EP1170355B1 - Process and apparatus for hydrocarbon cracking with two successive reaction zones - Google Patents

Process and apparatus for hydrocarbon cracking with two successive reaction zones Download PDF

Info

Publication number
EP1170355B1
EP1170355B1 EP01401737A EP01401737A EP1170355B1 EP 1170355 B1 EP1170355 B1 EP 1170355B1 EP 01401737 A EP01401737 A EP 01401737A EP 01401737 A EP01401737 A EP 01401737A EP 1170355 B1 EP1170355 B1 EP 1170355B1
Authority
EP
European Patent Office
Prior art keywords
effluents
chamber
reaction chamber
fractional distillation
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01401737A
Other languages
German (de)
French (fr)
Other versions
EP1170355A1 (en
Inventor
Marcellin Espeillac
Pierre Crespin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TotalEnergies Marketing Services SA
Original Assignee
TotalFinaElf France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TotalFinaElf France SA filed Critical TotalFinaElf France SA
Publication of EP1170355A1 publication Critical patent/EP1170355A1/en
Application granted granted Critical
Publication of EP1170355B1 publication Critical patent/EP1170355B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G51/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique

Definitions

  • the present invention relates to the cracking of hydrocarbons in the presence of heat transfer particles, catalytic or not, circulating in the fluidized phase. It relates more particularly to a cracking process in a fluidized bed, in which heat-transfer particles circulate in two successive reaction chambers, in each of which they are brought into contact with one or more cuts of hydrocarbons to be cracked.
  • the invention also relates to a device designed for implementing the method according to the invention.
  • the hydrocarbon charge In this type of process, the hydrocarbon charge, generally sprayed in the form of fine droplets, is brought into contact with heat-carrying particles at high temperature and which circulate in the reactor in the form of a fluidized bed, that is to say in suspension more or less dense within a gaseous fluid ensuring or assisting their transport.
  • the charge On contact with hot particles, the charge vaporizes, followed by cracking of the hydrocarbon molecules.
  • the cracking reaction is of the thermal type, when the particles have only a heat transfer function.
  • reaction effluents are separated from the particles.
  • the latter deactivated due to the coke which is deposited on their surface, are generally stripped in order to recover the entrained hydrocarbons, then regenerated by combustion of the coke, and finally brought back into contact with the charge to be cracked.
  • reactors used are most often vertical reactors of the tubular type, in which the charge and the particles move in an essentially ascending flow (the reactor is then called “riser”) or in an essentially descending flow (the reactor is then called “Dropper” or “downer”).
  • a major difficulty in such methods consists in carrying out a cracking which is both complete and selective of the charge, that is to say to succeed in cracking the entire charge, so as to obtain a maximum amount of it. recoverable hydrocarbons, while minimizing the quantity of undesirable by-products.
  • This objective is all the more difficult to achieve since the charges to be cracked have relatively wide boiling intervals, and are made up of very diverse compounds which crack under significantly different conditions to lead to various products.
  • a first solution consists in recycling all or part of these products in the cracking reactor, so as to subject them to a second cracking step.
  • a measure proves not only ineffective, but also harmful, insofar as such recycling often has the effect of appreciably affecting the quality of the cracking of the fresh charge.
  • a second solution consists in increasing the severity of the cracking, in order to crack the charge injected further and convert all the types of hydrocarbons present.
  • such measure if it makes it possible to increase the conversion rate of the charge, on the other hand favors overcracking phenomena, which result in a reduction in the selectivity of the conversion: an increased production of dry gases and coke is observed to the detriment intermediate hydrocarbons sought.
  • US Patent No. 2,488,713 proposes a catalytic cracking process using two successive reactors, in each of which circulate catalytic particles.
  • a heavy recycle cut (residue from the fractionation of cracked effluents, of the type known as a “slurry”) is cracked on contact with the catalytic particles coming from the regenerator.
  • a fresh charge as well as an intermediate recycle cut of the distillate type are cracked on contact with the particles coming from the first reactor.
  • the hydrocarbon effluents are separated from the particles, then are combined and directed to a conventional fractionation column.
  • the first drawback of such a process is that the fresh charge is treated, in the second reactor, in the presence of particles which have already been largely coked and deactivated in the first reactor, in contact with the heavy recycle charge, which is particularly rich in refractory polyaromatic compounds.
  • the heavy recycle charge which is particularly rich in refractory polyaromatic compounds.
  • a second disadvantage comes from the fact that the heavy recycle cut progressively enriches itself with the most refractory heavy compounds, which, even recycled in the first reactor, do not crack or crack in an incomplete manner, and "go around in circles" in the unit. . This exacerbates the problems described above of premature coking of the particles in the first reactor. A purge planned on the recycling line does not solve the problem satisfactorily.
  • the purge not only extracts only part of the most refractory compounds that are desired eliminate from the unit, but additionally extracts a fraction of compounds directly originating from the fresh charge, which were not converted during their passage through the second reactor, but which could have been cracked in the first reactor in contact with regenerated particles.
  • the poor selectivity of this purge system thus induces an additional loss of yield in desired products.
  • patent EP No. 573316 describes a catalytic cracking process in which the reaction takes place in two successive reactors, the first reactor being in downward flow, and the second being in upward flow (riser).
  • the charge to be cracked is brought into contact with the regenerated particles at the inlet of the downflow reactor, at the bottom of which the charge / particle mixture is transferred into the upflow reactor.
  • the charge therefore flows in contact with the particles in two successive reactors, which makes it possible to increase the overall yield of cracked hydrocarbons.
  • this process is absolutely not selective: the hydrocarbons already converted in the first reactor continue to crack in the second reactor, resulting in an overcracking phenomenon generating increased production of dry gases and coke, to the detriment of intermediate cuts sought.
  • the present invention relates to a process for cracking in a fluidized bed a hydrocarbon feedstock in which heat-carrying particles, optionally catalytic, circulate in two successive reaction chambers? in each of which they are brought into contact with at least one section of hydrocarbons, and the reaction effluents from each of said chambers are directed to the same fractionation unit.
  • This process is characterized in that the effluents from each of the reaction chambers are partially fractionated separately in the same partially partitioned fractionation column, and in that that at least one section resulting from the separate fractionation of the effluents from one of the two reaction chambers is, in whole or in part, reinjected into the other chamber.
  • reaction chamber designates any enclosure provided with means for introducing heat-transfer particles (catalytic or not), means for injecting one or more cuts of hydrocarbons to be cracked, a reaction zone of cracking and means for separating cracking effluents and particles.
  • This term includes in particular any type of thermal or catalytic cracking reactor in a fluidized bed, whatever its operating mode (ascending or descending).
  • hydrocarbons are cracked in a first reaction chamber, in contact with fully active particles coming from the regenerator.
  • the effluents are separated from the particles, and the latter continue their journey in a second reaction chamber in which their residual activity is used to crack an additional quantity of hydrocarbons.
  • the process according to the invention allows a more thorough and more selective conversion of the charge to be cracked. It allows the refiner to re-inject low-value products obtained during a first conventional cracking step, so as to subject these products to a second cracking step.
  • the fact that the recycling of said products takes place in a different reactor has the advantage, on the one hand, of being able to carry out this second cracking under appropriate conditions and, on the other hand, of avoiding affecting the quality of the first step of cracking the load.
  • the method according to the invention makes it possible to subject the hydrocarbons constituting the charge to separate cracking circuits, perfectly adapted to the various natures of these hydrocarbons, so as to obtain a maximum quantity of recoverable products.
  • the charge to be cracked undergoes a first conversion, as a result of which the undesirable products obtained are fractionated separately from the effluents of the other reactor, in a compartment of the partitioned zone of the fractionation column.
  • These products are then reinjected into a separate reactor, in which they undergo a second cracking step, under conditions specifically suited to their nature.
  • the effluents resulting from this second cracking are then fractionated in the same column as the effluents from the first cracking, and the partitioned fractionation system of this column makes it possible to prevent the residual undesirable compounds, not converted after passing through the two reactors (in particularly compounds that are particularly refractory to cracking), are not recycled a second time and "go around in circles" in the unit. Indeed, such compounds are recovered, in the fractionation column, in the compartmentalized fractionation compartment of the effluents from the second cracking step. These compounds are thus recovered separately from the effluents from the first cracking step, and they can for example be eliminated from the unit.
  • This system makes it possible to reinject into one of the reaction chambers only hydrocarbons coming exclusively from the other chamber. This avoids any phenomenon of enrichment of the recycled cuts in refractory compounds, which would gradually degrade the quality of the cracking of said cuts, while causing excessive coking of the particles circulating in the unit.
  • the method according to the invention makes it possible to make the most of undesirable products originating from a first conventional cracking step, in order to produce an additional quantity of products with greater added value.
  • it offers the refiner the possibility of carrying out a cracking that is both more complete and more selective in favor of the type of products he wishes to obtain.
  • the profitability of the unit is significantly improved.
  • the present invention therefore also relates to a cracking device in a fluidized bed of a hydrocarbon feedstock, using two reaction chambers connected to each other by means of transfer of the heat-carrying particles, a fractionation column and supply lines for the hydrocarbon effluents from each of the two chambers at said fractionation column.
  • a first advantage of the device according to the invention is linked to the fact that the hydrocarbon effluents from the two reaction chambers are partly treated separately, but in a single fractionation column. This system makes it possible to avoid having to use two separate columns, therefore to have a compact unit and to limit investments.
  • a second advantage of this device is linked to the fact that it allows optimal implementation of the method according to the invention.
  • said partitioned fractionation zone is advantageously dimensioned as a function of the boiling ranges of the undesirable products to which the refiner wishes to subject a second cracking step.
  • the common fractionation zone is used for the fractionation of products for which the refiner does not wish to differentiate those from each of the two reaction chambers, for example because these are directly recoverable products, which he does not wish to reverse.
  • first and second reaction chamber The two reaction chambers involved in the invention are designated in the present description by "first" and “second” reaction chamber, it being understood that this order is adopted by reference to the direction of circulation of the heat-carrying particles from the regenerator.
  • the injection of hydrocarbons can be done co-current and / or against the current of the flow of heat-transfer particles.
  • reaction chambers can in particular be made up of any type of downward (or downward) or riser (riser) flow reactors.
  • the two chambers can completely be identical, the method according to the invention is all the more advantageous when said chambers are different. This makes it possible in particular to make different operating conditions prevail in these two chambers, adapted to the type of hydrocarbons injected into each.
  • the residence time of the hydrocarbons injected into the first reaction chamber is less than the residence time of the hydrocarbons injected into the second reaction chamber.
  • the cracking in the first reaction chamber takes place in the presence of particles coming directly from the regenerator, therefore at particularly high temperature and maximum activity.
  • the cracking takes place under milder conditions, since the particles have partly cooled, or even deactivated, during their passage through the first reaction chamber. Consequently, it has proved advantageous to prolong the contact there between the particles and the hydrocarbons, so as to allow a sufficiently complete cracking of the latter.
  • the residence time of the hydrocarbons injected into the first reaction chamber is between 0.05 and 5 seconds, preferably between 0.1 and 1 seconds.
  • the residence time of the hydrocarbons injected into the second reaction chamber it is advantageously between 0.1 and 10 seconds, preferably between 0.4 and 5 seconds.
  • the flow of the charge and the catalyst in the first reaction chamber takes place in an essentially descending direction.
  • Said reaction chamber can then consist of a substantially vertical downward flow reactor of the type known under the name of "downer", as described for example in international patent application WO 98/12279.
  • this type of reactor allows a particularly short contact time between the hydrocarbons and the fluidized bed of particles.
  • the flow of the charge and the catalyst in the second reaction chamber takes place in an essentially ascending direction.
  • Said reaction chamber can then consist of a substantially vertical reactor with upward flow, of the type known under the name of "riser". Indeed, this type of reactor allows access to longer contact times between the hydrocarbons and the fluidized bed of particles.
  • the present invention presents numerous modes of implementation, among which the refiner will be able to choose the one which is the most adapted to the types of products he wishes to obtain, taking into account the type of fillers available.
  • a first particularly advantageous embodiment consists in partitioning the fractionation of the heavy part of the effluents from the two reactors.
  • the heaviest effluents from each of the two reaction chambers are fractionated separately, while the lightest effluents are combined.
  • said cut resulting from the separate fractionation of the effluents from one of the reaction chambers and which is, in whole or in part, reinjected into the other chamber comprises slurry and / or a heavy distillate of the HCO type.
  • HCO from the English term "heavy cycle oil”
  • HCO is usually used to designate a heavy fraction whose boiling range can extend from an initial point generally between 320 and 400 ° C. up to an end point generally between 450 and 480 ° C. It is a poorly recoverable product, rich in sulfur and aromatic compounds, which is generally used as a diluent for heavy fuels.
  • the product commonly called “slurry”
  • slurry it consists of the fractionation residue from the cracked effluents. It is a very heavy, very viscous product, the initial cutting point of which is generally between 450 and 480 ° C.
  • This residue is all the more difficult to develop as it is particularly rich in polyaromatic compounds, and that it comprises an appreciable proportion of fines, that is to say dust from the erosion of the heat-carrying particles circulating in unit.
  • a second particularly advantageous embodiment consists in partitioning the fractionation of the light part of the effluents from the two reactors.
  • the lightest effluents from each of the two reaction chambers are fractionated separately while the heaviest effluents are combined.
  • said cut resulting from the separate fractionation of the effluents from one of the reaction chambers and which is, in whole or in part, reinjected into the other chamber comprises gasoline.
  • cuts are designated by essence whose boiling range can extend from an initial point generally greater than or equal to 20 ° C up to an end point generally between 140 and 220 ° C. It can be particularly advantageous for the refiner to subject a second cracking step to this type of product, insofar as this increases the production of light olefins such as, for example, propenes and butenes, which are very sought after products, in particular for uses in petrochemicals.
  • At least one section resulting from the separate fractionation of the effluents from one of the reaction chambers is, in whole or in part, reinjected into the other chamber.
  • the reinjected proportions depend in particular on the nature (more or less dense, more or less difficult to crack, ...) of the cuts concerned. These proportions must also take into account the operating conditions prevailing in the reactor in which such cuts are reinjected, so as to ensure complete vaporization and cracking of the recycled hydrocarbons.
  • the proportion reinjected advantageously comprises from 10 to 100% of the flow of said cut. More preferably, this proportion is between 50 and 100%.
  • each of the reinjected cuts can be, prior to this reinjection, combined with other cuts of hydrocarbons.
  • the diluent can, for example, include fresh feed, in particular conventional fillers such as diesel or distillates.
  • the diluent can moreover comprise for example light recycling oils ("light cycle oils", LCO) or heavy recycling oils ("heavy cycle oils", HCO).
  • each of the reinjected sections can, before this reinjection, be subjected to one or more intermediate treatments.
  • an intermediate treatment includes a hydrotreatment, such as for example a hydrogenation, a hydrodearomatization, a hydrodesulfurization, a hydrodenitrogenation.
  • Such treatments are usually carried out in the presence of catalysts known to those skilled in the art, and which generally comprise, deposited on a refractory mineral oxide support, one or more metals from Group VIII of the Periodic Table of the Elements, sometimes associated with other metals such as those of Group VI of the Periodic Table of the Elements.
  • the cracking of the hydrocarbons is carried out in the presence of the heat-transfer particles coming from the first chamber, in which they have been partially coked, or even deactivated, in contact with the charge injected into this first chamber.
  • a particularly advantageous variant of the invention consists in introducing upstream of this second reaction chamber, in addition to the particles coming from the first reaction chamber, an addition of particles coming from the regenerator. This variant is particularly beneficial when the heat provided by the particles from said first chamber is insufficient to vaporize the hydrocarbons injected into the second reaction chamber. Adding regenerated particles then makes it possible to provide an additional quantity of heat, and to control the temperature prevailing in said second chamber.
  • this system has the additional advantage of introducing into the second chamber an addition of fully active catalytic sites, so as to optimize the cracking reactions of the hydrocarbons injected into this second chamber.
  • the addition of particles is introduced between the zone where the separation of the particles and effluents takes place from the first reaction chamber and the zone where the injection of the hydrocarbon fractions takes place in the second reaction chamber.
  • Said make-up is advantageously introduced so as to ensure a homogeneous mixture with the particles coming from the first reactor.
  • a system for homogenizing the fluidized beds of particles as described in patent application EP No. 99.401112 in the name of the Applicant may prove to be particularly useful.
  • the invention uses a specific fractionation column. Indeed, this must allow the simultaneous distillation of the effluents from the two reactors, and be arranged so that the fractionation of these two types of effluents is carried out partly separately, partly in common.
  • This partial segregation of the effluents from the two reactors is carried out using a partitioning disposed inside the column, which partitioning separates part of said column into two compartments which constitute said partitioned fractionation zone.
  • This partially partitioned fractionation column can be arranged in many ways, depending on the part of the effluents for which it is desired that the fractionation be carried out separately.
  • the partitioned fractionation zone corresponds to the lower part of the fractionation column.
  • different modes of partitioning can be envisaged for the device according to the present invention.
  • the partitioned fractionation zone is separated into two compartments by means of a substantially vertical separation means, extending from the bottom of the fractionation column over part of the height thereof. It may for example be a flat vertical wall. It may also be a cylindrical vertical wall whose axis of revolution is parallel to the longitudinal axis of the fractionating column.
  • the partitioned fractionation zone is separated into two compartments by means of a substantially horizontal separation means, for example consisting of a tray extending over a horizontal section of the column, and provided with one or more several chimneys allowing the passage upwards, towards the common fractionation zone, of light effluents from the lower compartment to said tray.
  • a substantially horizontal separation means for example consisting of a tray extending over a horizontal section of the column, and provided with one or more several chimneys allowing the passage upwards, towards the common fractionation zone, of light effluents from the lower compartment to said tray.
  • the partitioned fractionation zone corresponds to the upper part of the fractionation column.
  • the partitioned fractionation zone is separated into two compartments by means of a substantially vertical separation, extending from the head of the fractionation column over a part of the height thereof, such as for example a flat vertical wall or a vertical cylindrical wall whose axis of revolution is parallel to the longitudinal axis of the fractionating column.
  • the partitioned fractionation zone is separated into two compartments by means of a substantially horizontal separation means, for example consisting of a tray extending over a horizontal section of the column, and provided with one or more several chimneys allowing the passage downwards, towards the common fractionation zone, of the heavy effluents coming from the upper compartment to said tray.
  • a substantially horizontal separation means for example consisting of a tray extending over a horizontal section of the column, and provided with one or more several chimneys allowing the passage downwards, towards the common fractionation zone, of the heavy effluents coming from the upper compartment to said tray.
  • each of the two reaction chambers operates can vary. They are preferably different in each of these two chambers, taking into account the different natures of the hydrocarbons which are injected there. In general, these operating conditions include a reaction temperature between 450 and 900 ° C, and a pressure close to atmospheric pressure. A person skilled in the art knows perfectly how to optimize these conditions according to the type of petroleum cuts to be cracked.
  • the hydrocarbon charges liable to be cracked in the context of the present invention can be extremely diverse. They include in particular, but are not limited to, the usual fillers for cracking processes, such as for example distillates and / or gas oils obtained from atmospheric or vacuum distillation, distillates and / or visbreaking gas oils, deasphalted residues.
  • the process according to the invention is, moreover, perfectly suited to the conversion of heavier feedstocks, containing fractions normally boiling up to 700 ° C. and more, which may contain high quantities of asphaltenes and have a Conradson carbon content. up to 4% and beyond.
  • the feed can include heavy distillates, atmospheric distillation residues, or even vacuum distillation residues.
  • the injected fillers may if necessary have received a preliminary treatment such as, for example, a hydrotreatment in the presence of an appropriate catalyst, for example a catalyst based on cobalt and molybdenum deposited on a porous refractory oxide.
  • a preliminary treatment such as, for example, a hydrotreatment in the presence of an appropriate catalyst, for example a catalyst based on cobalt and molybdenum deposited on a porous refractory oxide.
  • the charge to be cracked can moreover be diluted by one or more lighter cuts, which can include intermediate cuts coming from the fractionation zone of the cracking effluents.
  • the LCOs or HCOs mentioned above can constitute excellent diluents.
  • FIG. 1 represents a catalytic cracking unit comprising two successive reaction chambers, the first with downward flow and the second with upward flow.
  • This unit comprises a first reaction chamber consisting of a tubular reactor 1 with downflow, known as name of "downer”.
  • This reactor is connected in its upper part to an enclosure 2, from which it is fed by a flow of regenerated catalyst particles, with a flow rate regulated by means of a valve 3.
  • the charge to be cracked is conveyed by line 4 and injected into reactor 1 by means of injectors 5.
  • the catalyst particles and the hydrocarbons then flow from top to bottom in reactor 1.
  • the mixture emerges in enclosure 6, in the upper part of which a separator, not shown, separates the catalyst particles from the reaction effluents, which are directed to the fractionation zone by line 7.
  • a separator not shown, separates the catalyst particles from the reaction effluents, which are directed to the fractionation zone by line 7.
  • the particles are stripped, by means of water vapor brought by the line 8 to the diffuser 9.
  • the particles are then evacuated via line 10 out of the enclosure 6, and transferred to the base of the second reaction chamber.
  • the latter consists of a reactor 16 in the form of a column, of a type known per se, known as a load elevator, or riser.
  • the reactor 16 is supplied at its base by the conduit 10 with particles of catalyst.
  • a riser gas for example water vapor
  • a riser gas for example water vapor
  • a charge comprising a substantial proportion of a cut resulting from the separate fractionation of heaviest effluents from the first reactor 1
  • a charge comprising a substantial proportion of a cut resulting from the separate fractionation of heaviest effluents from the first reactor 1
  • the catalyst particles and the hydrocarbons then flow from bottom to top in the reactor 16 .
  • the column 16 opens at its top in an enclosure 15, which is for example concentric and in which the separation of the cracked charge takes place and the stripping of the deactivated particles of catalyst.
  • the particles are separated from the charge treated by means of a cyclone 17, which is housed in the enclosure 15, at the top of which is provided a discharge line 18 for the effluents from the second reactor 16, which are routed to the fractionation zone.
  • the deactivated particles move by gravity towards the base of the enclosure 15.
  • a line 20 supplies stripping fluid, generally steam, to injectors or diffusers 21 of fluidizing gas regularly arranged at the base of the pregnant 15.
  • the particles are then evacuated at the base of the enclosure 15 to a regenerator 23, via the conduit 22.
  • the regenerator 23 the coke deposited on the particles is burned using air or a another oxygen-rich gas, injected at the base of the regenerator 23 by a line 24, which feeds regularly spaced injectors or diffusers 25.
  • the particles entrained by the combustion gas are separated by cyclones 26, and the combustion gas is evacuated by a line 27, while the particles flow towards the base of the enclosure 23, from where they are recycled by the conduit 28 towards the enclosure 2 supplying the first reactor 1.
  • the reaction effluents from each of reactors 1 and 16 are routed respectively by lines 7 and 18 to the fractionation column 12.
  • the latter consists of two zones: a lower zone 40 for partitioned fractionation, and an upper zone 41 for fractionation common.
  • the partitioned fractionation zone 40 is divided into two compartments 38 and 39 by a separation means 37, consisting of a flat vertical wall, extending from the bottom of the column 12 over part of the height thereof. .
  • the lines 7 and 18 for supplying the effluents from the two reactors open on either side of the separation means 37, into the respective compartments 39 and 38, in which the corresponding heavy products are fractionated separately.
  • These products correspond to distillation residues or "slurry", the initial cutting point of which is preferably chosen at a value between 450 and 480 ° C.
  • the two compartments 38 and 39 communicate with the common fractionation zone 41, located in the upper part of the column 12, and in which the lighter products contained in the combined effluents from the two reactors 1 and 16 are carried out.
  • fractionation zone can perfectly comprise conventional additional columns, not shown, coupled to column 12, in which part of the fractionation of the common effluents described above and / or subsequent fractionations can be carried out.
  • the condensed residues in compartments 38 and 39 are drawn off respectively by lines 42 and 13.
  • the section drawn off by line 13, which corresponds to the slurry resulting from the separate fractionation of the effluents from the first reaction chamber 1, is, in accordance with invention, recycled to the second reaction chamber 16.
  • line 47 makes it possible to dilute this bottom fraction by a less viscous cut, for example all or part of the HCO cut drawn off by line 46.
  • the line 48 makes it possible to withdraw part of said bottom fraction, so as to inject only a given proportion into the reactor 16.
  • section drawn off by line 42 corresponds to the slurry resulting from the separate fractionation of the effluents from the second reaction chamber 16.
  • This section which comprises particularly refractory compounds which are not converted after successive cracking in each of the two reactors, can be by example removed from the unit.
  • FIG. 2 in which the members already described in relation to FIG. 1 are designated by the same reference numbers, shows a first alternative embodiment of the fractionation column 12, which shows another means of partitioning the lower part 40 of said column.
  • the column 12 comprises a separation means consisting, as in FIG. 1, of a substantially vertical partitioning, extending from the bottom of the column 12.
  • this partitioning element here consists of a cylindrical vertical wall 37 ′ whose axis of revolution is parallel to the longitudinal axis of the column 12.
  • This cylindrical element is disposed internally and concentrically with the wall of the column 12, and it extends from the bottom of this over a sufficient height, thus dividing the partitioned fractionation zone 40 into two compartments 39 and 38, into which lead respectively the line 7 for conveying effluents from the first reaction chamber 1, and the line 18 for conveying effluents from the second reaction chamber 16.
  • the two compartments 38 and 39 are therefore concentric.
  • Each compartment 38 and 39 communicates directly with the common fractionation zone 41 situated above, in which is carried out, in a conventional manner, the fractionation of the lighter products contained in the combined effluents of the two reactors.
  • the partition element 37 extends over a greater height of the column 12, so as to also cover the distillation zone of HCO type cuts. Furthermore, the HCO is not separated from the slurry, so that the residues, drawn off by lines 42 and 13 in the bottom of each of the two respective compartments 38 and 39, consist of a mixture of these two types of products. .
  • the residue drawn off by line 13 consisting of a mixture of HCO and slurry from the separate fractionation of heavy effluents from the first reaction chamber 1, is, in accordance with the invention, recycled in whole or in part to the second reaction chamber 16.
  • supply lines 7 and 18 can completely be inverted, provided that the two lines 13 and 42 for drawing off the corresponding products are also inverted.
  • FIG. 3 in which the members already described in relation to FIG. 1 are again designated by the same reference numbers, represents a second alternative embodiment of the fractionation column 12 of this FIG. 1, in which the means 37 " for separating the lower partitioned partitioning zone 40 is of the horizontal type.
  • the zone 40 comprises an internal partitioning constituted by a horizontal plate 37 ", which is dimensioned so as to cover the entire cross section of the column 12 and to be in sealed contact with the internal vertical wall of that -this.
  • This partitioning delimits a first upper compartment 39, into which opens the line 7 for transporting the effluents from the first reaction chamber 1, and a second lower compartment 38, into which opens the line 18 for transporting the effluents from the second reaction chamber. 16.
  • the two compartments 38 and 39 are therefore arranged one above the other.
  • Each compartment, 38, 39 communicates directly with the common fractionation zone 41 situated above.
  • the tray 37 is provided with at least one chimney 50, which allows the passage upwards, towards said common fractionation zone 41, of the vaporized products coming from the compartment 38 below the tray 37".
  • the lightest effluents from the second reaction chamber 16 rise via this chimney towards the common area 41, where they are fractionated and drawn off by lines 43, 44 and 45, in mixture with the light effluents from first reaction chamber 1.
  • the chimney 50 is surmounted by a cap 51, for example conical, which makes it possible to prevent hydrocarbons from passing from the upper compartment 39 to the lower compartment 38. This system therefore ensures perfect segregation of the heavy effluents from the two reactors 1 and 16.
  • the section drawn off by line 13 of the compartment 39 for partitioning heavy effluents from the first reaction chamber 1 is, in accordance with the invention, recycled in whole or in part to the second reaction chamber 16.
  • the supply lines 7 and 18 can be inverted (the separate fractionation of the heavy effluents from the first reactor 1 is then carried out in the lower compartment 38, while the separate fractionation of the effluents heavy of the second reactor 16 is carried out in the upper compartment 39), provided that the two lines 13 and 42 for drawing off the corresponding products are also reversed.
  • FIG. 4 also represents a catalytic cracking unit comprising, like that presented in FIG. 1, a first reaction chamber 1 with downward flow and a second reaction chamber 16 with upward flow.
  • This unit has many elements common to the unit shown in Figure 1 and designated by the same reference numerals, so that only the different elements will be described below.
  • the process illustrated in this FIG. 4 corresponds to an embodiment of the invention, in which the lightest effluents from each of the two reactors 1 and 16 are fractionated separately, in order to reinject into one of them products light from the other.
  • the fractionation column 12 comprises an upper zone 40 for partitioned partitioning of light effluents, and a lower zone 41 for common fractionation of heavy effluents.
  • the partitioned fractionation zone 40 is divided into two compartments 38 and 39 by a separation means 37, consisting of a flat vertical wall extending downwards from the head of the column 12, over part of the height of it.
  • the gasoline fraction removed through line 44 is separated after splitting of the lightest effluents from the second reaction chamber, is fed to injectors 5, from which it is fed back into the first reaction chamber 1.
  • injectors 5 from which it is fed back into the first reaction chamber 1.
  • the fresh charge can be wholly or partly injected into the second reactor 16. For this purpose, it is sent to the injectors 14 via the line 52.
  • FIG. 5 where the members already described in relation to FIG. 4 are designated by the same reference numerals, represents an alternative embodiment of the fractionation column 12 of this FIG. 4, in which the means 37 "for separating the upper zone 40 of partitioned fractionation is of horizontal type.
  • the zone 40 comprises an internal partitioning constituted by a horizontal plate 37 ", dimensioned so as to cover the entire cross section of column 12 and be in leaktight contact with the internal vertical wall of that.
  • This partitioning delimits a first upper compartment 39, into which opens the line 7 for transporting the effluents from the first reaction chamber 1, and a second lower compartment 38, into which opens the line 18 for transporting the effluents from the second reaction chamber. 16.
  • Each compartment 38, 39 communicates directly with the common fractionation zone 41 located below.
  • the tray 37 is provided with at least one chimney 50, which allows the passage downward, towards said common fractionation zone 41, of the heavy products coming from the compartment 39 above the tray 37".
  • the heaviest effluents from the first reaction chamber 1 descend via this path to the common area 41, where they are fractionated and drawn off by lines 45, 46 and 53, mixed with the heavy effluents from the second reaction chamber 16.
  • the chimney 50 is provided with a baffle 51, for example conical, which makes it possible to prevent hydrocarbons from passing from the lower compartment 38 to the upper compartment 39. This system therefore makes it possible to ensure perfect segregation of the light effluents from the two reactors 1 and 16.
  • the gasoline section drawn off by line 44 a from the compartment 38 for partitioning partitioned light effluents from the second reaction chamber 16 is, in accordance with the invention, recycled in whole or in part to the first reaction chamber 1.
  • the first test was carried out in an experimental catalytic cracking unit in accordance with that shown in Figure 1, which comprises two successive reaction chambers (1; 16), the first (1) with downflow (“downer”), and the second (16) with upward flow (“riser”).
  • the catalyst used is a conventional commercial catalyst, of the zeolitic type.
  • the effluents from each of these two reaction chambers are directed to the same fractionation column (12), partitioned in its lower part (40) by a flat vertical wall (37).
  • the fresh charge is injected into the first reaction chamber (1), while in the second reaction chamber (16) a section is recycled from the separate fractionation of the effluents from the first chamber (1).
  • test No. 2 a comparative test was carried out under the same conditions, but by replacing the partially partitioned fractionation column (12) with a conventional column, in which the effluents from each of the two chambers (1; 16 ) are combined and split in the traditional way.
  • the fresh charge is injected into the first reaction chamber (1), while in the second reaction chamber (16) a section is recycled from the fractionation of the combined effluents from the two chambers.
  • the fraction recycled in the second reaction chamber (16) corresponds to a heavy distillate or HCO, with a boiling range extending from 380 ° C. to 480 ° C.
  • test 1 all of the HCO from the partitioned fractionation of the effluents from the first reaction chamber (1) is injected into the second reaction chamber (16).
  • the recycling rate ratio of the amount of HCO recycled in the second reaction chamber to the total amount of HCO produced in the unit is 0.8.
  • the recycled HCO cut contains only hydrocarbons from a first cracking of the fresh charge, while in the second case it also contains hydrocarbons from the second chamber, not converted after passing through the two successive reactors, therefore particularly refractory to cracking, and which "go around in circles" in the unit.
  • the elimination of such compounds by means of the partitioned fractionation system notably improves the quality of the cracking in the second reaction chamber. It can be seen that this conversion is both more complete (10-point increase in the conversion rate), and more selective (sharp reduction in yield of slurry, which is a particularly undesirable product, in favor of an increase in yields sought intermediate products, such as gasolines and LPG).
  • This example therefore illustrates the fact that, in the process according to the invention, the qualities of the recycle cut are higher, which contributes to better yields, better selectivity and better quality of the products obtained during the cracking of this cut. in the second reaction chamber 16.
  • an experimental catalytic cracking unit conforming to that shown in FIG. 4 which comprises two successive reaction chambers (1; 16), the first (1) with downward flow, and the second (16) upward flow ("riser").
  • the catalyst used is a conventional commercial catalyst, of the zeolitic type.
  • a first test (test No. 5) is carried out in accordance with the invention: the effluents from each of these two reaction chambers are directed to the same fractionation column (12), partitioned in its upper part (40) by a vertical wall plane (37). The fresh charge is injected into the second reaction chamber (16), while in the first reaction chamber (1) a section is recycled from the separate fractionation of the effluents from the second chamber (16).
  • test no. 6 a comparative test was carried out under the same conditions, but by replacing the partially partitioned fractionation column (12) with a conventional column, in which the effluents from each of the two chambers (1; 16 ) are combined and split in the traditional way.
  • the fresh charge is injected into the second reaction chamber (16), while in the first reaction chamber (1) a section is recycled from the fractionation of the combined effluents from the two chambers.
  • the cut recycled in the first reaction chamber (1) is a light gasoline (with a boiling range extending from 20 ° C. to 220 ° C.).
  • test 5 all of the petrol coming from the partitioned fractionation of the effluents from the second reaction chamber (16) is injected into the first reaction chamber (1).
  • the recycling rate ratio of the quantity of petrol recycled in the first reaction chamber to the total quantity of petrol produced in the unit is 0.8.
  • the above examples perfectly illustrate some of the many advantages provided by the present invention.
  • they show that the invention makes it possible to optimally recycle certain hydrocarbon fractions resulting from a first step of cracking the fresh charge, which makes it possible to substantially increase the total conversion efficiency of this charge. , with increased selectivity in favor of the specific products sought.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The effluents from each chamber are fractionated in a separate part of the same fractionating column (12) which is partially divided and at least one resulting section (13,44a) from the separate fractionating is totally or partially reinjected into the other chamber. Hydrocarbon cracking in a fluidized bed reactor in which the heat bearing particles, which are also catalytic, circulate in two successive reaction chambers (1,16) in each of which they are put in contact with at least one section of hydrocarbons. The reaction effluents from each chamber are sent to the same fractionating unit. The hydrocarbons injected into the first reaction chamber spend less time there than the hydrocarbons injected into the second reaction chamber, with the time in the first chamber being 0.05 to 5 seconds, preferably 0.1 to 1 second and the time in the second chamber being 0.1 to 10 seconds, preferably 0.4 to 5 seconds. The flow through the first chamber is essentially downwards and that in the second is essentially upwards. In the partially divided fractionating column, the heavier effluents from each chamber are fractionated separately whilst the lighter effluents are combined. The section which is reinjected is a slurry or heavy distillate containing HCO and/or a diesel section containing LCO. The heavy effluents from the first chamber are reinjected into the second. Alternatively, the lighter effluents are fractionated separately and the heavy effluents are combined, with the petrol section from the second chamber reinjected into the first. The reinjected fraction can be mixed with other fractions and/or undergo intermediate treatments before reinjection, such as hydrogenation, hydrodearomatization, hydrodesulfurization or hydrodenitrogenation. Upstream of the second chamber particles are injected both from the first chamber and from a regenerator. Device to carry out this process, comprising a partially divided fractionating column with a zone containing two separate fractionating compartments (38,39) and a common compartment (41). This divided zone can be at the top or bottom of the column and the means of division is a flat or cylindrical vertical wall.

