EP1170494B1 - Verfahren zur Regelung des einem Verbrennungsmotor zugeführten Kraftstoff-Luftgemischgehaltes - Google Patents

Verfahren zur Regelung des einem Verbrennungsmotor zugeführten Kraftstoff-Luftgemischgehaltes Download PDF

Info

Publication number
EP1170494B1
EP1170494B1 EP20010401653 EP01401653A EP1170494B1 EP 1170494 B1 EP1170494 B1 EP 1170494B1 EP 20010401653 EP20010401653 EP 20010401653 EP 01401653 A EP01401653 A EP 01401653A EP 1170494 B1 EP1170494 B1 EP 1170494B1
Authority
EP
European Patent Office
Prior art keywords
richness
engine
pressure
value
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20010401653
Other languages
English (en)
French (fr)
Other versions
EP1170494A2 (de
EP1170494A3 (de
Inventor
Pierrick Cornet
Dusan Lazarevic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP1170494A2 publication Critical patent/EP1170494A2/de
Publication of EP1170494A3 publication Critical patent/EP1170494A3/de
Application granted granted Critical
Publication of EP1170494B1 publication Critical patent/EP1170494B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1482Integrator, i.e. variable slope
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1483Proportional component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1422Variable gain or coefficients

Definitions

  • the invention relates to a method of regulating the richness of the fuel / air supply mixture of a combustion engine.
  • the invention relates more particularly to a method of regulating the richness of the fuel / air supply mixture of a combustion engine of a motor vehicle whose exhaust line is equipped with a gas treatment device. exhaust.
  • the exhaust systems are equipped in the known manner with catalysts, in particular catalysts of the "three-way" type of catalyst. to cause the reaction of polluting substances that pass through them, to reduce harmful emissions.
  • the three-way type catalysts have a maximum yield when the richness of the mixture is stoichiometric.
  • the richness of the fuel / air mixture corresponds to the ratio between the mass of fuel and the mass of air.
  • the stoichiometric richness is the mixture of 1 gram of fuel and 14.7 grams of air. Such a mixture theoretically allows to realize the complete combustion of the fuel.
  • the fuel / air mixture has an excess fuel. It is said that the mixture is rich.
  • the fuel / air mixture When the richness is lower than the stoichiometric richness, the fuel / air mixture has an excess of air. It is said that the mixture is poor.
  • probes for example lambda type, which allow, when the temperature is above a minimum operating temperature, to provide information representative of the richness of the fuel / air mixture.
  • this information representative of the richness of the fuel / air mixture is used to determine the quantity of fuel injected so that the richness of the mixture approximates the stoichiometric richness. .
  • This operating method is in a closed loop.
  • the invention proposes a method of regulating the richness of the fuel / feed mixture of a combustion engine of a fuel.
  • motor vehicle whose exhaust line is equipped with an exhaust gas treatment device, to minimize the production of polluting substances, such as hydrocarbons, carbon monoxide, of the type in which the quantity of fuel injected depends in particular a proportional term and an integral term which are determined in particular from the pressure prevailing in the intake manifold and the engine speed so that during a particular phase of operation of the engine which causes a variation of the richness of the mixture
  • the proportional term Bprop and the integral term Bint are multiplied by a first and a second coefficient D 1 , D 2 respectively which are greater than or equal to 1, so as to accelerate the return to the stoichiometric richness and to minimize the production of polluting substances, characterized in that the process is stopped when a fourth parameter of operation
  • the engine representative of the temperature of the exhaust gas treatment device reaches a threshold value.
  • FIG. 1 shows a device 10 for treating the exhaust gases G of a combustion engine 12, in particular of a combustion engine of a motor vehicle.
  • the engine 12 is a spark ignition engine with direct or indirect injection.
  • An exhaust line 14 allows the evacuation of gases G from the engine to the atmosphere.
  • a treatment device for purifying the exhaust gases G is interposed in the line 14. It consists mainly of a treatment device 16 such as a catalyst of the three-way type.
  • the catalyst of the three-way type makes it possible to simultaneously treat several polluting substances such as oxides of nitrogen, unburned hydrocarbons and oxides of carbon.
  • the treatment of polluting substances is possible when the catalyst temperature is above a minimum initiation temperature. Its efficiency is optimal when the richness of the fuel / air mixture corresponds to the stoichiometric richness.
  • An electronic control system 18 makes it possible to determine the quantity Q of fuel to be injected into each cylinder so that the richness of the fuel / air mixture is as close as possible to the stoichiometric richness.
  • the electronic control system 18 determines the fuel injection time which corresponds to the quantity Q of fuel injected, in particular as a function of the type of injector and the injection pressure.
  • the electronic control system 18 is connected, in accordance with FIG. 1, to a pressure sensor 20 making it possible to determine the pressure prevailing in the intake manifold, to a sensor 22 making it possible to determine the number of passes in neutral the top of at least one of the pistons of the engine 12, and a probe 24 for example lambda type that provides information representative of the richness of the fuel / air mixture.
  • the method of controlling the richness of the fuel / air mixture can not be initialized until the probe 24 has reached its operating temperature.
  • the regulation coefficient B is determined from a proportional term Bprop and an integral term Bint, as well as from the information provided by the lambda probe 24.
