EP1166127A1 - Vane designed to be oriented in the ambient air flow axis - Google Patents

Vane designed to be oriented in the ambient air flow axis

Info

Publication number
EP1166127A1
EP1166127A1 EP00915273A EP00915273A EP1166127A1 EP 1166127 A1 EP1166127 A1 EP 1166127A1 EP 00915273 A EP00915273 A EP 00915273A EP 00915273 A EP00915273 A EP 00915273A EP 1166127 A1 EP1166127 A1 EP 1166127A1
Authority
EP
European Patent Office
Prior art keywords
vane
oriented
ambient air
air flow
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00915273A
Other languages
German (de)
French (fr)
Inventor
Joel Thomson-CSF CHOISNET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales Avionics SAS
Original Assignee
Thales Avionics SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales Avionics SAS filed Critical Thales Avionics SAS
Publication of EP1166127A1 publication Critical patent/EP1166127A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • G01P21/02Testing or calibrating of apparatus or devices covered by the preceding groups of speedometers
    • G01P21/025Testing or calibrating of apparatus or devices covered by the preceding groups of speedometers for measuring speed of fluids; for measuring speed of bodies relative to fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • G01P13/025Indicating direction only, e.g. by weather vane indicating air data, i.e. flight variables of an aircraft, e.g. angle of attack, side slip, shear, yaw
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/14Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring differences of pressure in the fluid
    • G01P5/16Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring differences of pressure in the fluid using Pitot tubes, e.g. Machmeter
    • G01P5/165Arrangements or constructions of Pitot tubes