Description

La présente invention concerne le craquage d'hydrocarbures en présence de particules caloporteuses, catalytiques ou non, circulant en phase fluidisée. Elle a plus particulièrement pour objet un procédé de craquage en lit fluidisé, dans lequel des particules caloporteuses circulent dans deux chambres réactionnelles successives, dans chacune desquelles elles sont mises en contact avec une ou plusieurs coupes d'hydrocarbures à craquer.The present invention relates to the cracking of hydrocarbons in the presence of heat transfer particles, catalytic or not, circulating in the fluidized phase. It relates more particularly to a cracking process in a fluidized bed, in which heat-transfer particles circulate in two successive reaction chambers, in each of which they are brought into contact with one or more cuts of hydrocarbons to be cracked.

L'invention concerne également un dispositif conçu pour la mise en oeuvre du procédé selon l'invention.The invention also relates to a device designed for implementing the method according to the invention.

De manière connue en soi, l'industrie pétrolière a recours à des procédés de conversion des charges lourdes d'hydrocarbures, dans lesquels des molécules hydrocarbonées à haut poids moléculaire et à point d'ébullition élevé sont scindées en molécules plus petites, qui peuvent bouillir dans des domaines de températures plus faibles, convenant à l'usage recherché.In a manner known per se, the petroleum industry makes use of processes for converting heavy hydrocarbon charges, in which high molecular weight and high boiling point hydrocarbon molecules are split into smaller molecules, which can boil in lower temperature ranges, suitable for the intended use.

Pour effectuer ce type de conversion, elle dispose en particulier de procédés dits de craquage à l'état fluide. Dans ce type de procédés, la charge d'hydrocarbures, généralement pulvérisée sous forme de fines gouttelettes, est mise en contact avec des particules caloporteuses à haute température et qui circulent dans le réacteur sous forme de lit fluidisé, c'est à dire en suspension plus ou moins dense au sein d'un fluide gazeux assurant ou assistant leur transport. Au contact des particules chaudes, il y a vaporisation de la charge, suivie du craquage des molécules d'hydrocarbures. La réaction de craquage est de type thermique, lorsque les particules ont uniquement une fonction caloporteuse. Elle est de type catalytique, lorsque les particules caloporteuses ont également une fonction catalytique, c'est à dire présentent des sites actifs favorisant la réaction de craquage, comme c'est le cas en particulier dans le procédé dit de craquage catalytique à l'état fluide (communément dénommé procédé FCC, de l'anglais « Fluid Catalytic Cracking »):To carry out this type of conversion, it has in particular so-called cracking processes in the fluid state. In this type of process, the hydrocarbon charge, generally sprayed in the form of fine droplets, is brought into contact with heat-carrying particles at high temperature and which circulate in the reactor in the form of a fluidized bed, that is to say in suspension more or less dense within a gaseous fluid ensuring or assisting their transport. On contact with hot particles, the charge vaporizes, followed by cracking of the hydrocarbon molecules. The cracking reaction is of the thermal type, when the particles have only a heat transfer function. It is of the catalytic type, when the heat-carrying particles also have a catalytic function, that is to say have active sites promoting the cracking reaction, as is the case in particular in the so-called catalytic cracking process in the state fluid (commonly known as FCC process, from English “Fluid Catalytic Cracking”):

Après que, suite aux réactions de craquage, l'on ait atteint la gamme de poids moléculaires désirée, avec un abaissement correspondant des points d'ébullition, les effluents réactionnels sont séparés des particules. Ces dernières, désactivées en raison du coke qui s'est déposé à leur surface, sont généralement strippées afin de récupérer les hydrocarbures entraînés, puis régénérées par combustion du coke, et enfin remises en contact avec la charge à craquer.After, following the cracking reactions, the desired molecular weight range has been reached, with a corresponding lowering of the boiling points, the reaction effluents are separated from the particles. The latter, deactivated due to the coke which is deposited on their surface, are generally stripped in order to recover the entrained hydrocarbons, then regenerated by combustion of the coke, and finally brought back into contact with the charge to be cracked.

Les réacteurs utilisés sont le plus souvent des réacteurs verticaux de type tubulaire, dans lesquels la charge et les particules se déplacent suivant un flux essentiellement ascendant (le réacteur est alors dénommé « riser ») ou suivant un flux essentiellement descendant (le réacteur est alors dénommé « dropper » ou « downer »).The reactors used are most often vertical reactors of the tubular type, in which the charge and the particles move in an essentially ascending flow (the reactor is then called “riser”) or in an essentially descending flow (the reactor is then called "Dropper" or "downer").

