EP1176314B1 - Method and system for compensating the compressibility in hydraulic drives - Google Patents

Method and system for compensating the compressibility in hydraulic drives Download PDF

Info

Publication number
EP1176314B1
EP1176314B1 EP20010116889 EP01116889A EP1176314B1 EP 1176314 B1 EP1176314 B1 EP 1176314B1 EP 20010116889 EP20010116889 EP 20010116889 EP 01116889 A EP01116889 A EP 01116889A EP 1176314 B1 EP1176314 B1 EP 1176314B1
Authority
EP
European Patent Office
Prior art keywords
piston
displacement chamber
pressure
ausgl
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20010116889
Other languages
German (de)
French (fr)
Other versions
EP1176314A2 (en
EP1176314A3 (en
Inventor
Wolfgang Prof. Dr.-Ing. Backé
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1176314A2 publication Critical patent/EP1176314A2/en
Publication of EP1176314A3 publication Critical patent/EP1176314A3/en
Application granted granted Critical
Publication of EP1176314B1 publication Critical patent/EP1176314B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B9/00Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member
    • F15B9/02Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member with servomotors of the reciprocatable or oscillatable type
    • F15B9/08Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member with servomotors of the reciprocatable or oscillatable type controlled by valves affecting the fluid feed or the fluid outlet of the servomotor
    • F15B9/09Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member with servomotors of the reciprocatable or oscillatable type controlled by valves affecting the fluid feed or the fluid outlet of the servomotor with electrical control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means

Definitions

  • the invention relates to a device and a method for compensating the compressibility of the hydraulic fluid in hydraulic drives with at least one displacement chamber.
  • DE 42 28 308 A1 describes the compensation of the compressibility by piezo elements. Although the piezo elements can generate very high forces within a short time, the resulting paths are very short. In addition, a piezo element itself represents a spring. If it works against a pressure, the path is further reduced as it springs under pressure. This has the consequence that in practice only small load changes, which correspond to a maximum of 5 to 7 bar pressure change, be compensated. In general, however, depending on the supply pressure pressure changes in the range of 100 bar and more are required. The control described in DE 42 28 308 is therefore not suitable to meet the requirements occurring in practice.
  • the object of the invention is to provide a device and a method which make it possible to increase the load stiffness of hydraulic drives reliably and to respond to load changes within a few milliseconds in order to compensate for compression-related position or speed deviations of a hydraulic drive.
  • the invention is achieved by a device having the features of claim 1 and by a method having the features of claim 15.
  • Advantageous embodiments and embodiments are the subject of the dependent subclaims.
  • the independent claim 21 relates to a hydraulic drive with a compensation device according to the invention.
  • the compensation in the prior art is controlled, that is, without a return or a feedback
  • the compensation of the compression volume is carried out according to the invention in a closed volume flow control loop.
  • the volumetric flow resulting from the pressure rise is calculated taking into account the compression coefficient and the volume under pressure, and represents the control variable in the control loop.
  • the compensation volumetric flow generated by the compensating piston is constantly compared with the target volumetric (compression volumetric flow) and via the control circuit (three-point controller and fast control valves) this tracked. The result is that exactly the volume is supplied to the working cylinder, which is missing due to compression in the displacement.
  • the drive cylinder remains largely in its position.
  • the hydraulic drive in Fig. 1 consists of a cylinder 1 and a guided therein piston 2, the two displacement chambers 3 and 4 separated from each other.
  • the cylinder-piston drive is controlled with the steady valve 6 in the closed position control loop.
  • the piston stroke X is measured and compared with the setpoint X is supposed to .
  • the difference X soll - X ist is the current error of the retracted position.
  • controller 9 This is modified by a controller 9 according to modern controller concepts, for example by a differentiating and / or integrating component is generated, which is supplied via an amplifier element 10 to the continuous valve 6, which controls the piston-cylinder unit via the lines 11 and 12 so that the error should be X - X is made as fast as possible to zero.
  • the invention is to cause according to Fig. 1, that despite rapid change in the load F 5, the piston 2 stops in its position or at a constant speed of the drive no speed drop occurs.
  • a piston 15 is arranged, which is held by the springs 18 and 19 in the middle.
  • the piston 15 separates two displacement chambers 16 and 17.
  • the pressure in chamber 3 of the hydraulic drive is measured via the pressure sensor 21 and via the electrical line 22 forwarded. Pressure oscillations of the pressure sensor are damped by the damper element 23.
  • the temporal pressure gradient is calculated. From the pressure gradient dp 1 / dt, the compression flow Q Kompr can be calculated, which disappears due to the time-related pressure change in the displacement chamber 3 or becomes free when the pressure is decreased.
  • V o is the volume of oil in the displacer chambers 3, 16, 17 under the pressure p 1
  • oil is the volume compression coefficient of the oil filling V o , wherein the elasticity of the surrounding cylinders 1 and 14 is also taken into account.
  • the oil filling V o is of the piston travel X is dependent, and the compression modulus E oil is a function of the pressure p. 1 Both influences are included in the block 25 in the result for Q Kompr .
  • y ' is determined by means of a speed sensor 20 integrated in the piston chamber 17. It can also be the way y of the piston 15 are measured and converted by the differentiating member 26 to the speed y '.
  • the result of the difference formation Q Kompr - Q Ausgl is supplied to a three-position controller 27.
  • Q Compr is greater than Q Comp .
  • Q Comp is connected via a very fast switching valve 28 with switching times of 1 to 2 milliseconds the displacer 17 with the pressure source P via the line 29.
  • Piston space is 4, the supply of a compensating volume flow is only necessary to a displacement.
  • C is the total spring stiffness of the springs and a the surface of the piston 15.
  • the switching valve 30 may optionally be replaced by an increased clearance between the piston 15 and cylinder 14, whereby a centering of the piston 15 takes place.
  • the device for increasing the dynamic load stiffness is applicable to all types of cylinders, not only on the same-area cylinder, as in Fig. 1st
  • Fig. 2 the application is shown in a differential cylinder. Even plunger cylinders with only one displacement chamber can be equipped with it.
  • Fig. 2 shows two features.
  • the compensating cylinder 14 with piston 15 can be integrated directly into the cylinder cover 33 of a piston side.
  • two 2/2-way valves 31 and 32 are integrated. These are characterized by a very small design and extremely short switching times in the range of 1 ms.
  • Fig. 3 shows that you can run the flow control circuit for the equalizing current also steadily.
  • the continuous valve 36 is actuated by the difference between the compression flow Q Compr and the compensating flow Q Ausgl via the blocks 34 and 35.
  • a compensating flow Q Ausgl corresponding to the compression flow Q Compr is supplied to the displacer 3 under pressure p 1 .
  • Fig. 4 shows that the principle of the invention is also applicable to rotary actuators 38.
  • the rotation angle ⁇ is not yield at standstill or is avoided a drop in speed at a constant speed. Since the volume V o between the valve and motor (except for the internal pulse actions) is constant, only the pressure p has to be taken into account in the calculation of the compression flow in block 24a.