  • proportional Bprop and integral Bint can be determined by means of mapping according to the pressure prevailing in the intake manifold and the engine speed.
  • the sign + or - is determined according to the value of the information provided by the lambda probe 24.
  • the information provided by the lambda probe 24 is a voltage, in accordance with the sinusoid 26 whose scale is shown on the right of FIG. 2.
  • the threshold value 450 mV is provided by the lambda probe 24 when the richness of the mixture fuel / air is stoichiometric.
  • the value provided by the lambda probe 24 is greater than the threshold value 450mV, it means that the richness of the fuel / air mixture is greater than the stoichiometric richness, that is to say that it has an excess of fuel .
  • the curve 28 represented in FIG. 2 corresponds to the evolution of the regulation coefficient B over time. It is considered here that the pressure prevailing in the intake manifold and the engine speed are constant so that the proportional term Bprop, and the evolution (or slope) of the integral term Bint, are also constant.
  • the first part of the graph corresponding to the first lobe of the sinusoid 26, illustrates an operation of the engine in which the richness of the fuel / air mixture is less than the stoichiometric richness.
  • the regulation coefficient B then corresponds to the sum of the integral term Bint shown in broken lines 30 and the product of the constant C 2 is the proportional term Bprop shown in broken broken lines.
  • the richness of the fuel / air mixture corresponds to the stoichiometric richness.
  • control period P the regulation period P 1 .
  • the present invention makes it possible to reduce the quantity of polluting substances emitted into the atmosphere by decreasing in particular the difference between the richness of the fuel / air mixture and the stoichiometric richness, as well as the period of regulation P.
  • the regulation method according to the invention modifies the calculation of the regulation coefficient B during particular phases of engine operation, such as accelerations or decelerations, which cause a variation in the richness of the mixture.
  • the regulation process can proceed according to the flowchart shown in FIG.
  • the first step 50 is an initialization step. Certain conditions must be met for the control process to determine the amount of fuel injected.
  • the first step 50 is activated when the motor 12 starts. It may consist of comparing a first operating parameter of the motor, called the initialization parameter, with a threshold value.
  • the signal supplied by the probe 24 is representative of the richness of the fuel / air mixture, when the temperature of the probe is greater than a setting value.
  • the first parameter may be representative of the temperature of the probe 24.
  • the first parameter may also correspond to the time elapsed since the start of the engine 12, or to the number of passages of a piston at the top dead center.
  • the threshold value of the first parameter then corresponds to the time or the number of passages of the piston at the top dead center required for the probe 24 to reach its activation temperature.
  • the probe 24 is a "planar" type probe whose temperature value quickly reaches the threshold value after starting the engine 12.
  • the threshold value of the first parameter may be variable depending on a second operating parameter of the engine, such as the temperature of the liquid cooling circuit at engine start.
  • the temperature of the probe 24 when starting the engine may vary.
  • the time or the number of passages of a piston at high dead point necessary for the temperature of the probe 24 to reach its activation temperature is more or less important.
  • the temperature of the probe 24 may still be higher than its temperature. activation temperature.
  • the threshold value of the first parameter is low, or even zero.
  • the second parameter of the engine 12 may correspond to the time elapsed between the stopping of the engine 12 and the following start-up, or the temperature of the liquid of the cooling circuit at the start of the engine 12.
  • the method continues with a step of determining 52 a particular phase of operation, in particular an acceleration or deceleration phase. Indeed, it is during such phases of operation of the engine 12 that the the difference between the richness of the fuel / air mixture and the stoichiometric richness is the most important, that is to say that the production of polluting substances is the highest.
  • the method according to the invention makes it possible to modify the determination of the coefficient B of regulation of the richness during a particular phase in order to reduce the differences in the richness of the fuel / air mixture with the stoichiometric richness, and consequently to reduce the production and the emission of polluting substances.
  • the determination of a particular phase is performed from a third operating parameter of the engine.
  • the third parameter is the engine intake manifold pressure 12 which can be measured by the pressure sensor 20.
  • a processing device of the electronic control system 18 can also determine a manifold pressure parameter calculated from the manifold pressure measured by the pressure sensor 20 as well as the engine speed.
  • the determination of the calculated collector pressure makes it possible to anticipate the evolution of the value of the pressure of the collector measured as a function, in particular, of the engine speed, which makes it possible to overcome the variation of the pressure of the collector between the moment to which it is measured by the sensor 20 and the moment at which it is used by the electronic control system 18.
  • a particular phase may be detected when the value of the difference between the measured or calculated collector pressure and a filtered collector pressure is greater than a high threshold value or a lower threshold value.
  • the absolute values of the high and low thresholds can be equal.