Definitions

  • the invention relates to a wind vane intended to orient itself in the axis of an ambient air flow.
  • Such a wind vane is advantageously used in an aircraft probe intended to measure aerodynamic parameters of the ambient air flow of the aircraft.
  • the piloting of any aircraft implies knowing the relative speed of the aircraft with respect to the ambient air, that is to say the relative wind. This speed is determined using the static pressure po, the total pressure pt and the angle of incidence ⁇ sensors. ⁇ provides the direction of the speed vector in a reference system linked to the aircraft and pt - po provides the modulus of this speed vector.
  • the three aerodynamic parameters therefore make it possible to determine the speed vector of an airplane and, incidentally, of a tilting rotor aircraft said to be convertible.
  • a wind vane described in French patent FR 2 665 539 shows the advantage for the probe to orient itself in the axis of the ambient air flow in order to facilitate the measurement of the angle of incidence.
  • this patent describes the use of a mechanical control to cancel the aerodynamic incidence of the vane. This control is especially useful at low ambient air flow speeds because, the lower the speed, the lower the aerodynamic forces of the air on the vane and are not sufficient to overcome the mechanical friction forces to orient correctly the wind vane in the axis of the ambient air flow.
  • the use of servo-control based on the cancellation of the aerodynamic incidence of the wind vane nevertheless presents a drawback.
  • the inevitable imperfections in the realization of the vane make that an angular gap exists between the orientation of the vane due to aerodynamic forces at high flow speeds and the orientation of the vane due to the 'control at low flow velocities.
  • the control system can attempt to modify the orientation of the vane without succeeding because of the importance of aerodynamic forces which leads to unnecessary consumption of electrical power on the part of the control system.
  • the object of the invention is to overcome these drawbacks by proposing a device which improves the consistency of the orientation of the wind vane whatever the speed of the flow of ambient air.
  • the invention relates to a wind vane device intended to orient itself in the axis of an ambient air flow and provided with differential pressure measurement means representative of the aerodynamic incidence of the vane , characterized in that the differential pressure tap is balanced when the vane is oriented naturally in the axis of the flow.
  • An advantage linked to the invention is to limit the cost of producing the weather vane by avoiding tightening the tolerances of position shape and dimensions in defining the profile of the weather vane.
  • Another advantage linked to the invention is to avoid introducing corrections in the servo control parameters, which would hinder the interchangeability of the movable vane of the wind vane alone, without the servo means.
  • FIG. 1 shows a weather vane according to the invention
  • FIG. 2 shows the inside of a palette of the weather vane.
  • the wind vane 1 shown in Figure 1 is movable in rotation about an axis 2. It comprises for example a shaft 3 of axis 2 which penetrates inside the skin 4 of an aircraft.
  • the shaft 3 is movable in rotation relative to the aircraft for example by means of a rolling bearing 5.
  • the shaft 3 is driven in rotation by means of a motor 6 intended to orient the wind vane 1 in a precise angular position around the axis 2.
  • the shaft 3 is integral with means 7 for measuring its angular position. These means 7 comprise for example an optical encoder.
  • the angular position of the wind vane 1, available at the output of the means 7, defines the angle of incidence ⁇ of the aircraft.
  • the shaft 3 is also integral with a pneumatic seal 8 enabling the pneumatic information taken by the vane 1 to be transmitted to processing means 9.
  • the wind vane 1 may include means for taking total pressure pt comprising a tube 10 open at one of its ends 11.
  • the tube 10 is substantially oriented in the axis of the ambient air flow 12 when the vane is oriented in the axis of the flow 12.
  • the vane 1 may also include means for taking static pressure po located on the side of the tube 10. These means are not shown in FIG. 1.
  • the wind vane 1 comprises a pallet 15 having for example the shape of a delta half-wing.
  • the pallet 15 is symmetrical with respect to the plane of FIG. 1.
  • the pallet has a leading edge 16.
  • the pallet 15 comprises differential pressure measurement means. These means comprise on at least one face of the pallet 15, for example the lower surface, two orifices 11 and 12 situated respectively at a distance e1 and e2 from the leading edge 16.
  • the orifices 11 and 12 both communicate with a chamber 20 which is better defined from FIG. 2.
  • FIG. 2 shows the pallet 15 in section along a plane perpendicular to the plane of FIG. 1 and to the leading edge 16.
  • the profile of the pallet 15 shown in FIG. 2 is symmetrical with respect to a plane 21 perpendicular to FIG. 2.
  • the profile is for example that of an airplane wing.
  • the two orifices 11 and 12 communicate with the chamber 20 located inside the pallet 15.
  • the two orifices E1 and E2 communicate with a chamber 22 also located inside the pallet 15.
  • the chamber 20 communicates via a tubing 23 with the pneumatic seal 8 shown in FIG. 1.
  • the chamber 22 communicates via a tubular 24 with the pneumatic seal 8.
  • the pneumatic seal delivers the pressure from chamber 20 and that of chamber 22 to treatment means 9.
  • the treatment means 9 compare these pressures and generate a control signal c of motor 6 so as to orient the pallet 15 so such that the pressure in the chamber 20 is equal to the pressure in the chamber 22.
  • the processing means 9 may comprise a flow meter detecting a deviation from a zero flow between the two chambers 20 and 22.
  • PI1 + PI2 PI • PU is the air pressure at the orifice 11 and PI2 is the air pressure at the orifice 12.
  • the pressure PU is greater than the pressure PI2. This pressure difference is due to the difference between the distances e1 and e2. The closer the orifice, in this case 11, to the leading edge 16, the stronger the pressure PU therein.
  • the wind vane 1 can be placed in a wind tunnel in a flow 12 at high speed so that the pallet 15 is oriented naturally in the axis of the flow without the processing means 9 controlling the motor 6. If there is a difference in pressure between the chambers 20 and 22, a dimension of one of the orifices is modified, for example 11 or 12 so as to modify the pressure of one of the chambers to substantially cancel the difference in pressure between the two chambers 20 and 22.
  • the other chamber may have only one orifice.
  • the two chambers 20 and 22 both have orifices symmetrical with respect to the plane 21.
  • the orifices 11, 12, E1 and E2 are unique. However, it can be provided that one (or more) of these orifices is (are) multiple (s), this in order to ensure a minimum air flow in the pipes 23 and 24 so that the flow meter, located in the means of treatment 9, can function properly without the dimensions of the orifice considered being too large to the point of modifying the flow 12 in its vicinity. It is also conceivable that the different orifices have different dimensions. For example, the surface of the orifice 11 may be less than that of the orifice 12.
  • the pressure PI prevailing inside the chamber will then be of the form: al.PIl + a2.
  • PI2 2 ai and a2 are coefficients depending on the surfaces of the orifices 11 and 12.
  • the invention can just as easily be implemented.

Abstract

The invention concerns a vane designed to be oriented in an ambient air flow axis. The vane is provided with means (I1, I2, E1, E2) for differential pressure intake representing the aerodynamic incidence (α) of the vane (1). The invention is characterised in that the differential pressure intake is balanced when the vane (1) is naturally oriented in the air flow axis (12).