Description

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zum Ausgleichen der Kompressibilität der Hydraulikflüssigkeit bei hydraulischen Antrieben mit wenigstens einem Verdrängerraum.The invention relates to a device and a method for compensating the compressibility of the hydraulic fluid in hydraulic drives with at least one displacement chamber.

Bei hydraulischen Antrieben besteht das Problem, dass die jeweils verwendete Hydraulikflüssigkeit in gewissen Grenzen kompressibel ist, was zu einer gegenüber mechanischen Antrieben deutlich verringerten Laststeife führt: bei plötzlich auftretenden Druckveränderungen in dem wenigstens einen Verdrängerraum sind die bekannten Regelungen zu träge, um durch entsprechendes Zu- oder Abführen von Hydraulikflüssigkeit in den Verdrängerraum die gewünschte Solllage eines zusammen mit einem Zylinder den Verdrängerraum bildenden Kolbens oder eine gewünschte Sollgeschwindigkeit des Kolbens zu halten.In hydraulic drives there is the problem that the hydraulic fluid used in each case is compressible within certain limits, which leads to a significantly reduced load stiffness compared to mechanical drives: sudden pressure changes in the at least one displacement chamber, the known regulations are too slow to order by appropriate supply or removing hydraulic fluid into the displacement chamber to maintain the desired desired position of a piston forming the displacement chamber together with a cylinder or a desired setpoint speed of the piston.

Zum Ausgleichen der Kompressibilität der Hydraulikflüssigkeit sind verschiedene Vorrichtungen und Verfahren bekannt, z.B. aus der DE 44 20 619 A1, die ein Antriebssystem mit einer ersten und einer zweiten hydrostatischen Maschine beschreibt, wobei die zweite Maschine über eine Drehzahlregeleinrichtung mit einem Signalgeber verfügt und wobei zur Verbesserung der Laststeife an jede Seite des Signalgebers jeweils ein hydraulisches Ausgleichsvolumen angeschlossen ist.To compensate for the compressibility of the hydraulic fluid, various devices and methods are known, for example from DE 44 20 619 A1, which describes a drive system with a first and a second hydrostatic machine, the second machine has a speed control device with a signal generator and wherein for improvement the load stiffness is connected to each side of the signal generator in each case a hydraulic compensation volume.

Aus der US 3,805,530 ist ein Hydrauliksystem bekannt, bei dem zwei Hydraulikmotoren in Serie geschaltet sind, und der zweite Motor zum Zuführen einer kleinen Menge Hydraulikflüssigkeit zum ersten Motor dient, womit Volumenverluste aufgrund der Kompressibilität der Hydraulikflüssigkeit ausgeglichen werden sollen.From US 3,805,530 a hydraulic system is known in which two hydraulic motors are connected in series, and the second motor is used for supplying a small amount of hydraulic fluid to the first motor, whereby volume losses due to the compressibility of the hydraulic fluid to be compensated.

Die DE 42 28 308 A1 beschreibt die Kompensation der Kompressibilität durch Piezo-Elemente. Die Piezo-Elemente können zwar sehr hohe Kräfte innerhalb kürzester Zeit erzeugen, aber die resultierenden Wege sind sehr kurz. Hinzu kommt, dass ein Piezo-Element selbst eine Feder darstellt. Wenn es gegen einen Druck arbeitet wird der Weg weiter reduziert, da es unter dem Druck einfedert. Dies hat zur Folge, dass in der Praxis nur geringe Laständerungen, die maximal 5 bis 7 bar Druckänderung entsprechen, kompensiert werden. In der Regel sind jedoch je nach Versorgungsdruck Druckänderungen im Bereich von 100 bar und mehr erforderlich. Die in der DE 42 28 308 beschriebene Steuerung ist daher nicht dazu geeignet, den in der Praxis auftretenden Anforderungen gerecht zu werden.DE 42 28 308 A1 describes the compensation of the compressibility by piezo elements. Although the piezo elements can generate very high forces within a short time, the resulting paths are very short. In addition, a piezo element itself represents a spring. If it works against a pressure, the path is further reduced as it springs under pressure. This has the consequence that in practice only small load changes, which correspond to a maximum of 5 to 7 bar pressure change, be compensated. In general, however, depending on the supply pressure pressure changes in the range of 100 bar and more are required. The control described in DE 42 28 308 is therefore not suitable to meet the requirements occurring in practice.