  • the pressure of the filtered collector is the result of a calculation which is carried out by the electronic control system 18 and which takes into account, in particular the filtered collector pressure, calculated at the previous iteration, as well as the pressure of the collector measured or calculated.
  • the pressure of the filtered collector defines, as it were, an average value whose deviation from the value of the measured or calculated pressure makes it possible to determine a variation of the pressure of the intake manifold, and consequently a particular phase such as an acceleration or deceleration.
  • a particular phase of acceleration is detected, when the difference between the pressure of the collector measured or calculated and the pressure of the filtered collector is greater than a high threshold.
  • a particular deceleration phase is detected, when the difference between the measured or calculated collector pressure and the filtered collector pressure is lower than a low threshold.
  • the regulation coefficient B of the richness is determined by the known step 54, in accordance with FIG.
  • the proportional term Bprop and the integral term Bint are multiplied by first and second coefficients D 1 , D 2 respectively which are greater than or equal to 1, so as to accelerate the return stoichiometric richness and minimize the production of pollutants.
  • the first and second coefficients D 1 , D 2 may be constants determined during the development of the engine. They can also be variable and depend for example on engine speed.
  • the first and second coefficients D 1 , D 2 may be natural numbers. They can also be decimal numbers greater than 1.
  • FIG. 4 represents a curve 70 which illustrates the evolution of the regulation coefficient B, determined according to the state of the art, during a cycle of the motor 12 represented by the curve 72.
  • FIG. 5 represents a curve 74 which illustrates the evolution of the regulation coefficient B, determined according to the invention, during the cycle of the motor 12 represented by the curve 72.
  • the determination of the regulation coefficient B according to the invention is shown in FIG. 5 by an increase of the slope of the curve 74 with respect to the slope of the curve 70. That is to say that for an identical duration the value of the Regulatory coefficient B determined according to the invention evolves more than the regulation coefficient B determined according to the state of the art.
  • the portion of the curve 72 shown in FIGS. 4 and 5 illustrates an acceleration phase of the motor 12.
  • FIG. 5 shows the detection of a particular phase at point 76. Indeed, a sudden change of slope is noted which is the translation of the calculation of the regulation coefficient B according to the invention.
  • the calculation of the regulation coefficient B according to the invention makes it possible to optimize the regulation of the stoichiometric richness of the fuel / air mixture.
  • Figure 6 illustrates the evolution of wealth during a phase of acceleration and stabilized engine.
  • Curve 78 illustrates the evolution of average wealth according to the state of the art
  • curve 80 illustrates the evolution of the average richness according to the invention.
  • the regulation of the richness with stoichiometric richness is more efficient according to the invention.
  • the regulation method according to the invention makes it possible to greatly reduce the "peak" of richness 82, that is to say its and its duration, which greatly reduces the production of polluting substances compared to the state of the art.
  • the method according to the invention makes it possible to determine a regulation coefficient B that optimizes the regulation of wealth.
  • Step 58 then makes it possible to determine, in known manner, the quantity Q of fuel injected.
  • Such a method makes it possible to minimize the production of polluting substances without reducing the performance of the engine 12 and without impairing the driveability of the vehicle.
  • the regulation method according to the invention makes it possible to halve the "peak" of richness 82, ie its magnitude and duration, which greatly reduces the production of polluting substances compared with the state of the technical.
  • FIG. 7 proposes two curves 84 and 86 which represent the cumulative unburned hydrocarbon emissions, when the fuel injection is managed by a wealth regulation method according to the state of the art and according to the control method of FIG. the richness according to the invention respectively, during a cycle of operation of the motor represented by a curve 88.
  • the determination of the quantity Q of fuel injected according to the control method of the invention may, in certain cases, cause instabilities of combustion inside a chamber of the engine 12, when the engine speed is constant.
  • step 52 makes it possible to determine the particular phases corresponding to variations in the speed of the motor 12.
  • step 60 makes it possible to stop the regulation process.
  • Stopping can be obtained when a fourth operating parameter of the motor 12 reaches a threshold value.
  • the fourth parameter is also called a stop parameter.
  • the stopping parameter may correspond to a signal representative of the temperature of the exhaust gas processing device 16.
  • the threshold value may be the minimum priming temperature of the treatment device 16.
  • the stopping parameter may also be representative of the number of passages of a piston at the top dead center or the temperature of the water of the engine cooling circuit 12. In these two cases, it is possible to establish a link between the shutdown parameter and the temperature of the treatment device 16.
  • the threshold value of the fourth stopping parameters may depend on the second parameter.
  • the method according to the invention makes it possible to regulate the richness of the fuel / air mixture, in particular between the instant at which the probe 24 has reached its operating temperature, and the instant at which the treatment device 16 reaches its minimum temperature. boot.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Claims (17)