Description

GIROUETTE DESTINEE A S'ORIENTER DANS L'AXE D'UN ECOULEMENT D'AIR AMBIANT WEATHERPROOF FOR DIRECTION IN THE AXIS OF AN AMBIENT AIR FLOW
L'invention se rapporte à une girouette destinée à s'orienter dans l'axe d'un écoulement d'air ambiant.The invention relates to a wind vane intended to orient itself in the axis of an ambient air flow.
Une telle girouette est avantageusement utilisée dans une sonde d'aéronef destinée à mesurer des paramètres aérodynamiques de l'écoulement d'air ambiant de l'aéronef.Such a wind vane is advantageously used in an aircraft probe intended to measure aerodynamic parameters of the ambient air flow of the aircraft.
Le pilotage de tout aéronef implique de connaître la vitesse relative de l'aéronef par rapport à l'air ambiant, c'est-à-dire au vent relatif. Cette vitesse est déterminée à l'aide de capteurs de la pression statique po, de la pression totale pt et de l'angle d'incidence α. α fournit la direction du vecteur vitesse dans un système de référence lié à l'aéronef et pt - po fournit le module de ce vecteur vitesse. Les trois paramètres aérodynamiques permettent donc de déterminer le vecteur vitesse d'un avion et, accessoirement, d'un aéronef à rotor basculant dit convertible.The piloting of any aircraft implies knowing the relative speed of the aircraft with respect to the ambient air, that is to say the relative wind. This speed is determined using the static pressure po, the total pressure pt and the angle of incidence α sensors. α provides the direction of the speed vector in a reference system linked to the aircraft and pt - po provides the modulus of this speed vector. The three aerodynamic parameters therefore make it possible to determine the speed vector of an airplane and, incidentally, of a tilting rotor aircraft said to be convertible.
Une girouette décrite dans le brevet français FR 2 665 539 montre l'intérêt pour la sonde de s'orienter dans l'axe de l'écoulement d'air ambiant afin de faciliter la mesure de l'angle d'incidence. Pour vaincre les forces de frottement au niveau de l'axe de rotation de la girouette, ce brevet décrit l'utilisation d'un asservissement mécanique pour annuler l'incidence aérodynamique de la girouette. Cet asservissement est surtout utile aux faibles vitesses d'écoulement d'air ambiant car, plus la vitesse est faible, plus les forces aérodynamiques de l'air sur la girouette sont faibles et ne suffisent pas à vaincre les forces mécaniques de frottement pour orienter correctement la girouette dans l'axe de l'écoulement de l'air ambiant. L'utilisation de l'asservissement basé sur l'annulation de l'incidence aérodynamique de la girouette présente néanmoins un inconvénient. En effet, dans la pratique, les imperfections inévitables dans la réalisation de la girouette font qu'un écart angulaire existe entre l'orientation de la girouette due aux forces aérodynamiques aux grandes vitesses d'écoulement et l'orientation de la girouette due à l'asservissement aux faibles vitesses d'écoulement. De plus aux grandes vitesses d'écoulement, l'asservissement peut tenter de modifier l'orientation de la girouette sans y parvenir à cause de l'importance des forces aérodynamiques ce qui entraîne une consommation de puissance électrique inutile de la part de l'asservissement.A wind vane described in French patent FR 2 665 539 shows the advantage for the probe to orient itself in the axis of the ambient air flow in order to facilitate the measurement of the angle of incidence. To overcome the frictional forces at the axis of rotation of the vane, this patent describes the use of a mechanical control to cancel the aerodynamic incidence of the vane. This control is especially useful at low ambient air flow speeds because, the lower the speed, the lower the aerodynamic forces of the air on the vane and are not sufficient to overcome the mechanical friction forces to orient correctly the wind vane in the axis of the ambient air flow. The use of servo-control based on the cancellation of the aerodynamic incidence of the wind vane nevertheless presents a drawback. Indeed, in practice, the inevitable imperfections in the realization of the vane make that an angular gap exists between the orientation of the vane due to aerodynamic forces at high flow speeds and the orientation of the vane due to the 'control at low flow velocities. In addition, at high flow velocities, the control system can attempt to modify the orientation of the vane without succeeding because of the importance of aerodynamic forces which leads to unnecessary consumption of electrical power on the part of the control system.
L'invention a pour but de pallier ces inconvénients en proposant un dispositif qui améliore la cohérence de l'orientation de la girouette quelle que soit la vitesse de l'écoulement de l'air ambiant.The object of the invention is to overcome these drawbacks by proposing a device which improves the consistency of the orientation of the wind vane whatever the speed of the flow of ambient air.