Une difficulté majeure, dans de tels procédés, consiste à réaliser un craquage à la fois complet et sélectif de la charge, c'est à dire de parvenir à craquer l'intégralité de la charge, de manière à en obtenir une quantité maximale d'hydrocarbures valorisables, tout en minimisant la quantité de sous-produits indésirables. Cet objectif est d'autant plus difficile à atteindre que les charges à craquer présentent des intervalles d'ébullition relativement larges, et sont constituées de composés très divers qui craquent dans des conditions sensiblement différentes pour conduire à des produits variés.A major difficulty in such methods consists in carrying out a cracking which is both complete and selective of the charge, that is to say to succeed in cracking the entire charge, so as to obtain a maximum amount of it. recoverable hydrocarbons, while minimizing the quantity of undesirable by-products. This objective is all the more difficult to achieve since the charges to be cracked have relatively wide boiling intervals, and are made up of very diverse compounds which crack under significantly different conditions to lead to various products.

C'est pourquoi les procédés actuellement mis en oeuvre effectuent une conversion généralement incomplète de la charge. Dans ces procédés, le craquage est réalisé dans un seul réacteur, dont les conditions opératoires, choisies en fonction de la nature moyenne des hydrocarbures constituant la charge, ne permettent pas de craquer correctement toute la gamme des hydrocarbures présents de manière à obtenir sélectivement les produits désirés. Il en résulte des effluents réactionnels constitués de produits très divers, dont une proportion importante sont issus d'un craquage insuffisant de la charge et constituent pour le raffineur des produits indésirables, difficilement valorisables.This is why the methods currently implemented carry out a generally incomplete conversion of the charge. In these processes, the cracking is carried out in a single reactor, the operating conditions of which, chosen as a function of the average nature of the hydrocarbons constituting the feed, do not allow the entire range of hydrocarbons present to be cracked correctly so as to selectively obtain the products desired. This results in reaction effluents made up of very diverse products, a large proportion of which result from insufficient cracking of the feedstock and which constitute undesirable products for the refiner, which are difficult to recover.

Une première solution consiste à recycler tout ou partie de ces produits dans le réacteur de craquage, de manière à leur faire subir une seconde étape de craquage. Toutefois, une telle mesure s'avère non seulement peu efficace, mais également nuisible, dans la mesure où un tel recyclage a souvent pour effet d'affecter sensiblement la qualité du craquage de la charge fraîche.A first solution consists in recycling all or part of these products in the cracking reactor, so as to subject them to a second cracking step. However, such a measure proves not only ineffective, but also harmful, insofar as such recycling often has the effect of appreciably affecting the quality of the cracking of the fresh charge.

Une seconde solution consiste à augmenter la sévérité du craquage, afin de craquer de manière plus poussée la charge injectée et convertir tous les types d'hydrocarbures présents. Toutefois, une telle mesure, si elle permet d'augmenter le taux de conversion de la charge, favorise en revanche des phénomènes de surcraquage, qui se traduisent par une diminution de la sélectivité de la conversion : on observe une production accrue de gaz secs et de coke au détriment des hydrocarbures intermédiaires recherchés.A second solution consists in increasing the severity of the cracking, in order to crack the charge injected further and convert all the types of hydrocarbons present. However, such measure, if it makes it possible to increase the conversion rate of the charge, on the other hand favors overcracking phenomena, which result in a reduction in the selectivity of the conversion: an increased production of dry gases and coke is observed to the detriment intermediate hydrocarbons sought.

Plusieurs solutions ont été proposées dans l'art antérieur, afin de remédier aux problèmes précités.Several solutions have been proposed in the prior art, in order to remedy the aforementioned problems.

Dès 1947, le brevet US N° 2,488,713 propose un procédé de craquage catalytique mettant en oeuvre deux réacteurs successifs, dans chacun desquels circulent des particules catalytiques. Dans le premier réacteur, une coupe de recycle lourd (résidu du fractionnement des effluents du craquage, du type connu sous le nom de « slurry ») est craquée au contact des particules catalytiques en provenance du régénérateur. Dans le second réacteur, une charge fraîche ainsi qu'une coupe de recycle intermédiaire du type des distillats sont craquées au contact des particules en provenance du premier réacteur. A la sortie de chacun des deux réacteurs, les effluents hydrocarbonés sont séparés des particules, puis sont combinés et dirigés vers une colonne de fractionnement classique.From 1947, US Patent No. 2,488,713 proposes a catalytic cracking process using two successive reactors, in each of which circulate catalytic particles. In the first reactor, a heavy recycle cut (residue from the fractionation of cracked effluents, of the type known as a “slurry”) is cracked on contact with the catalytic particles coming from the regenerator. In the second reactor, a fresh charge as well as an intermediate recycle cut of the distillate type are cracked on contact with the particles coming from the first reactor. At the outlet of each of the two reactors, the hydrocarbon effluents are separated from the particles, then are combined and directed to a conventional fractionation column.

Le premier inconvénient d'un tel procédé est que la charge fraîche est traitée, dans le second réacteur, en présence de particules qui ont été déjà largement cokées et désactivées dans le premier réacteur, au contact de la charge de recycle lourd, particulièrement riche en composés polyaromatiques réfractaires. Il en résulte, dans le deuxième réacteur, une mauvaise activité catalytique de ces particules d'où une qualité médiocre du craquage de la charge fraîche, une conversion à la fois peu élevée et peu sélective.The first drawback of such a process is that the fresh charge is treated, in the second reactor, in the presence of particles which have already been largely coked and deactivated in the first reactor, in contact with the heavy recycle charge, which is particularly rich in refractory polyaromatic compounds. As a result, in the second reactor, poor catalytic activity of these particles, hence poor quality of cracking of the fresh feed, a conversion that is both low and not very selective.

Un second inconvénient vient du fait que la coupe de recycle lourd s'enrichit progressivement en composés lourds les plus réfractaires, qui, même recyclés au premier réacteur, ne craquent pas ou craquent de manière incomplète, et « tournent en rond » dans l'unité. Ceci vient aggraver les problèmes décrits ci-dessus de cokéfaction prématurée des particules au premier réacteur. Une purge prévue sur la ligne de recyclage ne résout pas le problème de manière satisfaisante. En effet, le recycle étant constitué du résidu de fractionnement des effluents combinés des deux réacteurs, la purge non seulement n'extrait qu'une partie des composés les plus réfractaires que l'on souhaite éliminer de l'unité, mais extrait en plus une fraction de composés directement issus de la charge fraîche, qui n'ont pas été convertis lors de leur passage dans le second réacteur, mais qui auraient pu être craqués dans le premier réacteur au contact des particules régénérées. La mauvaise sélectivité de ce système de purge induit ainsi une perte supplémentaire de rendement en produits souhaités.A second disadvantage comes from the fact that the heavy recycle cut progressively enriches itself with the most refractory heavy compounds, which, even recycled in the first reactor, do not crack or crack in an incomplete manner, and "go around in circles" in the unit. . This exacerbates the problems described above of premature coking of the particles in the first reactor. A purge planned on the recycling line does not solve the problem satisfactorily. In fact, the recycle being made up of the fractionation residue of the combined effluents from the two reactors, the purge not only extracts only part of the most refractory compounds that are desired eliminate from the unit, but additionally extracts a fraction of compounds directly originating from the fresh charge, which were not converted during their passage through the second reactor, but which could have been cracked in the first reactor in contact with regenerated particles. The poor selectivity of this purge system thus induces an additional loss of yield in desired products.

Par ailleurs, le brevet EP N° 573316 décrit un procédé de craquage catalytique dans lequel la réaction se déroule dans deux réacteurs successifs, le premier réacteur étant à flux descendant (downer), et le second étant à flux ascendant ( riser). La charge à craquer est mise au contact des particules régénérées à l'entrée du réacteur à écoulement descendant, au bas duquel le mélange charge/particules est transféré dans le réacteur à écoulement ascendant. La charge circule donc au contact des particules dans deux réacteurs successifs, ce qui permet d'augmenter le rendement global en hydrocarbures craqués. Toutefois, ce procédé n'est absolument pas sélectif: les hydrocarbures déjà convertis dans le premier réacteur poursuivent leur craquage dans le second réacteur, d'où un phénomène de surcraquage générant une production accrue de gaz secs et de coke, au détriment des coupes intermédiaires recherchées.Furthermore, patent EP No. 573316 describes a catalytic cracking process in which the reaction takes place in two successive reactors, the first reactor being in downward flow, and the second being in upward flow (riser). The charge to be cracked is brought into contact with the regenerated particles at the inlet of the downflow reactor, at the bottom of which the charge / particle mixture is transferred into the upflow reactor. The charge therefore flows in contact with the particles in two successive reactors, which makes it possible to increase the overall yield of cracked hydrocarbons. However, this process is absolutely not selective: the hydrocarbons already converted in the first reactor continue to crack in the second reactor, resulting in an overcracking phenomenon generating increased production of dry gases and coke, to the detriment of intermediate cuts sought.

Poursuivant ses recherches dans le domaine du craquage en lit fluidisé, la Demanderesse s'est intéressée à ces procédés dans lesquels on utilise deux réacteurs de craquage, afin d'améliorer le taux et la sélectivité de la conversion par rapport aux procédés traditionnels mettant en oeuvre un seul réacteur. Ce faisant, elle a mis au point un procédé permettant de remédier aux inconvénients des systèmes de l'art antérieur.Continuing its research in the field of cracking in a fluidized bed, the Applicant is interested in these processes in which two cracking reactors are used, in order to improve the rate and the selectivity of the conversion compared to the traditional processes using a single reactor. In doing so, it has developed a method making it possible to remedy the drawbacks of the systems of the prior art.

A cet effet, la présente invention concerne un procédé de craquage en lit fluidisé d'une charge hydrocarbonée dans lequel des particules caloporteuses, éventuellement catalytiques, circulent dans deux chambres réactionnelles successives? dans chacune desquelles elles sont mises en contact avec au moins une coupe d'hydrocarbures, et les effluents réactionnels issus de chacune desdites chambres sont dirigés vers une même unité de fractionnement.To this end, the present invention relates to a process for cracking in a fluidized bed a hydrocarbon feedstock in which heat-carrying particles, optionally catalytic, circulate in two successive reaction chambers? in each of which they are brought into contact with at least one section of hydrocarbons, and the reaction effluents from each of said chambers are directed to the same fractionation unit.

Ce procédé se caractérise en ce que les effluents de chacune des chambres réactionnelles sont fractionnés en partie séparément dans une même colonne de fractionnement partiellement cloisonnée, et en ce qu'au moins une coupe issue du fractionnement séparé des effluents d'une des deux chambres réactionnelles est, en tout ou partie, réinjectée dans l'autre chambre.This process is characterized in that the effluents from each of the reaction chambers are partially fractionated separately in the same partially partitioned fractionation column, and in that that at least one section resulting from the separate fractionation of the effluents from one of the two reaction chambers is, in whole or in part, reinjected into the other chamber.

Dans le présent exposé, on désigne par chambre réactionnelle toute enceinte pourvue de moyens d'introduction de particules caloporteuses (catalytiques ou non), de moyens d'injection d'une ou plusieurs coupes d'hydrocarbures à craquer, d'une zone réactionnelle de craquage et de moyens de séparation des effluents de craquage et des particules. Ce terme inclut en particulier tout type de réacteur de craquage thermique ou catalytique en lit fluidisé, quel que soit son mode de fonctionnement (ascendant ou descendant).In the present description, the term “reaction chamber” designates any enclosure provided with means for introducing heat-transfer particles (catalytic or not), means for injecting one or more cuts of hydrocarbons to be cracked, a reaction zone of cracking and means for separating cracking effluents and particles. This term includes in particular any type of thermal or catalytic cracking reactor in a fluidized bed, whatever its operating mode (ascending or descending).

Selon l'invention, des hydrocarbures sont craqués dans une première chambre réactionnelle, au contact de particules pleinement actives en provenance du régénérateur. A la sortie de cette première chambre, les effluents sont séparés des particules, et ces dernières poursuivent leur parcours dans une seconde chambre réactionnelle dans laquelle leur activité résiduelle est utilisée pour craquer une quantité additionnelle d'hydrocarbures.According to the invention, hydrocarbons are cracked in a first reaction chamber, in contact with fully active particles coming from the regenerator. At the exit from this first chamber, the effluents are separated from the particles, and the latter continue their journey in a second reaction chamber in which their residual activity is used to crack an additional quantity of hydrocarbons.

Considérant la charge à craquer, celle-ci subit une première étape de craquage classique dans l'une de ces deux chambres réactionnelles. Les effluents correspondants sont ensuite fractionnés dans la même colonne de fractionnement que les effluents issus de l'autre chambre, mais en partie de manière séparée. On récupère alors, du fractionnement séparé des effluents issus de la première étape de craquage, une ou plusieurs coupes comprenant des produits indésirables. Ces coupes sont ensuite, en tout ou partie, réinjectées dans l'autre chambre réactionnelle. Elles y subissent une seconde étape de craquage indépendante de la première, et dont les conditions opératoires peuvent être ajustées en fonction de la nature de ces hydrocarbures réinjectés et du type de produits que l'on souhaite en obtenir.Considering the charge to be cracked, it undergoes a first conventional cracking step in one of these two reaction chambers. The corresponding effluents are then fractionated in the same fractionation column as the effluents from the other chamber, but partly separately. We then recover, from the separate fractionation of the effluents from the first cracking step, one or more cuts comprising undesirable products. These sections are then, in whole or in part, reinjected into the other reaction chamber. They undergo a second cracking step independent of the first, and whose operating conditions can be adjusted according to the nature of these reinjected hydrocarbons and the type of products that one wishes to obtain.

Un tel schéma de procédé est possible grâce à la colonne de fractionnement spécifique intervenant dans l'invention. Cette colonne est en effet partiellement cloisonnée, ce qui permet de fractionner les effluents issus de chacun des deux réacteurs en partie séparément, c'est à dire sans qu'il y ait de contact entre eux. Bien entendu, la partie des effluents des deux réacteurs ainsi fractionnés de manière séparée correspond à la partie contenant des coupes riches en produits indésirables, auxquels le raffineur souhaite faire subir une seconde étape de craquage. L'autre partie desdits effluents est combinée dans la zone non cloisonnée de la colonne, dans laquelle les effluents sont fractionnés en commun.Such a process diagram is possible thanks to the specific fractionation column involved in the invention. This column is in fact partially partitioned, which makes it possible to fractionate the effluents from each of the two reactors partly separately, that is to say without there being contact between them. Of course, the part of the effluents from the two reactors thus fractionated separately corresponds to the part containing cuts rich in undesirable products, to which the refiner wishes to undergo a second cracking step. The other part of said effluents is combined in the non-partitioned zone of the column, in which the effluents are fractionated in common.

Par rapport aux systèmes traditionnels à un seul réacteur, le procédé selon l'invention permet une conversion à la fois plus poussée et plus sélective de la charge à craquer. Elle permet en effet au raffineur de réinjecter des produits peu valorisables obtenus lors d'une première étape de craquage classique, de manière à faire subir à ces produits une seconde étape de craquage. Le fait que le recyclage desdits produits se fasse dans un réacteur différent présente l'avantage, d'une part, de pouvoir réaliser ce second craquage dans des conditions appropriées et, d'autre part, d'éviter d'affecter la qualité de la première étape de craquage de la charge.Compared to traditional systems with a single reactor, the process according to the invention allows a more thorough and more selective conversion of the charge to be cracked. It allows the refiner to re-inject low-value products obtained during a first conventional cracking step, so as to subject these products to a second cracking step. The fact that the recycling of said products takes place in a different reactor has the advantage, on the one hand, of being able to carry out this second cracking under appropriate conditions and, on the other hand, of avoiding affecting the quality of the first step of cracking the load.

Par rapport aux systèmes à deux réacteurs proposés dans l'art antérieur, le procédé selon l'invention permet de soumettre les hydrocarbures constituant la charge à des circuits de craquage distincts, parfaitement adaptés aux natures diverses des ces hydrocarbures, de manière à en obtenir une quantité maximale de produits valorisables. En effet, la charge à craquer subit une première conversion, à la suite de laquelle les produits indésirables obtenus sont fractionnés séparément des effluents de l'autre réacteur, dans un compartiment de la zone cloisonnée de la colonne de fractionnement. Ces produits sont alors réinjectés dans un réacteur distinct, dans lequel ils subissent une seconde étape de caquage, dans des conditions spécifiquement appropriées à leur nature.Compared to the two-reactor systems proposed in the prior art, the method according to the invention makes it possible to subject the hydrocarbons constituting the charge to separate cracking circuits, perfectly adapted to the various natures of these hydrocarbons, so as to obtain a maximum quantity of recoverable products. Indeed, the charge to be cracked undergoes a first conversion, as a result of which the undesirable products obtained are fractionated separately from the effluents of the other reactor, in a compartment of the partitioned zone of the fractionation column. These products are then reinjected into a separate reactor, in which they undergo a second cracking step, under conditions specifically suited to their nature.

Les effluents résultant de ce second craquage sont alors fractionnés dans la même colonne que les effluents du premier craquage, et le système de fractionnement cloisonné de cette colonne permet d'éviter que les composés indésirables résiduels, non convertis après passage dans les deux réacteurs (en particulier des composés particulièrement réfractaires au craquage), ne soient recyclés une seconde fois et « tournent en rond » dans l'unité. En effet, de tels composés sont récupérés, dans la colonne de fractionnement, dans le compartiment de fractionnement cloisonné des effluents issus de la seconde étape de craquage. Ces composés sont ainsi récupérés séparément des effluents issus de la première étape de craquage, et ils peuvent par exemple être éliminés de l'unité. Ce système permet de ne réinjecter dans l'une des chambres réactionnelles que des hydrocarbures issus exclusivement de l'autre chambre. L'on évite ainsi tout phénomène d'enrichissement des coupes recyclées en composés réfractaires, ce qui dégraderait progressivement la qualité du craquage desdites coupes, tout en provoquant une cokéfaction excessive des particules circulant dans l'unité.The effluents resulting from this second cracking are then fractionated in the same column as the effluents from the first cracking, and the partitioned fractionation system of this column makes it possible to prevent the residual undesirable compounds, not converted after passing through the two reactors (in particularly compounds that are particularly refractory to cracking), are not recycled a second time and "go around in circles" in the unit. Indeed, such compounds are recovered, in the fractionation column, in the compartmentalized fractionation compartment of the effluents from the second cracking step. These compounds are thus recovered separately from the effluents from the first cracking step, and they can for example be eliminated from the unit. This system makes it possible to reinject into one of the reaction chambers only hydrocarbons coming exclusively from the other chamber. This avoids any phenomenon of enrichment of the recycled cuts in refractory compounds, which would gradually degrade the quality of the cracking of said cuts, while causing excessive coking of the particles circulating in the unit.

Ainsi, le procédé selon l'invention permet de valoriser au mieux des produits indésirables issus d'une première étape de craquage classique, afin de produire une quantité additionnelle de produits à plus grande valeur ajoutée. Pour une même charge de départ, il offre au raffineur la possibilité de réaliser un craquage à la fois plus complet et plus sélectif en faveur du type de produits qu'il souhaite obtenir. La rentabilité de l'unité s'en trouve sensiblement améliorée.Thus, the method according to the invention makes it possible to make the most of undesirable products originating from a first conventional cracking step, in order to produce an additional quantity of products with greater added value. For the same feedstock, it offers the refiner the possibility of carrying out a cracking that is both more complete and more selective in favor of the type of products he wishes to obtain. The profitability of the unit is significantly improved.

Par ailleurs, la Demanderesse a mis au point un dispositif permettant une mise en oeuvre efficace du procédé selon l'invention.Furthermore, the Applicant has developed a device allowing an efficient implementation of the method according to the invention.

La présente invention a donc également pour objet un dispositif de craquage en lit fluidisé d'une charge hydrocarbonée, mettant en oeuvre deux chambres réactionnelles reliées entre elles par un moyen de transfert des particules caloporteuses, une colonne de fractionnement et des conduites d'amenée des effluents hydrocarbonés issus de chacune des deux chambres à ladite colonne de fractionnement.The present invention therefore also relates to a cracking device in a fluidized bed of a hydrocarbon feedstock, using two reaction chambers connected to each other by means of transfer of the heat-carrying particles, a fractionation column and supply lines for the hydrocarbon effluents from each of the two chambers at said fractionation column.