  1. Verfahren zur Regelung des Gehalts der Kraftstoff/Luft-Mischung zur Versorgung eines Verbrennungsmotors (12) eines Kraftfahrzeugs, dessen Abgasleitung mit einer Vorrichtung (10) zur Behandlung von Abgasen ausgestattet ist, um die Erzeugung von umweltverschmutzenden Substanzen, wie z.B. Kohlenwasserstoffen oder Kohlenmonoxid, zu minimieren, von der Art, bei welchem die Menge an eingespritztem Kraftstoff (Q) insbesondere von einem proportionalen Term (Bprop) und einem integralen Term (Bint) abhängt, welche insbesondere ausgehend von dem Druck, der in dem Einlasskrümmer herrscht, und der Drehzahl des Motors derart bestimmt werden, dass während einer besonderen Betriebsphase des Motors (12), welche eine Veränderung des Gehalts def Mischung hervorruft, der proportionale Term (Bprop) und der integrale Term (Bint) mit einem ersten und einem zweiten Koeffizienten (D1, D2) jeweils multipliziert werden, welche größer oder gleich 1 sind, derart, um die Rückkehr zum stöchiometrischen Gehalt zu beschleunigen und die Erzeugung von umweltverschmutzenden Substanzen zu minimieren, dadurch gekennzeichnet, dass das Verfahren gestoppt wird, wenn ein vierter Betriebsparameter des Motors (12), der stellvertretend für die Temperatur der Vorrichtung zur Behandlung von Abgasen ist, einen Schwellenwert erreicht.
  2. Verfahren nach dem vorangegangenen Anspruch, dadurch gekennzeichnet, dass die Menge an eingespritztem Kraftstoff (Q) nach der Formel Q = A1 + A2 * (1 + B /C1) bestimmt wird, in welcher A1, A2 und C1 Konstanten sind und B ein Koeffizient zur Regelung des Gehalts ist, welcher ausgehend von dem proportionalen Term (Bprop) und dem integralen Term (Bint) bestimmt wird.
  3. Verfahren nach dem vorangegangenen Anspruch, dadurch gekennzeichnet, dass, wenn der Gehalt niedriger als die stöchiometrische Mischung ist, der Koeffizient (B) zur Regelung des Gehalts durch die Formel B = C2* D1 * Bprop + D2 * Bint bestimmt wird, in welcher C2 eine Konstante ist.
  4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass, wenn der Gehalt größer als die stöchiometrische Mischung ist, der Koeffizient (B) zur Regelung des Gehalts durch die Formel B = - (C2 * D1 * Bprop + D2 * Bint) bestimmt wird, in welcher C2 eine Konstante ist.
  5. Verfahren nach irgendeinem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass mindestens der eine des ersten und/oder des zweiten Koeffizienten (D1, D2) eine natürliche ganze Zahl ist.
  6. Verfahren nach irgendeinem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass es initialisiert wird, wenn ein erster Betriebsparameter des Motors (12) einen Schwellenwert erreicht.
  7. Verfahren nach dem vorangegangenen Anspruch, dadurch gekennzeichnet, dass der Schwellenwert des ersten Parameters in Abhängigkeit von mindestens einem zweiten Betriebsparameter des Motors (12), wie z.B. der Temperatur der Flüssigkeit des Kühlkreislaufs beim Starten des Motors (12), vatiabel ist.
  8. Verfahren nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass der erste Parameter stellvertretend für die Temperatur einer Sonde (24) ist.
  9. Verfahren nach dem vorangegangenen Anspruch, dadurch gekennzeichnet, dass die Sonde (24) vom Typ Lambda ist.
  10. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Sonde (24) vom Typ Planar ist.
  11. Verfahren nach irgendeinem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass mindestens der eine des proportionalen Terms Bprop und/oder des integralen Terms Bint durch ein Kennfeld bestimmt wird, insbesondere ausgehend von dem Druck, der in dem Einlasskrümmer herrscht, und der Drehzahl des Motors (12).
  12. Verfahren nach irgendeinem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die besondere Betriebsphase ausgehend von einem Wert erfasst wird, welcher stellvertretend für einen dritten Betriebsparameter des Motors (12) ist.
  13. Verfahren nach dem vorangegangenen Anspruch, dadurch gekennzeichnet, dass der dritte Betriebsparameter des Motors (12) dem Druck des Einlasskrümmers des Motors (12) entspricht, dessen Wert durch einen Sensor (20) geliefert wird.
  14. Verfahren nach dem vorangegangenen Anspruch, dadurch gekennzeichnet, dass der Wert des Drucks des Krümmers dem Ergebnis der Behandlung durch eine Vorrichtung zur Behandlung (18) des Werts des Drucks des Krümmers entspricht, der durch den Sensor (20) derart geliefert wird, um seine Entwicklung zu antizipieren.
  15. Verfahren nach einem der Ansprüche 13 oder 14, dadurch gekennzeichnet, dass der Wert des Drucks des Krümmers derart gefiltert wird, um einen gefilterten Wert zu definieren, und dass die besondere Betriebsphase festgestellt wird, wenn der Wert der Differenz zwischen dem Druck des Krümmers, welcher gemessen wird oder durch die Vorrichtung zur Behandlung (18) berechnet wird, und dem gefilterten Druck des Krümmers größer als ein oberer Schwellenwert oder niedriger als ein unterer Schwellenwert ist.
  16. Verfahren nach einem der Ansprüche 6 bis 15, dadurch gekennzeichnet, dass der erste und/oder der vierte Parameter stellvertretend für die Anzahl von Übergängen eines Kolbens im oberen Totpunkt ist.
  17. Verfahren nach irgendeinem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Vorrichtung zur Behandlung (16) von Abgasen einen Katalysator vom Typ Dreiwegekatalysator aufweist.
EP20010401653 2000-07-07 2001-06-22 Verfahren zur Regelung des einem Verbrennungsmotor zugeführten Kraftstoff-Luftgemischgehaltes Expired - Lifetime EP1170494B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0008889 2000-07-07
FR0008889A FR2811375B1 (fr) 2000-07-07 2000-07-07 Procede de regulation de la richesse du melange carburant/ air d'alimentation d'un moteur a combustion