Pour atteindre ce but, l'invention à pour objet un dispositif de girouette destiné à s'orienter dans l'axe d'un écoulement d'air ambiant et pourvu de moyens de prise de pression différentielle représentative de l'incidence aérodynamique de la girouette, caractérisé en ce que la prise de pression différentielle est équilibrée lorsque la girouette est orientée naturellement dans l'axe de l'écoulement.To achieve this object, the invention relates to a wind vane device intended to orient itself in the axis of an ambient air flow and provided with differential pressure measurement means representative of the aerodynamic incidence of the vane , characterized in that the differential pressure tap is balanced when the vane is oriented naturally in the axis of the flow.
Un avantage lié à l'invention est de limiter le coût de réalisation de la girouette en évitant de resserrer les tolérances de forme de position et de dimensions dans la définition du profil de la girouette. Un autre avantage lié à l'invention est d'éviter d'introduire des corrections dans les paramètres de l'asservissement, ce qui gênerait l'interchangeabilité de la palette mobile de la girouette seule, sans les moyens d'asservissement.An advantage linked to the invention is to limit the cost of producing the weather vane by avoiding tightening the tolerances of position shape and dimensions in defining the profile of the weather vane. Another advantage linked to the invention is to avoid introducing corrections in the servo control parameters, which would hinder the interchangeability of the movable vane of the wind vane alone, without the servo means.
L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description détaillée d'un mode de réalisation illustré par le dessin joint dans lequel :The invention will be better understood and other advantages will appear on reading the detailed description of an embodiment illustrated by the attached drawing in which:
- la figure 1 représente une girouette conforme à l'invention ;- Figure 1 shows a weather vane according to the invention;
- la figure 2 représente l'intérieur d'une palette de la girouette.- Figure 2 shows the inside of a palette of the weather vane.
La girouette 1 représentée figure 1 est mobile en rotation autour d'un axe 2. Elle comporte par exemple un arbre 3 d'axe 2 qui pénètre à l'intérieur de la peau 4 d'un aéronef. L'arbre 3 est mobile en rotation par rapport à l'aéronef par exemple au moyen d'un palier 5 à roulement. L'arbreThe wind vane 1 shown in Figure 1 is movable in rotation about an axis 2. It comprises for example a shaft 3 of axis 2 which penetrates inside the skin 4 of an aircraft. The shaft 3 is movable in rotation relative to the aircraft for example by means of a rolling bearing 5. The tree
3 est entraîné en rotation au moyen d'un moteur 6 destiné à orienter la girouette 1 dans une position angulaire précise autour de l'axe 2. L'arbre 3 est solidaire de moyens 7 de mesure de sa position angulaire. Ces moyens 7 comportent par exemple un codeur optique. La position angulaire de la girouette 1 , disponible en sortie des moyens 7, définit l'angle d'incidence α de l'aéronef. L'arbre 3 est également solidaire d'un joint pneumatique 8 permettant de transmettre les informations pneumatiques prélevées par la girouette 1 à des moyens de traitement 9. La girouette 1 peut comporter des moyens de prise de pression totale pt comportant un tube 10 ouvert à une de ses extrémités 11. Le tube 10 est sensiblement orienté dans l'axe de l'écoulement 12 d'air ambiant lorsque la girouette est orientée dans l'axe de l'écoulement 12. La girouette 1 peut également comporter des moyens de prise de pression statique po situés sur le côté du tube 10. Ces moyens ne sont pas représentés sur la figure 1.3 is driven in rotation by means of a motor 6 intended to orient the wind vane 1 in a precise angular position around the axis 2. The shaft 3 is integral with means 7 for measuring its angular position. These means 7 comprise for example an optical encoder. The angular position of the wind vane 1, available at the output of the means 7, defines the angle of incidence α of the aircraft. The shaft 3 is also integral with a pneumatic seal 8 enabling the pneumatic information taken by the vane 1 to be transmitted to processing means 9. The wind vane 1 may include means for taking total pressure pt comprising a tube 10 open at one of its ends 11. The tube 10 is substantially oriented in the axis of the ambient air flow 12 when the vane is oriented in the axis of the flow 12. The vane 1 may also include means for taking static pressure po located on the side of the tube 10. These means are not shown in FIG. 1.