Weitere Verfahren und Vorrichtungen zur Erhöhung der Laststeife von hydraulischen Antrieben sind zum Beispiel aus der DE 42 27 565, die die Verwendung eines Differentialzylinders vorschlägt, und der DE 35 32 931 bekannt, die eine spezielle Regelungssteuerung zeigt. Ein anderes Beispiel ist im Dokument US 4 630 523 offenbart. Die bekannten Lösungen zum Kompressionskompensation sind jedoch teils konstruktiv sehr aufwendig, wartungsanfällig und teuer in der Herstellung, teils viel zu träge, um auf Laständerungen im Millisekundenbereich reagieren zu können.Further methods and devices for increasing the load stiffness of hydraulic drives are known for example from DE 42 27 565, which proposes the use of a differential cylinder, and DE 35 32 931, which shows a special control control. Another example is disclosed in document US 4 630 523. However, the known solutions for compression compensation are sometimes structurally very expensive, maintenance-prone and expensive to manufacture, sometimes too slow to respond to load changes in the millisecond range.

Davon ausgehend liegt der Erfindung die Aufgabe zugrunde, eine Vorrichtung und ein Verfahren anzugeben, welche es ermöglichen, die Laststeife hydraulischer Antriebe zuverlässig zu erhöhen und innerhalb weniger Millisekunden auf Lastwechsel zu reagieren, um kompressionsbedingte Lage- oder Geschwindigkeitsabweichungen eines hydraulischen Antriebs zu kompensieren.Based on this, the object of the invention is to provide a device and a method which make it possible to increase the load stiffness of hydraulic drives reliably and to respond to load changes within a few milliseconds in order to compensate for compression-related position or speed deviations of a hydraulic drive.

Die Erfindung wird gelöst von einer Vorrichtung mit den Merkmalen des Anspruchs 1 bzw. von einem Verfahren mit den Merkmalen des Anspruchs 15. Vorteilhafte Aus- bzw. Durchführungsformen sind Gegenstand der abhängigen Unteransprüche. Der nebengeordnete Anspruch 21 betrifft einen hydraulischen Antrieb mit einer erfindungsgemäßen Kompensationsvorrichtung.The invention is achieved by a device having the features of claim 1 and by a method having the features of claim 15. Advantageous embodiments and embodiments are the subject of the dependent subclaims. The independent claim 21 relates to a hydraulic drive with a compensation device according to the invention.

Während der Ausgleich im Stand der Technik gesteuert erfolgt, das heißt, ohne eine Rückführung oder eine Rückmeldung, erfolgt der Ausgleich des Kompressionsvolumens erfindungsgemäß in einem geschlossenen Volumenstromregelkreis.While the compensation in the prior art is controlled, that is, without a return or a feedback, the compensation of the compression volume is carried out according to the invention in a closed volume flow control loop.

Das heißt, der durch den Druckanstieg resultierende Volumenstrom wird berechnet, wobei der Kompressionskoeffizient und das Volumen unter Druck berücksichtigt wird, und stellt die Führungsgröße in dem Regelkreis dar. Der durch den Kompensationskolben erzeugte Kompensationsvolumenstrom wird ständig mit der Sollgröße (Kompressionsvolumenstrom) verglichen und über den Stellkreis (Dreipunktregler und schnelle Stellventile) diesem nachgeführt. Das Ergebnis ist, dass genau das Volumen dem Arbeitszylinder zugeführt wird, was durch Kompression im Verdrängerraum fehlt. Der Antriebszylinder bleibt weitgehend in seiner Position stehen.That is, the volumetric flow resulting from the pressure rise is calculated taking into account the compression coefficient and the volume under pressure, and represents the control variable in the control loop. The compensation volumetric flow generated by the compensating piston is constantly compared with the target volumetric (compression volumetric flow) and via the control circuit (three-point controller and fast control valves) this tracked. The result is that exactly the volume is supplied to the working cylinder, which is missing due to compression in the displacement. The drive cylinder remains largely in its position.

Die Kompensation erfolgt über den gesamten Druckbereich bis zur Maximallast. Sie ist sowohl bei gesteuerten als auch bei lagegeregelten Systemen wirksam. Bei lagegeregelten Antrieben überlagern sich die Funktionen der Lageregelung und die der Kompressibilitätskompensation.Compensation takes place over the entire pressure range up to the maximum load. It is effective on both controlled and position-controlled systems. In the case of position-controlled drives, the functions of the position control and of the compressibility compensation overlap.

Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden rein beispielhaften und nicht beschränkenden Beschreibung verschiedener Ausführungsbeispiele erfindungsgemäß ausgestatteter hydraulischer Antriebe in Verbindung mit der Zeichnung entsprechender Prinzipschaltbilder, wobei

Fig. 1
das Prinzipschaltbild eines hydraulischen Antriebs mit einem translatorisch bewegten Kolben zeigt, der zwei Verdrängerräume in einem Zylinder voneinander trennt und über einen geschlossenen Lageregelkreis mit stetigem Ventil verfügt, wobei eine erfindungsgemäße Kompensationsvorrichtung zur Erhöhung der Laststeife sowohl bei stillstehendem als auch bei bewegtem Kolben vorgesehen ist,
Fig. 1a
das Prinzipschaltbild einer zur Erhöhung der Laststeife nur bei stillstehendem Antrieb ausgebildeten Kompensationsvorrichtung wiedergibt,
Fig. 2
die Anwendung einer erfindungsgemäßen Vorrichtung bei einem Differentialzylinder verdeutlicht,
Fig. 3
einen stetig ausgeführten Volumenstromregelkreis für den zur Kompensation des Kompressibilitätsverlustes dienenden Ausgleichsstrom zeigt und
Fig. 4
die Anwendung der erfindungsgemäßen Vorrichtung bei einem Drehantrieb zeigt.
Further details and advantages of the invention will become apparent from the following purely exemplary and non-limiting description of various embodiments according to the invention equipped hydraulic drives in conjunction with the drawing corresponding block diagrams, wherein
Fig. 1
shows the block diagram of a hydraulic drive with a translationally moving piston, which separates two displacement chambers in a cylinder and has a closed position control loop with continuous valve, wherein a compensation device according to the invention is provided for increasing the load stiffness both stationary and moving piston,
Fig. 1a
shows the block diagram of a compensating device designed to increase the load stiffness only when the drive is stationary,
Fig. 2
illustrates the application of a device according to the invention in a differential cylinder,
Fig. 3
shows a continuously running volume flow control circuit for the compensating flow used to compensate for the loss of compressibility and
Fig. 4
shows the application of the device according to the invention in a rotary drive.

