenngasleitung (1) eingebunden ist, einen Signalausgang (4) für die Schallgeschwindigkeit und eine Sensoranordnung (3) aufweist, die aus einer Strahlungsquelle für Infrarotstrahlung und einem der Strahlungsquelle zugeordneten Strahlungsdetektor besteht, wobei das Signal für die Schallgeschwindigkeit und das Signal der Sensoranordnung (3) einer Auswerteeinheit (5) zugeführt werden, in der der Brennwert bestimmt wird.
EP00910660A 1999-02-24 2000-02-10 Verfahren und anordnung zur messung des brennwertes und/oder des wobbeindexes von brenngas, insbesondere von erdgas Withdrawn EP1181531A1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19908046 1999-02-24
DE19908046 1999-02-24
DE19921167 1999-05-07
DE19921167A DE19921167A1 (de) 1999-02-24 1999-05-07 Verfahren und Anordnung zur Messung des Brennwertes und/oder des Wobbeindexes von Brenngas, insbesondere von Erdgas
PCT/EP2000/001054 WO2000050874A1 (de) 1999-02-24 2000-02-10 Verfahren und anordnung zur messung des brennwertes und/oder des wobbeindexes von brenngas, insbesondere von erdgas

Publications (1)

Publication Number Publication Date
EP1181531A1 true EP1181531A1 (de) 2002-02-27

Family

ID=26052038

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00910660A Withdrawn EP1181531A1 (de) 1999-02-24 2000-02-10 Verfahren und anordnung zur messung des brennwertes und/oder des wobbeindexes von brenngas, insbesondere von erdgas

Country Status (2)

Country Link
EP (1) EP1181531A1 (de)
WO (1) WO2000050874A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10054023B2 (en) 2014-02-28 2018-08-21 Scania Cv Ab Exhaust treatment system and method for treatment of an exhaust stream
US10344647B2 (en) 2015-08-27 2019-07-09 Scania Cv Ab Method and system for a first and a second supply of additive to an exhaust gas stream from an internal combustion engine
US10495569B2 (en) 2015-06-05 2019-12-03 Scania Cv Ab Method and a system for determining a composition of a gas mix in a vehicle
US10724460B2 (en) 2015-08-27 2020-07-28 Scania Cv Ab Method and system for treatment of an exhaust gas stream
US10807041B2 (en) 2015-08-27 2020-10-20 Scania Cv Ab Exhaust treatment system and method for treatment of an exhaust gas stream
US10837338B2 (en) 2015-08-27 2020-11-17 Scania Cv Ab Method and exhaust treatment system for treatment of an exhaust gas stream
US10920632B2 (en) 2015-08-27 2021-02-16 Scania Cv Ab Method and exhaust treatment system for treatment of an exhaust gas stream
US11007481B2 (en) 2015-08-27 2021-05-18 Scania Cv Ab Exhaust treatment system and method for treatment of an exhaust gas stream

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2827961B1 (fr) 2001-07-30 2004-01-23 Dalkia Methode de determination d'au moins une propriete energetique d'un melange combustible gazeux par mesure de proprietes physiques du melange gazeux
GB2427280A (en) * 2005-06-15 2006-12-20 Polymeters Response Internat L A gas meter with means for detecting non-combustable contaminants
ITMI20071047A1 (it) * 2007-05-23 2008-11-24 Nuovo Pignone Spa Metodo ed apparato per il controllo della combustione in una turbina a gas
EP3961195A1 (de) * 2020-08-28 2022-03-02 Siemens Aktiengesellschaft Messeinrichtung zur brenn- oder heizwertbestimmung eines kohlenwasserstoffhaltigen brenngases
CN114509398B (zh) * 2021-11-24 2024-10-29 浙江省计量科学研究院 一种基于天然气热物性—热值模型的能量计量表

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19707659A1 (de) * 1997-02-26 1998-08-27 Betr Forsch Inst Angew Forsch Verfahren und Vorrichtung zum Messen verbrennungstechnischer Eigenschaften von Gasen
EP0882977A1 (de) * 1997-06-06 1998-12-09 Gaz De France Verfahren und Vorrichtung zur Echtzeit-Bestimmung des Heizwertes eines natürlichen Gases auf optischem Wege