La girouette 1 comporte une palette 15 ayant par exemple la forme d'une demi-aile delta. La palette 15 est symétrique par rapport au plan de la figure 1. La palette comporte un bord d'attaque 16. Sur l'intrados et l'extrados de la palette 15, au voisinage du bord d'attaque 16, la palette 15 comporte des moyens de prise de pression différentielle. Ces moyens comportent sur au moins une face de la palette 15, par exemple l'intrados, deux orifices 11 et 12 situés respectivement à une distance e1 et e2 du bord d'attaque 16. Les orifices 11 et 12 communiquent tous deux avec une chambre 20 qui est mieux définie à partir de la figure 2.The wind vane 1 comprises a pallet 15 having for example the shape of a delta half-wing. The pallet 15 is symmetrical with respect to the plane of FIG. 1. The pallet has a leading edge 16. On the lower surface and the upper surface of the pallet 15, in the vicinity of the leading edge 16, the pallet 15 comprises differential pressure measurement means. These means comprise on at least one face of the pallet 15, for example the lower surface, two orifices 11 and 12 situated respectively at a distance e1 and e2 from the leading edge 16. The orifices 11 and 12 both communicate with a chamber 20 which is better defined from FIG. 2.
La figure 2 représente la palette 15 en coupe selon un plan perpendiculaire au plan de la figure 1 et au bord d'attaque 16. Le profil de la palette 15 représenté figure 2 est symétrique par rapport à un plan 21 perpendiculaire à la figure 2.FIG. 2 shows the pallet 15 in section along a plane perpendicular to the plane of FIG. 1 and to the leading edge 16. The profile of the pallet 15 shown in FIG. 2 is symmetrical with respect to a plane 21 perpendicular to FIG. 2.
Le profil est par exemple celui d'une aile d'avion. Sur l'intrados les deux orifices 11 et 12 communiquent avec la chambre 20 située à l'intérieur de la palette 15. Sur l'extrados deux orifices E1 et E2 communiquent avec une chambre 22 également située à l'intérieur de la palette 15. La chambre 20 communique par l'intermédiaire d'une tubulure 23 avec le joint pneumatique 8 représenté figure 1. De la même façon, la chambre 22 communique par l'intermédiaire d'une tubulaire 24 avec le joint pneumatique 8.The profile is for example that of an airplane wing. On the lower surface the two orifices 11 and 12 communicate with the chamber 20 located inside the pallet 15. On the upper surface two orifices E1 and E2 communicate with a chamber 22 also located inside the pallet 15. The chamber 20 communicates via a tubing 23 with the pneumatic seal 8 shown in FIG. 1. Likewise, the chamber 22 communicates via a tubular 24 with the pneumatic seal 8.
Le joint pneumatique délivre à des moyens de traitement 9 la pression de la chambre 20 et celle de la chambre 22. Les moyens de traitement 9 comparent ces pressions et génèrent un signal de commande c du moteur 6 de façon à orienter la palette 15 de façon telle que la pression dans la chambre 20 soit égale à la pression dans la chambre 22. Les moyens de traitement 9 peuvent comporter un débitmètre détectant un écart par rapport à un débit nul entre les deux chambres 20 et 22. Pour assurer une bonne orientation de la girouette 1 quelle que soit la vitesse de l'écoulement 12 et pour pallier les défauts de symétrie de position des orifices E1 , 11 d'une part et E2, 12 d'autre part ainsi que pour pallier les différences de dimensions entre ces orifices, on prévoit d'équilibrer la pression différentielle entre chaque chambre 20 et 22 en adaptant les dimensions d'au moins un des orifices lorsque la girouette 1 est orientée naturellement dans l'axe de l'écoulement 12.The pneumatic seal delivers the pressure from chamber 20 and that of chamber 22 to treatment means 9. The treatment means 9 compare these pressures and generate a control signal c of motor 6 so as to orient the pallet 15 so such that the pressure in the chamber 20 is equal to the pressure in the chamber 22. The processing means 9 may comprise a flow meter detecting a deviation from a zero flow between the two chambers 20 and 22. To ensure correct orientation of the vane 1 whatever the speed of the flow 12 and to overcome the symmetry of position symmetry of the orifices E1, 11 on the one hand and E2, 12 on the other hand as well as to overcome the differences in dimensions between these orifices, provision is made to balance the differential pressure between each chamber 20 and 22 by adapting the dimensions of at least one of the orifices when the vane 1 is naturally oriented in the axis of the flow 12.
On constate par exemple que, lorsque les orifices 11 et 12 ont les mêmes dimensions, la pression PI à l'intérieur de la chambre 20 est égale à :It can be seen, for example, that when the orifices 11 and 12 have the same dimensions, the pressure PI inside the chamber 20 is equal to:
PI1 + PI2 PI = • PU est la pression de l'air au niveau de l'orifice 11 et PI2 est la pression de l'air au niveau de l'orifice 12.PI1 + PI2 PI = • PU is the air pressure at the orifice 11 and PI2 is the air pressure at the orifice 12.
La pression PU est supérieure à la pression PI2. Cette différence de pression est due à la différence entre les distances e1 et e2. Plus l'orifice, en l'occurrence 11 , est proche du bord d'attaque 16, plus la pression PU y est forte.The pressure PU is greater than the pressure PI2. This pressure difference is due to the difference between the distances e1 and e2. The closer the orifice, in this case 11, to the leading edge 16, the stronger the pressure PU therein.