Der hydraulische Antrieb in Fig. 1 besteht aus einem Zylinder 1 und einem darin geführten Kolben 2, der zwei Verdrängerräume 3 und 4 voneinander trennt. Um den Kolben gegen eine äußere Last 5 nach einem (meistens) elektrisch gegebenen Signal Xsoll positionieren zu können oder einem zeitlich veränderlichen Signal Xsoll =f(t) nachfahren zu können, wird der Zylinderkolbenantrieb mit dem stetigen Ventil 6 im geschlossenen Lageregelkreis gesteuert, indem mit einer Wegmesseinrichtung 7 der Kolbenweg Xist gemessen und mit dem Sollwert Xsoll verglichen wird. Die Differenz Xsoll - Xist ist der momentane Fehler der eingefahrenen Position. Dieser wird durch einen Regler 9 nach modernen Reglerkonzepten modifiziert, indem z.B. ein differenzierender und/oder integrierender Anteil erzeugt wird, der über ein Verstärkerelement 10 dem stetigen Ventil 6 zugeleitet wird, das die Kolben-Zylinder-Einheit über die Leitungen 11 und 12 so steuert, dass der Fehler Xsoll - Xist möglichst schnell zu Null gemacht wird.The hydraulic drive in Fig. 1 consists of a cylinder 1 and a guided therein piston 2, the two displacement chambers 3 and 4 separated from each other. In order to be able to position the piston against an external load 5 according to a (mostly) electrically given signal X or to be able to follow a time-varying signal X soll = f (t), the cylinder-piston drive is controlled with the steady valve 6 in the closed position control loop. by using a displacement measuring device 7, the piston stroke X is measured and compared with the setpoint X is supposed to . The difference X soll - X ist is the current error of the retracted position. This is modified by a controller 9 according to modern controller concepts, for example by a differentiating and / or integrating component is generated, which is supplied via an amplifier element 10 to the continuous valve 6, which controls the piston-cylinder unit via the lines 11 and 12 so that the error should be X - X is made as fast as possible to zero.

Wenn die Last F 5 sich im Stillstand des Antriebes ändert, dann würde das zu Änderungen der Drücke p1 und p2 führen, da die Gleichgewichtsgleichung gilt F =p1A1 - p2A2. Dabei sind A1 und A2 die Flächen des Kolbens, auf die p1 bzw. p2 wirken. Bei langsamen Laständerungen kann das Ventil 6 durch eine kleine Verschiebung bewirken, dass der Antrieb nahe seiner Sollposition stehen bleibt. Allerdings ist ein kleiner Positionsfehler Xsoll - Xist erforderlich, um das Ventil etwas auszulenken. Durch einen integralen Anteil im Regler kann man den Fehler zu Null machen. Wenn aber die Kraft F 5 sich sehr schnell ändert, dann wird die erforderliche Druckdifferenz dadurch erzeugt, dass z.B. das Druckmedium in der Kammer 3 komprimiert und in der Kammer 4 dekomprimiert wird. Der Kolben 2 wird durch die Kraftänderung verschoben, ehe das Ventil 6 der Verschiebung entgegenwirken kann, da einige Zeit vergeht, ehe das Ventil 6 einem Steuersignal folgt. Diese Erscheinung des Zurückweichens bei einer schnell ansteigenden Last bezeichnet man als dynamische Laststeife.If the load F 5 changes at standstill of the drive, then this would lead to changes in the pressures p 1 and p 2 , since the equilibrium equation F = p 1 A 1 - p 2 A 2 . Here A 1 and A 2 are the surfaces of the piston, act on the p 1 and p 2 . With slow load changes, the valve 6 can cause by a small shift that the drive stops near its target position. However, a small position error is X soll - X is required to deflect the valve slightly. An integral part of the controller makes it possible to zero the error. But if the force F 5 changes very quickly, then the required pressure difference is generated by, for example, that the pressure medium in the chamber 3 is compressed and decompressed in the chamber 4. The piston 2 is displaced by the force change before the valve 6 can counteract the displacement, since some time passes before the valve 6 follows a control signal. This phenomenon of retreating with a rapidly increasing load is called dynamic load stiffness.

Die Erfindung soll nach Fig. 1 bewirken, dass trotz schneller Änderung der Belastung F 5 der Kolben 2 in seiner Position stehen bleibt bzw. bei einer konstanten Geschwindigkeit des Antriebes kein Geschwindigkeitseinbruch erfolgt.The invention is to cause according to Fig. 1, that despite rapid change in the load F 5, the piston 2 stops in its position or at a constant speed of the drive no speed drop occurs.

Das wird dadurch erreicht, dass ein Zylinder 14 über die Leitung 13 mit dem Kolbenraum 3 verbunden wird.This is achieved by connecting a cylinder 14 to the piston chamber 3 via the line 13.