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4246773A (en) * 1978-03-31 1981-01-27 Osaka Gas Company Ltd. Combustion property of gas measuring apparatus
DE2928739C2 (de) * 1979-07-17 1981-03-19 Ruhrgas Ag, 4300 Essen Verfahren und Vorrichtung zur verbrennungslosen Messung und/oder Regelung der Wärmemengenzufuhr zu Gasverbrauchseinrichtungen
DE4336174C2 (de) * 1993-10-22 2003-09-18 Ruhrgas Ag Verfahren zur verbrennungslosen Messung und/oder Regelung der Wärmemengenzufuhr zu Gasverbrauchseinrichtungen
DE19650302A1 (de) * 1996-12-04 1998-06-10 Ruhrgas Ag Verfahren sowie Vorrichtung zur Bestimmung der Gasbeschaffenheit einer Gasmischung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19707659A1 (de) * 1997-02-26 1998-08-27 Betr Forsch Inst Angew Forsch Verfahren und Vorrichtung zum Messen verbrennungstechnischer Eigenschaften von Gasen
EP0882977A1 (de) * 1997-06-06 1998-12-09 Gaz De France Verfahren und Vorrichtung zur Echtzeit-Bestimmung des Heizwertes eines natürlichen Gases auf optischem Wege
US6157455A (en) * 1997-06-06 2000-12-05 Gaz De France Method and apparatus for determining the calorific value of a natural gas optically and in real time

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LUEPTOW RICHARD M ET AL.: "Acoustic sensor for determining combustion properties of natural gas", MEAS. SCI. TECHNOL., vol. 5, no. 11, 1 November 1994 (1994-11-01), BRISTOL, GB, pages 1375 - 1381, XP020065812, ISSN: 0957-0233 *
See also references of WO0050874A1 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10626769B2 (en) 2014-02-28 2020-04-21 Scania Cv Ab Exhaust treatment system and method for treatment of an exhaust stream
US10260391B2 (en) 2014-02-28 2019-04-16 Scania Cv Ab Exhaust treatment system and method for treatment of an exhaust stream
US10260392B2 (en) 2014-02-28 2019-04-16 Scania Cv Ab Method and system for controlling nitrogen oxide emissions from a combustion engine
US10267197B2 (en) 2014-02-28 2019-04-23 Scania Cv Ab System and method for purification of an exhaust stream by use of two reduction catalysts
US10267198B2 (en) 2014-02-28 2019-04-23 Scania Cv Ab Device and method for impacting the amount of nitrogen oxides in exhaust gases from an internal combustion engine
US10273852B2 (en) 2014-02-28 2019-04-30 Scania Cv Ab Exhaust treatment system and method for treatment of an exhaust stream
US10273850B2 (en) 2014-02-28 2019-04-30 Scania Cv Ab Method and system for controlling nitrogen oxide emissions from a combustion engine
US10273851B2 (en) 2014-02-28 2019-04-30 Scania Cv Ab Exhaust treatment system and method for treatment of an exhaust stream
US10054023B2 (en) 2014-02-28 2018-08-21 Scania Cv Ab Exhaust treatment system and method for treatment of an exhaust stream
US10364724B2 (en) 2014-02-28 2019-07-30 Scania Cv Ab Device and method comprising double reducing devices and a catalytically coated particle filter for treatment of an exhaust stream
US10495569B2 (en) 2015-06-05 2019-12-03 Scania Cv Ab Method and a system for determining a composition of a gas mix in a vehicle
US10344647B2 (en) 2015-08-27 2019-07-09 Scania Cv Ab Method and system for a first and a second supply of additive to an exhaust gas stream from an internal combustion engine
US10724460B2 (en) 2015-08-27 2020-07-28 Scania Cv Ab Method and system for treatment of an exhaust gas stream
US10807041B2 (en) 2015-08-27 2020-10-20 Scania Cv Ab Exhaust treatment system and method for treatment of an exhaust gas stream
US10837338B2 (en) 2015-08-27 2020-11-17 Scania Cv Ab Method and exhaust treatment system for treatment of an exhaust gas stream
US10920632B2 (en) 2015-08-27 2021-02-16 Scania Cv Ab Method and exhaust treatment system for treatment of an exhaust gas stream
US11007481B2 (en) 2015-08-27 2021-05-18 Scania Cv Ab Exhaust treatment system and method for treatment of an exhaust gas stream