En conséquence, lorsque la girouette 1 est orientée naturellement dans l'axe de l'écoulement 12 et si on constate un écart de pression entre les chambres 20 et 22 on peut, afin d'équilibrer les pressions dans les deux chambres 20 et 22, par exemple augmenter la pression PI présente dans la chambre 20 en augmentant une dimension, par exemple le diamètre, de l'orifice 11. On peut tout aussi bien diminuer la pression PI présente dans la chambre 20 en augmentant une dimension de l'orifice 12. On peut de la même façon modifier la pression PE régnant dans la chambre 22 en modifiant une dimension d'un des orifices E1 ou E2. En pratique, on peut placer la girouette 1 en soufflerie dans un écoulement 12 à grande vitesse de manière à ce que la palette 15 s'oriente naturellement dans l'axe de l'écoulement sans que les moyens de traitement 9 commandent le moteur 6. Si on constate une différence de pression entre les chambres 20 et 22, on modifie une dimension d'un des orifices par exemple 11 ou 12 de façon à modifier la pression d'une des chambres pour sensiblement annuler la différence de pression entre les deux chambres 20 et 22.Consequently, when the vane 1 is oriented naturally in the axis of the flow 12 and if there is a pressure difference between the chambers 20 and 22, it is possible, in order to balance the pressures in the two chambers 20 and 22, for example increasing the pressure PI present in the chamber 20 by increasing a dimension, for example the diameter, of the orifice 11. It is equally possible to decrease the pressure PI present in the chamber 20 by increasing a dimension of the orifice 12 One can in the same way modify the pressure PE prevailing in the chamber 22 by modifying a dimension of one of the orifices E1 or E2. In practice, the wind vane 1 can be placed in a wind tunnel in a flow 12 at high speed so that the pallet 15 is oriented naturally in the axis of the flow without the processing means 9 controlling the motor 6. If there is a difference in pressure between the chambers 20 and 22, a dimension of one of the orifices is modified, for example 11 or 12 so as to modify the pressure of one of the chambers to substantially cancel the difference in pressure between the two chambers 20 and 22.
Pour mettre en œuvre l'invention il suffit qu'au moins une des chambres 20 et 22 comporte des moyens pour modifier la pression y régnant, l'autre chambre peut ne comporter qu'un seul orifice. Néanmoins pour des raisons de symétrie, il est préférable que les deux chambres 20 et 22 comportent toutes deux des orifices symétriques par rapport au plan 21.To implement the invention, it suffices that at least one of the chambers 20 and 22 comprises means for modifying the prevailing pressure therein, the other chamber may have only one orifice. However for reasons of symmetry, it is preferable that the two chambers 20 and 22 both have orifices symmetrical with respect to the plane 21.
Dans le mode de réalisation décrit au moyen des figures 1 et 2 les orifices 11 , 12, E1 et E2 sont uniques. Néanmoins on peut prévoir qu'un (ou plusieurs) de ces orifices soit (soient) multiple (s), ceci afin d'assurer un débit minimum d'air dans les canalisations 23 et 24 pour que le débitmètre, situé dans les moyens de traitement 9, puisse fonctionner convenablement sans que les dimensions de l'orifice considéré ne soient trop importantes au point de modifier l'écoulement 12 à son voisinage. II est également envisageable que les différents orifices aient des dimensions différentes. Par exemple la surface de l'orifice 11 peut être inférieure à celle de l'orifice 12. La pression PI régnant à l'intérieur de la chambre sera alors de la forme : al.PIl + a2.PI2 2 ai et a2 sont des coefficients dépendant des surfaces des orifices 11 et 12. Dans l'exemple cité ci-dessus on aura ai < 1 < a2. Dans cet exemple ou dans l'exemple inverse (ai > 1 > a2) l'invention peut tout aussi bien être mise en œuvre. In the embodiment described by means of FIGS. 1 and 2 the orifices 11, 12, E1 and E2 are unique. However, it can be provided that one (or more) of these orifices is (are) multiple (s), this in order to ensure a minimum air flow in the pipes 23 and 24 so that the flow meter, located in the means of treatment 9, can function properly without the dimensions of the orifice considered being too large to the point of modifying the flow 12 in its vicinity. It is also conceivable that the different orifices have different dimensions. For example, the surface of the orifice 11 may be less than that of the orifice 12. The pressure PI prevailing inside the chamber will then be of the form: al.PIl + a2.PI2 2 ai and a2 are coefficients depending on the surfaces of the orifices 11 and 12. In the example cited above, we will have ai <1 <a2. In this example or in the reverse example (ai> 1> a2) the invention can just as easily be implemented.