Ce dispositif se caractérise en ce que :

  • ladite colonne de fractionnement comporte dans sa partie interne au moins deux zones distinctes : une première zone de fractionnement cloisonné constituée de deux compartiments, communiquant chacun avec une seconde zone de fractionnement commun ;
  • les conduites d'amenée des effluents issus de la première et de la deuxième chambre réactionnelle débouchent respectivement dans le premier et le deuxième compartiment de ladite zone de fractionnement cloisonné ;
   des moyens sont prévus pour le recyclage et l'injection dans l'une des chambres réactionnelles d'au moins une coupe soutirée du compartiment de fractionnement cloisonné des effluents de l'autre chambre réactionnelle.This device is characterized in that:
  • said fractionation column comprises in its internal part at least two distinct zones: a first partitioned fractionation zone consisting of two compartments, each communicating with a second common fractionation zone;
  • the effluent supply lines from the first and second reaction chambers open respectively into the first and second compartments of said partitioned fractionation zone;
means are provided for recycling and injecting into one of the reaction chambers at least one section withdrawn from the partitioned compartment for partitioning the effluents from the other reaction chamber.

Un premier avantage du dispositif selon l'invention est lié au fait que les effluents hydrocarbonés issus des deux chambres réactionnelles sont traités en partie séparément, mais dans une seule et même colonne de fractionnement. Ce système permet d'éviter de recourir à deux colonnes distinctes, donc d'avoir une unité compacte et de limiter les investissements.A first advantage of the device according to the invention is linked to the fact that the hydrocarbon effluents from the two reaction chambers are partly treated separately, but in a single fractionation column. This system makes it possible to avoid having to use two separate columns, therefore to have a compact unit and to limit investments.

Un second avantage de ce dispositif est lié au fait qu'il permet une mise en oeuvre optimale du procédé selon l'invention. En effet, ladite zone de fractionnement cloisonné est avantageusement dimensionnée en fonction des plages d'ébullition des produits indésirables auxquels le raffineur souhaite faire subir une seconde étape de craquage. La zone de fractionnement commun sert en revanche au fractionnement de produits pour lesquels le raffineur ne souhaite pas différencier ceux issus de chacune des deux chambres réactionnelles, par exemple parce que ce sont des produits directement valorisables, qu'il ne souhaite pas recraquer.A second advantage of this device is linked to the fact that it allows optimal implementation of the method according to the invention. In fact, said partitioned fractionation zone is advantageously dimensioned as a function of the boiling ranges of the undesirable products to which the refiner wishes to subject a second cracking step. The common fractionation zone, on the other hand, is used for the fractionation of products for which the refiner does not wish to differentiate those from each of the two reaction chambers, for example because these are directly recoverable products, which he does not wish to reverse.

Les deux chambres réactionnelles intervenant dans l'invention sont désignées dans le présent exposé par « première » et « deuxième » chambre réactionnelle, étant entendu que cet ordre est adopté par référence au sens de circulation des particules caloporteuses à partir du régénérateur. Dans chacune de ces deux chambres, l'injection des hydrocarbures peut se faire à co-courant et/ou à contre-courant du flux des particules caloporteuses.The two reaction chambers involved in the invention are designated in the present description by "first" and "second" reaction chamber, it being understood that this order is adopted by reference to the direction of circulation of the heat-carrying particles from the regenerator. In each of these two chambers, the injection of hydrocarbons can be done co-current and / or against the current of the flow of heat-transfer particles.

Ces deux chambres réactionnelles peuvent notamment être constituées de tout type de réacteurs à écoulement descendant (downer), ou ascendant (riser). Bien que les deux chambres puissent tout-à-fait être identiques, le procédé selon l'invention est d'autant plus avantageux lorsque lesdites chambres sont différentes. Ceci permet en particulier de faire régner dans ces deux chambres des conditions opératoires différentes, adaptées au type d'hydrocarbures injectés dans chacune.These two reaction chambers can in particular be made up of any type of downward (or downward) or riser (riser) flow reactors. Although the two chambers can completely be identical, the method according to the invention is all the more advantageous when said chambers are different. This makes it possible in particular to make different operating conditions prevail in these two chambers, adapted to the type of hydrocarbons injected into each.

En particulier, selon une variante préférée du procédé selon l'invention, le temps de séjour des hydrocarbures injectés dans la première chambre réactionnelle est inférieur au temps de séjour des hydrocarbures injectés dans la deuxième chambre réactionnelle. En effet, le craquage dans la première chambre réactionnelle se fait en présence de particules provenant directement du régénérateur, donc à température particulièrement élevée et à activité maximale. De fait, il s'est avéré préférable d'éviter un contact prolongé entre ces particules et les hydrocarbures, de manière, d'une part, à éviter le surcraquage, d'autre part, à limiter la quantité de coke déposée sur les particules, qui préservent ainsi une partie de leur chaleur et de leur activité pour le craquage des hydrocarbures injectés dans la seconde chambre réactionnelle.In particular, according to a preferred variant of the process according to the invention, the residence time of the hydrocarbons injected into the first reaction chamber is less than the residence time of the hydrocarbons injected into the second reaction chamber. Indeed, the cracking in the first reaction chamber takes place in the presence of particles coming directly from the regenerator, therefore at particularly high temperature and maximum activity. In fact, it has proved preferable to avoid prolonged contact between these particles and the hydrocarbons, so as, on the one hand, to avoid overcracking, on the other hand, to limit the quantity of coke deposited on the particles. , which thus preserve part of their heat and their activity for the cracking of the hydrocarbons injected into the second reaction chamber.

Dans la deuxième chambre réactionnelle, en revanche, le craquage se fait dans les conditions plus douces, puisque les particules se sont en partie refroidies, voire désactivées, lors de leur passage dans la première chambre réactionnelle. Dès lors, il s'est avéré avantageux d'y prolonger le contact entre les particules et les hydrocarbures, de manière à permettre un craquage suffisamment complet de ceux-ci.In the second reaction chamber, on the other hand, the cracking takes place under milder conditions, since the particles have partly cooled, or even deactivated, during their passage through the first reaction chamber. Consequently, it has proved advantageous to prolong the contact there between the particles and the hydrocarbons, so as to allow a sufficiently complete cracking of the latter.

Avantageusement, le temps de séjour des hydrocarbures injectés dans la première chambre réactionnelle est compris entre 0,05 et 5 secondes, de préférence entre 0,1 et 1 secondes. Quant au temps de séjour des hydrocarbures injectés dans la deuxième chambre réactionnelle, il est avantageusement compris entre 0,1 et 10 secondes, de préférence entre 0,4 et 5 secondes.Advantageously, the residence time of the hydrocarbons injected into the first reaction chamber is between 0.05 and 5 seconds, preferably between 0.1 and 1 seconds. As for the residence time of the hydrocarbons injected into the second reaction chamber, it is advantageously between 0.1 and 10 seconds, preferably between 0.4 and 5 seconds.

Selon un mode de réalisation préféré, l'écoulement de la charge et du catalyseur dans la première chambre réactionnelle se fait suivant une direction essentiellement descendante. Ladite chambre réactionnelle peut alors être constituée d'un réacteur sensiblement vertical à écoulement descendant du type connu sous le nom de "downer", tel que décrit par exemple dans la demande internationale de brevet WO 98/12279. En effet, ce type de réacteur permet un temps de contact particulièrement bref entre les hydrocarbures et le lit fluidisé de particules.According to a preferred embodiment, the flow of the charge and the catalyst in the first reaction chamber takes place in an essentially descending direction. Said reaction chamber can then consist of a substantially vertical downward flow reactor of the type known under the name of "downer", as described for example in international patent application WO 98/12279. In fact, this type of reactor allows a particularly short contact time between the hydrocarbons and the fluidized bed of particles.

Selon un mode de réalisation également préféré, l'écoulement de la charge et du catalyseur dans la deuxième chambre réactionnelle se fait suivant une direction essentiellement ascendante. Ladite chambre réactionnelle peut alors être constituée d'un réacteur sensiblement vertical à écoulement ascendant, du type connu sous le nom de "riser". En effet ce type de réacteur permet d'accéder à des temps de contact plus longs entre les hydrocarbures et le lit fluidisé de particules.According to an equally preferred embodiment, the flow of the charge and the catalyst in the second reaction chamber takes place in an essentially ascending direction. Said reaction chamber can then consist of a substantially vertical reactor with upward flow, of the type known under the name of "riser". Indeed, this type of reactor allows access to longer contact times between the hydrocarbons and the fluidized bed of particles.

La présente invention présente de nombreux modes de mise en oeuvre, parmi lesquels le raffineur saura choisir celle qui est la plus adaptée aux types de produits qu'il souhaite obtenir, compte tenu du type de charges à craquer dont il dispose.The present invention presents numerous modes of implementation, among which the refiner will be able to choose the one which is the most adapted to the types of products he wishes to obtain, taking into account the type of fillers available.

Un premier mode de mise en oeuvre particulièrement avantageux consiste à cloisonner le fractionnement de la partie lourde des effluents issus des deux réacteurs. Ainsi, les effluents les plus lourds issus de chacune des deux chambres réactionnelles sont fractionnés séparément, tandis que les effluents les plus légers sont combinés.A first particularly advantageous embodiment consists in partitioning the fractionation of the heavy part of the effluents from the two reactors. Thus, the heaviest effluents from each of the two reaction chambers are fractionated separately, while the lightest effluents are combined.

Cette configuration permet de faire subir une seconde étape de craquage à des produits lourds issus d'une première étape de craquage de la charge. De manière avantageuse, ladite coupe issue du fractionnement séparé des effluents de l'une des chambres réactionnelles et qui est, en tout ou partie, réinjectée dans l'autre chambre, comprend du slurry et/ou un distillat lourd du type des HCO.This configuration allows heavy products from a first cracking step to be subjected to a second cracking step. Advantageously, said cut resulting from the separate fractionation of the effluents from one of the reaction chambers and which is, in whole or in part, reinjected into the other chamber, comprises slurry and / or a heavy distillate of the HCO type.

Dans le domaine du raffinage pétrolier, on désigne usuellement par HCO (de l'anglais "heavy cycle oil") une coupe lourde dont l'intervalle d'ébullition peut s'étendre d'un point initial généralement compris entre 320 et 400°C jusqu'à un point final généralement compris entre 450 et 480°C. C'est un produit peu valorisable, riche en soufre et en composés aromatiques, qui est généralement utilisé comme diluant des fuels lourds.In the field of petroleum refining, HCO (from the English term "heavy cycle oil") is usually used to designate a heavy fraction whose boiling range can extend from an initial point generally between 320 and 400 ° C. up to an end point generally between 450 and 480 ° C. It is a poorly recoverable product, rich in sulfur and aromatic compounds, which is generally used as a diluent for heavy fuels.

Quant au produit dénommé communément « slurry », il est constitué du résidu de fractionnement des effluents du craquage. C'est un produit très lourd, très visqueux, dont le point de coupe initial est généralement compris entre 450 et 480°C. Ce résidu est d'autant plus difficile à valoriser qu'il est particulièrement riche en composés polyaromatiques, et qu'il comprend une proportion appréciable de fines, c'est-à-dire de poussière provenant de l'érosion des particules caloporteuses circulant dans l'unité.As for the product commonly called "slurry", it consists of the fractionation residue from the cracked effluents. It is a very heavy, very viscous product, the initial cutting point of which is generally between 450 and 480 ° C. This residue is all the more difficult to develop as it is particularly rich in polyaromatic compounds, and that it comprises an appreciable proportion of fines, that is to say dust from the erosion of the heat-carrying particles circulating in unit.

Il est donc particulièrement judicieux de faire subir une seconde étape de craquage à des produits lourds du type des HCO et slurry, d'autant plus que cela permet de produire plus de produits intermédiaires valorisables tels que les gazoles, les essences, les GPL.It is therefore particularly advisable to subject a second cracking step to heavy products of the HCO and slurry type, all the more since this makes it possible to produce more valuable intermediate products such as diesel, petrol, LPG.

Par ailleurs, pour ces modes de mise en oeuvre dans lesquels on recycle des coupes de type lourds, il s'est avéré préférable d'injecter de telles coupes dans la seconde chambre réactionnelle. On évite ainsi les risques de cokéfaction prématurée des particules caloporteuses dans la première chambre réactionnelle. On peut alors avantageusement injecter tout ou partie de la charge fraîche dans la première chambre réactionnelle. Ainsi, selon une configuration particulièrement avantageuse, au moins une coupe issue du fractionnement séparé des effluents les plus lourds de la première chambre réactionnelle est, en tout ou partie, réinjectée dans la seconde chambre réactionnelle.Furthermore, for these embodiments in which heavy-type sections are recycled, it has been found to be preferable to inject such sections into the second reaction chamber. This avoids the risk of premature coking of the heat transfer particles in the first reaction chamber. We can then advantageously inject all or part of the fresh charge into the first reaction chamber. Thus, according to a particularly advantageous configuration, at least one section resulting from the separate fractionation of the heaviest effluents from the first reaction chamber is, in whole or in part, reinjected into the second reaction chamber.

Un second mode de mise en oeuvre particulièrement avantageux consiste à cloisonner le fractionnement de la partie légère des effluents issus des deux réacteurs. Ainsi, les effluents les plus légers issus de chacune des deux chambres réactionnelles sont fractionnés séparément tandis que les effluents les plus lourds sont combinés.A second particularly advantageous embodiment consists in partitioning the fractionation of the light part of the effluents from the two reactors. Thus, the lightest effluents from each of the two reaction chambers are fractionated separately while the heaviest effluents are combined.

Cette configuration permet de faire subir une seconde étape de craquage à des produits légers issus d'une première étape de craquage de la charge. De manière avantageuse, ladite coupe issue du fractionnement séparé des effluents de l'une des chambres réactionnelles et qui est, en tout ou partie, réinjectée dans l'autre chambre, comprend de l'essence. De manière usuelle, on désigne par essence des coupes dont l'intervalle d'ébullition peut s'étendre d'un point initial généralement supérieur ou égal à 20°C jusqu'à un point final généralement compris entre 140 et 220°C. Il peut être particulièrement avantageux pour le raffineur de faire subir une seconde étape de craquage à ce type de produits, dans la mesure où cela augmente la production en oléfines légères telles que par exemple des propènes et des butènes, qui sont des produits très recherchés, en particulier pour des utilisations en pétrochimie.This configuration allows light products from a first cracking step to be subjected to a second cracking step. Advantageously, said cut resulting from the separate fractionation of the effluents from one of the reaction chambers and which is, in whole or in part, reinjected into the other chamber, comprises gasoline. Usually, cuts are designated by essence whose boiling range can extend from an initial point generally greater than or equal to 20 ° C up to an end point generally between 140 and 220 ° C. It can be particularly advantageous for the refiner to subject a second cracking step to this type of product, insofar as this increases the production of light olefins such as, for example, propenes and butenes, which are very sought after products, in particular for uses in petrochemicals.

Pour ces modes de mise en oeuvre dans lesquels on recycle des coupes de type légères, il peut être préférable d'injecter ces coupes recyclées dans la première chambre réactionnelle. En effet, le craquage d'essences en oléfines légères nécessitant des températures particulièrement élevées, il s'est avéré plus efficace de réaliser une telle conversion en présence de particules issues directement du régénérateur. La charge fraîche peut alors être injectée, en tout ou partie, dans la deuxième chambre réactionnelle. Ainsi, selon une configuration particulièrement avantageuse, au moins une coupe issue du fractionnement séparé des effluents les plus légers de la deuxième chambre réactionnelle est, en tout ou partie, réinjectée dans la première chambre réactionnelle.For these modes of implementation in which light-type sections are recycled, it may be preferable to inject these recycled sections into the first reaction chamber. Indeed, the cracking of gasolines into light olefins requiring particularly high temperatures, it has proved more effective to carry out such a conversion in the presence of particles coming directly from the regenerator. The fresh charge can then be injected, in whole or in part, into the second reaction chamber. Thus, according to a particularly advantageous configuration, at least one section resulting from the separate fractionation of the lightest effluents from the second reaction chamber is, in whole or in part, reinjected into the first reaction chamber.

Selon la présente invention, au moins une coupe issue du fractionnement séparé des effluents de l'une des chambres réactionnelles est, en tout ou en partie, réinjectée dans l'autre chambre. Les proportions réinjectées dépendent notamment de la nature (plus ou moins dense, plus ou moins difficile à craquer,...) des coupes concernées. Ces proportions doivent également tenir compte des conditions opératoires régnant dans le réacteur dans lequel de telles coupes sont réinjectées, de manière à assurer la vaporisation complète et le craquage des hydrocarbures recyclés. Pour chaque coupe ainsi recyclée, la proportion réinjectée comprend avantageusement de 10 à 100% du flux de ladite coupe. Plus préférentiellement, cette proportion est comprise entre 50 et 100 %.According to the present invention, at least one section resulting from the separate fractionation of the effluents from one of the reaction chambers is, in whole or in part, reinjected into the other chamber. The reinjected proportions depend in particular on the nature (more or less dense, more or less difficult to crack, ...) of the cuts concerned. These proportions must also take into account the operating conditions prevailing in the reactor in which such cuts are reinjected, so as to ensure complete vaporization and cracking of the recycled hydrocarbons. For each cut thus recycled, the proportion reinjected advantageously comprises from 10 to 100% of the flow of said cut. More preferably, this proportion is between 50 and 100%.

Par ailleurs, chacune des coupes réinjectées peut être, préalablement à cette réinjection, combinée à d'autres coupes d'hydrocarbures.Furthermore, each of the reinjected cuts can be, prior to this reinjection, combined with other cuts of hydrocarbons.

Par exemple, dans le cas du fractionnement séparé des effluents lourds avec réinjection d'une coupe visqueuse de type « slurry », il peut être particulièrement avantageux de diluer par une coupe plus légère la fraction réinjectée de ce slurry, de manière à faciliter la réinjection. Le diluant peut par exemple comprendre de la charge fraîche, en particulier des charges conventionnelles du type des gazoles ou des distillats. Le diluant peut par ailleurs comprendre par exemple des huiles de recyclage légères ("light cycle oils", LCO) ou des huiles lourdes de recyclage ("heavy cycle oils", HCO).For example, in the case of the separate fractionation of heavy effluents with reinjection of a viscous slurry-type cup, it may be particularly advantageous to dilute the fraction reinjected from this slurry by a lighter cut, so as to facilitate reinjection . The diluent can, for example, include fresh feed, in particular conventional fillers such as diesel or distillates. The diluent can moreover comprise for example light recycling oils ("light cycle oils", LCO) or heavy recycling oils ("heavy cycle oils", HCO).

Enfin, chacune des coupes réinjectées peut, préalablement à cette réinjection, être soumise à un ou plusieurs traitements intermédiaires. Avantageusement, un tel traitement intermédiaire inclut un hydrotraitement, tel que par exemple une hydrogénation, une hydrodéaromatisation, une hydrodésulfuration, une hydrodéazotation. De tels traitements sont usuellement effectués en présence de catalyseurs connus de l'Homme du Métier, et qui comportent généralement, déposés sur un support d'oxyde minéral réfractaire, un ou plusieurs métaux du Groupe VIII de la Classification Périodique des Eléments, parfois associés à d'autres métaux tels que ceux du Groupe VI de la Classification Périodique des Eléments.Finally, each of the reinjected sections can, before this reinjection, be subjected to one or more intermediate treatments. Advantageously, such an intermediate treatment includes a hydrotreatment, such as for example a hydrogenation, a hydrodearomatization, a hydrodesulfurization, a hydrodenitrogenation. Such treatments are usually carried out in the presence of catalysts known to those skilled in the art, and which generally comprise, deposited on a refractory mineral oxide support, one or more metals from Group VIII of the Periodic Table of the Elements, sometimes associated with other metals such as those of Group VI of the Periodic Table of the Elements.

Dans la seconde chambre réactionnelle, le craquage des hydrocarbures est réalisé en présence des particules caloporteuses provenant de la première chambre, dans laquelle elles ont été partiellement cokées, voire désactivées, au contact de la charge injectée dans cette première chambre. Une variante particulièrement avantageuse de l'invention consiste à introduire en amont de cette seconde chambre réactionnelle, en plus des particules issues de la première chambre réactionnelle, un appoint de particules en provenance du régénérateur. Cette variante s'avère particulièrement bénéfique lorsque la chaleur apportée par les particules issues de ladite première chambre est insuffisante pour vaporiser les hydrocarbures injectés dans la seconde chambre réactionnelle. L'appoint de particules régénérées permet alors d'apporter une quantité de chaleur additionnelle, et de contrôler la température régnant dans ladite seconde chambre. Par ailleurs, lorsque lesdites particules sont de type catalytique, ce système présente l'avantage supplémentaire d'introduire dans la seconde chambre un appoint en sites catalytiques pleinement actifs, de manière à optimiser les réactions de craquage des hydrocarbures injectés dans cette seconde chambre.In the second reaction chamber, the cracking of the hydrocarbons is carried out in the presence of the heat-transfer particles coming from the first chamber, in which they have been partially coked, or even deactivated, in contact with the charge injected into this first chamber. A particularly advantageous variant of the invention consists in introducing upstream of this second reaction chamber, in addition to the particles coming from the first reaction chamber, an addition of particles coming from the regenerator. This variant is particularly beneficial when the heat provided by the particles from said first chamber is insufficient to vaporize the hydrocarbons injected into the second reaction chamber. Adding regenerated particles then makes it possible to provide an additional quantity of heat, and to control the temperature prevailing in said second chamber. Furthermore, when said particles are of the catalytic type, this system has the additional advantage of introducing into the second chamber an addition of fully active catalytic sites, so as to optimize the cracking reactions of the hydrocarbons injected into this second chamber.

