EP1167579A1 - Chlor-alkali electrolytic process in membrane cells using non-purified salt - Google Patents

Chlor-alkali electrolytic process in membrane cells using non-purified salt Download PDF

Info

Publication number
EP1167579A1
EP1167579A1 EP01114430A EP01114430A EP1167579A1 EP 1167579 A1 EP1167579 A1 EP 1167579A1 EP 01114430 A EP01114430 A EP 01114430A EP 01114430 A EP01114430 A EP 01114430A EP 1167579 A1 EP1167579 A1 EP 1167579A1
Authority
EP
European Patent Office
Prior art keywords
anode
membrane
cathode
chlorine
sodium hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01114430A
Other languages
German (de)
French (fr)
Other versions
EP1167579B1 (en
Inventor
Jakob Dr.-Ing. Jörissen
Simon Dipl.-Ing.(Fh) Schnitzler
Ulrich Dipl.-Ing. Stemick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Wallace and Tiernan GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wallace and Tiernan GmbH filed Critical Wallace and Tiernan GmbH
Publication of EP1167579A1 publication Critical patent/EP1167579A1/en
Application granted granted Critical
Publication of EP1167579B1 publication Critical patent/EP1167579B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells

Definitions

  • the invention also relates to a device for carrying out the method.
  • Disinfectant based on chlorine for drinking water and swimming pools are particularly suitable for the disinfection of swimming pool water indispensable.
  • the application and especially the transport and the storage of elemental chlorine are, however, with safety risks connected. Its use in water can be toxic to undesirable formation chlorinated compounds lead from organic contaminants. Also has Chlorine lowers the pH value as a by-product Hydrochloric acid.
  • the use is an alternative to the use of elemental chlorine of sodium hypochlorite solutions.
  • the use of sodium hypochlorite solutions has the following advantages: The transportation and handling of sodium hypochlorite are less dangerous than with chlorine gas, accidents are easier manageable. Sodium hypochlorite solutions are also very easy to dose and that formed from the sodium hypochlorite in water at neutral pH Hypochlorous acid acts as a strong oxidizing agent, but is not chlorinating.
  • Electrolysis plant to produce the sodium hypochlorite solution directly on site. This usually takes place by means of chlor-alkali electrolysis, also chlorine electrolysis called.
  • Disinfection technology for water treatment currently exists Systems based on membrane cells and systems based on of continuous cells, as shown in FIG. 1.
  • the method according to the invention relates to systems based on Brine-based membrane cells.
  • the object of the invention is therefore to provide a chlor-alkali electrolysis process, despite the simplifications necessary for small systems (none Brine cleaning, no complete degassing) a stable and reliable Condition is reached.
  • the aforementioned disadvantages of previously available small systems can be avoided, but at the same time Chloralkali electrolysis method according to the invention in terms of the cost thereof should be at least equal.
  • a further processing of the Products of the chlorine electrolysis sodium hypochlorite solution produced an optimal Show product quality.
  • the chlor-alkali electrolysis process according to the invention is characterized in that the membrane is in an acidic state during electrolysis.
  • the term “acidic” or “alkaline” state of a membrane has hitherto been known to the person skilled in the art in the course of the reaction of unpurified sodium sulfate to sodium hydroxide solution and sulfuric acid [Jörissen, J .; Simmrock, KH: "The behavior of ion exchange membranes in electrolysis and electrodialysis of sodium sulfate", J. Appl. Electrochem. 21 (1991) 869-876; Jörissen, J .: “Ion exchange membranes in electrolysis and electro-organic synthesis", Progress Reports VDI, Series 3, No. 442, VDI-Verlag Düsseldorf (1996)].
  • the membrane (s) is usually used of unpurified brine due to the contaminants it contains, such as calcium and destroyed magnesium salts. This happens due to precipitations of these Fabrics on / in the membrane.
  • the chlor-alkali electrolysis process according to the invention is - as already mentioned - characterized by an acidic environment for the membrane; this will make the irreversible Damage to the membrane due to the presence in the unpurified brine Prevents contaminants.
  • the precipitates occur as is in the frame the invention has shown, in chlorine electrolysis only in alkaline, but not in acidic area. If an acidic environment is present in the membrane according to the invention, the contaminants contained in the brine can pass through the membrane.
  • the acidic environment is ensured according to the invention in that oxygen is also produced on the anode at the same time as the chlorine. Hydrogen ions (H 3 O + ) are produced as a by-product in the production of oxygen, and these acidify the anolyte very strongly. Since only dilute sodium hydroxide solution, below 20% by weight NaOH, preferably in the range from 2 to 5% by weight, is present in the cathode compartment in the process according to the invention, an acidic environment is stable in the membrane. An acidic boundary layer is therefore formed in front of the membrane in the cathode compartment due to the hydrogen ions. The membrane therefore has no direct contact with the sodium hydroxide solution and is in an acidic state.
  • the acidic state stabilizes the membrane in that - unlike the small systems previously used for chlorine electrolysis - the chlorine gas in the form of a lean brine-free chlorine gas is taken from the anode compartment.
  • the by the chosen process conditions avoids achievable operating state of the inventive method reliable deposits in the membrane and can be maintained long-term stable.
  • a supply is required on the anode side in the method according to the invention saturated brine in particular only to the extent that the by the electrolysis-related consumption of anolyte is balanced.
  • the chlorine electrolysis processes that have been customary up to now will be those in the anode compartment So lean brine does not recirculate, so the above does not occur mentioned adverse effects such as an increase in the concentration of interfering ions and so on.
  • the chloride concentration of the anolyte in the anode compartment is the one according to the invention Chlor-alkali electrolysis process below the saturation limit, preferably below 50 g / l, particularly preferably in a range from 35 to 45 g / l.
  • the supply of saturated brine on the anode side is preferably carried out according to the invention using one of the following methods, namely level control, hydrostatic Pressure control, conductivity measurement, density measurement or even one Combination of them. Such methods are known to the person skilled in the art.
  • the supply of softened water on the cathode side is according to the invention via a measurement of the voltage of the cell, a conductivity measurement and / or Density measurement regulated.
  • the method according to the invention is very special advantageous because the water supplied to the cathode compartment is softened tap water is.
  • the acid is maintained Condition of the membrane separating the anode and cathode compartments is a cation exchange membrane used.
  • the membrane is in particular to one that is formed on the basis of one or more polymers which is derivatized with acidic groups.
  • acidic groups which the cation exchange function in the Provide membrane, are preferably sulfonic acid groups.
  • the polymer must be one of the Conditions of the chlor-alkali electrolysis according to the invention also for a long time is stable, the requirements for the membrane in the course of implementation the inventive method is not as strict as the conditions for a corresponding membrane for chlorine electrolysis in large plants. This is because among other things due to the lower demands of the Membrane in the process according to the invention, for example because Concentration of NaOH in the cathode compartment in comparison with the large industrial ones Chlor-alkali electrolysis process ( ⁇ 33% by weight NaOH) kept significantly lower can be. On the other hand, it is the great advantage of the chlor-alkali electrolysis process according to the invention that that unpurified evaporated salt as the basis for the brine can be used without it being the case when using this Starting material known disadvantages would come.
  • Membrane prefers polymer membranes based on perfluorinated hydrocarbons used, e.g. Nafion® from DuPont.
  • one Anode which is made of a multilayer material based on titanium is formed and is not destroyed with increased oxygen formation.
  • titanium anodes for oxygen development such as those used in the Steel strip galvanizing or sodium sulfate electrolysis can be used.
  • Such electrodes, the carrier material of which is made of titanium are included Mixed oxides based on iridium oxide and tantalum oxide coated. Examples such electrodes preferably used on the basis of those mentioned above Metals are for example Electro Chemical Services / Eltech Type EC600 respectively EC625, or equivalent types from Heraeus Elektrochemie GmbH.
  • the chlor-alkali electrolysis process according to the invention is particularly suitable to this, from the cathode side generated aqueous sodium hydroxide solution and the Chlorine gas produced on the anode side is a chlorine bleach or aqueous solution To produce sodium hypochlorite solution.
  • a combination reactor is used following the chlor-alkali electrolysis process according to the invention, in the upper area, i.e. the area closest to the supply line of NaOH / H 2 , hydrogen is separated from the sodium hydroxide solution, in the middle area the Reaction of the chlorine with the sodium hydroxide solution takes place and in the lower area the resulting sodium hypochlorite solution is cooled.
  • the lower area is the area closest to the supply line for Cl 2 .
  • This example was carried out in a laboratory cell with a 52 mm diameter of the active area (approx. 20 cm 2 membrane area).
  • a titanium sheet (Heraeus Elektrochemie GmbH, Rodenbach plant, Industriestr. 17, 63517 Rodenbach) was used as the anode, which was provided with a coating suitable for the simultaneous development of chlorine and oxygen.
  • the cathode was a chrome-nickel steel sheet (material no. 1.4571).
  • the cell was formed from two 40 mm wide cell chambers between which a Nafion® 424 membrane (Dupont, Wilmington, Delaware, USA) was clamped and which were sealed off by the electrodes. The distances between the electrodes and the membrane were therefore 40 mm each.
  • the cell walls were made of glass or acrylic glass (PMME) in order to observe the membrane and to recognize precipitates immediately.
  • the cell chambers were mixed with magnetic stirring cores.
  • a saturated brine from evaporated salt tablets (Axal®, Solvay, Hans-Böckler-Allee 20, 30173 Hanover) flowed into the anode compartment without further cleaning measures via a level control.
  • the feed to the cathode compartment was regulated in such a way that the sodium hydroxide concentration reached 4% by weight.
  • the current density was 2.25 kA / m 2 .
  • the brine supply to the anode compartment was set at just under 30 g / h.
  • a concentration of 3.6% by weight NaCl and 0.3% by weight HCl was analyzed in the anode compartment.
  • the current yield for chlorine and sodium hydroxide solution was 65 to 70%.
  • the sodium hypochlorite solution produced from it in an absorber had a pH of 11-12 and excellent stability.
  • test facility ran for a total of three months under these conditions (about 2000 hours). After disassembling the cells were both the membrane as well as the electrodes in perfect condition.
  • a second test plant with a 62 mm diameter of the active area was constructed with expanded metal electrodes, so that the electrode spacing could be reduced to approximately 2 mm.
  • the titanium anode was coated by Electro Chemical Services / Eltech.
  • a cathode made of expanded titanium was used to test the intermittent operation of practical production systems for sodium hypochlorite solution, which only run when needed. This is not attacked by hypochlorite, which is formed during the breaks from chlorine penetrating through the membrane.
  • the current yield for chlorine and sodium hydroxide solution was constant at around 50%.
  • the cell voltage started after switching on at room temperature with approx. 4.1 volts and then reached a constant approx. 3.8 volts after an approximately one-hour heating phase to approx. 55 ° C. There was no deterioration in the results during the entire test period. The membrane remained completely clear.
  • a cell with an electrode area of 450 cm 2 was tested.
  • the feed of the lean brine was level-controlled with the help of a small storage tank with a float switch.
  • the cell was operated with a current of 100 A at a voltage of approximately 4.1 V.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Chlor-alkali electrolysis comprises using an electrolysis cell having an anode chamber with an anode separated from a cathode chamber with a cathode by a membrane. Water is fed to the side of the cathode chamber and a saturated sodium chloride (NaCl) solution is fed to the side of the anode chamber. A mixture of aqueous sodium hydroxide and hydrogen gas is produced by electrolysis on the cathode side, and chlorine gas is produced on the anode side forming a lean sol. The membrane is in the acid state. The mixture of aqueous sodium hydroxide and hydrogen gas is removed on the cathode outlet of the electrolysis cell and the chlorine gas and oxygen are removed on the anode side of the cell. An Independent claim is also included for an apparatus for carrying out the process. Preferred Features: The chlorine gas removed on the anode side is free from lean sol. The aqueous sodium hydroxide has a concentration of less than 20, preferably 2-5 wt.% NaOH. The membrane is a cation exchange membrane, preferably made of a polymer derivative with sulfonyl groups. The polymer is a polymer based on perfluorinated hydrocarbons. The aqueous sodium hydroxide and the chlorine are used in the production of a chlorine bleaching solution. The anode is coated with mixed oxides based on iridium oxide and tantalum oxide.