Claims

REVENDICATIONS
1. Girouette (1 ) destinée à s'orienter dans l'axe d'un écoulement (12) d'air ambiant et pourvue de moyens (11 , 12, E1 , E2) de prise de pression différentielle représentative de l'incidence aérodynamique (α) de la girouette (1 ), caractérisée en ce que la prise de pression différentielle est équilibrée lorsque la girouette (1) est orientée naturellement dans l'axe de l'écoulement (12).1. Wind vane (1) intended to be oriented in the axis of a flow (12) of ambient air and provided with means (11, 12, E1, E2) of differential pressure tap representative of the aerodynamic incidence (α) of the vane (1), characterized in that the differential pressure tap is balanced when the vane (1) is oriented naturally in the axis of the flow (12).
2. Girouette (1 ) selon la revendication 1 caractérisée en ce que les moyens de prise de pression différentielle comportent deux prises de pression (11 , 12, E1 , E2) disposées sensiblement symétriquement de part et d'autre du bord d'attaque (16) de la girouette (1 ).2. Wind vane (1) according to claim 1 characterized in that the differential pressure tap means comprise two pressure taps (11, 12, E1, E2) arranged substantially symmetrically on either side of the leading edge ( 16) of the weather vane (1).
3. Girouette (1 ) selon la revendication 2 caractérisée en ce qu'au moins une prise de pression comporte deux orifices (11 , 12) disposés chacun à une distance (e1 , e2) différente du bord d'attaque. (16)3. Wind vane (1) according to claim 2 characterized in that at least one pressure tap has two orifices (11, 12) each arranged at a distance (e1, e2) different from the leading edge. (16)
4. Girouette (1) selon la revendication 3 caractérisée en ce que la prise de pression différentielle est équilibrée en adaptant une dimension d'un orifice (11, 12, E1 , E2). 4. Wind vane (1) according to claim 3 characterized in that the differential pressure tap is balanced by adapting a dimension of an orifice (11, 12, E1, E2).
EP00915273A 1999-04-02 2000-03-31 Vane designed to be oriented in the ambient air flow axis Withdrawn EP1166127A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9904183A FR2791773B1 (en) 1999-04-02 1999-04-02 VANE FOR DIRECTION IN THE AXIS OF AN AMBIENT AIR FLOW
FR9904183 1999-04-02
PCT/FR2000/000825 WO2000060363A1 (en) 1999-04-02 2000-03-31 Vane designed to be oriented in the ambient air flow axis

Publications (1)

Publication Number Publication Date
EP1166127A1 true EP1166127A1 (en) 2002-01-02

Family

ID=9543986

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00915273A Withdrawn EP1166127A1 (en) 1999-04-02 2000-03-31 Vane designed to be oriented in the ambient air flow axis

Country Status (5)

Country Link
US (1) US6698281B1 (en)
EP (1) EP1166127A1 (en)
CA (1) CA2369059A1 (en)
FR (1) FR2791773B1 (en)
WO (1) WO2000060363A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6772976B1 (en) * 2002-04-10 2004-08-10 Honeywell International, Inc. Sensor for measuring wind angle
US20050044186A1 (en) * 2003-06-13 2005-02-24 Petrisor Gregory C. Remote interface optical network
CN101268640B (en) * 2005-09-19 2015-05-20 路美克斯公司 Fiber-to-the-seat in-flight entertainment system
US8184974B2 (en) * 2006-09-11 2012-05-22 Lumexis Corporation Fiber-to-the-seat (FTTS) fiber distribution system
US8255161B2 (en) * 2008-10-03 2012-08-28 Honeywell International Inc. System and method of auto-calibration of inertial sensors
US8364334B2 (en) * 2008-10-30 2013-01-29 Honeywell International Inc. System and method for navigating an autonomous vehicle using laser detection and ranging
RU2550537C2 (en) 2009-08-06 2015-05-10 Люмексис Корпорейшн Serial networking fibre-to-seat in-flight entertainment system
US20110162015A1 (en) * 2009-10-05 2011-06-30 Lumexis Corp Inflight communication system
US8424045B2 (en) * 2009-08-14 2013-04-16 Lumexis Corporation Video display unit docking assembly for fiber-to-the-screen inflight entertainment system
US8416698B2 (en) 2009-08-20 2013-04-09 Lumexis Corporation Serial networking fiber optic inflight entertainment system network configuration
US20120260842A1 (en) * 2011-04-14 2012-10-18 Douglas Moreland King Vehicle flag
FR3002320B1 (en) * 2013-02-20 2016-05-20 Airbus Operations Sas ANGULAR MEASUREMENT PROBE ABOARD AN AIRCRAFT AND AIRCRAFT EMPLOYING AT LEAST ONE SUCH PROBE
CN106885922B (en) * 2017-01-23 2019-07-23 湘电风能有限公司 A kind of wind vane calibrating installation and method for wind power generating set
US10670473B2 (en) * 2017-07-25 2020-06-02 Rolls-Royce North American Technologies, Inc. Sensor with integral vortex tube for warming