De préférence, l'appoint de particules est introduit entre la zone où s'effectue la séparation des particules et des effluents de la première chambre réactionnelle et la zone où s'effectue l'injection des coupes d'hydrocarbures dans la deuxième chambre réactionnelle. Ledit appoint est avantageusement introduit de manière à assurer un mélange homogène avec les particules issues du premier réacteur. A cet effet, un système d'homogénéisation des lits fluidisés de particules tel que décrit dans la demande de brevet EP N° 99.401112 au nom de la Demanderesse peut s'avérer particulièrement utile.Preferably, the addition of particles is introduced between the zone where the separation of the particles and effluents takes place from the first reaction chamber and the zone where the injection of the hydrocarbon fractions takes place in the second reaction chamber. Said make-up is advantageously introduced so as to ensure a homogeneous mixture with the particles coming from the first reactor. To this end, a system for homogenizing the fluidized beds of particles as described in patent application EP No. 99.401112 in the name of the Applicant may prove to be particularly useful.

L'invention met en oeuvre une colonne de fractionnement spécifique. En effet, celle-ci doit permettre la distillation simultanée des effluents issus des deux réacteurs, et être agencée de manière à ce que le fractionnement de ces deux types d'effluents soit réalisé en partie de manière séparée, en partie de manière commune.The invention uses a specific fractionation column. Indeed, this must allow the simultaneous distillation of the effluents from the two reactors, and be arranged so that the fractionation of these two types of effluents is carried out partly separately, partly in common.

A cet effet, le volume intérieur de ladite colonne comprend deux zones :

  • une zone de fractionnement cloisonné, dans laquelle les effluents issus des deux réacteurs sont fractionnés séparément, chacun dans un compartiment, de manière à éviter tout contact entre eux, et
  • une zone de fractionnement commun, dans laquelle les effluents issus des deux réacteurs sont mélangés.
For this purpose, the interior volume of said column comprises two zones:
  • a partitioned fractionation zone, in which the effluents from the two reactors are fractionated separately, each in a compartment, so as to avoid any contact between them, and
  • a common fractionation zone, in which the effluents from the two reactors are mixed.

Cette ségrégation partielle des effluents issus des deux réacteurs est réalisée à l'aide d'un cloisonnement disposé à l'intérieur de la colonne, lequel cloisonnement sépare une partie de ladite colonne en deux compartiments qui constituent ladite zone de fractionnement cloisonné.This partial segregation of the effluents from the two reactors is carried out using a partitioning disposed inside the column, which partitioning separates part of said column into two compartments which constitute said partitioned fractionation zone.

Cette colonne de fractionnement partiellement cloisonnée peut être agencée de multiples manières, selon la partie des effluents pour lesquels on souhaite que le fractionnement se fasse de manière séparée.This partially partitioned fractionation column can be arranged in many ways, depending on the part of the effluents for which it is desired that the fractionation be carried out separately.

Par exemple, si l'on souhaite cloisonner le fractionnement de la partie lourde des effluents issus de chacun des deux réacteurs, la zone de fractionnement cloisonné correspond à la partie inférieure de la colonne de fractionnement. Dans ce cas, différents modes de cloisonnement peuvent être envisagés pour le dispositif selon la présente invention.For example, if it is desired to partition the fractionation of the heavy part of the effluents from each of the two reactors, the partitioned fractionation zone corresponds to the lower part of the fractionation column. In this case, different modes of partitioning can be envisaged for the device according to the present invention.

Selon un premier mode de réalisation, la zone de fractionnement cloisonné est séparée en deux compartiments grâce à un moyen de séparation sensiblement vertical, s'étendant à partir du fond de la colonne de fractionnement sur une partie de la hauteur de celle-ci. Il peut s'agir par exemple d'une paroi verticale plane. Il peut s'agir également d'une paroi verticale cylindrique dont l'axe de révolution est parallèle à l'axe longitudinal de la colonne de fractionnement.According to a first embodiment, the partitioned fractionation zone is separated into two compartments by means of a substantially vertical separation means, extending from the bottom of the fractionation column over part of the height thereof. It may for example be a flat vertical wall. It may also be a cylindrical vertical wall whose axis of revolution is parallel to the longitudinal axis of the fractionating column.

Selon un deuxième mode de réalisation, la zone de fractionnement cloisonné est séparée en deux compartiments grâce à un moyen de séparation sensiblement horizontal, par exemple constitué d'un plateau s'étendant sur une section horizontale de la colonne, et pourvu d'une ou plusieurs cheminées permettant le passage vers le haut, vers la zone de fractionnement commun, des effluents légers issus du compartiment inférieur audit plateau.According to a second embodiment, the partitioned fractionation zone is separated into two compartments by means of a substantially horizontal separation means, for example consisting of a tray extending over a horizontal section of the column, and provided with one or more several chimneys allowing the passage upwards, towards the common fractionation zone, of light effluents from the lower compartment to said tray.

De manière analogue, si l'on souhaite cloisonner le fractionnement de la partie légère des effluents issus de chacun des deux réacteurs, la zone de fractionnement cloisonné correspond à la partie supérieure de la colonne de fractionnement. Là encore, différents modes de cloisonnement peuvent être mis en oeuvre.Similarly, if it is desired to partition the fractionation of the light part of the effluents from each of the two reactors, the partitioned fractionation zone corresponds to the upper part of the fractionation column. Again, different modes of partitioning can be implemented.

Selon un premier mode de réalisation, la zone de fractionnement cloisonné est séparée en deux compartiments grâce à un moyen de séparation sensiblement vertical, s'étendant à partir de la tête de la colonne de fractionnement sur une partie de la hauteur de celle-ci, tel que par exemple une paroi verticale plane ou une paroi verticale cylindrique dont l'axe de révolution est parallèle à l'axe longitudinal de la colonne de fractionnement.According to a first embodiment, the partitioned fractionation zone is separated into two compartments by means of a substantially vertical separation, extending from the head of the fractionation column over a part of the height thereof, such as for example a flat vertical wall or a vertical cylindrical wall whose axis of revolution is parallel to the longitudinal axis of the fractionating column.

Selon un deuxième mode de réalisation, la zone de fractionnement cloisonné est séparée en deux compartiments grâce à un moyen de séparation sensiblement horizontal, par exemple constitué d'un plateau s'étendant sur une section horizontale de la colonne, et pourvu d'une ou plusieurs cheminées permettant le passage vers le bas, vers la zone de fractionnement commun, des effluents lourds issus du compartiment supérieur audit plateau.According to a second embodiment, the partitioned fractionation zone is separated into two compartments by means of a substantially horizontal separation means, for example consisting of a tray extending over a horizontal section of the column, and provided with one or more several chimneys allowing the passage downwards, towards the common fractionation zone, of the heavy effluents coming from the upper compartment to said tray.

Les conditions opératoires dans lesquelles fonctionne chacune des deux chambres réactionnelles peuvent varier. Elles sont de préférence différentes dans chacune de ces deux chambres, compte tenu des natures différentes des hydrocarbures qui y sont injectés. D'une manière générale, ces conditions opératoires incluent une température de réaction comprise entre 450 et 900°C, et une pression voisine de la pression atmosphérique. L'Homme de l'Art sait parfaitement optimiser ces conditions en fonction du type de coupes pétrolières à craquer.The operating conditions under which each of the two reaction chambers operates can vary. They are preferably different in each of these two chambers, taking into account the different natures of the hydrocarbons which are injected there. In general, these operating conditions include a reaction temperature between 450 and 900 ° C, and a pressure close to atmospheric pressure. A person skilled in the art knows perfectly how to optimize these conditions according to the type of petroleum cuts to be cracked.

Les charges d'hydrocarbures susceptibles d'être craquées dans le cadre de la présente invention peuvent être extrêmement diverses. Elles comprennent en particulier, mais non limitativement, les charges usuelles des procédés de craquage, comme par exemple des distillats et/ou des gazoles issus de la distillation atmosphérique ou sous vide, des distillats et/ou des gazoles de viscoréduction, des résidus désasphaltés.The hydrocarbon charges liable to be cracked in the context of the present invention can be extremely diverse. They include in particular, but are not limited to, the usual fillers for cracking processes, such as for example distillates and / or gas oils obtained from atmospheric or vacuum distillation, distillates and / or visbreaking gas oils, deasphalted residues.

Le procédé selon l'invention est, par ailleurs, parfaitement adapté à la conversion de charges plus lourdes, contenant des fractions bouillant normalement jusqu'à 700°C et plus, pouvant renfermer des quantités élevées d'asphaltènes et présenter une teneur en carbone Conradson allant jusqu'à 4% et au delà. Ainsi, la charge peut comprendre des distillats lourds, des résidus de distillation atmosphérique, voire des résidus de distillation sous vide.The process according to the invention is, moreover, perfectly suited to the conversion of heavier feedstocks, containing fractions normally boiling up to 700 ° C. and more, which may contain high quantities of asphaltenes and have a Conradson carbon content. up to 4% and beyond. Thus, the feed can include heavy distillates, atmospheric distillation residues, or even vacuum distillation residues.

Les charges injectées peuvent le cas échéant avoir reçu un traitement préalable tel que, par exemple, un hydrotraitement en présence d'un catalyseur approprié, par exemple un catalyseur à base de cobalt et de molybdène déposés sur un oxyde réfractaire poreux.The injected fillers may if necessary have received a preliminary treatment such as, for example, a hydrotreatment in the presence of an appropriate catalyst, for example a catalyst based on cobalt and molybdenum deposited on a porous refractory oxide.

Afin de faciliter son injection, surtout lorsqu'elle est visqueuse, la charge à craquer peut par ailleurs être diluée par une ou plusieurs coupes plus légères, qui peuvent inclure des coupes intermédiaires issues de la zone de fractionnement des effluents de craquage. A cet effet, les LCO ou HCO cités ci-dessus peuvent constituer d'excellents diluants.In order to facilitate its injection, especially when it is viscous, the charge to be cracked can moreover be diluted by one or more lighter cuts, which can include intermediate cuts coming from the fractionation zone of the cracking effluents. For this purpose, the LCOs or HCOs mentioned above can constitute excellent diluents.

Dans le cadre de la présente invention, il n'apparaît pas nécessaire de mentionner le type de particules caloporteuses, catalytiques ou non, employé, ni les moyens de mise en circulation de telles particules sous forme de lits fluidisés plus ou moins dilués par des fluides gazeux de dilution, dans la mesure où ce sont des données bien connues de l'Homme de l'Art.In the context of the present invention, it does not appear necessary to mention the type of heat transfer particles, catalytic or not, used, nor the means for circulating such particles in the form of fluidized beds more or less diluted by fluids gaseous dilution, insofar as these are data well known to those skilled in the art.

Les diverses formes de mise en oeuvre de l'invention mentionnées ci-dessus vont être décrites ci-après plus en détail, en référence aux dessins annexés. Ceux-ci visent seulement à illustrer l'invention et n'ont donc aucun caractère limitatif, le procédé objet de la présente invention pouvant être mis en oeuvre suivant de très nombreuses variantes.The various embodiments of the invention mentioned above will be described below in more detail, with reference to the accompanying drawings. These are only intended to illustrate the invention and therefore have no limiting character, the process which is the subject of the present invention being able to be implemented according to very numerous variants.

Sur ces dessins :

  • La figure 1 est une vue schématique d'un premier mode de mise en oeuvre du procédé de craquage selon l'invention, dans lequel on cloisonne le fractionnement de la partie lourde des effluents issus des deux réacteurs.
  • Les figures 2 et 3 représentent deux variantes possibles pour la colonne de fractionnement partiellement cloisonnée intervenant dans le procédé illustré sur la figure 1.
  • La figure 4 est une vue schématique d'un second mode de mise en oeuvre du procédé de craquage selon l'invention, dans lequel on cloisonne le fractionnement de la partie légère des effluents issus des deux réacteurs.
  • La figures 5 représente une variante possible pour la colonne de fractionnement partiellement cloisonnée intervenant dans le procédé illustré sur la figure 4.
In these drawings:
  • FIG. 1 is a schematic view of a first embodiment of the cracking method according to the invention, in which the fractionation of the heavy part of the effluents from the two reactors is partitioned.
  • FIGS. 2 and 3 represent two possible variants for the partially partitioned fractionation column involved in the process illustrated in FIG. 1.
  • FIG. 4 is a schematic view of a second embodiment of the cracking method according to the invention, in which the fractionation of the light part of the effluents from the two reactors is partitioned.
  • FIG. 5 represents a possible variant for the partially partitioned fractionation column involved in the process illustrated in FIG. 4.

La figure 1 représente une unité de craquage catalytique comprenant deux chambres réactionnelles successives, la première à écoulement descendant et la seconde à écoulement ascendant.FIG. 1 represents a catalytic cracking unit comprising two successive reaction chambers, the first with downward flow and the second with upward flow.

Cette unité comprend une première chambre réactionnelle constituée d'un réacteur tubulaire 1 à flux descendant, connu sous le nom de "downer". Ce réacteur est relié dans sa partie supérieure à une enceinte 2, à partir de laquelle il est alimenté par un flux de particules de catalyseur régénérées, avec un débit régulé au moyen d'une vanne 3.This unit comprises a first reaction chamber consisting of a tubular reactor 1 with downflow, known as name of "downer". This reactor is connected in its upper part to an enclosure 2, from which it is fed by a flow of regenerated catalyst particles, with a flow rate regulated by means of a valve 3.

La charge à craquer est acheminée par la ligne 4 et injectée dans le réacteur 1 au moyen des injecteurs 5. Les particules de catalyseur et les hydrocarbures s'écoulent alors de haut en bas dans le réacteur 1.The charge to be cracked is conveyed by line 4 and injected into reactor 1 by means of injectors 5. The catalyst particles and the hydrocarbons then flow from top to bottom in reactor 1.

A la base du réacteur 1, le mélange débouche dans l'enceinte 6, dans la partie supérieure de laquelle un séparateur, non représenté, sépare les particules de catalyseur des effluents réactionnels, qui sont dirigés vers la zone de fractionnement par la ligne 7. Dans la partie inférieure de l'enceinte 6, les particules sont strippées, au moyen de vapeur d'eau amenée par la ligne 8 au diffuseur 9.At the base of reactor 1, the mixture emerges in enclosure 6, in the upper part of which a separator, not shown, separates the catalyst particles from the reaction effluents, which are directed to the fractionation zone by line 7. In the lower part of the enclosure 6, the particles are stripped, by means of water vapor brought by the line 8 to the diffuser 9.

Les particules sont ensuite évacuées par le conduit 10 hors de l'enceinte 6, et transférées à la base de la deuxième chambre réactionnelle. Cette dernière est constituée d'un réacteur 16 en forme de colonne, de type connu en soi, dit élévateur de charge, ou riser. Le réacteur 16 est alimenté à sa base par le conduit 10 en particules de catalyseur.The particles are then evacuated via line 10 out of the enclosure 6, and transferred to the base of the second reaction chamber. The latter consists of a reactor 16 in the form of a column, of a type known per se, known as a load elevator, or riser. The reactor 16 is supplied at its base by the conduit 10 with particles of catalyst.

En option, on peut prévoir un conduit non représenté pour l'acheminement d'un appoint de particules régénérées provenant directement du régénérateur 23 que l'on décrira plus en détail ci-après, avec un débit régulé de manière à optimiser les conditions de craquage dans ce deuxième réacteur.As an option, it is possible to provide a conduit, not shown, for conveying an addition of regenerated particles coming directly from the regenerator 23 which will be described in more detail below, with a regulated flow rate so as to optimize the cracking conditions. in this second reactor.

Un gaz élévateur, par exemple de la vapeur d'eau, est introduit dans la colonne 16 par la ligne 11, au moyen d'un diffuseur 19, tandis qu'une charge comprenant une proportion substantielle d'une coupe issue du fractionnement séparé des effluents les plus lourds du premier réacteur 1, est acheminée au moyen de la ligne 13 et injectée dans le réacteur 16 au moyen des injecteurs-pulvérisateurs 14. Les particules de catalyseur et les hydrocarbures s'écoulent alors de bas en haut dans le réacteur 16.A riser gas, for example water vapor, is introduced into column 16 through line 11, by means of a diffuser 19, while a charge comprising a substantial proportion of a cut resulting from the separate fractionation of heaviest effluents from the first reactor 1, is conveyed by means of line 13 and injected into the reactor 16 by means of the injector-sprayers 14. The catalyst particles and the hydrocarbons then flow from bottom to top in the reactor 16 .

La colonne 16 débouche à son sommet dans une enceinte 15, qui lui est par exemple concentrique et dans laquelle s'effectuent la séparation de la charge craquée et le strippage des particules désactivées de catalyseur. Les particules sont séparées de la charge traitée au moyen d'un cyclone 17, qui est logé dans l'enceinte 15, au sommet de laquelle est prévue une ligne d'évacuation 18 des effluents du deuxième réacteur 16, lesquels sont acheminés vers la zone de fractionnement. Les particules désactivées se déplacent par gravité vers la base de l'enceinte 15. Une ligne 20 alimente en fluide de strippage, généralement de la vapeur d'eau, des injecteurs ou diffuseurs 21 de gaz de fluidisation disposés régulièrement à la base de l'enceinte 15.The column 16 opens at its top in an enclosure 15, which is for example concentric and in which the separation of the cracked charge takes place and the stripping of the deactivated particles of catalyst. The particles are separated from the charge treated by means of a cyclone 17, which is housed in the enclosure 15, at the top of which is provided a discharge line 18 for the effluents from the second reactor 16, which are routed to the fractionation zone. The deactivated particles move by gravity towards the base of the enclosure 15. A line 20 supplies stripping fluid, generally steam, to injectors or diffusers 21 of fluidizing gas regularly arranged at the base of the pregnant 15.

Les particules sont ensuite évacuées à la base de l'enceinte 15 vers un régénérateur 23, par l'intermédiaire du conduit 22. Dans le régénérateur 23, le coke déposé sur les particules est brûlé à l'aide d'air ou d'un autre gaz riche en oxygène, injecté à la base du régénérateur 23 par une ligne 24, qui alimente des injecteurs ou diffuseurs 25 régulièrement espacés. Les particules entraînées par le gaz de combustion sont séparées par des cyclones 26, et le gaz de combustion est évacué par une ligne 27, tandis que les particules s'écoulent vers la base de l'enceinte 23, d'où elles sont recyclées par le conduit 28 vers l'enceinte 2 d'alimentation du premier réacteur 1.The particles are then evacuated at the base of the enclosure 15 to a regenerator 23, via the conduit 22. In the regenerator 23, the coke deposited on the particles is burned using air or a another oxygen-rich gas, injected at the base of the regenerator 23 by a line 24, which feeds regularly spaced injectors or diffusers 25. The particles entrained by the combustion gas are separated by cyclones 26, and the combustion gas is evacuated by a line 27, while the particles flow towards the base of the enclosure 23, from where they are recycled by the conduit 28 towards the enclosure 2 supplying the first reactor 1.

Les effluents réactionnels issus de chacun des réacteurs 1 et 16 sont acheminés respectivement par les lignes 7 et 18 vers la colonne de fractionnement 12. Cette dernière est constituée de deux zones : une zone inférieure 40 de fractionnement cloisonné, et une zone supérieure 41 de fractionnement commun. La zone 40 de fractionnement cloisonné est divisée en deux compartiments 38 et 39 par un moyen de séparation 37, constitué d'une paroi verticale plane, s'étendant à partir du fond de la colonne 12 sur une partie de la hauteur de celle-ci.The reaction effluents from each of reactors 1 and 16 are routed respectively by lines 7 and 18 to the fractionation column 12. The latter consists of two zones: a lower zone 40 for partitioned fractionation, and an upper zone 41 for fractionation common. The partitioned fractionation zone 40 is divided into two compartments 38 and 39 by a separation means 37, consisting of a flat vertical wall, extending from the bottom of the column 12 over part of the height thereof. .