Description

Die Erfindung betrifft ein Chloralkalielektrolyse-Verfahren unter Einsatz einer Membranzelle, wobei das Verfahren die Schritte umfasst, dass

  • einer Elektrolysezelle, die durch Unterteilung mit einer Membran einen Anodenraum mit einer Anode und einen Kathodenraum mit einer Kathode aufweist, kathodenraumseitig Wasser und anodenraumseitig eine gesättigte Sole, das heißt NaCI-Lösung zugeführt wird,
  • durch Elektrolyse kathodenraumseitig ein Gemisch von wässriger Natronlauge und Wasserstoffgas hergestellt und anodenraumseitig unter Bildung einer Magersole Chlorgas hergestellt wird und
  • am kathodenraumseitigen Auslass der Elektrolysezelle das Gemisch von Natronlauge und Wasserstoffgas entnommen wird und am anodenraumseitigen Auslass der Elektrolysezelle Chlorgas entnommen wird.
The invention relates to a chlor-alkali electrolysis method using a membrane cell, the method comprising the steps of
  • an electrolysis cell which, by subdivision with a membrane, has an anode compartment with an anode and a cathode compartment with a cathode, water is supplied on the cathode compartment side and a saturated brine, that is to say NaCl solution, is supplied
  • a mixture of aqueous sodium hydroxide solution and hydrogen gas is produced by electrolysis on the cathode compartment side and chlorine gas is produced on the anode compartment side with formation of a lean brine and
  • the mixture of sodium hydroxide solution and hydrogen gas is withdrawn from the cathode compartment-side outlet of the electrolysis cell and chlorine gas is withdrawn from the anode compartment-side outlet of the electrolysis cell.

Außerdem betrifft die Erfindung eine Vorrichtung zur Durchführung des Verfahrens.The invention also relates to a device for carrying out the method.

Desinfektionsmittel auf der Basis von Chlor für Trinkwasser und Schwimmbäder sind wegen ihrer Langzeitwirkung insbesondere für die Desinfektion von Schwimmbeckenwasser unverzichtbar. Die Anwendung sowie vor allem der Transport und die Lagerung von elementarem Chlor sind jedoch mit Sicherheitsrisiken verbunden. Sein Einsatz kann im Wasser zur unerwünschten Bildung toxischer chlorierter Verbindungen aus organischen Verunreinigungen führen. Außerdem hat Chlor eine Absenkung des pH-Wertes durch die als Koppelprodukt entstehende Salzsäure zur Folge.Disinfectant based on chlorine for drinking water and swimming pools are particularly suitable for the disinfection of Swimming pool water indispensable. The application and especially the transport and the storage of elemental chlorine are, however, with safety risks connected. Its use in water can be toxic to undesirable formation chlorinated compounds lead from organic contaminants. Also has Chlorine lowers the pH value as a by-product Hydrochloric acid.

Als Alternative zum Einsatz von elementarem Chlor bietet sich die Verwendung von Natriumhypochlorit-Lösungen an. Der Einsatz von Natriumhypochlorit-Lösungen hat die folgenden Vorteile: Der Transport und die Handhabung von Natriumhypochlorit sind weniger gefährlich als bei Chlorgas, Havariefälle sind leichter beherrschbar. Außerdem lassen sich Natriumhypochlorit-Lösungen sehr einfach dosieren und die aus dem Natriumhypochlorit im Wasser bei neutralem pH-Wert gebildete hypochlorige Säure wirkt als starkes Oxidationsmittel, ist aber nicht chlorierend.The use is an alternative to the use of elemental chlorine of sodium hypochlorite solutions. The use of sodium hypochlorite solutions has the following advantages: The transportation and handling of sodium hypochlorite are less dangerous than with chlorine gas, accidents are easier manageable. Sodium hypochlorite solutions are also very easy to dose and that formed from the sodium hypochlorite in water at neutral pH Hypochlorous acid acts as a strong oxidizing agent, but is not chlorinating.

Die Verwendung handelsüblicher Chlorbleichlaugen, das heißt der Natriumhypochlorit-Lösungen ist jedoch mit den folgenden Nachteilen verbunden :The use of commercially available chlorine bleach, i.e. sodium hypochlorite solutions is associated with the following disadvantages:

Die fertig zu beziehenden, hochkonzentrierten Chlorbleichlaugen sind nur über eine gewisse Zeit stabil, das heißt, sie zerfallen im Laufe der Zeit, erreichen ihre Desinfektionswirkung nicht mehr und führen unerwünschte Nebenprodukte mit sich.The ready-to-buy, highly concentrated bleaching solutions are only stable over a period of time, that is, they disintegrate over time, reach theirs Disinfectant effect and carry along unwanted by-products yourself.

Die Kosten für die handelsübliche Bleichlauge sind in Europa im Vergleich zur äquivalenten Menge Chlorgas bzw. im Vergleich zu vor Ort mittels Elektrolyse hergestellter Lösung sehr hoch.The costs for the commercial bleaching solution are compared in Europe to the equivalent amount of chlorine gas or compared to on-site using electrolysis manufactured solution very high.

Aus den genannten Gründen bietet es sich an, mit Hilfe einer geeigneten Elektrolyse-Anlage die Natriumhypochlorit-Lösung direkt vor Ort herzustellen. Dies erfolgt üblicherweise mittels der Chloralkalielektrolyse, auch Chlorelektrolyse genannt.For the reasons mentioned, it makes sense to use a suitable one Electrolysis plant to produce the sodium hypochlorite solution directly on site. This usually takes place by means of chlor-alkali electrolysis, also chlorine electrolysis called.

Das Prinzip der Chlorelektrolyse ist seit vielen Jahren bekannt. Es wird in der industriellen Chlorherstellung im großen Maßstab seit vielen Jahren erfolgreich eingesetzt.The principle of chlorine electrolysis has been known for many years. It will be in the industrial chlorine production on a large scale has been used successfully for many years.

In der Desinfektionstechnik für die Wasseraufbereitung existieren zur Zeit Anlagen auf der Grundlage von Membranzellen sowie Anlagen auf der Grundlage von Durchlaufzellen, wie in der Fig. 1 gezeigt ist.Disinfection technology for water treatment currently exists Systems based on membrane cells and systems based on of continuous cells, as shown in FIG. 1.

Das erfindungsgemäße Verfahren betrifft Anlagen auf der Grundlage von Membranzellen auf Solebasis. The method according to the invention relates to systems based on Brine-based membrane cells.