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2105080B1 (en) * 1970-09-23 1974-02-01 Thomson Csf
FR2584822B1 (en) 1985-07-09 1988-06-17 Thomson Csf DEVICE FOR MEASURING THE REPORT OF TWO CAPACITIES OF LOW VALUES
FR2634885B1 (en) 1988-07-26 1990-10-05 Thomson Csf CAPACITIVE TORSION ANGLE SENSOR AND TORQUE MEASURING APPARATUS PROVIDED WITH SUCH A SENSOR
FR2645259B1 (en) 1989-04-04 1994-02-11 Thomson Csf CAPACITIVE SENSOR FOR DISPLACEMENTS AND TORSION ANGLE SENSOR COMPRISING AT LEAST ONE SUCH CAPACITIVE SENSOR
FR2665539B1 (en) * 1990-08-03 1992-11-27 Sextant Avionique AIRCRAFT PROBE FOR MEASURING AERODYNAMIC PARAMETERS OF AMBIENT FLOW.
US5205169A (en) * 1991-08-08 1993-04-27 Rosemount Inc. Angle of attack sensor using inverted ratio of pressure differentials
FR2694634B1 (en) * 1992-08-04 1994-09-30 Sextant Avionique Incidence probe.
FR2768122B1 (en) 1997-09-09 1999-11-19 Sextant Avionique OPTICAL DEVICE FOR DETECTION OF ICING CONDITIONS ON AIRCRAFT
US6378361B1 (en) * 1999-07-16 2002-04-30 Vertical Wind Tunnel Corporation Method and apparatus for creating a wind tunnel by redirecting an air flow ninety degrees

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO0060363A1 *

Also Published As

Publication number Publication date
CA2369059A1 (en) 2000-10-12
WO2000060363A1 (en) 2000-10-12
US6698281B1 (en) 2004-03-02
FR2791773B1 (en) 2001-06-15
FR2791773A1 (en) 2000-10-06

Similar Documents

Publication Publication Date Title
EP1247104B1 (en) Multifunctional probe for an aircraft
EP0469991B1 (en) Aircraft-mounted probe for measuring the aerodynamic parameters of the surrounding airflow
WO2000060363A1 (en) Vane designed to be oriented in the ambient air flow axis
EP1517125B1 (en) Device and method for determining the total temperature for an aircraft
EP2244940B1 (en) Method for actively deforming an aerodynamic profile
EP3492927B1 (en) Sailing vessel comprising an aerodynamic profile and a system for determining characteristics of an incident air flow on a leading edge of the aerodynamic profile
EP1454147B1 (en) Multipurpose probe with variable sweep
WO2001044821A1 (en) Probe for an aircraft
FR2978829A1 (en) VELOCIMETRE INSENSIBLE TO GIVING CONDITIONS AND TO HEAVY RAIN
CA2370295A1 (en) Fixed multifunction sensor for aircraft
EP2113084A2 (en) Device for measuring the total pressure of a flow and method using said device
FR2920544A1 (en) Fluid turbulent or laminar flow speed and flow direction determining device for maritime field, has converting units converting deformations sustained by strip into electrical signal, and processing unit processing electrical signals
EP3060929B1 (en) Method and device for measuring the angle of attack and the sideslip of an aircraft
EP0056747B1 (en) Anemometer pole for measuring the relative speed between a fluid and a support, especially for an aircraft
WO2003106948A1 (en) Total temperature probe and total temperature determination method
WO2021064333A1 (en) System for controlling the cyclic setting of blades
WO2005050154A1 (en) Attack angle probe
FR2607465A1 (en) Method and device for control of a rotary wing
FR2681310A1 (en) DEVICE FOR DETECTING THE ICING OF THE BLADES OF AN AIRCRAFT ROTOR.
EP3388807B1 (en) Device for detecting pressure with mechanical uncoupling
FR3100047A1 (en) New economical rotor model
FR3125129A1 (en) INCIDENCE SENSOR PARTICULARLY FOR AN AIRCRAFT
FR2844599A1 (en) Detector sensing lateral wind pressure on vehicle, includes two symmetrical sensors enabling determination of pressure difference

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011025

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20061027

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070508