Publications (3)

Publication Number Publication Date
EP1170494A2 EP1170494A2 (de) 2002-01-09
EP1170494A3 EP1170494A3 (de) 2003-01-22
EP1170494B1 true EP1170494B1 (de) 2006-08-02

Family

ID=8852240

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20010401653 Expired - Lifetime EP1170494B1 (de) 2000-07-07 2001-06-22 Verfahren zur Regelung des einem Verbrennungsmotor zugeführten Kraftstoff-Luftgemischgehaltes

Country Status (4)

Country Link
EP (1) EP1170494B1 (de)
DE (1) DE60121872T2 (de)
ES (1) ES2264680T3 (de)
FR (1) FR2811375B1 (de)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6460744A (en) * 1987-08-31 1989-03-07 Honda Motor Co Ltd Air-fuel ratio feedback control method for internal combustion engine
DE4024213A1 (de) * 1990-07-31 1992-02-06 Bosch Gmbh Robert Verfahren zur lambdaregelung einer brennkraftmaschine mit katalysator
JP3035390B2 (ja) * 1991-08-30 2000-04-24 本田技研工業株式会社 内燃エンジンの空燃比制御装置
JP3680178B2 (ja) * 1992-07-17 2005-08-10 株式会社日立製作所 内燃機関の空燃比制御装置
JP2778383B2 (ja) * 1992-10-02 1998-07-23 日産自動車株式会社 エンジンの空燃比制御装置