In dem Zylinder 14 ist ein Kolben 15 angeordnet, der durch die Federn 18 und 19 in der Mitte gehalten wird. Der Kolben 15 trennt zwei Verdrängerkammem 16 und 17. Der Druck in Kammer 3 des hydraulischen Antriebes wird über dem Drucksensor 21 gemessen und über die elektrische Leitung 22 weitergeleitet. Druckoszillationen des Drucksensors werden durch das Dämpferelement 23 gedämpft. In dem Differentiator 24 wird der zeitliche Druckgradient errechnet. Aus dem Druckgradienten dp1/dt kann der Kompressionsstrom QKompr errechnet werden, der durch die zeitliche Druckänderung im Verdrängerraum 3 verschwindet bzw. bei Drnckabnahme frei wird.In the cylinder 14, a piston 15 is arranged, which is held by the springs 18 and 19 in the middle. The piston 15 separates two displacement chambers 16 and 17. The pressure in chamber 3 of the hydraulic drive is measured via the pressure sensor 21 and via the electrical line 22 forwarded. Pressure oscillations of the pressure sensor are damped by the damper element 23. In the differentiator 24, the temporal pressure gradient is calculated. From the pressure gradient dp 1 / dt, the compression flow Q Kompr can be calculated, which disappears due to the time-related pressure change in the displacement chamber 3 or becomes free when the pressure is decreased.

Es gilt: Q Kompr = V o E o ¨ l d p 1 d t

Figure imgb0001
The following applies: Q Compr = V O e O ¨ l d p 1 d t
Figure imgb0001

Dabei ist Vo das in den Verdrängerräumen 3, 16, 17 unter dem Druck p1 stehende Ölvolumen, Eöl ist der Volumen-Kompressions-Koeffizienz der Ölfüllung Vo, wobei auch die Elastizität der umgebenden Zylinder 1 und 14 berücksichtigt werden. Die Ölfüllung Vo ist vom Kolbenweg Xist abhängig und der Kompressionsmodul Eöl ist eine Funktion des Druckes p1. Beide Einflüsse werden in dem Block 25 in das Ergebnis für QKompr eingerechnet.In this case, V o is the volume of oil in the displacer chambers 3, 16, 17 under the pressure p 1 , oil is the volume compression coefficient of the oil filling V o , wherein the elasticity of the surrounding cylinders 1 and 14 is also taken into account. The oil filling V o is of the piston travel X is dependent, and the compression modulus E oil is a function of the pressure p. 1 Both influences are included in the block 25 in the result for Q Kompr .

Dieser errechnete Volumenstrom QKompr, der bei Druckanstieg in dem Verdrängerraum 3 fehlt und daher eine Verschiebung des Kolbens 3 bei plötzlichen Laständerungen bewirken würde, dient als Führungsgröße in einem Regelkreis, der den Kompressionsstrom QKompr mit einem Volumenstrom QAusgl =a . y' abgleicht. Dabei wird y' mit einem im Kolbenraum 17 integrierten Geschwindigkeitsaufnehmer 20 ermittelt. Es kann auch der Weg y des Kolbens 15 gemessen werden und durch das Differenzierglied 26 zur Geschwindigkeit y' gewandelt werden. Der Ausgleichsvolumenstrom ergibt sich zu: QAusgl = a . y'. Das Ergebnis der Differenzbildung QKompr - QAusgl wird einem Dreipunktregler 27 zugeführt. Ist QKompr größer als QAusgl. wird über ein sehr schnell schaltendes Ventil 28 mit Schaltzeiten von 1 bis 2 Millisekunden der Verdrängerraum 17 mit der Druckquelle P über die Leitung 29 verbunden. Dadurch wird innerhalb von Millisekunden gerade soviel Volumenstrom dem Verdrängerraum 3 zugeführt, wie bei Druckanstieg durch Kompression des Volumens Vo verschwindet.This calculated volume flow Q Kompr , which would be absent in the displacement chamber 3 when the pressure rises , and therefore cause a displacement of the piston 3 in the event of sudden load changes, serves as a reference variable in a control loop which controls the compression flow Q Kompr with a volume flow Q Ausgl = a. y 'matches. In this case, y 'is determined by means of a speed sensor 20 integrated in the piston chamber 17. It can also be the way y of the piston 15 are measured and converted by the differentiating member 26 to the speed y '. The compensating volume flow results in: Q Ausgl = a. y '. The result of the difference formation Q Kompr - Q Ausgl is supplied to a three-position controller 27. Q Compr is greater than Q Comp . is connected via a very fast switching valve 28 with switching times of 1 to 2 milliseconds the displacer 17 with the pressure source P via the line 29. As a result, just as much volume flow is supplied to the displacement chamber 3 within milliseconds, as disappears in pressure increase by compression of the volume V o .

Da das Schaltventil 28 innerhalb von wenigen Millisekunden nur den geringen Kompressionsstrom QKompr schaltet, ist seine Reaktion wesentlich schneller als die des stetigen Ventils 6, das den vollen Volumenstrom für den Antrieb steuern muss. Das Ergebnis ist, dass der Kolben in seiner Position gehalten wird und nicht bei Lastanstieg zurückweicht. Da der Druck p 1

Figure imgb0002
= 1 A 1 [ F p 2 A 2 ]
Figure imgb0003
sowohl eine Funktion der Kraft F als auch des Druckes p2 imSince the switching valve 28 switches only the low compression flow Q Kompr within a few milliseconds, its response is much faster than that of the steady valve 6, which must control the full volume flow for the drive. The result is that the piston is held in position and does not recede when the load increases. Because the pressure p 1
Figure imgb0002
= 1 A 1 [ F - p 2 A 2 ]
Figure imgb0003
Both a function of the force F and the pressure p 2 in

Kolbenraum 4 ist, ist die Zuführung eines Ausgleichsvolumenstromes nur zu einem Verdrängerraum notwendig.Piston space is 4, the supply of a compensating volume flow is only necessary to a displacement.