Conformément à l'invention, les lignes 7 et 18 d'amenée des effluents des deux réacteurs débouchent de part et d'autre du moyen de séparation 37, dans les compartiments respectifs 39 et 38, dans lesquels les produits lourds correspondants sont fractionnés séparément. Ces produits correspondent à des résidus de distillation ou « slurry », dont le point de coupe initial est de préférence choisi à une valeur comprise entre 450 et 480°C.In accordance with the invention, the lines 7 and 18 for supplying the effluents from the two reactors open on either side of the separation means 37, into the respective compartments 39 and 38, in which the corresponding heavy products are fractionated separately. These products correspond to distillation residues or "slurry", the initial cutting point of which is preferably chosen at a value between 450 and 480 ° C.

Les deux compartiments 38 et 39 communiquent avec la zone de fractionnement commun 41, située dans la partie supérieure de la colonne 12, et dans laquelle s'effectue le fractionnement des produits plus légers contenus dans les effluents combinés des deux réacteurs 1 et 16.The two compartments 38 and 39 communicate with the common fractionation zone 41, located in the upper part of the column 12, and in which the lighter products contained in the combined effluents from the two reactors 1 and 16 are carried out.

Le fractionnement par distillation de ces fractions plus légères est réalisé de manière classique, afin d'obtenir les produits recherchés. En particulier, l'homme de l'Art sait parfaitement choisir les points de coupes en fonction des produits qu'il souhaite obtenir. Traditionnellement, cette distillation est réalisée de manière à isoler :

  • les produits gazeux aux conditions normales de température et de pression (hydrocarbures en C1 à C4), soutirés par la ligne 43 ;
  • une coupe d'essences, dont l'intervalle d'ébullition peut aller de 20°C jusque vers 140-220°C, soutirée par la ligne 44 ;
  • une coupe de type gazole ou LCO, dont l'intervalle d'ébullition s'étend généralement de 140-220°C jusque vers 320-400°C, soutirée par la ligne 45.
  • une coupe de type distillat ou HCO, dont l'intervalle d'ébullition s'étend généralement de 320-400°C jusque vers 450-480°C, soutirée par la ligne 46.
The fractionation by distillation of these lighter fractions is carried out in a conventional manner, in order to obtain the desired products. In in particular, the skilled person knows perfectly how to choose the cutting points according to the products he wishes to obtain. Traditionally, this distillation is carried out so as to isolate:
  • gaseous products at normal temperature and pressure conditions (C1 to C4 hydrocarbons), drawn off by line 43;
  • a section of essences, the boiling range of which can range from 20 ° C to around 140-220 ° C, drawn off by line 44;
  • a diesel or LCO type cut, the boiling range of which generally ranges from 140-220 ° C to around 320-400 ° C, drawn off by line 45.
  • a distillate or HCO type cut, the boiling range of which generally extends from 320-400 ° C up to around 450-480 ° C, drawn off by line 46.

Bien entendu, la zone de fractionnement peut parfaitement comprendre des colonnes additionnelles classiques non représentées, couplées à la colonne 12, dans lesquelles peut être effectué une partie du fractionnement des effluents communs décrit ci-dessus et/ou des fractionnements ultérieurs.Of course, the fractionation zone can perfectly comprise conventional additional columns, not shown, coupled to column 12, in which part of the fractionation of the common effluents described above and / or subsequent fractionations can be carried out.

Dans le procédé représenté ici, seuls les résidus des effluents des deux réacteurs sont fractionnés séparément. Il est bien entendu tout-à-fait possible de fractionner de manière séparée d'autres produits lourds tels qu'en particulier le HCO, voire le LCO, de manière à recycler tout ou partie de ceux-ci vers le second réacteur 16, seuls ou en mélange avec le slurry. Pour cela, il suffit d'utiliser un moyen de séparation 37 s'étendant sur une hauteur plus importante de la colonne 12, de manière à ce que la zone de fractionnement cloisonné 40 comprenne également la zone de distillation et de soutirage du HCO (voire du LCO).In the process shown here, only the effluent residues from the two reactors are fractionated separately. It is of course entirely possible to separate other heavy products separately, such as in particular HCO or even LCO, so as to recycle all or part of these to the second reactor 16, alone or mixed with the slurry. For this, it suffices to use a separation means 37 extending over a greater height of the column 12, so that the partitioned fractionation zone 40 also includes the zone for distillation and withdrawal of HCO (or even LCO).

Les résidus condensés dans les compartiments 38 et 39 sont soutirés respectivement par les lignes 42 et 13. La coupe soutirée par la ligne 13, qui correspond au slurry issu du fractionnement séparé des effluents de la première chambre réactionnelle 1, est, conformément à l'invention, recyclée vers la deuxième chambre réactionnelle 16. En option, la ligne 47 permet de diluer cette fraction de fond par une coupe moins visqueuse, par exemple tout ou partie de la coupe HCO soutirée par la ligne 46. En option également, la ligne 48 permet de soutirer une partie de ladite fraction de fond, de manière à n'en injecter qu'une proportion donnée dans le réacteur 16.The condensed residues in compartments 38 and 39 are drawn off respectively by lines 42 and 13. The section drawn off by line 13, which corresponds to the slurry resulting from the separate fractionation of the effluents from the first reaction chamber 1, is, in accordance with invention, recycled to the second reaction chamber 16. Optionally, line 47 makes it possible to dilute this bottom fraction by a less viscous cut, for example all or part of the HCO cut drawn off by line 46. Optionally, the line 48 makes it possible to withdraw part of said bottom fraction, so as to inject only a given proportion into the reactor 16.

Quant à la coupe soutirée par la ligne 42, elle correspond au slurry issu du fractionnement séparé des effluents de la deuxième chambre réactionnelle 16. Cette coupe, qui comprend des composés particulièrement réfractaires non convertis après craquage successif dans chacun des deux réacteurs, peut être par exemple évacuée de l'unité.As for the section drawn off by line 42, it corresponds to the slurry resulting from the separate fractionation of the effluents from the second reaction chamber 16. This section, which comprises particularly refractory compounds which are not converted after successive cracking in each of the two reactors, can be by example removed from the unit.

La figure 2, sur laquelle les organes déjà décrits en relation avec la figure 1 sont désignés par les mêmes chiffres de référence, représente une première variante de réalisation de la colonne de fractionnement 12, qui fait apparaître un autre moyen de cloisonner la partie inférieure 40 de ladite colonne.FIG. 2, in which the members already described in relation to FIG. 1 are designated by the same reference numbers, shows a first alternative embodiment of the fractionation column 12, which shows another means of partitioning the lower part 40 of said column.

Sur cette figure, la colonne 12 comprend un moyen de séparation constitué, comme dans la figure 1, d'un cloisonnement sensiblement vertical, s'étendant à partir du fond de la colonne 12. Toutefois, cet élément de cloisonnement se compose ici d'une paroi verticale cylindrique 37' dont l'axe de révolution est parallèle à l'axe longitudinal de la colonne 12. Cet élément cylindrique est disposé intérieurement et concentriquement à la paroi de la colonne 12, et il s'étend à partir du fond de celle-ci sur une hauteur suffisante, partageant ainsi la zone de fractionnement cloisonnée 40 en deux compartiments 39 et 38, dans lesquels débouchent respectivement la ligne 7 d'acheminement des effluents de la première chambre réactionnelle 1, et la ligne 18 d'acheminement des effluents de la seconde chambre réactionnelle 16. Dans cette configuration, les deux compartiments 38 et 39 sont donc concentriques.In this figure, the column 12 comprises a separation means consisting, as in FIG. 1, of a substantially vertical partitioning, extending from the bottom of the column 12. However, this partitioning element here consists of a cylindrical vertical wall 37 ′ whose axis of revolution is parallel to the longitudinal axis of the column 12. This cylindrical element is disposed internally and concentrically with the wall of the column 12, and it extends from the bottom of this over a sufficient height, thus dividing the partitioned fractionation zone 40 into two compartments 39 and 38, into which lead respectively the line 7 for conveying effluents from the first reaction chamber 1, and the line 18 for conveying effluents from the second reaction chamber 16. In this configuration, the two compartments 38 and 39 are therefore concentric.

Chaque compartiment 38 et 39 communique directement avec la zone de fractionnement commun 41 située au-dessus, dans laquelle s'effectue, de manière classique, le fractionnement des produits plus légers contenus dans les effluents combinés des deux réacteurs.Each compartment 38 and 39 communicates directly with the common fractionation zone 41 situated above, in which is carried out, in a conventional manner, the fractionation of the lighter products contained in the combined effluents of the two reactors.

Dans la variante présentée sur la figure 2, l'élément de cloisonnement 37' s'étend sur une hauteur plus importante de la colonne 12, de manière à couvrir également la zone de distillation des coupes de type HCO. Par ailleurs, on ne sépare pas le HCO du slurry, si bien que les résidus, soutirés par les lignes 42 et 13 dans le fond de chacun des deux compartiments respectifs 38 et 39, sont constitués d'un mélange de ces deux types de produits.In the variant shown in Figure 2, the partition element 37 'extends over a greater height of the column 12, so as to also cover the distillation zone of HCO type cuts. Furthermore, the HCO is not separated from the slurry, so that the residues, drawn off by lines 42 and 13 in the bottom of each of the two respective compartments 38 and 39, consist of a mixture of these two types of products. .

Le résidu soutiré par la ligne 13, constitué d'un mélange de HCO et de slurry issu du fractionnement séparé des effluents lourds de la première chambre réactionnelle 1, est, conformément à l'invention, recyclé en tout ou partie vers la deuxième chambre réactionnelle 16.The residue drawn off by line 13, consisting of a mixture of HCO and slurry from the separate fractionation of heavy effluents from the first reaction chamber 1, is, in accordance with the invention, recycled in whole or in part to the second reaction chamber 16.

Bien entendu, les lignes d'alimentation 7 et 18 peuvent tout à fait être interverties, à condition d'intervertir également les deux lignes 13 et 42 de soutirage des produits correspondants.Of course, the supply lines 7 and 18 can completely be inverted, provided that the two lines 13 and 42 for drawing off the corresponding products are also inverted.

La figure 3, sur laquelle les organes déjà décrits en relation avec la figure 1 sont à nouveau désignés par les mêmes chiffres de référence, représente une seconde variante de réalisation de la colonne de fractionnement 12 de cette figure 1, dans laquelle le moyen 37" de séparation de la zone inférieure 40 de fractionnement cloisonné est de type horizontal.FIG. 3, in which the members already described in relation to FIG. 1 are again designated by the same reference numbers, represents a second alternative embodiment of the fractionation column 12 of this FIG. 1, in which the means 37 " for separating the lower partitioned partitioning zone 40 is of the horizontal type.

Sur cette figure, la zone 40 comprend un cloisonnement interne constitué d'un plateau horizontal 37", lequel est dimensionné de manière à recouvrir la totalité de la section transversale de la colonne 12 et à être en contact étanche avec la paroi verticale interne de celle-ci.In this figure, the zone 40 comprises an internal partitioning constituted by a horizontal plate 37 ", which is dimensioned so as to cover the entire cross section of the column 12 and to be in sealed contact with the internal vertical wall of that -this.

Ce cloisonnement délimite un premier compartiment supérieur 39, dans lequel débouche la ligne 7 d'acheminement des effluents de la première chambre réactionnelle 1, et un second compartiment inférieur 38, dans lequel débouche la ligne 18 d'acheminement des effluents de la seconde chambre réactionnelle 16. Dans cette configuration, les deux compartiments 38 et 39 sont donc disposées l'un au dessus de l'autre.This partitioning delimits a first upper compartment 39, into which opens the line 7 for transporting the effluents from the first reaction chamber 1, and a second lower compartment 38, into which opens the line 18 for transporting the effluents from the second reaction chamber. 16. In this configuration, the two compartments 38 and 39 are therefore arranged one above the other.

Chaque compartiment, 38, 39, communique directement avec la zone de fractionnement commun 41 située au-dessus. En effet, le plateau 37" est pourvu d'au moins une cheminée 50, qui permet le passage vers le haut, vers ladite zone de fractionnement commun 41, des produits vaporisés provenant du compartiment 38 inférieur au plateau 37". Ainsi, les effluents les plus légers issus de la seconde chambre réactionnelle 16 remontent-ils via cette cheminée vers la zone commune 41, où ils sont fractionnés et soutirés par les lignes 43, 44 et 45, en mélange avec les effluents légers issus de la première chambre réactionnelle 1.Each compartment, 38, 39, communicates directly with the common fractionation zone 41 situated above. Indeed, the tray 37 "is provided with at least one chimney 50, which allows the passage upwards, towards said common fractionation zone 41, of the vaporized products coming from the compartment 38 below the tray 37". Thus, the lightest effluents from the second reaction chamber 16 rise via this chimney towards the common area 41, where they are fractionated and drawn off by lines 43, 44 and 45, in mixture with the light effluents from first reaction chamber 1.

La cheminée 50 est surmontée d'une coiffe 51, par exemple conique, qui permet d'éviter que des hydrocarbures ne passent du compartiment supérieur 39 au compartiment inférieur 38. Ce système permet donc d'assurer une parfaite ségrégation des effluents lourds issus des deux réacteurs 1 et 16.The chimney 50 is surmounted by a cap 51, for example conical, which makes it possible to prevent hydrocarbons from passing from the upper compartment 39 to the lower compartment 38. This system therefore ensures perfect segregation of the heavy effluents from the two reactors 1 and 16.

La coupe soutirée par la ligne 13 du compartiment 39 de fractionnement cloisonné des effluents lourds issus de la première chambre réactionnelle 1 est, conformément à l'invention, recyclée en tout ou partie vers la deuxième chambre réactionnelle 16.The section drawn off by line 13 of the compartment 39 for partitioning heavy effluents from the first reaction chamber 1 is, in accordance with the invention, recycled in whole or in part to the second reaction chamber 16.

Dans cette variante comme dans celle présentée à la figure 2, les lignes d'alimentation 7 et 18 peuvent être interverties (le fractionnement séparé des effluents lourds du premier réacteur 1 est alors effectué dans le compartiment inférieur 38, tandis que le fractionnement séparé des effluents lourds du second réacteur 16 est effectué dans le compartiment supérieur 39), à condition d'intervertir également les deux lignes 13 et 42 de soutirage des produits correspondants.In this variant, as in that presented in FIG. 2, the supply lines 7 and 18 can be inverted (the separate fractionation of the heavy effluents from the first reactor 1 is then carried out in the lower compartment 38, while the separate fractionation of the effluents heavy of the second reactor 16 is carried out in the upper compartment 39), provided that the two lines 13 and 42 for drawing off the corresponding products are also reversed.

La figure 4 représente également une unité de craquage catalytique comprenant, comme celle présentée figure 1, une première chambre réactionnelle 1 à écoulement descendant et une seconde chambre réactionnelle 16 à écoulement ascendant. Cette unité comporte de nombreux éléments communs avec l'unité présentée à la figure 1 et désignés par les mêmes chiffres de référence, de sorte que seuls les éléments différents seront décrits ci-après.FIG. 4 also represents a catalytic cracking unit comprising, like that presented in FIG. 1, a first reaction chamber 1 with downward flow and a second reaction chamber 16 with upward flow. This unit has many elements common to the unit shown in Figure 1 and designated by the same reference numerals, so that only the different elements will be described below.

Le procédé illustré sur cette figure 4 correspond à un mode de réalisation de l'invention, dans lequel on fractionne séparément les effluents les plus légers provenant de chacun des deux réacteurs 1 et 16, afin de réinjecter dans l'un d'eux des produits légers issus de l'autre.The process illustrated in this FIG. 4 corresponds to an embodiment of the invention, in which the lightest effluents from each of the two reactors 1 and 16 are fractionated separately, in order to reinject into one of them products light from the other.

A cet effet, la colonne de fractionnement 12 comprend une zone supérieure 40 de fractionnement cloisonné des effluents légers, et une zone inférieure 41 de fractionnement commun des effluents lourds. La zone 40 de fractionnement cloisonné est divisée en deux compartiments 38 et 39 par un moyen de séparation 37, constitué d'une paroi verticale plane s'étendant vers le bas à partir de la tête de la colonne 12, sur une partie de la hauteur de celle-ci.To this end, the fractionation column 12 comprises an upper zone 40 for partitioned partitioning of light effluents, and a lower zone 41 for common fractionation of heavy effluents. The partitioned fractionation zone 40 is divided into two compartments 38 and 39 by a separation means 37, consisting of a flat vertical wall extending downwards from the head of the column 12, over part of the height of it.

Conformément à l'invention, les lignes 7 et 18 d'amenée des effluents des réacteurs respectifs 1 et 16 débouchent de part et d'autre du moyen de séparation 37, dans les compartiments respectifs 39 et 38, dans lesquels les produits légers correspondants sont fractionnés séparément, de manière à isoler :

  • les produits gazeux aux conditions normales de température et de pression (hydrocarbures en C1 à C4), soutirés respectivement des compartiments 38 et 39 par les lignes 43a et 43b ;
  • deux coupes de type essences, dont l'intervalle d'ébullition peut aller de 20°C jusque vers 140-220°C, soutirées respectivement des compartiments 38 et 39 par les lignes 44a et 44b.
In accordance with the invention, the lines 7 and 18 for supplying the effluents from the respective reactors 1 and 16 open on either side of the separation means 37, in the respective compartments 39 and 38, in which the corresponding light products are fractionated separately, so as to isolate:
  • gaseous products at normal temperature and pressure conditions (C1 to C4 hydrocarbons), drawn off from compartments 38 and 39 respectively by lines 43 a and 43 b ;
  • two gasoline-type cups, the boiling range of which can range from 20 ° C to around 140-220 ° C, drawn from compartments 38 and 39 respectively by lines 44 a and 44 b .

La coupe d'essence soutirée par la ligne 44a, issue du fractionnement séparé des effluents les plus légers de la deuxième chambre réactionnelle, est acheminée vers les injecteurs 5, à partir desquels elle est réinjectée dans la première chambre réactionnelle 1. En effet, bien que, dans le cadre de l'invention, il soit tout à fait possible de recycler cette coupe vers la deuxième chambre réactionnelle 16,il s'est avéré plus efficace de craquer une telle coupe dans la première chambre 1, au contact des particules de température maximale provenant directement du régénérateur 23. Dès lors, la charge fraîche peut être en tout ou partie injectée dans le second réacteur 16. A cet effet, elle est acheminée aux injecteurs 14 via la ligne 52.The gasoline fraction removed through line 44 is separated after splitting of the lightest effluents from the second reaction chamber, is fed to injectors 5, from which it is fed back into the first reaction chamber 1. In fact, although, in the context of the invention, it is entirely possible to recycle this section to the second reaction chamber 16, it has been found to be more effective in cracking such a section in the first chamber 1, in contact with the particles of maximum temperature coming directly from the regenerator 23. Consequently, the fresh charge can be wholly or partly injected into the second reactor 16. For this purpose, it is sent to the injectors 14 via the line 52.

Dans la zone 41 de fractionnement commun de la colonne 12, s'effectue, de manière classique, le fractionnement des produits plus lourds contenus dans les effluents combinés des deux réacteurs 1 et 16, de manière à isoler :

  • une coupe de type gazole ou LCO, dont l'intervalle d'ébullition s'étend généralement de 140-220°C jusque vers 320-400°C, soutirée par la ligne 45 ;
  • une coupe de type distillat ou HCO, dont l'intervalle d'ébullition s'étend généralement de 320-400°C jusque vers 450-480°C, soutirée par la ligne 46 ;
  • un résidu de distillation ou « slurry », dont le point de coupe initial est généralement choisi à une valeur comprise entre 450 et 480°C, soutiré par la ligne 53.
In the common fractionation zone 41 of column 12, the heavier products contained in the combined effluents from the two reactors 1 and 16 are conventionally fractioned, so as to isolate:
  • a cut of the diesel or LCO type, the boiling range of which generally extends from 140-220 ° C up to around 320-400 ° C, drawn off by line 45;
  • a distillate or HCO type cut, the boiling range of which generally extends from 320-400 ° C up to around 450-480 ° C, drawn off by line 46;
  • a distillation residue or "slurry", the initial cutting point of which is generally chosen at a value between 450 and 480 ° C., drawn off by line 53.

La figure 5, où les organes déjà décrits en relation avec la figure 4 sont désignés par les mêmes chiffres de référence, représente une variante de réalisation de la colonne de fractionnement 12 de cette figure 4, dans laquelle le moyen 37"de séparation de la zone supérieure 40 de fractionnement cloisonné est de type horizontal.FIG. 5, where the members already described in relation to FIG. 4 are designated by the same reference numerals, represents an alternative embodiment of the fractionation column 12 of this FIG. 4, in which the means 37 "for separating the upper zone 40 of partitioned fractionation is of horizontal type.