Übliche Membranzellen-Elektrolyseverfahren arbeiten, wie nachfolgend erläutert:

  • Die Membran teilt die Elektrolysezelle in einen Anoden- und Kathodenraum;
  • der Anodenraum ist der Raum zwischen Anode (positiver Elektrode) und Membran, bei gelochten Anoden zusätzlich der Raum hinter der Anode;
  • der Kathodenraum ist der Raum zwischen Kathode (negativer Elektrode) und Membran, bei gelochten Kathoden zusätzlich der Raum hinter der Kathode;
  • zwischen Anode und Kathode liegt eine elektrische Gleichspannung an;
  • in den Anodenraum wird die Salzsole zudosiert. Die Salzsole enthält hauptsächlich gelöste (hydratisierte) Chlorid- und Natrium-Ionen;
  • in den Kathodenraum wird Wasser zudosiert;
  • an der Anode wird aus den Chlorid-Ionen Chlorgas produziert;
  • Kationenaustauscher-Membranen sind im Idealfall nur für gelöste (hydratisierte) Kationen durchlässig;
  • die Natrium-Ionen in der Salzsole können die Membran passieren und gelangen in den Kathodenraum;
  • an der Kathode werden aus dem zudosierten Wasser Wasserstoffgas und Hydroxid-Ionen gebildet;
  • aus den Natrium- und Hydroxid-Ionen entsteht Natronlauge;
  • auf Grund der an den Elektroden ablaufenden Reaktionen und dem damit verbundenen lonentransport durch die Membran fließt zwischen Anode und Kathode der Zellstrom;
  • als Maß für die Wirksamkeit der Membran wird die Stromausbeute angegeben. Sie gibt den Anteil des Zellstroms an, der für die Bildung der gewünschten Produkte (Chlor und Natronlauge) verwendet wird;
  • die in den Anodenraum zudosierte Sole reagiert nur zu einem Teil ab. Die Sole verlässt den Anodenraum mit reduziertem Salzgehalt (Magersole). In der Zelle löst sich ein Teil des produzierten Chlors in der Magersole. Die Magersole wird nach Durchlaufen des Entgasungsbehälters wieder in einem Salzlösebehälter aufgesättigt und im Kreislauf gefahren, so dass kein Salz verloren geht.
  • durch den Einsatz von Kationenaustauscher-Membranen, lässt sich salzfreie Natronlauge (Kathodenseite) und Chlorgas erzeugen, das von der Magersole abgetrennt wird.
Conventional membrane cell electrolysis processes work as explained below:
  • The membrane divides the electrolytic cell into an anode and cathode space;
  • the anode space is the space between the anode (positive electrode) and the membrane; in the case of perforated anodes, the space behind the anode;
  • the cathode space is the space between the cathode (negative electrode) and the membrane; in the case of perforated cathodes, the space behind the cathode;
  • there is a direct electrical voltage between the anode and the cathode;
  • The brine is metered into the anode compartment. The brine mainly contains dissolved (hydrated) chloride and sodium ions;
  • water is metered into the cathode compartment;
  • Chlorine gas is produced at the anode from the chloride ions;
  • Ideally, cation exchange membranes are only permeable to dissolved (hydrated) cations;
  • the sodium ions in the brine can pass through the membrane and reach the cathode compartment;
  • at the cathode, hydrogen gas and hydroxide ions are formed from the metered water;
  • Sodium hydroxide solution is formed from the sodium and hydroxide ions;
  • due to the reactions taking place at the electrodes and the associated ion transport through the membrane, the cell current flows between the anode and cathode;
  • the current efficiency is given as a measure of the effectiveness of the membrane. It indicates the proportion of the cell current that is used for the formation of the desired products (chlorine and sodium hydroxide solution);
  • only part of the brine metered into the anode compartment reacts. The brine leaves the anode compartment with a reduced salt content (lean brine). Part of the chlorine produced dissolves in the lean brine in the cell. After passing through the degassing container, the lean brine is saturated again in a salt dissolving container and circulated so that no salt is lost.
  • Through the use of cation exchange membranes, salt-free sodium hydroxide solution (cathode side) and chlorine gas can be generated, which is separated from the lean brine.

Bei industriellen Großanlagen ist das Membran-Verfahren für die Chloralkali-Elektrolyse seit etwa zwanzig Jahren Stand der Technik in der chemischen Industrie. In großchemischen Anlagen wird zur Minimierung der Prozesskosten mit einem sehr großen Aufwand alles getan, um den Energiebedarf der Anlage zu minimieren. Die Hauptrolle kommt dabei der Reinigung der Sole zu, die bis in den Spurenbereich frei von Störstoffen und Chlor sein muss.In large industrial plants, the membrane process is for chlor-alkali electrolysis State of the art in the chemical industry for around twenty years. In large chemical plants, to minimize process costs with a very great effort done everything to minimize the energy requirements of the system. The main role is the cleaning of the brine, which goes down to the trace area must be free of contaminants and chlorine.

Dies wurde möglich durch Entwicklung von chemisch ausreichend stabilen Kationenaustauscher-Membranen auf der Basis perfluorierter Polymere (z.B. Nafion®, DuPont). Außerdem wird zur Senkung des Energieaufwandes die Sole - neben der sowieso üblichen Fällung ― mit Hilfe spezieller lonenaustauscher gereinigt, damit die Membran nicht durch Ablagerungen von Calcium- und Magnesium-Verbindungen zerstört wird. Die Konzentrationen der Störstoffe wird mit dieser Technik auf Werte unterhalb von 50 ppb abgesenkt. Zum Vergleich: Handelsübliches Siedesalz weist typische Calcium-Konzentrationen von ca. 0,14% auf.This was made possible by the development of chemically sufficiently stable ones Cation exchange membranes based on perfluorinated polymers (e.g. Nafion®, DuPont). In addition, the brine is used to reduce energy consumption - in addition the usual precipitation - cleaned with the help of special ion exchangers, so that the membrane does not build up due to deposits of calcium and magnesium compounds gets destroyed. The concentration of the contaminants is with this Technology lowered to values below 50 ppb. For comparison: standard Siedesalz has typical calcium concentrations of approx. 0.14%.

Da die erwähnten Membranen nicht vollständig selektiv sind, sondern zu einem Anteil von ca. 4 - 10% des elektrischen Stroms auch Hydroxid-Ionen aus dem Kathodenraum in den Anodenraum gelangen lassen, enthält die aus der Zelle ablaufende Sole neben Chlor auch Hypochlorit. Beide Stoffe müssen aus den folgenden Gründen entfernt werden:

  • Austreten von Chlorgas;
  • das in der Sole enthaltene Chlor kann im Solekreislauf ― insbesondere bei der Wiederaufsättigung mit Salz ― aus der Sole ausgasen und führt zu Umweltbelastungen und Korrosionsschäden;
  • Schädigung der lonenaustauscher für die Solereinigung;
  • gelöstes Chlor und Hypochlorit in der Sole zerstören die lonenaustauscher;
  • Bildung von Chlorat;
  • aus dem Hypochlorit in der Magersole kann durch verschiedene Reaktionen Chlorat entstehen, das sich im Kreislauf anreichert und zu Störungen führt.
Since the membranes mentioned are not completely selective, but also allow hydroxide ions from the cathode compartment to reach a proportion of approximately 4 to 10% of the electric current, the brine running out of the cell contains not only chlorine but also hypochlorite. Both substances must be removed for the following reasons:
  • Leakage of chlorine gas;
  • the chlorine contained in the brine can outgas from the brine in the brine circuit - especially when it is saturated again with salt - and leads to environmental pollution and corrosion damage;
  • Damage to ion exchangers for brine cleaning;
  • dissolved chlorine and hypochlorite in the brine destroy the ion exchangers;
  • Formation of chlorate;
  • The hypochlorite in the lean brine can produce chlorate through various reactions, which accumulates in the circulation and leads to malfunctions.

Zur Entfernung von Chlorat und Hypochlorit durch Reaktion zu Chlor wird Salzsäure zugefügt. Um das Chlor vollständig aus der Sole zu entfernen, wird die Entchlorung im allgemeinen durch Vakuum-Entgasung durchgeführt. Eventuell noch enthaltenes Restchlor wird durch Natriumsulfit chemisch reduziert.The removal of chlorate and hypochlorite by reaction to chlorine Hydrochloric acid added. To completely remove the chlorine from the brine, the Dechlorination is generally carried out by vacuum degassing. Possibly still Residual chlorine contained is chemically reduced by sodium sulfite.

Neben den vorstehend diskutierten Großanlagen sind auf dem Markt auch sog. Kleinanlagen erhältlich, die nach dem folgenden, in Fig. 2 erläuterten Grundprinzip arbeiten. Das Grundprinzip dieser Anlagen ist das gleiche wie das der großchemischen Anlagen. Allerdings wurden aus Kostengründen einige Vereinfachungen durchgeführt:

  • Die Sole wird aus Siedesalz und enthärtetem Wasser bereitet.
  • Es wird keinerlei Reinigung der Sole durchgeführt.
  • Die Magersole wird nicht vollständig entchlort. Daraus ergibt sich ein normaler Restchlorgehalt der Magersole von 5 bis 8 g/l.
  • Um ein Ausgasen des Chlors zu verhindern, wird zusätzlich ein Teil der entstehenden Natronlauge in die Magersole dosiert.
In addition to the large-scale systems discussed above, so-called small-scale systems are also available on the market, which operate according to the following basic principle explained in FIG. 2. The basic principle of these plants is the same as that of large chemical plants. However, some simplifications have been made for cost reasons:
  • The brine is made from evaporated salt and softened water.
  • The brine is not cleaned at all.
  • The lean brine is not completely chlorinated. This results in a normal residual chlorine content of the lean brine of 5 to 8 g / l.
  • In order to prevent outgassing of the chlorine, part of the sodium hydroxide solution formed is also metered into the lean brine.