Bei plötzlicher Lastabnahme bewirkt der Dreipunktregler 27, dass über das Schaltventil 28 der Kolben 15 in negativer y-Richtung verfährt, und damit ein entsprechender Ausgleichs-Volumenstrom aus Raum 17 und damit Raum 3 abgeführt wird.In case of sudden load decrease causes the three-step controller 27, that moves over the switching valve 28, the piston 15 in the negative y-direction, and thus a corresponding compensating volume flow from space 17 and thus room 3 is discharged.

Die Federn 18 und 19 bewirken in Phasen, in denen sich die Belastung F 5 nicht ändert, dass durch Öffnen eines kleinen Schaltventils 30 der Kolben 15 in Mittelstellung fährt. Damit wird vermieden, dass er im Laufe der Zeit in eine Endlage fährt. Da an dem Kolben 15 nur eine sehr geringe Druckdifferenz Δ p = C Y a

Figure imgb0004
anliegt, ist für die Abdichtung dieses Kolbens kein Aufwand erforderlich. Dabei ist C die Gesamtfedersteifigkeit der Federn und a die Fläche des Kolbens 15. Das Schaltventil 30 kann gegebenenfalls durch ein erhöhtes Spiel zwischen Kolben 15 und Zylinder 14 ersetzt werden, wodurch eine Zentrierung des Kolbens 15 erfolgt.The springs 18 and 19 cause in phases in which the load F 5 does not change that by opening a small switching valve 30, the piston 15 moves in the middle position. This prevents it from moving to an end position over time. Because of the piston 15 only a very small pressure difference Δ p = C Y a
Figure imgb0004
is applied, no effort is required for the sealing of this piston. Here, C is the total spring stiffness of the springs and a the surface of the piston 15. The switching valve 30 may optionally be replaced by an increased clearance between the piston 15 and cylinder 14, whereby a centering of the piston 15 takes place.

Soll ein Zurückweichen des lagegeregelten oder gesteuerten Kolbenantriebes unter Last nur im Stillstand vermieden werden, dann ist eine Erxmittlung des Kompressionsstromes nicht erforderlich.If a retraction of the position-controlled or controlled piston drive under load can be avoided only at standstill, then an Erxmittlung the compression flow is not required.

In diesem Fall kann nach Fig. 1a, die am Kolben gemessene Wegänderung ΔXist benutzt werden, um über das schnelle Schaltventil 28 durch die Verstellung des Kolbens 15 nach dem Algorithmus Δ y = Δ Xist A 1 a

Figure imgb0005
das Zurückweichen zu verhindern.In this case, the measured change in displacement to the piston Δ Xist can according to Fig. 1a, are used on the quick switching valve 28 through the displacement of the piston 15 according to the algorithm Δ y = Δ Xist A 1 a
Figure imgb0005
to prevent the backsliding.

Gleichfalls können bei Bewegungen mit konstanter Geschwindigkeit Abweichungen Δx' von dieser Geschwindigkeit durch Laständerungen kompensiert werden, indem der Kolben 15 im geschlossenen Geschwindigkeitsregelkreis nach dem Algorithmus: y = A 1 a Δ x

Figure imgb0006
angesteuert wird. Damit wird ein Abweichen von der Sollgeschwindigkeit verhindert. Die Geschwindigkeitsabweichung kann durch Differenzieren der Lageabweichung (Xsoll - Xist) nach der Zeit erhalten werden.Likewise, in constant velocity motions deviations Δx 'from this velocity can be compensated by load changes by the piston 15 in the closed velocity loop according to the algorithm: y ' = A 1 a Δ x '
Figure imgb0006
is controlled. This prevents a deviation from the setpoint speed. The speed deviation can be obtained by differentiating the positional deviation (X soll - X ist ) after the time.

Die Vorrichtung zur Erhöhung der dynamischen Laststeife ist auf alle Zylinderarten anwendbar, nicht nur auf gleichflächige Zylinder, wie in Fig. 1.The device for increasing the dynamic load stiffness is applicable to all types of cylinders, not only on the same-area cylinder, as in Fig. 1st

In Fig. 2 ist die Anwendung in einem Differentialzylinder gezeigt. Auch Plungerzylinder mit nur einem Verdrängerraum können damit ausgerüstet werden. Fig. 2 zeigt zwei Besonderheiten. Der Ausgleichszylinder 14 mit Kolben 15 kann direkt in den Zylinderdeckel 33 einer Kolbenseite integriert werden. Außerdem können in dem Zylinderdeckel statt des 3/3-Schaltventils 28 in Fig. 1 zwei 2/2-Schaltventile 31 und 32 integriert werden. Diese zeichnen sich durch sehr kleine Bauweise und äußerst geringe Schaltzeiten im Bereich 1 ms aus.In Fig. 2, the application is shown in a differential cylinder. Even plunger cylinders with only one displacement chamber can be equipped with it. Fig. 2 shows two features. The compensating cylinder 14 with piston 15 can be integrated directly into the cylinder cover 33 of a piston side. In addition, in the cylinder cover instead of the 3/3-way valve 28 in Fig. 1, two 2/2-way valves 31 and 32 are integrated. These are characterized by a very small design and extremely short switching times in the range of 1 ms.

Fig. 3 zeigt, dass man den Volumenstromregelkreis für den Ausgleichsstrom auch stetig ausführen kann. Dabei wird durch die Differenz aus Kompressionsstrom QKompr und Ausgleichsstrom QAusgl über die Blöcke 34 und 35 das stetige Ventil 36 angesteuert. Durch Beaufschlagen des Verdrängerraumes 17 wird ein dem Kompressionsstrom QKompr entsprechender Ausgleichstrom QAusgl dem unter Druck p1 stehenden Verdrängerraum 3 zugeführt.Fig. 3 shows that you can run the flow control circuit for the equalizing current also steadily. In this case, the continuous valve 36 is actuated by the difference between the compression flow Q Compr and the compensating flow Q Ausgl via the blocks 34 and 35. By acting on the displacer 17, a compensating flow Q Ausgl corresponding to the compression flow Q Compr is supplied to the displacer 3 under pressure p 1 .