Sur cette figure 5, la zone 40 comprend un cloisonnement interne constitué d'un plateau horizontal 37", dimensionné de manière à recouvrir la totalité de la section transversale de la colonne 12 et à être en contact étanche avec la paroi verticale interne de celle.In this FIG. 5, the zone 40 comprises an internal partitioning constituted by a horizontal plate 37 ", dimensioned so as to cover the entire cross section of column 12 and be in leaktight contact with the internal vertical wall of that.

Ce cloisonnement délimite un premier compartiment supérieur 39, dans lequel débouche la ligne 7 d'acheminement des effluents de la première chambre réactionnelle 1, et un second compartiment inférieur 38, dans lequel débouche la ligne 18 d'acheminement des effluents de la seconde chambre réactionnelle 16.This partitioning delimits a first upper compartment 39, into which opens the line 7 for transporting the effluents from the first reaction chamber 1, and a second lower compartment 38, into which opens the line 18 for transporting the effluents from the second reaction chamber. 16.

Chaque compartiment 38, 39 communique directement avec la zone de fractionnement commun 41 située au-dessous. En effet, le plateau 37" est pourvu d'au moins une cheminé 50, qui permet le passage vers le bas, vers ladite zone de fractionnement commun 41, des produits lourds provenant du compartiment 39 supérieur au plateau 37". Ainsi, les effluents les plus lourds issus de la première chambre réactionnelle 1 descendent-ils via cette cheminé vers la zone commune 41, où ils sont fractionnés et soutirés par les lignes 45, 46 et 53, en mélange avec les effluents lourds issus de la deuxième chambre réactionnelle 16.Each compartment 38, 39 communicates directly with the common fractionation zone 41 located below. Indeed, the tray 37 "is provided with at least one chimney 50, which allows the passage downward, towards said common fractionation zone 41, of the heavy products coming from the compartment 39 above the tray 37". Thus, the heaviest effluents from the first reaction chamber 1 descend via this path to the common area 41, where they are fractionated and drawn off by lines 45, 46 and 53, mixed with the heavy effluents from the second reaction chamber 16.

La cheminé 50 est pourvue d'une chicane 51, par exemple conique, qui permet d'éviter que des hydrocarbures ne passent du compartiment inférieur 38 au compartiment supérieur 39. Ce système permet donc d'assurer une parfaite ségrégation des effluents légers issus des deux réacteurs 1 et 16.The chimney 50 is provided with a baffle 51, for example conical, which makes it possible to prevent hydrocarbons from passing from the lower compartment 38 to the upper compartment 39. This system therefore makes it possible to ensure perfect segregation of the light effluents from the two reactors 1 and 16.

La coupe d'essences soutirée par la ligne 44a du compartiment 38 de fractionnement cloisonné des effluents légers issus de la deuxième chambre réactionnelle 16 est, conformément à l'invention, recyclée en tout ou partie vers la première chambre réactionnelle 1.The gasoline section drawn off by line 44 a from the compartment 38 for partitioning partitioned light effluents from the second reaction chamber 16 is, in accordance with the invention, recycled in whole or in part to the first reaction chamber 1.

Les exemples ci-après, qui n'ont pas de caractère limitatif, sont uniquement destinés à illustrer la mise en oeuvre de l'invention et les avantages de celle-ci.The examples below, which are not limiting, are only intended to illustrate the implementation of the invention and the advantages thereof.

EXEMPLESEXAMPLES Exemple 1 :Example 1:

Deux essais de craquage catalytique ont été effectués à partir d'une charge pétrolière lourde, constituée d'un mélange de 50% en poids de résidu atmosphérique et de 50% en poids de distillat sous vide, provenant tous deux de la distillation d'un pétrole brut de type Kirkuk.Two catalytic cracking tests were carried out using a heavy petroleum charge, consisting of a mixture of 50% by weight of atmospheric residue and 50% by weight of vacuum distillate, both originating from the distillation of a Kirkuk-type crude oil.

Le premier essai a été réalisé dans une unité expérimentale de craquage catalytique conforme à celle représentée sur la Figure 1, qui comporte deux chambres réactionnelles successives (1 ;16), la première (1) à écoulement descendant ("downer"), et la seconde (16) à écoulement ascendant ("riser"). Le catalyseur utilisé est un catalyseur commercial classique, de type zéolithique. Conformément à l'invention, les effluents de chacune de ces deux chambres réactionnelles sont dirigés vers une même colonne de fractionnement (12), cloisonnée dans sa partie inférieure (40) par une paroi verticale plane (37). La charge fraîche est injectée dans la première chambre réactionnelle (1), tandis que dans la seconde chambre réactionnelle (16) on recycle une coupe issue du fractionnement séparé des effluents de la première chambre (1).The first test was carried out in an experimental catalytic cracking unit in accordance with that shown in Figure 1, which comprises two successive reaction chambers (1; 16), the first (1) with downflow ("downer"), and the second (16) with upward flow ("riser"). The catalyst used is a conventional commercial catalyst, of the zeolitic type. According to the invention, the effluents from each of these two reaction chambers are directed to the same fractionation column (12), partitioned in its lower part (40) by a flat vertical wall (37). The fresh charge is injected into the first reaction chamber (1), while in the second reaction chamber (16) a section is recycled from the separate fractionation of the effluents from the first chamber (1).

Par ailleurs, un essai comparatif (essai n°2) a été réalisé dans les mêmes conditions, mais en remplaçant la colonne de fractionnement partiellement cloisonnée (12) par une colonne classique, dans laquelle les effluents de chacune des deux chambres (1 ;16) sont combinés et fractionnés de manière traditionnelle. La charge fraîche est injectée dans la première chambre réactionnelle (1), tandis que dans la seconde chambre réactionnelle (16) on recycle une coupe issue du fractionnement des effluents combinés des deux chambres.In addition, a comparative test (test No. 2) was carried out under the same conditions, but by replacing the partially partitioned fractionation column (12) with a conventional column, in which the effluents from each of the two chambers (1; 16 ) are combined and split in the traditional way. The fresh charge is injected into the first reaction chamber (1), while in the second reaction chamber (16) a section is recycled from the fractionation of the combined effluents from the two chambers.

Dans ces deux essais, la coupe recyclée dans la seconde chambre réactionnelle (16) correspond à un distillat lourd ou HCO, d'intervalle d'ébullition s'étendant de 380°C à 480°C. Dans l'essai 1 conforme à l'invention, la totalité du HCO provenant du fractionnement cloisonné des effluents de la première chambre réactionnelle (1) est injectée dans la deuxième chambre réactionnelle (16). Dans l'essai comparatif 2, le taux de recycle (rapport de la quantité de HCO recyclée dans la deuxième chambre réactionnelle à la quantité totale de HCO produite dans l'unité) est de 0,8.In these two tests, the fraction recycled in the second reaction chamber (16) corresponds to a heavy distillate or HCO, with a boiling range extending from 380 ° C. to 480 ° C. In test 1 according to the invention, all of the HCO from the partitioned fractionation of the effluents from the first reaction chamber (1) is injected into the second reaction chamber (16). In comparative test 2, the recycling rate (ratio of the amount of HCO recycled in the second reaction chamber to the total amount of HCO produced in the unit) is 0.8.

Les conditions opératoires, identiques dans les deux essais, sont les suivantes :

  • Température de sortie de la première chambre réactionnelle (1) : 540°C
  • Température de sortie de la deuxième chambre réactionnelle (16) : 515°C
  • Rapport C/O dans la première chambre réactionnelle (1) (rapport massique entre la quantité de catalyseur C et celle O de la charge injectée dans cette chambre) : 6
  • Rapport C/O dans la deuxième chambre réactionnelle (16) : 8
  • Température du régénérateur (23) : 690°C
The operating conditions, identical in the two tests, are as follows:
  • Exit temperature of the first reaction chamber (1): 540 ° C
  • Second reaction chamber (16) outlet temperature: 515 ° C
  • C / O ratio in the first reaction chamber (1) (mass ratio between the quantity of catalyst C and that O of the feed injected into this chamber): 6
  • C / O ratio in the second reaction chamber (16): 8
  • Regenerator temperature (23): 690 ° C

Le tableau qui suit résume les résultats obtenus, en terme de taux de conversion de la coupe HCO recyclée dans la deuxième chambre réactionnelle (i.e. quantité de HCO converti / quantité de HCO recyclé), et de rendement en produits de conversion (i.e. poids de produit obtenu / poids de HCO converti). Essai 1 Essai 2 (comparatif) Rendements: Taux de conversion (% en poids) 34,6 24,5 Rendement en gaz secs (% en poids) 2,2 1,5 Rendement en GPL (% en poids) 5,8 4,3 Rendement en essence (% en poids) 13,1 10,1 Rendement en LCO (% en poids) 20,0 20,8 Rendement en slurry (% en poids) 45,4 54,7 Rendement en coke (% en poids) 13,5 8,6 The table below summarizes the results obtained, in terms of conversion rate of the HCO cut recycled in the second reaction chamber (ie quantity of HCO converted / quantity of HCO recycled), and of yield of conversion products (ie weight of product obtained / weight of HCO converted). Trial 1 Trial 2 (comparative) returns: Conversion rate (% by weight) 34.6 24.5 Dry gas yield (% by weight) 2.2 1.5 LPG yield (% by weight) 5.8 4.3 Fuel efficiency (% by weight) 13.1 10.1 LCO yield (% by weight) 20.0 20.8 Slurry yield (% by weight) 45.4 54.7 Coke yield (% by weight) 13.5 8.6

Dans le tableau ci-dessus, les produits obtenus sont définis comme suit:

  • gaz secs: hydrocarbures légers à 1 ou 2 atomes de carbone et hydrogène sulfuré (H2S);
  • GPL: hydrocarbures légers à 3 ou 4 atomes de carbone;
  • essence: coupe d'hydrocarbures dont l'intervalle d'ébullition s'étend de 20°C jusqu'à 220°C;
  • LCO: coupe d'hydrocarbures dont l'intervalle d'ébullition s'étend de 220°C jusqu'à 380°C;
  • slurry: résidu de distillation, qui contient des quantités importantes de poussières de catalyseur et dont l'intervalle d'ébullition s'étend à partir de 480°C.
In the table above, the products obtained are defined as follows:
  • dry gases: light hydrocarbons with 1 or 2 carbon atoms and hydrogen sulfide (H 2 S);
  • LPG: light hydrocarbons with 3 or 4 carbon atoms;
  • gasoline: cut of hydrocarbons with a boiling range from 20 ° C to 220 ° C;
  • LCO: cut of hydrocarbons with a boiling range from 220 ° C to 380 ° C;
  • slurry: distillation residue, which contains significant quantities of catalyst dust and whose boiling range extends from 480 ° C.

Les résultats ci-dessus montrent qu'il est beaucoup plus avantageux de recycler au second réacteur du HCO provenant du fractionnement cloisonné des effluents du premier réacteur (essai 1), que de recycler du HCO provenant du fractionnement des effluents combinés des deux réacteurs (essai 2).The above results show that it is much more advantageous to recycle HCO from the partitioned effluent fractionation from the first reactor to the second reactor (test 1) than to recycle HCO from the fractionation of the combined effluents from the two reactors (test 2).

En effet, dans le premier cas, la coupe de HCO recyclée ne contient que des hydrocarbures issus d'un premier craquage de la charge fraîche, tandis que dans le second cas elle contient également des hydrocarbures issus de la deuxième chambre, non convertis après passage dans les deux réacteurs successifs, donc particulièrement réfractaires au craquage, et qui "tournent en rond" dans l'unité. Dans l'essai 1 réalisé conformément à l'invention, l'élimination de tels composés grâce au système de fractionnement cloisonné améliore notablement la qualité du craquage dans la seconde chambre réactionnelle. On constate en effet que cette conversion est à la fois plus complète (augmentation de 10 points du taux de conversion), et plus sélective (forte diminution du rendement en en slurry, qui est un produit particulièrement indésirable, au profit d'une augmentation des rendements produits intermédiaires recherchés, tels que les essences et les GPL).Indeed, in the first case, the recycled HCO cut contains only hydrocarbons from a first cracking of the fresh charge, while in the second case it also contains hydrocarbons from the second chamber, not converted after passing through the two successive reactors, therefore particularly refractory to cracking, and which "go around in circles" in the unit. In test 1 carried out in accordance with the invention, the elimination of such compounds by means of the partitioned fractionation system notably improves the quality of the cracking in the second reaction chamber. It can be seen that this conversion is both more complete (10-point increase in the conversion rate), and more selective (sharp reduction in yield of slurry, which is a particularly undesirable product, in favor of an increase in yields sought intermediate products, such as gasolines and LPG).

Exemple 2 :Example 2:

Dans cet exemple, deux essais (respectivement 3 et 4) ont été réalisés dans les mêmes unités et dans les mêmes conditions opératoires que les essais respectifs 1 et 2 de l'exemple 1, à la différence près que cette fois la coupe recyclée dans la seconde chambre réactionnelle (16) est une coupe de type gazole ou LCO (d'intervalle d'ébullition s'étendant de 220°C à 380°C). Dans l'essai 3 conforme à l'invention, la totalité du LCO provenant du fractionnement cloisonné des effluents de la première chambre réactionnelle (1) est injectée dans la deuxième chambre réactionnelle (16). Dans l'essai comparatif 4, le taux de recycle (rapport de la quantité de LCO recyclé dans la deuxième chambre réactionnelle à la quantité totale de LCO produite dans l'unité) est de 0,8. La charge fraîche utilisée est la même que dans l'exemple 1.In this example, two tests (respectively 3 and 4) were carried out in the same units and under the same operating conditions as the respective tests 1 and 2 of Example 1, with the difference that this time the cut recycled in the second reaction chamber (16) is a section of the diesel or LCO type (with a boiling range extending from 220 ° C. to 380 ° C.). In test 3 according to the invention, all of the LCO originating from the partitioned fractionation of the effluents from the first reaction chamber (1) is injected into the second reaction chamber (16). In comparative test 4, the recycling rate (ratio of the amount of LCO recycled in the second reaction chamber to the total amount of LCO produced in the unit) is 0.8. The fresh charge used is the same as in Example 1.

Pour chacun de ces deux essais, on a déterminé les propriétés de la coupe de LCO recyclée dans la seconde chambre réactionnelle. Le tableau ci-dessous illustre les résultats obtenus : Essai 3 Essai 4 (comparatif) Propriétés de la coupe de recycle : Densité (à 15°C) 0,9522 0,9543 Viscosité (à 50°C) 2,76 2,98 Teneur en soufre (% en poids) 2,59 2,71 Teneur en hydrogène moléculaire (% en poids) 10,10 9,79 For each of these two tests, the properties of the cut of recycled LCO in the second reaction chamber were determined. The table below illustrates the results obtained: Trial 3 Trial 4 (comparative) Properties of the recycle cut: Density (at 15 ° C) .9522 .9543 Viscosity (at 50 ° C) 2.76 2.98 Sulfur content (% by weight) 2.59 2.71 Molecular hydrogen content (% by weight) 10,10 9.79

Les résultats ci-dessus illustrent, d'une manière complémentaire à ceux de l'exemple 1, certains avantages apportés par l'invention.The above results illustrate, in a manner complementary to those of Example 1, certain advantages provided by the invention.

On constate en effet que, dans l'essai 3 effectué conformément à l'invention, la coupe de recycle est de qualité nettement supérieure à celle obtenue dans l'essai comparatif 4. Dans l'essai 3, cette coupe est moins lourde, moins visqueuse, moins riche en impuretés soufrées ; la teneur en hydrogène des hydrocarbures qu'elle contient est plus élevée. Cette coupe est donc moins riche en hydrocarbures lourds, en particulier en composés polyaromatiques particulièrement réfractaires au craquage.In fact, it can be seen that, in test 3 carried out in accordance with the invention, the recycle cut is of clearly superior quality to that obtained in comparative test 4. In test 3, this cut is lighter, less viscous, less rich in sulfur impurities; the hydrogen content of the hydrocarbons it contains is higher. This cut is therefore less rich in heavy hydrocarbons, in particular in polyaromatic compounds which are particularly refractory to cracking.

Cet exemple illustre donc le fait que, dans le procédé selon l'invention, les qualités de la coupe de recycle sont supérieures, ce qui contribue à de meilleurs rendements, une meilleure sélectivité et une meilleure qualité des produits obtenus lors du craquage de cette coupe dans la seconde chambre réactionnelle 16.This example therefore illustrates the fact that, in the process according to the invention, the qualities of the recycle cut are higher, which contributes to better yields, better selectivity and better quality of the products obtained during the cracking of this cut. in the second reaction chamber 16.

Exemple 3 :Example 3:

Dans cet exemple, on utilise une unité expérimentale de craquage catalytique conforme à celle représentée sur la Figure 4, qui comporte deux chambres réactionnelles successives (1 ;16), la première (1) à écoulement descendant ("downer"), et la seconde (16) à écoulement ascendant ("riser"). Le catalyseur utilisé est un catalyseur commercial classique, de type zéolithique.In this example, an experimental catalytic cracking unit conforming to that shown in FIG. 4 is used, which comprises two successive reaction chambers (1; 16), the first (1) with downward flow, and the second (16) upward flow ("riser"). The catalyst used is a conventional commercial catalyst, of the zeolitic type.

Un premier essai (essai n°5) est réalisé conformément à l'invention : les effluents de chacune de ces deux chambres réactionnelles sont dirigés vers une même colonne de fractionnement (12), cloisonnée dans sa partie supérieure (40) par une paroi verticale plane (37). La charge fraîche est injectée dans la deuxième chambre réactionnelle (16), tandis que dans la première chambre réactionnelle (1) on recycle une coupe issue du fractionnement séparé des effluents de la deuxième chambre (16).A first test (test No. 5) is carried out in accordance with the invention: the effluents from each of these two reaction chambers are directed to the same fractionation column (12), partitioned in its upper part (40) by a vertical wall plane (37). The fresh charge is injected into the second reaction chamber (16), while in the first reaction chamber (1) a section is recycled from the separate fractionation of the effluents from the second chamber (16).

Par ailleurs, un essai comparatif (essai n°6) a été réalisé dans les mêmes conditions, mais en remplaçant la colonne de fractionnement partiellement cloisonnée (12) par une colonne classique, dans laquelle les effluents de chacune des deux chambres (1 ;16) sont combinés et fractionnés de manière traditionnelle. La charge fraîche est injectée dans la deuxième chambre réactionnelle (16), tandis que dans la première chambre réactionnelle (1) on recycle une coupe issue du fractionnement des effluents combinés des deux chambres.Furthermore, a comparative test (test no. 6) was carried out under the same conditions, but by replacing the partially partitioned fractionation column (12) with a conventional column, in which the effluents from each of the two chambers (1; 16 ) are combined and split in the traditional way. The fresh charge is injected into the second reaction chamber (16), while in the first reaction chamber (1) a section is recycled from the fractionation of the combined effluents from the two chambers.

Dans ces deux essais, la coupe recyclée dans la première chambre réactionnelle (1) est une essence légère (d'intervalle d'ébullition s'étendant de 20°C à 220°C). Dans l'essai 5 conforme à l'invention, la totalité de l'essence provenant du fractionnement cloisonné des effluents de la deuxième chambre réactionnelle (16) est injectée dans la première chambre réactionnelle (1). Dans l'essai comparatif 6, le taux de recycle (rapport de la quantité d'essence recyclée dans la première chambre réactionnelle à la quantité totale d'essence produite dans l'unité) est de 0,8.In these two tests, the cut recycled in the first reaction chamber (1) is a light gasoline (with a boiling range extending from 20 ° C. to 220 ° C.). In test 5 according to the invention, all of the petrol coming from the partitioned fractionation of the effluents from the second reaction chamber (16) is injected into the first reaction chamber (1). In comparative test 6, the recycling rate (ratio of the quantity of petrol recycled in the first reaction chamber to the total quantity of petrol produced in the unit) is 0.8.