Aus diesen Vereinfachungen ergeben sich in der Praxis die folgenden Probleme:

  • Die in der Anlage verwendete Sole weist sehr hohe Konzentrationen von Störstoffen auf.
  • Da keine Ausschleusung aus dem Solekreislauf vorgesehen ist, steigt die Konzentration der Störstoffe stetig an. Dabei bilden sich jedoch in der Membran am Übergang vom sauren Medium des Anodenraums zum alkalischen Medium des Kathodenraums häufig Ausfällungen, vor allem von Calciumund Magnesiumsalzen, die anfangs zu einem starken Anstieg der Zellspannung und schließlich zu einer irreversiblen Schädigung der Membran führen. Dies geschieht häufig schon nach relativ kurzen Laufzeiten.
  • Durch den hohen Chlorgehalt der Sole kommt es zur verstärkten Bildung von Chlorat.
  • Durch die Zugabe von Natronlauge in die nicht vollständig entchlorte Magersole wird die Entwicklung von Chlorat unterstützt.
  • Durch Nebenreaktionen, die durch die Zugabe der Natronlauge verstärkt werden, kann es zu massivem Austritt von Chlorgas aus dem Salzlösebehälter kommen.
  • Da ein Teil der erzeugten Natronlauge der Magersole zudosiert wird, fehlt dieser in der erzeugten Natriumhypochlorit-Lösung, und sie weist nicht zu Hypochlorit umgesetztes Chlor auf. Dies beeinträchtigt die Stabilität des Produktes und kann zu einem Austritt von Chlorgas aus dem Produkt führen.
In practice, these simplifications result in the following problems:
  • The brine used in the plant has very high concentrations of contaminants.
  • Since there is no discharge from the brine circuit, the concentration of the contaminants rises steadily. However, precipitates often form in the membrane at the transition from the acidic medium of the anode compartment to the alkaline medium of the cathode compartment, especially calcium and magnesium salts, which initially lead to a sharp increase in cell voltage and ultimately to irreversible damage to the membrane. This often happens after relatively short terms.
  • The high chlorine content of the brine increases the formation of chlorate.
  • The development of chlorate is supported by the addition of sodium hydroxide solution to the not completely dechlorinated lean brine.
  • Side reactions, which are intensified by the addition of the sodium hydroxide solution, can lead to massive leakage of chlorine gas from the salt dissolving tank.
  • Since part of the sodium hydroxide solution produced is metered into the lean brine, this is missing in the sodium hypochlorite solution produced, and it has no chlorine converted to hypochlorite. This affects the stability of the product and can lead to the escape of chlorine gas from the product.

Es ist aufgrund des anlagentechnischen Aufwands und des Preises nicht möglich, die genannten Probleme der Kleinanlagen mit den Mitteln des großchemischen Verfahrens zu lösen.It is not due to the technical complexity and the price possible to solve the problems of small plants with the means of large chemical Procedure to solve.

Aufgabe der Erfindung ist es daher, ein Chloralkalielektrolyse-Verfahren bereitzustellen, bei dem trotz der bei Kleinanlagen notwendigen Vereinfachungen (keine Solereinigung, keine vollständige Entgasung) ein stabiler und betriebssicherer Zustand erreicht wird. Insbesondere sollen die vorstehend erwähnten Nachteile der bislang verfügbaren Kleinanlagen vermieden werden, wobei jedoch gleichzeitig das erfindungsgemäße Chloralkalielektrolyse-Verfahren in Bezug auf die Kosten diesen zumindest ebenbürtig sein soll. Außerdem soll eine durch Weiterverarbeitung der Produkte der Chlorelektrolyse hergestellte Natriumhypochlorit-Lösung eine optimale Produktqualität zeigen.The object of the invention is therefore to provide a chlor-alkali electrolysis process, despite the simplifications necessary for small systems (none Brine cleaning, no complete degassing) a stable and reliable Condition is reached. In particular, the aforementioned disadvantages of previously available small systems can be avoided, but at the same time Chloralkali electrolysis method according to the invention in terms of the cost thereof should be at least equal. In addition, a further processing of the Products of the chlorine electrolysis sodium hypochlorite solution produced an optimal Show product quality.

Erfindungsgemäß werden diese Aufgaben dadurch gelöst, dass ein Chloralkalielektrolyse-Verfahren unter Einsatz einer Membranzelle bereitgestellt wird, wobei das Verfahren die Schritte umfasst, dass

  • einer Elektrolysezelle, die durch Unterteilung mit einer Membran einen Anodenraum mit einer Anode und einen Kathodenraum mit einer Kathode aufweist, kathodenraumseitig Wasser und anodenraumseitig eine gesättigte NaCI-Lösung zugeführt wird,
  • durch Elektrolyse kathodenraumseitig ein Gemisch von wässriger Natronlauge und Wasserstoffgas hergestellt und anodenraumseitig unter Bildung einer Magersole Chlorgas hergestellt wird, wobei sich die Membran im sauren Zustand befindet, und
  • am kathodenraumseitigen Auslass der Elektrolysezelle das Gemisch von Natronlauge und Wasserstoffgas entnommen wird und am anodenraumseitigen Auslass der Elektrolysezelle Chlorgas und Sauerstoff entnommen wird.
According to the invention, these objects are achieved in that a chlor-alkali electrolysis method is provided using a membrane cell, the method comprising the steps of
  • an electrolysis cell which, by subdivision with a membrane, has an anode compartment with an anode and a cathode compartment with a cathode, water is supplied on the cathode compartment side and a saturated NaCl solution on the anode compartment side,
  • a mixture of aqueous sodium hydroxide solution and hydrogen gas is produced by electrolysis on the cathode space side and chlorine gas is produced on the anode space side with formation of a lean brine, the membrane being in the acidic state, and
  • the mixture of sodium hydroxide solution and hydrogen gas is withdrawn from the cathode compartment-side outlet of the electrolysis cell and chlorine gas and oxygen are withdrawn from the anode compartment-side outlet of the electrolysis cell.

Außerdem wird zur Lösung der Aufgabe eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens bereitgestellt. In addition, a device for performing the task of the method according to the invention provided.

Die Erfindung wird nachfolgend und durch die beigefügten Zeichnungen sowie die Beispiele näher erläutert.The invention is hereinafter and by the accompanying drawings as well the examples are explained in more detail.

Es zeigen die Figuren:

  • Fig. 1 zeigt die verschiedenen Anlagetypen für die Wasseraufbereitung gemäß dem Stand der Technik.
  • Fig. 2 zeigt eine übliche Kleinanlage zur Herstellung von Chlorbleiche.
  • Das erfindungsgemäße Verfahren und die entsprechende Vorrichtung ist beispielhaft in der Fig. 3 beschrieben.
  • Fig. 4 zeigt modellhaft den bei der Durchführung des erfindungsgemäßen Chloralkalielektrolyse-Verfahrens in der erfindungsgemäßen Vorrichtung beziehungsweise einem Teil derselben, nämlich der Elektrolysezelle, erzielten sauren Zustand der Membran.
  • The figures show:
  • Fig. 1 shows the different types of plants for water treatment according to the prior art.
  • Fig. 2 shows a conventional small plant for the production of chlorine bleach.
  • The method according to the invention and the corresponding device are described by way of example in FIG. 3.
  • 4 shows a model of the acidic state of the membrane achieved when the chlor-alkali electrolysis method according to the invention is carried out in the device according to the invention or in a part thereof, namely the electrolysis cell.
  • Das erfindungsgemäße Chloralkalielektrolyse-Verfahren zeichnet sich dadurch aus, dass sich bei der Elektrolyse die Membran in einem sauren Zustand befindet. Der Begriff des "sauren" Zustandes beziehungsweise "alkalischen" Zustandes einer Membran ist dem Fachmann bislang im Rahmen der Reaktion von ungereinigtem Natriumsulfat zu Natronlauge und Schwefelsäure bekannt [Jörissen, J.; Simmrock, K. H.: "The behaviour of ion exchange membranes in electrolysis and electrodialysis of sodium sulphate", J. Appl. Electrochem. 21 (1991) 869-876; Jörissen, J.: "Ionenaustauscher-Membranen in der Elektrolyse und elektro-organischen Synthese", Fortschritt-Berichte VDI, Reihe 3, Nr. 442, VDI-Verlag Düsseldorf (1996)].The chlor-alkali electrolysis process according to the invention is characterized in that the membrane is in an acidic state during electrolysis. The term “acidic” or “alkaline” state of a membrane has hitherto been known to the person skilled in the art in the course of the reaction of unpurified sodium sulfate to sodium hydroxide solution and sulfuric acid [Jörissen, J .; Simmrock, KH: "The behavior of ion exchange membranes in electrolysis and electrodialysis of sodium sulfate", J. Appl. Electrochem. 21 (1991) 869-876; Jörissen, J .: "Ion exchange membranes in electrolysis and electro-organic synthesis", Progress Reports VDI, Series 3, No. 442, VDI-Verlag Düsseldorf (1996)].

    Wie vorstehend erwähnt, wird die Membran(e) üblicherweise bei Verwendung von ungereinigter Sole durch die dann in ihr enthaltenen Störstoffe wie Calcium- und Magnesiumsalze zerstört. Dies geschieht aufgrund von Ausfällungen dieser Stoffe an/in der Membrane.As mentioned above, the membrane (s) is usually used of unpurified brine due to the contaminants it contains, such as calcium and destroyed magnesium salts. This happens due to precipitations of these Fabrics on / in the membrane.