Also Published As

Publication number Publication date
WO2000050874A1 (de) 2000-08-31

Similar Documents

Publication Publication Date Title
EP1193488B1 (de) Verfahren und Vorrichtung zum Ermitteln der Gasbeschaffenheit eines Erdgases
EP0343143B1 (de) Verfahren zur Messung des Lambda und/oder Luft-Kraftstoffverhältnisses und Einrichtung zur Durchführung des Verfahrens
AT397435B (de) Verfahren und vorrichtung zum selbsttätigen einstellen der betriebsparameter eines mit einem alkohol-benzin-gemisch gespeisten verbrennungsmotors
DE3932838C2 (de) Nichtdispersiver Infrarot-Gasanalysator
EP1181531A1 (de) Verfahren und anordnung zur messung des brennwertes und/oder des wobbeindexes von brenngas, insbesondere von erdgas
DE10302487A1 (de) Verfahren zur Echtzeit-Bestimmung einer Brenngas-Zusammensetzung
DE3115295A1 (de) Anlage zur gekoppelten messung des energiegehalts und der stroemungsrate eines gasgemisches in fernleitungen
DE2928739B1 (de) Verfahren und Vorrichtung zur verbrennungslosen Messung und/oder Regelung der Waermemengenzufuhr zu Gasverbrauchseinrichtungen
EP3362790A1 (de) Verfahren zum bestimmen von eigenschaften eines kohlenwasserstoffhaltigen gasgemisches und vorrichtung dafür
DE68909260T2 (de) Vorrichtung für die Messung der Wärmekapazität einer Brennstoffströmung.
DE19921167A1 (de) Verfahren und Anordnung zur Messung des Brennwertes und/oder des Wobbeindexes von Brenngas, insbesondere von Erdgas
EP1141677B1 (de) Gasqualitätsbestimmung
WO2018082875A1 (de) Verfahren zum bestimmen von eigenschaften eines kohlenwasserstoffhaltigen gasgemisches und vorrichtung dafür
WO2018177651A1 (de) Verfahren zum bestimmen der methanzahl eines kohlenwasserstoffhaltigen brenngasgemischs
DE1945236A1 (de) Verfahren und Vorrichtung zum Analysieren von Gasen
DE19949439C1 (de) Gasqualitätsbestimmung
DE19808213A1 (de) Verfahren zur Messung der Gasbeschaffenheit und Gasbeschaffenheitsmeßgerät
DE4121928A1 (de) Verfahren und anordnung zur indirekten massendurchflussbestimmung
DE69935818T2 (de) Auspuffgasanalysevorrichtung und modales Massenanalyseverfahren durch Gasspurverfahren unter Benutzung dieser Analysevorrichtung
DE19841877A1 (de) Verfahren und Vorrichtung zur Ermittlung der Rußbeladung eines Verbrennungsraums
DE1648613A1 (de) Verfahren und Vorrichtung zur Feststellung der Verbrennungsqualitaet eines Brennstoffs
DE10121641A1 (de) Verfahren und Vorrichtung zum Ermitteln der Gasbeschaffenheit eines Erdgases
EP1154258A1 (de) Verfahren und Vorrichtung zur Verbrennungslosen Bestimmung des Brennwertes oder der Wobbezahl eines Erdgases
WO2004008136A1 (de) Bestimmung der gasbeschaffenheit von brenngasen durch messung von wärmeleitfähigkeit, wärmekapazität und kohlendioxidanteil
DE802104C (de) Verfahren zur Bestimmung von Bestandteilen in Gasgemischen mittels Strahlungsabsorption

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHLEY, PETER

Inventor name: JAESCHKE, MANFRED

Inventor name: HOPPE, MANFRED

17Q First examination report despatched

Effective date: 20040625

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: E.ON RUHRGAS AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080903