La charge fraîche utilisée est la même que dans l'exemple 1, et les conditions opératoires, identiques dans les deux essais, sont les suivantes :

  • Température de sortie de la première chambre réactionnelle (1) : 540°C
  • Température de sortie de la deuxième chambre réactionnelle (16) : 515°C
  • Rapport C/O dans la première chambre réactionnelle (1) : 8
  • Rapport C/O dans la deuxième chambre réactionnelle (16) : 6
  • Température du régénérateur (23) : 690°C
The fresh charge used is the same as in Example 1, and the operating conditions, identical in the two tests, are as follows:
  • Exit temperature of the first reaction chamber (1): 540 ° C
  • Second reaction chamber (16) outlet temperature: 515 ° C
  • C / O ratio in the first reaction chamber (1): 8
  • C / O ratio in the second reaction chamber (16): 6
  • Regenerator temperature (23): 690 ° C

Pour chacun de ces deux essais, on a déterminé les propriétés de la coupe d'essence recyclée dans la première chambre réactionnelle (1). Le tableau ci-dessous illustre les résultats obtenus : Essai 5 Essai 6 (comparatif) Propriétés de la coupe de recycle: Densité (à 15°C) 0,7130 0,7289 Teneur en soufre (% en poids) 0,063 0,078 Teneur en hydrogène moléculaire (% en poids) 14,30 13,77 Teneur en composés aromatiques (% en poids) 16,0 17,5 For each of these two tests, the properties of the cut of recycled gasoline in the first reaction chamber (1) were determined. The table below illustrates the results obtained: Trial 5 Trial 6 (comparative) Properties of the recycle cut: Density (at 15 ° C) .7130 .7289 Sulfur content (% by weight) 0,063 0.078 Molecular hydrogen content (% by weight) 14,30 13.77 Aromatic content (% by weight) 16.0 17.5

Là encore, on constate que dans l'essai 5 effectué conformément à l'invention, la coupe de recycle est de qualité nettement supérieure à celle obtenue dans l'essai comparatif 6. En effet, dans l'essai 5 cette coupe est moins lourde, moins riche en impuretés soufrés ; sa teneur en hydrogène moléculaire est plus élevée, et sa teneur en hydrocarbures aromatiques est moindre. Il en résulte, lors du craquage d'une telle coupe dans la première chambre réactionnelle (1), non seulement des rendements plus élevés, mais également de meilleures qualités des produits de craquage.Here again, it can be seen that in test 5 carried out in accordance with the invention, the recycle cut is of clearly superior quality to that obtained in comparative test 6. In fact, in test 5 this cut is lighter, less rich in sulfur impurities; its molecular hydrogen content is higher, and its aromatic hydrocarbon content is lower. This results in cracking such a cut in the first reaction chamber (1), not only higher yields, but also better qualities of the cracked products.

De manière générale, les exemples ci-dessus illustrent parfaitement quelques-uns des nombreux avantages apportés par la présente invention. En particulier, ils montrent que l'invention permet de recycler de manière optimale certaines coupes d'hydrocarbures issues d'une première étape de craquage de la charge fraîche, ce qui permet d'augmenter de manière substantielle le rendement total de conversion de cette charge, avec une sélectivité accrue en faveur des produits spécifiques recherchés.In general, the above examples perfectly illustrate some of the many advantages provided by the present invention. In particular, they show that the invention makes it possible to optimally recycle certain hydrocarbon fractions resulting from a first step of cracking the fresh charge, which makes it possible to substantially increase the total conversion efficiency of this charge. , with increased selectivity in favor of the specific products sought.

Claims (28)

  1. A process for cracking a hydrocarbon charge in a fluidised bed, in which heat-conducting particles, optionally catalytic, circulate in two successive reaction chambers (1;16), in each of which they are brought into contact with at least hydrocarbon fraction, and the reaction effluents originating from each of said chambers are directed towards the same fractional distillation unit, characterised in that the effluents of each of the reaction chambers (1;16) are fractionated partly separately in the same partly compartmented fractionating column (12), and in that at least one fraction (13,44a) originating from the separate fractional distillation of the effluents of one of the reaction chambers (1;16) is, wholly or partly, reinjected into the other chamber.
  2. A process according to any one of the preceding claims [sic], characterised in that the residence time of the hydrocarbons injected into the first reaction chamber (1) is less than the residence time of the hydrocarbons injected into the second reaction chamber (16).
  3. A process according to any one of the preceding claims, characterised in that the residence time of the hydrocarbons injected into the first reaction chamber (1) is between 0.05 and 5 seconds, preferably between 0.1 and 1 second.
  4. A process according to any one of the preceding claims, characterised in that the residence time of the hydrocarbons injected into the second reaction chamber (16) is between 0.1 and 10 seconds, preferably between 0.4 and 5 seconds.
  5. A process according to any one of the preceding claims, characterised in that the flow of the charge and of the particles into the first reaction chamber (1) takes place in an essentially descending direction.
  6. A process according to any one of the preceding claims, characterised in that the flow of the charge and of the particles into the second reaction chamber (16) takes place in an essentially ascending direction.
  7. A process according to any one of the preceding claims, characterised in that, in said partly compartmented fractionating column (12), the heaviest effluents originating from each of the two reaction chambers are fractionated separately, whereas the lightest effluents are combined.
  8. A process according to the preceding claim, characterised in that said fraction (13) originating from the separate fractional distillation of the effluents from one of the reaction chambers and which, wholly or partly, is reinjected into the other chamber, comprises slurry and/or a heavy distillate of the HCO type and/or fraction of the gas oil type, such as LCO.
  9. A process according to either one of claims 7 and 8, characterised in that at least one fraction (13) originating from the separate fractional distillation of the heaviest effluents from the first reaction chamber (1) is, wholly or partly, reinjected into the second reaction chamber (16).
  10. A process according to any one of claims 1 to 6, characterised in that, in said in said partly compartmented fractionating column (12), the lightest effluents originating from each of the two reaction chambers are fractionated separately, whereas the heaviest effluents are combined.
  11. A process according to the preceding claim, characterised in that said fraction (44a) originating from the separate fractional distillation of the effluents from one of the reaction chambers and which is, wholly or partly, reinjected into the other chamber, is gasoline.
  12. A process according to either one of claims 10 and 11, characterised in that at least one fraction (44a) originating from the separate fractional distillation of the lightest effluents from the second reaction chamber (16) is, wholly or partly, reinjected into the first reaction chamber (1).
  13. A process according to any one of the preceding claims, characterised in that said fraction (13;44a) originating from the separate fractional distillation of the effluents from one of the reaction chambers and which is, wholly or partly, reinjected into the other chamber, is combined with other hydrocarbon fractions prior to this reinjection.
  14. A process according to any one of the preceding claims, characterised in that said fraction (13;44a) originating from the separate fractional distillation of the effluents from one of the reaction chambers and which is, wholly or partly, reinjected into the other chamber, is subjected to one or more intermediate treatments prior to this reinjection.
  15. A process according to claim 14, characterised in that said intermediate treatment includes a hydrotreatment, for example hydrogenation, hydrodearomatisation, hydrodesulphurisation, hydro-denitrogenation.
  16. A process according to any one of the preceding claims, characterised in that upstream of the second reaction chamber (16), in addition to the particles originating from the first reaction chamber (1), there is introduced the remainder of particles originating from the regenerator (23).
  17. An apparatus for cracking a hydrocarbon charge in a fluidised bed, utilising two reaction chambers (1;16) connected to one another by a transfer means (10) for heat-conducting particles, a fractionating column (12) and ducts (7;18) for the inlet of the hydrocarbon effluents originating from each of the two chambers (1;16) into said fractionating column (12), characterised in that:
    - said fractionating column (12) comprises, in its inner portion, at least two distinct zones: a first compartmented fractional distillation zone (40) formed by two compartments (38;39) each communicating with a second common fractional distillation zone (41);
    - the inlet ducts (7;18) for effluents originating from the first and second reaction chambers (1;16) discharge respectively into the first and second compartments (39;38) of said compartmented fractional distillation zone (40);
    - means (13;44a) are provided for recycling and injecting into one of the reaction chambers (1;16) at least one fraction drawn off from the compartmented fractional distillation compartment of the effluents of the other reaction chamber.
  18. An apparatus according to the preceding claim, characterised in that said reaction chambers (1;16) are different.
  19. An apparatus according to either one of claims 17 and 18, characterised in that the first reaction chamber (1) is formed by a substantially vertical reactor with descending flow of the type known as a downer.
  20. An apparatus according to any one of claims 17 to 19, characterised in that the second reaction chamber (16) is formed by a substantially vertical reactor with ascending flow of the type known as a riser.
  21. An apparatus according to any one of claims 17 to 20, characterised in that the compartmented fractional distillation zone (40) corresponds to the lower part of the fractionating column (12).
  22. An apparatus according to claim 21, characterised in that the compartmented fractional distillation zone (40) is divided into two compartments (38;39) by a substantially vertical separating means (37;37') extending from the bottom of the fractionating column (12) over part of the height thereof.
  23. An apparatus according to claim 21, characterised in that the compartmented fractional distillation zone (40) is divided into two compartments (38;39) by a substantially horizontal separating means formed by a plate (37") extending over a horizontal section of the column (12) and provided with one or more flues (50) allowing the upward passage, towards the common fractional distillation zone (41), of the light effluents originating from the compartment (38) below said plate (37").
  24. An apparatus according to any one of claims 17 to 20, characterised in that the compartmented fractional distillation zone (40) corresponds to the upper part of the fractionating column (12).
  25. An apparatus according to claim 24, characterised in that the compartmented fractional distillation zone (40) is divided into two compartments (38;39) by a substantially vertical separating means (37;37') extending from the top of the fractionating column (12) over part of the height thereof.
  26. An apparatus according to claim 24, characterised in that the compartmented fractional distillation zone (40) is divided into two compartments (38;39) by a substantially horizontal separating means formed by a plate (37") extending over a horizontal section of the column (12) and provided with one or more flues (50) allowing the downward passage, towards the common fractional distillation zone (41), of the heavy effluents originating from the compartment (38) above said plate (37").
  27. An apparatus according to either claim 22 or 25, characterised in that said separating means comprises a flat vertical wall (37).
  28. An apparatus according to either claim 22 or 25, characterised in that said separating means comprises a cylindrical vertical wall (37') whose axis of revolution is parallel to the longitudinal axis of the fractionating column (12).
EP01401737A 2000-07-05 2001-06-29 Process and apparatus for hydrocarbon cracking with two successive reaction zones Expired - Lifetime EP1170355B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0008732A FR2811327B1 (en) 2000-07-05 2000-07-05 HYDROCARBON CRACKING PROCESS AND DEVICE IMPLEMENTING TWO SUCCESSIVE REACTIONAL CHAMBERS
FR0008732 2000-07-05

Publications (2)

Publication Number Publication Date
EP1170355A1 EP1170355A1 (en) 2002-01-09
EP1170355B1 true EP1170355B1 (en) 2004-12-29

Family

ID=8852125

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01401737A Expired - Lifetime EP1170355B1 (en) 2000-07-05 2001-06-29 Process and apparatus for hydrocarbon cracking with two successive reaction zones

Country Status (7)

Country Link
US (2) US6767451B2 (en)
EP (1) EP1170355B1 (en)
AT (1) ATE286107T1 (en)
CA (1) CA2352018C (en)
DE (1) DE60108007T2 (en)
ES (1) ES2236159T3 (en)
FR (1) FR2811327B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101921611B (en) * 2009-06-12 2013-07-31 中国石油天然气股份有限公司 Catalytic cracking method and system for reducing sulphur content of petrol
US8920630B2 (en) 2007-04-13 2014-12-30 Shell Oil Company Systems and methods for making a middle distillate product and lower olefins from a hydrocarbon feedstock

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2785907B1 (en) * 1998-11-13 2001-01-05 Inst Francais Du Petrole CATALYTIC CRACKING PROCESS AND DEVICE COMPRISING DOWN-FLOW AND UP-FLOW REACTORS
KR20070056090A (en) * 2004-08-10 2007-05-31 쉘 인터내셔날 리써취 마트샤피지 비.브이. Method and apparatus for making a middle distillate product and lower olefins from a hydrocarbon feedstock
US20060231459A1 (en) * 2005-03-28 2006-10-19 Swan George A Iii FCC process combining molecular separation with staged conversion
FR2895413B1 (en) 2005-12-27 2011-07-29 Alstom Technology Ltd PETROLEUM HYDROCARBON CONVERSION INSTALLATION WITH INTEGRATED COMBUSTION FACILITY COMPRISING CAPTURE OF CARBON DIOXIDE
US20080011645A1 (en) 2006-07-13 2008-01-17 Dean Christopher F Ancillary cracking of paraffinic naphtha in conjuction with FCC unit operations
US20080011644A1 (en) * 2006-07-13 2008-01-17 Dean Christopher F Ancillary cracking of heavy oils in conjuction with FCC unit operations
JP2010501033A (en) * 2006-08-18 2010-01-14 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method for separating particles from a particle-containing gas stream
JP2010526179A (en) * 2007-04-30 2010-07-29 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ System and method for producing middle distillate products and lower olefins from hydrocarbon feedstocks
RU2474606C2 (en) * 2007-10-10 2013-02-10 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Systems and methods for obtaining middle distillates and low molecular weight olefins from hydrocarbon raw material
JP5405585B2 (en) * 2008-11-26 2014-02-05 エスケー イノベーション カンパニー リミテッド Process for producing clean fuels and aromatic products from fluidized bed catalytic cracking fractions
JP2013512329A (en) * 2009-12-01 2013-04-11 エクソンモービル リサーチ アンド エンジニアリング カンパニー Two-stage hydrotreating with partition tower fractionator
US9434892B2 (en) 2010-07-08 2016-09-06 Indian Oil Corporation Ltd. Two stage fluid catalytic cracking process and apparatus
BR112013014250A2 (en) * 2010-12-14 2016-09-20 Uop Llc process and apparatus for removing heavy polynuclear aromatics from a hydroprocessed stream
WO2013016660A1 (en) 2011-07-27 2013-01-31 Saudi Arabian Oil Company Fluidized catalytic cracking of paraffinic naphtha in a downflow reactor
US8822747B2 (en) * 2011-12-21 2014-09-02 Uop Llc Combined xylene isomerization and transalkylation process unit
US8888899B2 (en) * 2012-04-12 2014-11-18 Kellogg Brown & Root Llc Transfer line for the primary cyclone of a gasifier
FR3015514B1 (en) 2013-12-23 2016-10-28 Total Marketing Services IMPROVED PROCESS FOR DESAROMATIZATION OF PETROLEUM CUTTERS
CN111013500B (en) * 2019-10-25 2022-02-25 河北美邦工程科技股份有限公司 Slurry bed continuous hydrogenation reaction device
CN114426877B (en) * 2020-10-29 2023-07-14 中国石油化工股份有限公司 Method for producing low-carbon olefin and BTX by catalytic pyrolysis of crude oil

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2488713A (en) * 1947-05-01 1949-11-22 Universal Oil Prod Co Catalytic cracking of residual hydrocarbons
US3437584A (en) * 1967-08-09 1969-04-08 Universal Oil Prod Co Method for converting heavy carbonaceous materials
FR2690922B1 (en) * 1992-05-07 1994-07-22 Inst Francais Du Petrole METHOD AND DEVICE FOR CATALYTIC CRACKING IN TWO SUCCESSIVE REACTION ZONES.
US5824208A (en) * 1994-05-27 1998-10-20 Exxon Research & Engineering Company Short contact time catalytic cracking process
US5582711A (en) * 1994-08-17 1996-12-10 Exxon Research And Engineering Company Integrated staged catalytic cracking and hydroprocessing process
US5755933A (en) * 1995-07-24 1998-05-26 The M. W. Kellogg Company Partitioned distillation column
FR2753453B1 (en) * 1996-09-18 1998-12-04 Total Raffinage Distribution PROCESS AND DEVICE FOR CATALYTIC CRACKING IN A FLUIDIZED BED OF A HYDROCARBON CHARGE, IMPLEMENTING AN IMPROVED CONTACT ZONE
FR2757872B1 (en) * 1996-12-31 1999-06-25 Total Raffinage Distribution PROCESS FOR HYDROTREATING A HYDROCARBON CHARGE AND DEVICE FOR IMPLEMENTING SAME
FR2785907B1 (en) * 1998-11-13 2001-01-05 Inst Francais Du Petrole CATALYTIC CRACKING PROCESS AND DEVICE COMPRISING DOWN-FLOW AND UP-FLOW REACTORS
US6630066B2 (en) * 1999-01-08 2003-10-07 Chevron U.S.A. Inc. Hydrocracking and hydrotreating separate refinery streams

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8920630B2 (en) 2007-04-13 2014-12-30 Shell Oil Company Systems and methods for making a middle distillate product and lower olefins from a hydrocarbon feedstock
CN101921611B (en) * 2009-06-12 2013-07-31 中国石油天然气股份有限公司 Catalytic cracking method and system for reducing sulphur content of petrol

Also Published As

Publication number Publication date
ATE286107T1 (en) 2005-01-15
US6767451B2 (en) 2004-07-27
US20040211704A1 (en) 2004-10-28
FR2811327A1 (en) 2002-01-11
FR2811327B1 (en) 2002-10-25
DE60108007T2 (en) 2005-12-08
ES2236159T3 (en) 2005-07-16
US20020096452A1 (en) 2002-07-25
CA2352018A1 (en) 2002-01-05
US7544333B2 (en) 2009-06-09
DE60108007D1 (en) 2005-02-03
EP1170355A1 (en) 2002-01-09
CA2352018C (en) 2010-02-02

Similar Documents

Publication Publication Date Title
EP1170355B1 (en) Process and apparatus for hydrocarbon cracking with two successive reaction zones
EP1800742B1 (en) Reactor comprising two fluidised reaction zones and an integrated gas/solid separation system
CA2301985C (en) Process for converting petroleum heavy fractions comprising hydro conversion in boiling pits and a hydrotreatment stage
EP0323297B1 (en) Fluidised bed hydrocarbon conversion process
EP2441816B1 (en) Catalytic cracking method suitable for processing feedstocks with low Conradson carbon residue, which comprises recycling a coking cut according to a novel technology
FR2951735A1 (en) METHOD FOR CONVERTING RESIDUE INCLUDING MOBILE BED TECHNOLOGY AND BOILING BED TECHNOLOGY
EP2336273B1 (en) Catalytic cracking method with maximisation of diesel bases
EP1242569A1 (en) Method and device for catalytic cracking comprising in parallel at least an upflow reactor and at least a downflow reactor
EP2627736B1 (en) Multistage cracking and stripping process in an fcc unit
FR2659346A1 (en) CRACKING PROCESS WITH OLIGOMERIZATION OR TRIMERIZATION OF OLEFINS PRESENT IN EFFLUENTS.
EP0489726B1 (en) Method and device for vapor-cracking of hydrocarbons in fluidized phase
EP1131389B1 (en) Method and device for catalytic cracking comprising reactors with descending and ascending flows
EP0851020A1 (en) Process and apparatus for hydrotreatment of hydrocarbon feeds
EP0291408B1 (en) Steam cracking process in a fluidised-bed reaction zone
FR3080628A1 (en) PROCESS FOR HYDROCRACKING HYDROCARBON LOADS
FR2770225A1 (en) METHOD AND DEVICE FOR SELECTIVE VAPORIZATION OF HYDROCARBON LOADS IN CATALYTIC CRACKING
FR3075069A1 (en) VERTICALLY COMPARTIZED BILATERAL BED REACTOR AND METHOD FOR HYDROCONVERSION OF HEAVY PETROLEUM LOADS
FR3075070A1 (en) COMPARTMENTIZED BIN REAGENT AND HYDROCONVERSION PROCESS FOR HEAVY PETROLEUM LOADS
FR2970478A1 (en) Pre-refining and hydroconversion in fixed-bed of a heavy crude oil of hydrocarbons, comprises removing metals in hydrodemetallation section, hydrocracking at least part of the effluent, and fractionating a portion of the effluent
FR2741888A1 (en) IMPROVEMENTS IN PROCESSES AND DEVICES FOR VISCOREDUCTION OF HYDROCARBON HEAVY LOADS
FR2658833A1 (en) Process for cracking a hydrocarbon feedstock in the fluid state
FR3090683A1 (en) Conversion of petroleum crude oil into a compartmentalized fluidized bed
EP0322276A1 (en) Heavy charge catalytic cracking process and apparatus comprising a second stripping in a fluidised bed
FR2621322A1 (en) Process for vaporising a liquid feedstock in a fluid bed catalytic cracking process
WO1991003527A1 (en) Method and device for vapor-cracking of hydrocarbons in fluidized phase

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020302

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TOTALFINAELF FRANCE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041229

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 60108007

Country of ref document: DE

Date of ref document: 20050203

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050329

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050329

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050329

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FREI PATENTANWALTSBUERO

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050629

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2236159

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050529

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20150611

Year of fee payment: 15

Ref country code: ES

Payment date: 20150626

Year of fee payment: 15

Ref country code: GB

Payment date: 20150618

Year of fee payment: 15

Ref country code: DE

Payment date: 20150619

Year of fee payment: 15

Ref country code: CH

Payment date: 20150618

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20150618

Year of fee payment: 15

Ref country code: IT

Payment date: 20150622

Year of fee payment: 15

Ref country code: FR

Payment date: 20150413

Year of fee payment: 15

Ref country code: NL

Payment date: 20150618

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60108007

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160629

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20160701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160629

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170103

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181128