    Das erfindungsgemäße Chloralkalielektrolyse-Verfahren ist - wie bereits erwähnt - durch ein saures Milieu für die Membran gekennzeichnet; damit wird die irreversible Schädigung der Membran durch die in der nicht gereinigten Sole vorhandenen Störstoffe verhindert. Die Ausfällungen treten nämlich, wie sich im Rahmen der Erfindung gezeigt hat, bei der Chlorelektrolyse nur im alkalischen, nicht aber im sauren Bereich auf. Liegt in der Membran erfindungsgemäß ein saures Milieu vor, können die in der Sole enthaltenen Störstoffe die Membran passieren.The chlor-alkali electrolysis process according to the invention is - as already mentioned - characterized by an acidic environment for the membrane; this will make the irreversible Damage to the membrane due to the presence in the unpurified brine Prevents contaminants. The precipitates occur as is in the frame the invention has shown, in chlorine electrolysis only in alkaline, but not in acidic area. If an acidic environment is present in the membrane according to the invention, the contaminants contained in the brine can pass through the membrane.

    Das saure Milieu wird erfindungsgemäß dadurch sichergestellt, dass an der Anode gleichzeitig mit dem Chlor auch Sauerstoff produziert wird. Als Nebenprodukt bei der Sauerstoff-Erzeugung fallen Wasserstoffionen (H3O+) an, diese säuern den Anolyten sehr stark an. Da im Kathodenraum bei dem erfindungsgemäßen Verfahren eine nur verdünnte Natronlauge, unter 20 Gew.-% NaOH, bevorzugt im Bereich von 2 bis 5 Gew.-%, vorhanden ist, liegt in der Membran stabil ein saures Milieu vor. Vor der Membran im Kathodenraum bildet sich daher durch die Wasserstoffionen eine saure Grenzschicht aus. Die Membran hat daher keinen direkten Kontakt mit der Natronlauge und befindet sich in einem sauren Zustand.The acidic environment is ensured according to the invention in that oxygen is also produced on the anode at the same time as the chlorine. Hydrogen ions (H 3 O + ) are produced as a by-product in the production of oxygen, and these acidify the anolyte very strongly. Since only dilute sodium hydroxide solution, below 20% by weight NaOH, preferably in the range from 2 to 5% by weight, is present in the cathode compartment in the process according to the invention, an acidic environment is stable in the membrane. An acidic boundary layer is therefore formed in front of the membrane in the cathode compartment due to the hydrogen ions. The membrane therefore has no direct contact with the sodium hydroxide solution and is in an acidic state.

    Bei dem erfindungsgemäßen Verfahren ist es möglich, den sauren Zustand der Membran automatisch aufrechtzuerhalten. Dies ergibt sich durch das Zusammenspiel der Wirkungen der verschiedenen Parameter des erfindungsgemäßen Verfahrens, insbesondere aus der Chlor- und der Sauerstoff-Entwicklung am Anodenmaterial, verursacht durch die Variation des Solezuflusses in den Anodenraum.In the process according to the invention it is possible to determine the acidic state automatically maintain the membrane. This results from the interaction the effects of the various parameters of the invention Process, in particular from the development of chlorine and oxygen on the anode material, caused by the variation of the brine inflow into the anode compartment.

    Bei einer besonders bevorzugten Verfahrensführung wird der saure Zustand der Membran dadurch stabilisiert, dass ― anders als bei den bislang üblichen Kleinanlagen zur Chlorelektrolyse ― das Chlorgas in Form eines magersolenfreien Chlorgases dem Anodenraum entnommen wird. Der durch die gewählten Verfahrensbedingungen erreichbare Betriebszustand des erfindungsgemäßen Verfahrens vermeidet zuverlässig Ablagerungen in der Membrane und lässt sich langzeitstabil aufrechterhalten.In a particularly preferred procedure, the acidic state stabilizes the membrane in that - unlike the small systems previously used for chlorine electrolysis - the chlorine gas in the form of a lean brine-free chlorine gas is taken from the anode compartment. The by the chosen process conditions avoids achievable operating state of the inventive method reliable deposits in the membrane and can be maintained long-term stable.

    Anodenseitig braucht bei dem erfindungsgemäßen Verfahren eine Zufuhr an gesättigter Sole insbesondere lediglich in dem Umfange zu erfolgen, dass der durch die Elektrolyse bedingte Verbrauch an Anolyt ausgeglichen wird. Im Unterschied zu den bislang üblichen Chlorelektrolyse-Verfahren wird die im Anodenraum vorhandene Magersole also nicht rezirkuliert, somit kommt es auch nicht zu den vorstehend erwähnten nachteiligen Effekten wie Anstieg der Konzentration an Störionen und so weiter.A supply is required on the anode side in the method according to the invention saturated brine in particular only to the extent that the by the electrolysis-related consumption of anolyte is balanced. In contrast to The chlorine electrolysis processes that have been customary up to now will be those in the anode compartment So lean brine does not recirculate, so the above does not occur mentioned adverse effects such as an increase in the concentration of interfering ions and so on.

    Die Chloridkonzentration des Anolyten im Anodenraum liegt bei dem erfindungsgemäßen Chloralkalielektrolyse-Verfahren unterhalb der Sättigungsgrenze, bevorzugt unterhalb von 50 g/l, besonders bevorzugt in einem Bereich von 35 bis 45 g/l. The chloride concentration of the anolyte in the anode compartment is the one according to the invention Chlor-alkali electrolysis process below the saturation limit, preferably below 50 g / l, particularly preferably in a range from 35 to 45 g / l.

    Die anodenseitige Zufuhr an gesättigter Sole erfolgt erfindungsgemäß bevorzugt mittels eines der nachfolgenden Verfahren, nämlich Niveauregulierung, hydrostatische Druckregelung, Leitfähigkeitsmessung, Dichtemessung oder auch einer Kombination davon. Derartige Verfahren sind dem Fachmann bekannt.The supply of saturated brine on the anode side is preferably carried out according to the invention using one of the following methods, namely level control, hydrostatic Pressure control, conductivity measurement, density measurement or even one Combination of them. Such methods are known to the person skilled in the art.

    Die kathodenseitige Zufuhr an enthärtetem Wasser wird erfindungsgemäß über eine Messung der Spannung der Zelle, eine Leitfähigkeitsmessung und/oder Dichtemessung geregelt. Das erfindungsgemäße Verfahren ist ganz besonders vorteilhaft, da das kathodenraumseitig zugeführte Wasser enthärtetes Leitungswasser ist.The supply of softened water on the cathode side is according to the invention via a measurement of the voltage of the cell, a conductivity measurement and / or Density measurement regulated. The method according to the invention is very special advantageous because the water supplied to the cathode compartment is softened tap water is.

    Für das erfindungsgemäße Chloralkalielektrolyse-Verfahren ist es ― wie bereits erwähnt ― wesentlich, dass sich die den Anodenraum und den Kathodenraum trennende Membran in einem sauren Zustand befindet. Deshalb wird bevorzugt eine einschichtige Membran verwendet. Dies ist jedoch keine zwingende Voraussetzung des Verfahrens, so lange sichergestellt ist, dass die den Kathoden- und den Anodenraum trennende Grenzschicht sich im sauren Zustand befindet, wie es in Fig. 4 gezeigt ist. Bei einer zweischichtigen Membran ist die Sicherstellung eines sauren Zustandes jedoch nicht zuverlässig möglich.For the chlor-alkali electrolysis process according to the invention it is - as already mentioned - essential that the anode compartment and the cathode compartment separating membrane is in an acidic state. Therefore one is preferred single-layer membrane used. However, this is not a mandatory requirement of the process, as long as it is ensured that the cathode and anode compartments separating boundary layer is in the acidic state, as shown in FIG. 4 is shown. With a two-layer membrane, ensuring an acidic one Condition however not reliably possible.

    Bei dem erfindungsgemäßen Verfahren wird zur Aufrechterhaltung des sauren Zustandes der den Anoden- und Kathodenraum trennenden Membran eine Kationenaustauschermembran verwendet. Bei der Membran handelt es sich insbesondere um eine solche, die auf der Grundlage eines oder mehrerer Polymere gebildet ist, das beziehungsweise die mit sauren Gruppen derivatisiert ist/sind. Derartige bevorzugt eingesetzte saure Gruppen, die die Kationenaustauscherfunktion in der Membran bereitstellen, sind bevorzugt Sulfonsäuregruppen.In the method according to the invention, the acid is maintained Condition of the membrane separating the anode and cathode compartments is a cation exchange membrane used. The membrane is in particular to one that is formed on the basis of one or more polymers which is derivatized with acidic groups. Such preferred used acidic groups, which the cation exchange function in the Provide membrane, are preferably sulfonic acid groups.

    Bei dem Polymer muss es sich um eines handeln, das unter den Bedingungen der erfindungsgemäßen Chloralkalielektroyse auch auf längere Zeit stabil ist, wobei die Anforderungen an die Membran im Rahmen der Durchführung des erfindungsgemäßen Verfahrens nicht so strikt wie die Bedingungen für eine entsprechende Membran bei der Chlorelektrolyse in Großanlagen sind. Dies liegt unter Anderem an den in dieser Hinsicht niedrigeren Beanspruchungen der Membran im Rahmen des erfindungsgemäßen Verfahrens, da beispielsweise die Konzentration an NaOH im Kathodenraum im Vergleich mit den großindustriellen Chloralkalielektrolyse-Verfahren (≈ 33 Gew.-% NaOH) wesentlich geringer gehalten werden kann. Andererseits ist es der große Vorteil des erfindungsgemäßen Chloralkalielektrolyse-Verfahrens, dass ungereinigtes Siedesalz als Basis für die Sole verwendet werden kann, ohne dass es zu den bei der Verwendung dieses Ausgangsmaterials bekannten Nachteilen käme.The polymer must be one of the Conditions of the chlor-alkali electrolysis according to the invention also for a long time is stable, the requirements for the membrane in the course of implementation the inventive method is not as strict as the conditions for a corresponding membrane for chlorine electrolysis in large plants. This is because among other things due to the lower demands of the Membrane in the process according to the invention, for example because Concentration of NaOH in the cathode compartment in comparison with the large industrial ones Chlor-alkali electrolysis process (≈ 33% by weight NaOH) kept significantly lower can be. On the other hand, it is the great advantage of the chlor-alkali electrolysis process according to the invention that that unpurified evaporated salt as the basis for the brine can be used without it being the case when using this Starting material known disadvantages would come.