Fig. 4 zeigt, dass das Prinzip der Erfindung auch auf Drehantriebe 38 anwendbar ist. Bei plötzlichen Änderungen des Lastmomentes T 37 bewirkt die Einrichtung, dass der Drehwinkel ϕist bei Stillstand nicht nachgibt bzw. bei einer konstanten Drehzahl ein Drehzahleinbruch vermieden wird. Da das Volumen Vo zwischen Ventil und Motor (bis auf die internen Pulsaktionen) konstant ist, ist bei der Berechnung des Kompressionsstromes in Block 24 a nur der Druck p zu berücksichtigen.Fig. 4 shows that the principle of the invention is also applicable to rotary actuators 38. In case of sudden changes in the load torque T causes the device 37, that the rotation angle φ is not yield at standstill or is avoided a drop in speed at a constant speed. Since the volume V o between the valve and motor (except for the internal pulse actions) is constant, only the pressure p has to be taken into account in the calculation of the compression flow in block 24a.

Entsteht neben dem Kompressionsvolumen in den Kolbenverdrängem in Fig. 1 und 2 sowie in dem Rotationsmotor in Fig. 4 durch den Druckanstieg bei Lastanstieg eine Änderung des Leckölstromes aus Raum 3: ΔQLeck =f (p1-p2), so muss der Ausgleichsvolumenstrom um diesen Wert höher ausgelegt werden : QAusgl =QKompr +ΔQLeck.Formed in addition to the compression volume in the Kolbenverdrängem in Fig. 1 and 2 and in the rotary motor in Fig. 4 by the pressure increase Load increase a change in the leakage oil flow from room 3: ΔQ leak = f (p 1- p 2 ), the compensating volume flow must be made higher by this value: Q Ausgl = Q Kompr + ΔQ Leak .

Claims (22)

  1. A device for compensating the compressibility of the hydraulic fluid in hydraulic drives with at least one displacement chamber (3), the device being coupleable via a passage (13) for hydraulic fluid with the displacement chamber (3) of the hydraulic drive, including means (21) for measuring the pressure in the displacement chamber (3), means (24, 25) for calculating the compression flow QKompr of the hydraulic fluid appearing with pressure changes in the displacement chamber due to the compressibility of the hydraulic fluid, and means for supplying or removing a compensating volume flow QAusgl of hydraulic fluid, regulated in the light of the calculated compression flow, to the displacement chamber.
  2. The device according to claim 1, characterized in that a three position controller (27) is provided to regulate the compensating volume flow QAusgl.
  3. The device according to claim 2, characterized in that the means for supplying or removing the compensating volume flow QAusgl include a cylinder (14), a piston (15) moving in the cylinder (14) and at least one valve (28; 31, 32; 36), the cylinder (14) being coupleable via the passage (13) with the displacement chamber (3) of the hydraulic drive and the piston (15) being adapted to be impinged with overpressure or with a partial vacuum via the at least one valve (28; 31, 32; 36).
  4. The device according to claim 3, characterized in that the at least one valve is a valve (28; 31, 32; 36) with response times in the range of milliseconds.
  5. The device according to claim 4, characterized in that the valve is a three-way switching valve (28).
  6. The device according to claim 4, characterized in that two two-way switching valves (31, 32) are provided.
  7. The device according to claim 4, characterized in that the valve is a proportional servo valve(36).
  8. The device according to one of the claims 3 to 7, characterized in that a speed transducer (20) is provided for measuring the speed of the piston (15).
  9. The device according to one of the claims 3 to 8, characterized in that the piston (15) is preloaded in a resting position by means of elastic elements, more specifically two springs (18, 19).
  10. The device according to one of the claims 1 to 9, characterized in that the means for measuring the pressure in the displacement chamber (3) include a pressure sensor (21) and a damping element (23) for damping pressure oscillations of the pressure sensor (21).
  11. The device according to one of the claims 1 to 10, characterized in that the at least one valve (28; 31, 32) and the means (21) for measuring the pressure are coupled via a wire (22) for transmitting electromagnetic signals.
  12. The device according to one of the claims 1 to 11, characterized in that the means for calculating the compression flow QKompr include a differentiator (24) for determining the time-dependent pressure gradient.
  13. The device according to one of the claims 1 to 12, characterized in that the means for calculating the compression flow QKompr include a block (25) configured to take into account the volume V0 momentarily present in the displacement chamber (3) as well as the compression module EÖl dependent on the pressure p1 prevailing in the displacement chamber.
  14. The device according to one of the claims 1 to 13, characterized in that a continuous valve (36) is adapted to be activated via two blocks (34, 35) to regulate the compensating volume flow QAusgl.
  15. A method for compensating the compressibility of the hydraulic fluid in hydraulic drives with at least one displacement chamber (3), characterized in that the pressure p1 is measured in the displacement chamber, that the compression flow QKompr appearing with pressure changes in the displacement chamber due to the compressibility of the hydraulic fluid is calculated and that the compression flow QKompr is compensated by a volume flow QAusgl supplied to the displacement chamber.
  16. The method according to claim 15, characterized in that the volume flow QAusgl is regulated by means of the calculated compression flow QKompr.
  17. The method according to claim 15 or 16 a piston-cylinder unit (14, 15) being provided for generating the volume flow QAusgl, characterized in that the speed ý of the piston (15) is measured directly or indirectly and is used for measuring the volume flow QAusgl according to the equation QAusgl = ýa, a being the area of the cross-section of the cylinder (14).
  18. The method according to claim 17, characterized in that QAusgl is continuously compared to the calculated compression flow QKompr and the result of the comparison is supplied to a three position controller (27) that impinges the piston (15) with an overpressure or a partial vacuum via a switching valve (28) depending on the result of the comparison.
  19. The method according to one of the claims 15 to 18, characterized in that the dependence of the compression module on the momentary pressure in the displacement chamber is taken into account for calculating the compression flow QKompr.
  20. The method according to one of the claims 15 to 19, characterized in that an oil leakage flow ΔQLeck is taken into account for regulating the compensating volume flow QAusgl.
  21. A hydraulic drive with a device for compensating the compressibility of the hydraulic fluid used by the drive in case of a change of load according to one of the claims 1 to 14.
  22. A hydraulic drive according to claim 21 with a device according to one of the claims 2 to 14, characterized in that the piston (15) of the device is integrated in a cylinder cover (33) of a piston side of the drive.
EP20010116889 2000-07-26 2001-07-11 Method and system for compensating the compressibility in hydraulic drives Expired - Lifetime EP1176314B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10036646 2000-07-26
DE2000136646 DE10036646A1 (en) 2000-07-26 2000-07-26 Device and method for compensating the compressibility in hydraulic drives