Also Published As

Publication number Publication date
FR2811375B1 (fr) 2003-02-21
DE60121872T2 (de) 2007-02-15
FR2811375A1 (fr) 2002-01-11
DE60121872D1 (de) 2006-09-14
EP1170494A2 (de) 2002-01-09
EP1170494A3 (de) 2003-01-22
ES2264680T3 (es) 2007-01-16

Similar Documents

Publication Publication Date Title
FR2466633A1 (fr) Systeme de commande de synchronisation d'etincelles pour moteurs a combustion interne
FR3033364A1 (fr) Dispositif et procede de regulation de la richesse d'un moteur a combustion interne
FR2823254A1 (fr) Appareil de commande d'emission d'un moteur a combustion interne et procede pour retarder la deterioration du catalyseur de commande d'emission
EP0886039A1 (de) Verfahren und Einrichtung zum Entfernen von Stickstoffoxiden aus Abgasen mittels eines Wärmetauschers
EP1234109A1 (de) Kraftstoffeinspritzverfahren für eine brennkraftmaschine
EP0931923A1 (de) Verfahren zum Steuern die Regeneration des Abgaskatalysators einer Brennkraftmaschine
EP1877657B1 (de) Verfahren zur steuerung eines fahrzeugmotors zur regelung der temperatur eines partikelfilters
EP1170494B1 (de) Verfahren zur Regelung des einem Verbrennungsmotor zugeführten Kraftstoff-Luftgemischgehaltes
FR2796670A1 (fr) Procede et dispositif de commande du mode de combustion d'un moteur a combustion interne
FR2828234A1 (fr) Procede de regeneration d'un systeme de post traitement des gaz d'echappement
FR2905421A1 (fr) Procede et appareil de commande pour gerer un moteur diesel.
EP4311927A1 (de) Verfahren zur steuerung der kraftstoffeinspritzung in einer brennkraftmaschine und system dafür
EP0852667B1 (de) Verfahren zur bestimmung des einem verbrennungsmotor zugeführten optimalen luft-kraftstoff-verhältnisses und entsprechende vorrichtung
EP0961875A1 (de) Verfahren zum steuern der regeneration des abgaskatalysators einer brennkraftmaschine
EP0931914B1 (de) Verfahren zur Funktionsüberwachung des Abgaskatalysators eines Kraftfahrzeuges
FR2769044A1 (fr) Procede de commande du recyclage de gaz d'echappement dans un moteur a combustion interne
EP1106804A1 (de) Verfahren zur Steuerung einer Antriebseinheit eines Kraftfahrzeuges zur Anreicherung der Abgase während der Regeneration einer Stickoxidfalle
FR2798963A1 (fr) Procede de commande d'un moteur a combustion interne equipe d'un dispositif de recyclage des gaz d'echappement, et fonctionnant avec une charge stratifiee
EP0146426B1 (de) Verfahren für die Steuerung eines Motors mit durch Lambdasonde regulierter Kraftstoffeinspritzung und gesteuerter Zündung
FR2721653A1 (fr) Procédé et dispositif de réduction des émissions de polluants d'un moteur à combustion interne.
EP2134947A2 (de) Verbrennungsmotor mit einstellung der injizierten kraftstoffmenge und verfahren zur bestimmung eines sollwertes für die injizierte kraftstoffmenge
FR3134149A1 (fr) Système d’injection configuré pour la stabilisation de la valeur de la richesse d’un mélange air-carburant en fonction de la capacité de stockage en oxygène courante d’un catalyseur
FR2849111A1 (fr) Procede de regulation de la richesse du melange air/carburant dans un moteur thermique
FR3129688A1 (fr) Gestion du fonctionnement d’un catalyseur d’échappement d’un moteur à combustion interne
FR2722248A1 (fr) Procede et dispositif de regulation de las richesse de combustion d'un moteur a combustion interne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RENAULT S.A.S.

17P Request for examination filed

Effective date: 20020625

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7F 02D 41/14 A, 7F 02D 41/02 B, 7F 02D 41/06 B

AKX Designation fees paid

Designated state(s): DE ES GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: PROCESS FOR REGULATING THE RICHNESS OF AN AIR/FUEL MIXTURE FEEDING AN INTERNAL-COMBUSTION ENGINE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060802

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60121872

Country of ref document: DE

Date of ref document: 20060914

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060906

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2264680

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170620

Year of fee payment: 17

Ref country code: DE

Payment date: 20170621

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20170724

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60121872

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190101

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180622

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180623