    Erfindungsgemäß werden für die den Kathoden- und den Anodenraum trennende Membran bevorzugt Polymer-Membranen auf der Basis perfluorierter Kohlenwasserstoffe eingesetzt, z.B. Nafion® der Firma DuPont.According to the invention for the separating the cathode and the anode space Membrane prefers polymer membranes based on perfluorinated hydrocarbons used, e.g. Nafion® from DuPont.

    Bei der Durchführung des erfindungsgemäßen Verfahrens werden außerdem bevorzugt solche Anoden verwendet, an deren Oberflächen es neben der Bildung von Chlorgas aus den Chlorid-Ionen auch zur Erzeugung von Sauerstoff durch Oxidation von Wasser kommt. Die üblichen dimensions-stabilen Anoden für die Chloralkali-Elektrolyse auf der Basis von Titan, beschichtet mit Ruthenium-Titan-Oxiden, sind auf minimale Sauerstoffbildung optimiert und deshalb für das erfindungsgemäße Verfahren wenig geeignet. Besonders bei Verwendung des erfindungsgemäß stark sauren Anolyten entsteht an ihnen nur wenig Sauerstoff. Außerdem werden sie bei Bedingungen, die zu erhöhter Sauerstoffbildung führen, zerstört.When carrying out the method according to the invention, in addition preferably used such anodes, on the surfaces of which it is in addition to formation of chlorine gas from the chloride ions also for the generation of oxygen by oxidation comes from water. The usual dimensionally stable anodes for chlor-alkali electrolysis based on titanium, coated with ruthenium titanium oxides, are optimized for minimal oxygen formation and therefore for the invention Process not very suitable. Especially when using the invention strongly acidic anolytes produce little oxygen on them. Also be destroys them under conditions that lead to increased oxygen formation.

    Für die Erzeugung von Sauerstoff ist es besonders vorteilhaft, wenn eine Anode eingesetzt wird, die aus einem Mehrschichtenmaterial auf der Basis von Titan gebildet ist und bei erhöhter Sauerstoffbildung nicht zerstört wird. Geeignet sind übliche Titan-Anoden zur Sauerstoffentwicklung wie sie beispielsweise bei der Stahlbandverzinkung oder bei der Natriumsulfat-Elektrolyse verwendet werden können. Derartige Elektroden, deren Trägermaterial aus Titan besteht, sind mit Mischoxiden auf der Basis von Iridiumoxid und Tantaloxid beschichtet. Beispiele derartiger bevorzugt eingesetzter Elektroden auf der Basis der vorstehend erwähnten Metalle sind beispielsweise Electro Chemical Services/Eltech Typ EC600 beziehungsweise EC625, oder gleichwertige Typen von Heraeus Elektrochemie GmbH.For the generation of oxygen, it is particularly advantageous if one Anode is used, which is made of a multilayer material based on titanium is formed and is not destroyed with increased oxygen formation. Are suitable usual titanium anodes for oxygen development such as those used in the Steel strip galvanizing or sodium sulfate electrolysis can be used. Such electrodes, the carrier material of which is made of titanium, are included Mixed oxides based on iridium oxide and tantalum oxide coated. Examples such electrodes preferably used on the basis of those mentioned above Metals are for example Electro Chemical Services / Eltech Type EC600 respectively EC625, or equivalent types from Heraeus Elektrochemie GmbH.

    Das erfindungsgemäße Chloralkalielektrolyse-Verfahren eignet sich insbesondere dazu, aus der kathodenseitig erzeugten wässrigen Natronlauge und dem anodenseitig hergestellten Chlorgas eine Chlorbleichlauge beziehungsweise wässrige Natriumhypochlorit-Lösung herzustellen.The chlor-alkali electrolysis process according to the invention is particularly suitable to this, from the cathode side generated aqueous sodium hydroxide solution and the Chlorine gas produced on the anode side is a chlorine bleach or aqueous solution To produce sodium hypochlorite solution.

    Bei einer besonders bevorzugten Verfahrensführung zu Herstellung der Chlorbleichlauge wird im Anschluss an das erfindungsgemäße Chloralkalielektrolyse-Verfahren ein Kombireaktor eingesetzt, in dessen oberem, das heißt der Zufuhrleitung von NaOH/H2 nächstgelegenen Bereich, Wasserstoff von der Natronlauge getrennt wird, in dessen mittleren Bereich die Reaktion des Chlors mit der Natronlauge erfolgt und in dessen unterem Bereich die entstehende Natriumhypochloritlösung gekühlt wird. Der untere Bereich ist derjenige Bereich, der der Zufuhrleitung für Cl2 am nächsten liegt.In a particularly preferred procedure for producing the chlorine bleach, a combination reactor is used following the chlor-alkali electrolysis process according to the invention, in the upper area, i.e. the area closest to the supply line of NaOH / H 2 , hydrogen is separated from the sodium hydroxide solution, in the middle area the Reaction of the chlorine with the sodium hydroxide solution takes place and in the lower area the resulting sodium hypochlorite solution is cooled. The lower area is the area closest to the supply line for Cl 2 .

    Die Erfindung wird durch die nachfolgenden Beispiele näher erläutert, die jedoch nicht einschränkend zu verstehen sind.The invention is illustrated by the following examples, which, however are not to be understood as restrictive.

    Beispiel 1:Example 1:

    Dieses Beispiel wurde in einer Laborzelle mit 52 mm Durchmesser der aktiven Fläche (ca. 20 cm2 Membranfläche) durchgeführt. Als Anode diente ein Titanblech (Heraeus Elektrochemie GmbH, Werk Rodenbach, Industriestr. 17, 63517 Rodenbach), das mit einer zur gleichzeitigen Entwicklung von Chlor und Sauerstoff geeigneten Beschichtung versehen war. Die Kathode war ein Chromnikkelstahlblech (Werkstoff-Nr. 1.4571). Die Zelle wurde aus zwei Zellkammern mit 40 mm Breite gebildet, zwischen denen eine Membrane Nafion® 424 (Dupont, Wilmington, Delaware, USA) eingespannt war und die durch die Elektroden abgeschlossen wurden. Die Abstände zwischen den Elektroden und der Membrane betrugen also je 40 mm. Die Zellwände bestanden aus Glas beziehungsweise Acrylglas (PMME), um die Membrane beobachten und Ausfällungen sofort erkennen zu können. Die Durchmischung der Zellkammern erfolgte mit Magnetrührkernen. In den Anodenraum floss eine gesättigte Sole aus Siedesalztabletten (Axal® , Solvay, Hans-Böckler-Allee 20, 30173 Hannover) ohne weitere Reinigungsmaßnahmen über eine Niveauregelung. Der Zulauf zum Kathodenraum wurde so geregelt, dass die Natronlauge-Konzentration 4 Gew.-% erreichte. Die Stromdichte betrug 2,25 kA/m2.This example was carried out in a laboratory cell with a 52 mm diameter of the active area (approx. 20 cm 2 membrane area). A titanium sheet (Heraeus Elektrochemie GmbH, Rodenbach plant, Industriestr. 17, 63517 Rodenbach) was used as the anode, which was provided with a coating suitable for the simultaneous development of chlorine and oxygen. The cathode was a chrome-nickel steel sheet (material no. 1.4571). The cell was formed from two 40 mm wide cell chambers between which a Nafion® 424 membrane (Dupont, Wilmington, Delaware, USA) was clamped and which were sealed off by the electrodes. The distances between the electrodes and the membrane were therefore 40 mm each. The cell walls were made of glass or acrylic glass (PMME) in order to observe the membrane and to recognize precipitates immediately. The cell chambers were mixed with magnetic stirring cores. A saturated brine from evaporated salt tablets (Axal®, Solvay, Hans-Böckler-Allee 20, 30173 Hanover) flowed into the anode compartment without further cleaning measures via a level control. The feed to the cathode compartment was regulated in such a way that the sodium hydroxide concentration reached 4% by weight. The current density was 2.25 kA / m 2 .

    Die Solezufuhr zum Anodenraum stellte sich auf knapp 30 g/h ein. Im Anodenraum wurde eine Konzentration von 3,6 Gew.-% NaCI und von 0,3 Gew.-% HCI analysiert. Bei dieser niedrigen Anolyt-Konzentration stieg dann der Wassertransport durch die Membrane mit den Na+- und H+-Ionen so hoch an, dass die zugeführte Sole vollständig in Form der Gase Chlor und Sauerstoff sowie durch die Membran abtransportiert wurde (kein Anolytablauf). Die Stromausbeute für Chlor und Natronlauge lag bei 65 bis 70 %. Die in einem Absorber daraus erzeugte Natriumhypochlorit-Lösung wies einen pH-Wert von 11 ― 12 und eine ausgezeichnete Stabilität auf.The brine supply to the anode compartment was set at just under 30 g / h. A concentration of 3.6% by weight NaCl and 0.3% by weight HCl was analyzed in the anode compartment. At this low anolyte concentration, the water transport through the membrane with the Na + and H + ions rose so high that the supplied brine was completely removed in the form of the gases chlorine and oxygen and through the membrane (no anolyte drain). The current yield for chlorine and sodium hydroxide solution was 65 to 70%. The sodium hypochlorite solution produced from it in an absorber had a pH of 11-12 and excellent stability.