Publications (3)

Publication Number Publication Date
EP1176314A2 EP1176314A2 (en) 2002-01-30
EP1176314A3 EP1176314A3 (en) 2004-01-07
EP1176314B1 true EP1176314B1 (en) 2006-02-15

Family

ID=7650431

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20010116889 Expired - Lifetime EP1176314B1 (en) 2000-07-26 2001-07-11 Method and system for compensating the compressibility in hydraulic drives

Country Status (2)

Country Link
EP (1) EP1176314B1 (en)
DE (2) DE10036646A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006002566B4 (en) * 2006-01-18 2014-11-13 Eurocopter Deutschland Gmbh hydraulic system
DE102009027070A1 (en) * 2009-06-22 2010-12-23 Zf Friedrichshafen Ag Control circuit for a pneumatic or hydraulic actuator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3805530A (en) * 1971-07-29 1974-04-23 Pacific Press & Shear Corp Compensated series hydraulic system
DE3017080C2 (en) * 1980-05-03 1985-11-28 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5000 Köln Electro-hydraulic actuator
JPS6432081A (en) * 1987-07-28 1989-02-02 Tokyo Keiki Kk Pressure flow controller for variable delivery pump
DE4228308A1 (en) * 1992-08-26 1994-03-03 Rexroth Mannesmann Gmbh Double-cylinder hydraulic drive control system e.g. for machine tool - compensates change in volume of pressure spaces of cylinder by piezoelectrically-actuated pistons located at ends of cylinder, with piezoelectric actuators closed off from pressure spaces

Also Published As

Publication number Publication date
EP1176314A2 (en) 2002-01-30
EP1176314A3 (en) 2004-01-07
DE10036646A1 (en) 2002-02-14
DE50108932D1 (en) 2006-04-20

Similar Documents

Publication Publication Date Title
EP2039582B1 (en) Active hydraulic damper and hydraulic actuator
EP0367949B1 (en) Springing system for vehicles
EP3174650B1 (en) Punching device and method for punching a workpiece
AT516316B1 (en) Method for controlling a hydraulically driven machine
WO2006105764A1 (en) Hydraulic heave compensation system
WO2017025302A1 (en) Pneumatic valve drive
DE10118739A1 (en) Method of controlling a power steering system
DE102017004803A1 (en) Method for operating a powder press with layer control and powder press for carrying out the method
WO2018028832A4 (en) Hydraulic, in particular pressure-accumulator-free, drive arrangement for and comprising a consumer, in particular for presses, and method for operating a hydraulic drive arrangement of said type
EP1176314B1 (en) Method and system for compensating the compressibility in hydraulic drives
DE4447154C2 (en) Load-sensing circuit
DE4327313C2 (en) Process for regulating the pressure of a hydrostatic machine with an adjustable delivery volume
EP0775337A1 (en) Hydraulic drive control system
EP0745189B1 (en) Device for regulating the total output of at least two hydrostatic variable displacement pumps
DE10225691A1 (en) Control device for proportionally adjustable hydraulic pump of closed hydraulic circuit includes valve configuration with valve for each swivel direction of piston and a mechanical touch
DE102004061351B3 (en) A servohydraulic drive for weaving machines has a rectangular stock with identical hydraulic drive units at each end
EP0482329A1 (en) Hydraulic actuator for controlling and regulating valves
DE102011079691B3 (en) Hydrostatic adjusting device for hydraulic machine, has back pressure control devices that limits the back pressure in servo lines, when hydraulic machine is in zero position
DE3803490C2 (en)
DE4219787C1 (en) Vehicle with a battery-electric drive, especially a rear loader
DE10130597B4 (en) Electrohydraulic actuator based on a reversible vane pump with subordinate pressure control
EP1097277B1 (en) Method for damping the mechanical oscillations of a bridge and device for carrying out the method
DE2719029A1 (en) HYDRAULIC CONTROL DEVICE
DE2611088C3 (en) Control device for a hydraulic working cylinder with a differential piston
DE102004032652A1 (en) Active hydraulic spring, especially for a cantilever arm of a loading vehicle, has a control unit that monitors the position of a cylinder piston using a sensor and controls a regulatable pressure limiting unit accordingly

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040618

17Q First examination report despatched

Effective date: 20040715

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50108932

Country of ref document: DE

Date of ref document: 20060420

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060731

Year of fee payment: 6

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070119

Year of fee payment: 6

26N No opposition filed

Effective date: 20061116

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070711

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070111

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070711

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070711

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200731

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50108932

Country of ref document: DE