    Die Versuchsanlage lief insgesamt drei Monate unter diesen Bedingungen (etwa 2000 Stunden). Nach dem Zerlegen der Zellen waren sowohl die Membrane als auch die Elektroden in einem einwandfreien Zustand. The test facility ran for a total of three months under these conditions (about 2000 hours). After disassembling the cells were both the membrane as well as the electrodes in perfect condition.

    Beispiel 2:Example 2:

    Eine zweite Versuchsanlage mit 62 mm Durchmesser der aktiven Fläche (ca. 30 cm2 Membranfläche) wurde mit Streckmetall-Elektroden aufgebaut, so dass der Elektrodenabstand auf etwa 2 mm abgesenkt werden konnte. Die Beschichtung der Titananode erfolgte durch die Firma Electro Chemical Services / Eltech. Um den intermittierenden Betrieb praktischer Produktionsanlagen für Natriumhypochlorit-Lösung, die nur bei Bedarf laufen, testen zu können, wurde eine Kathode aus Titan-Streckmetall eingesetzt. Diese wird nicht angegriffen von Hypochlorit, das in den Betriebspausen aus durch die Membran eindringendem Chlor entsteht. Die Anlage lief mit 2,25 kA/m2 Stromdichte im Takt von 6 Stunden Betrieb und 6 Stunden Pause 8 Monate. Dies entspricht einer reinen Betriebszeit von etwa 2800 Stunden. Die Stromausbeute für Chlor und Natronlauge lag konstant bei etwa 50 %. Die Zellspannung startete jeweils nach dem Einschalten bei Raumtemperatur mit ca. 4,1 Volt und erreichte dann nach einer rund einstündigen Aufheizphase auf ca. 55 °C konstant ca. 3,8 Volt. In der gesamten Versuchszeit war keine Verschlechterung der Ergebnisse zu beobachten. Die Membran blieb völlig klar.A second test plant with a 62 mm diameter of the active area (approx. 30 cm 2 membrane area) was constructed with expanded metal electrodes, so that the electrode spacing could be reduced to approximately 2 mm. The titanium anode was coated by Electro Chemical Services / Eltech. A cathode made of expanded titanium was used to test the intermittent operation of practical production systems for sodium hypochlorite solution, which only run when needed. This is not attacked by hypochlorite, which is formed during the breaks from chlorine penetrating through the membrane. The system ran at 2.25 kA / m 2 current density every 6 hours of operation and 6 hours of break for 8 months. This corresponds to a pure operating time of around 2800 hours. The current yield for chlorine and sodium hydroxide solution was constant at around 50%. The cell voltage started after switching on at room temperature with approx. 4.1 volts and then reached a constant approx. 3.8 volts after an approximately one-hour heating phase to approx. 55 ° C. There was no deterioration in the results during the entire test period. The membrane remained completely clear.

    Beispiel 3:Example 3:

    In einem weiteren Versuch wurde eine Zelle mit einer Elektrodenfläche von 450 cm2 getestet. Die Zufuhr der Magersole wurde mit Hilfe eines kleinen Vorlagebehälters mit Schwimmerschalter niveaugesteuert. Die Zelle wurde mit einem Strom von 100 A bei einer Spannung von ca. 4,1 V betrieben.In a further experiment, a cell with an electrode area of 450 cm 2 was tested. The feed of the lean brine was level-controlled with the help of a small storage tank with a float switch. The cell was operated with a current of 100 A at a voltage of approximately 4.1 V.

    Die Erzeugungsleistung dieser Anlage lag bei ca. 70 g/h. Nach einer Versuchszeit von ca. 2 Monaten mit täglichen Unterbrechungen ergaben sich 300 Betriebsstunden lang sehr konstante Verhältnisse in Strom, Spannung und Erzeugungsmenge. Nach dem Zerlegen der Zelle waren Membranen und Elektroden in einem einwandfreien Zustand.The production capacity of this plant was approx. 70 g / h. After a trial period of approx. 2 months with daily interruptions resulted in 300 operating hours long very constant relationships in current, voltage and generation quantity. After disassembling the cell, membranes and electrodes were in perfect condition.

    Claims (17)

    Chloralkalielektrolyse-Verfahren unter Einsatz einer Membranzelle, wobei das Verfahren die Schritte umfasst, dass einer Elektrolysezelle, die durch Unterteilung mit einer Membran einen Anodenraum mit einer Anode und einen Kathodenraum mit einer Kathode aufweist, kathodenraumseitig Wasser und anodenraumseitig eine gesättigte NaCI-Lösung zugeführt wird, durch Elektrolyse kathodenraumseitig ein Gemisch von wässriger Natronlauge und Wasserstoffgas hergestellt und anodenraumseitig unter Bildung einer Magersole Chlorgas hergestellt wird, wobei sich die Membran im sauren Zustand befindet, am kathodenraumseitigen Auslass der Elektrolysezelle das Gemisch von Natronlauge und Wasserstoffgas entnommen wird und am anodenraumseitigen Auslass der Elektrolysezelle Chlorgas und Sauerstoff entnommen wird. Chlor-alkali electrolysis method using a membrane cell, the method comprising the steps of an electrolysis cell which, by subdivision with a membrane, has an anode compartment with an anode and a cathode compartment with a cathode, water is supplied on the cathode compartment side and a saturated NaCl solution on the anode compartment side, a mixture of aqueous sodium hydroxide solution and hydrogen gas is produced on the cathode compartment side by electrolysis and chlorine gas is produced on the anode compartment side with the formation of a lean brine, the membrane being in the acidic state, the mixture of sodium hydroxide solution and hydrogen gas is removed at the cathode compartment outlet of the electrolysis cell and Chlorine gas and oxygen are removed at the anode compartment side outlet of the electrolysis cell. Verfahren nach Anspruch 1, wobei das anodenseitig entnommene Chlorgas magersolenfrei ist.The method of claim 1, wherein the chlorine gas withdrawn on the anode side is lean. Verfahren nach Anspruch 1 oder 2, wobei die kathodenraumseitig hergestellte Natronlauge eine Konzentration von unter 20 Gew.-% NaOH, bevorzugt im Bereich von 2 bis 5 Gew.-% aufweist.A method according to claim 1 or 2, wherein the cathode chamber side manufactured Sodium hydroxide solution has a concentration of less than 20% by weight NaOH, preferably in the range from 2 to 5% by weight. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Membran einschichtig ist.Method according to one of the preceding claims, wherein the membrane is one layer. Verfahren nach einem der vorhergehenden Ansprüche, wobei es sich bei der Membran um eine Kationenaustauschermembran handelt.Method according to one of the preceding claims, wherein it is the Membrane is a cation exchange membrane. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Membran eine Membran aus einem Polymer ist, das mit Sulfonylgruppen derivatisiert ist. Method according to one of the preceding claims, wherein the membrane is a membrane made of a polymer derivatized with sulfonyl groups. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Polymer ein Polymer auf der Basis perfluorierter Kohlenwasserstoffe ist.A method according to any preceding claim, wherein the polymer is a Perfluorinated hydrocarbon based polymer. Verfahren nach einem der vorhergehenden Ansprüche, wobei die anodenseitige Zufuhr an gesättigter Sole lediglich in dem Umfange erfolgt, dass der Verbrauch an Anolyt ausgeglichen wird.Method according to one of the preceding claims, wherein the anode-side Intake of saturated brine only takes place to the extent that the consumption of anolyte is balanced. Verfahren nach Anspruch 8, wobei die Regelung der Zufuhr an gesättigter Sole anodenseitig mittels eines Verfahrens, ausgewählt aus hydrostatischer Druckregelung, Leitfähigkeitsmessung, Dichtemessung und Niveauregelung, erfolgt.The method of claim 8, wherein regulating the supply of saturated Brine on the anode side using a method selected from hydrostatic Pressure control, conductivity measurement, density measurement and level control, he follows. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Regelung der Zufuhr an Wasser kathodenseitig mittels eines Verfahrens erfolgt, ausgewählt aus Spannungsüberwachung der Zelle, Leitfähigkeitsmessung und Dichtemessung.Method according to one of the preceding claims, wherein the regulation the supply of water on the cathode side is selected using a method from cell voltage monitoring, conductivity measurement and Density measurement. Verfahren nach einem der vorhergehenden Ansprüche, wobei das kathodenraumseitig zugeführte Wasser Leitungswasser ist.Method according to one of the preceding claims, wherein the cathode chamber side water supplied is tap water. Verfahren nach einem der vorhergehenden Ansprüche, wobei die kathodenseitig erzeugte wässrige Natronlauge und das anodenseitig hergestellte Chlorgas zur Herstellung einer Chlorbleichlauge eingesetzt werden.Method according to one of the preceding claims, wherein the cathode side generated aqueous sodium hydroxide solution and the chlorine gas produced on the anode side be used to produce a chlorine bleach. Verfahren nach Anspruch 12, wobei die Chlorbleichlauge in einem Kombireaktor hergestellt wird, in dessen oberem Bereich Wasserstoff von der Natronlauge getrennt wird, in dessen mittleren Bereich die Reaktion des Chlors mit der Natronlauge erfolgt und in dessen unterem Bereich die entstehende Natriumhypochloritlösung gekühlt wird.The method of claim 12, wherein the chlorine bleach is in a combination reactor is produced, in the upper area hydrogen from the sodium hydroxide solution is separated, in the middle area the reaction of the chlorine with the sodium hydroxide solution takes place and in the lower area the sodium hypochlorite solution formed is cooled. Verfahren nach einem der vorhergehenden Ansprüche, wobei eine beschichtete Anode eingesetzt wird, die aus einem Mehrschichtenmaterial auf der Basis von Titan gebildet ist.Method according to one of the preceding claims, wherein a coated Anode is used, which is made from a multi-layer material is formed by titanium. Verfahren nach Anspruch 14, wobei die Beschichtung der Anode im wesentlichen aus Mischoxiden, basierend auf Iridiumoxid und Tantaloxid, besteht. The method of claim 14, wherein the coating of the anode is substantially consists of mixed oxides based on iridium oxide and tantalum oxide. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Chloridkonzentration des Anolyten im Anodenraum unterhalb der Sättigungsgrenze liegt, bevorzugt unterhalb von 50 g/l, besonders bevorzugt in einem Bereich von 35 bis 45 g/l.Method according to one of the preceding claims, wherein the chloride concentration the anolyte in the anode compartment is below the saturation limit, preferably below 50 g / l, particularly preferably in a range of 35 up to 45 g / l. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 16.Device for performing the method according to one of claims 1 to 16th
    EP01114430A 2000-06-24 2001-06-15 Chlor-alkali electrolytic process in membrane cells using non-purified salt Expired - Lifetime EP1167579B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE10031018A DE10031018B4 (en) 2000-06-24 2000-06-24 Chloralkali electrolysis process in membrane cells with electrolysis of untreated evaporated salt
    DE10031018 2000-06-24

    Publications (2)

    Publication Number Publication Date
    EP1167579A1 true EP1167579A1 (en) 2002-01-02
    EP1167579B1 EP1167579B1 (en) 2006-09-27

    Family

    ID=7646799

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01114430A Expired - Lifetime EP1167579B1 (en) 2000-06-24 2001-06-15 Chlor-alkali electrolytic process in membrane cells using non-purified salt

    Country Status (4)

    Country Link
    EP (1) EP1167579B1 (en)
    AT (1) ATE340884T1 (en)
    DE (2) DE10031018B4 (en)
    DK (1) DK1167579T3 (en)

    Families Citing this family (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2004085709A1 (en) * 2003-03-25 2004-10-07 Gablenko Vyacheslav Georgievic Device for synthesising oxidants from agueous sodium chloride solution
    DE102015003911A1 (en) 2015-03-27 2016-09-29 Eilenburger Elektrolyse- Und Umwelttechnik Gmbh Process for the disinfection of pool, drinking and service water as well as for the production of a disinfectant concentrate
    US11998875B2 (en) 2021-12-22 2024-06-04 The Research Foundation for The State University of New York York System and method for electrochemical ocean alkalinity enhancement

    Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4230544A (en) * 1979-08-31 1980-10-28 Ionics Inc. Method and apparatus for controlling anode pH in membrane chlor-alkali cells
    US4528077A (en) * 1982-07-02 1985-07-09 Olin Corporation Membrane electrolytic cell for minimizing hypochlorite and chlorate formation
    DE29718331U1 (en) * 1997-10-17 1998-01-22 Dinotec Gmbh Electrolysis plant for the production of an aqueous sodium hypochlorite solution

    Patent Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4230544A (en) * 1979-08-31 1980-10-28 Ionics Inc. Method and apparatus for controlling anode pH in membrane chlor-alkali cells
    US4528077A (en) * 1982-07-02 1985-07-09 Olin Corporation Membrane electrolytic cell for minimizing hypochlorite and chlorate formation
    DE29718331U1 (en) * 1997-10-17 1998-01-22 Dinotec Gmbh Electrolysis plant for the production of an aqueous sodium hypochlorite solution

    Non-Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Title
    JOERISSEN J ET AL: "THE BEHAVIOUR OF ION EXCHANGE MEMBRANES IN ELECTROLYSIS AND ELECTRODIALYSIS OF SODIUM SULPHATE", JOURNAL OF APPLIED ELECTROCHEMISTRY, CHAPMAN AND HALL. LONDON, GB, vol. 21, no. 10, 1 October 1991 (1991-10-01), pages 869 - 876, XP000371841, ISSN: 0021-891X *

    Also Published As

    Publication number Publication date
    DE50111075D1 (en) 2006-11-09
    DE10031018A1 (en) 2002-01-31
    ATE340884T1 (en) 2006-10-15
    EP1167579B1 (en) 2006-09-27
    DE10031018B4 (en) 2007-02-22
    DK1167579T3 (en) 2007-01-08

    Similar Documents

    Publication Publication Date Title
    DE2844499C2 (en) Process for producing a halogen
    DE10216860B4 (en) Electrolysis apparatus for the production of hydrogen peroxide and process for the production of hydrogen peroxide
    DE19540469B4 (en) Apparatus and method for producing electrolytically ionized water
    DE3118795A1 (en) "METHOD AND DEVICE FOR PRODUCING CHLORDIOXIDE"
    DE2311556B2 (en) METHOD OF ELECTROLYSIS OF A SODIUM CHLORIDE SOLUTION
    DE2251660A1 (en) METHOD AND APPARATUS FOR PRODUCING HIGHLY PURE ALKALIMETAL HYDROXIDE IN AN ELECTROLYTIC CELL
    DE2455222A1 (en) ELECTROLYSIS CELL
    DE3005358A1 (en) ELECTROLYTIC MANUFACTURING METHOD OF ALKALINE METAL HYPOHALOGENITES AND THE DEVICE THEREFOR
    DE1140907B (en) Process for the production of chlorine from brine solutions
    EP3885471A1 (en) Improved method for the preparation of sodium alcoholates
    DE3001614C2 (en) Process for the electrolytic decomposition of hydrochloric acid in an electrolyzer
    DE3013538A1 (en) CHLORALKALI ELECTROLYSIS CELL
    DD140262A5 (en) METHOD FOR CONTINUOUS PRODUCTION OF CHLORINE
    WO2012041357A1 (en) Method for producing a disinfectant based on hypochlorous acid or hypochlorite by electrochemical activation of a chloride solution
    DE10101494A1 (en) Tetramethylammonium hydroxide synthesis
    WO2009115577A1 (en) Electrodiaphragmalysis
    DE3315626A1 (en) METHOD FOR ENRICHING SULFURIC ACID
    DE2451846A1 (en) PROCESS FOR THE ELECTROLYTIC PRODUCTION OF METAL HYDROXIDE SOLUTIONS
    DE102014010901A1 (en) ECA reactor for producing an activated hypochlorite-containing disinfectant
    DE2922275C2 (en) Process for chlorinating and brominating water in an electrolytic cell and apparatus therefor
    DE10031018B4 (en) Chloralkali electrolysis process in membrane cells with electrolysis of untreated evaporated salt
    DE10015209A1 (en) Electrochemical disinfection of water, e.g. drinking, industrial and waste water, involves passing sub-streams in parallel to anode and cathode segments of array of electrode plates, spacers and separator membranes
    DE102015003911A1 (en) Process for the disinfection of pool, drinking and service water as well as for the production of a disinfectant concentrate
    DE2434921C3 (en) Electrolysis cell and process for the electrolysis of ionizable chemical compounds
    EP3114087B1 (en) Method and device for producing aqueous chlorine dioxide solutions

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20020226

    AKX Designation fees paid

    Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    17Q First examination report despatched

    Effective date: 20040708

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: SIEMENS AG

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20060927

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060927

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060927

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: SIEMENS SCHWEIZ AG

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

    REF Corresponds to:

    Ref document number: 50111075

    Country of ref document: DE

    Date of ref document: 20061109

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20070107

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20070313

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 20060927

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20070628

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060927

    BERE Be: lapsed

    Owner name: SIEMENS A.G.

    Effective date: 20070630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20061228

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PCAR

    Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070615

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060927

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060927

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DK

    Payment date: 20130619

    Year of fee payment: 13

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PUE

    Owner name: SIEMENS WATER TECHNOLOGIES GMBH, DE

    Free format text: FORMER OWNER: SIEMENS AG, DE

    Ref country code: CH

    Ref legal event code: PFA

    Owner name: EVOQUA WATER TECHNOLOGIES GMBH, DE

    Free format text: FORMER OWNER: SIEMENS WATER TECHNOLOGIES GMBH, DE

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20140509

    Year of fee payment: 14

    Ref country code: SE

    Payment date: 20140625

    Year of fee payment: 14

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    Owner name: EVOQUA WATER TECHNOLOGIES GMBH, DE

    Effective date: 20140822

    Ref country code: FR

    Ref legal event code: TP

    Owner name: EVOQUA WATER TECHNOLOGIES GMBH, DE

    Effective date: 20140822

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 50111075

    Country of ref document: DE

    Owner name: EVOQUA WATER TECHNOLOGIES GMBH, DE

    Free format text: FORMER OWNER: SIEMENS WATER TECHNOLOGIES GMBH, 89312 GUENZBURG, DE

    Effective date: 20140917

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 50111075

    Country of ref document: DE

    Owner name: EVOQUA WATER TECHNOLOGIES GMBH, DE

    Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

    Effective date: 20140916

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20140625

    Year of fee payment: 14

    Ref country code: DE

    Payment date: 20140731

    Year of fee payment: 14

    Ref country code: CH

    Payment date: 20140725

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20140626

    Year of fee payment: 14

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    Effective date: 20140630

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: SD

    Effective date: 20150605

    Ref country code: NL

    Ref legal event code: TD

    Effective date: 20150605

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140630

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50111075

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 340884

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20150615

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150616

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MM

    Effective date: 20150701

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20160229

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150701

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160101

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150630

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150615

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150630