WO2024079278A1 - Pressure sensing probe - Google Patents

Pressure sensing probe Download PDF

Info

Publication number
WO2024079278A1
WO2024079278A1 PCT/EP2023/078384 EP2023078384W WO2024079278A1 WO 2024079278 A1 WO2024079278 A1 WO 2024079278A1 EP 2023078384 W EP2023078384 W EP 2023078384W WO 2024079278 A1 WO2024079278 A1 WO 2024079278A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
tube
wall
front face
fluid
Prior art date
Application number
PCT/EP2023/078384
Other languages
French (fr)
Inventor
Philippe REIJASSE
Jean-Charles ABART
Original Assignee
Office National D'etudes Et De Recherches Aérospatiales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Office National D'etudes Et De Recherches Aérospatiales filed Critical Office National D'etudes Et De Recherches Aérospatiales
Publication of WO2024079278A1 publication Critical patent/WO2024079278A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/14Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring differences of pressure in the fluid
    • G01P5/16Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring differences of pressure in the fluid using Pitot tubes, e.g. Machmeter
    • G01P5/165Arrangements or constructions of Pitot tubes

Definitions

  • the invention relates to a pressure sensing probe.
  • This probe is used to sense the pressure of a fluid. It can be mounted, in particular, on an aircraft to sense the pressure in a stopping region.
  • systems are used to measure air pressure in flight, so that the aircraft's Mach number or altitude can then be calculated.
  • These systems generally include pressure sensing probes such as Pitot probes, static probes or Pitot-static probes (also called Prandtl antennas). All these probes consist of a collection tube inside which the air flow can penetrate.
  • the Mach number of an aircraft is generally calculated from the measured stopping pressure and the static pressure.
  • stopping pressure is the pressure at a stopping point in a fluid flow.
  • the measurement of the stopping pressure obtained using current probes can be distorted by various phenomena.
  • the collection tube may become clogged with debris or insects.
  • current probes are covered when the plane is on the ground. However, insects or debris can enter the probe as soon as it is uncovered.
  • the measurement of the shutdown pressure can be distorted due to poor evacuation of the gas. water and crystals accumulated in the collection tube, by the purge device.
  • impurities water, crystals, debris, insects and impurities present in the atmosphere, whatever they may be, are referred to jointly and individually as "impurities”.
  • Patent FR3067115 describes a probe in which the bottom of the collection tube is blocked by a rear partition, so as to stop the flow of the fluid and allow the stopping pressure to be measured.
  • This probe also has a drainage hole machined in the center of the rear wall of the tube (i.e. at the bottom of the tube). This small diameter hole aims to evacuate impurities to the outside.
  • the drainage hole being located in the axis of symmetry of the tube, impurities risk accumulating around the hole, at the periphery of the rear partition, in the intersection zone (i.e. in the corner) between the rear bulkhead and tube.
  • a pressure sensing probe comprises: a wall defining a tube inside which a fluid can penetrate; and a pressure tap passing through the wall, from which the pressure is measured.
  • the tube is open at both ends so as to channel the flow of fluid along the tube.
  • the probe comprises an obstacle having a front face, or upstream face, or even frontal face, which faces the channeled flow of the fluid and opposes this flow.
  • the obstacle forms a projection on the wall and is dimensioned so as to create a fluid stopping region upstream and at the foot of the front face, while allowing the fluid to flow around the obstacle, between the obstacle and the wall.
  • the pressure tap is located in line and upstream of the obstacle, in the stopping region.
  • Such a probe is simple and robust in design, and its risk of clogging by impurities is limited. In addition, its maintenance is facilitated by the fact that the tube is open at its ends.
  • the impurities are evacuated directly and efficiently by being entrained in the channeled flow of the fluid.
  • This channeled flow is deflected away from the pressure tap, by the obstacle, which protects the pressure tap from impurities.
  • impurities were to lodge at the foot of the obstacle, they would be quickly dislodged by a suction phenomenon drawing them into the channeled flow.
  • This suction phenomenon is the result of a depression created by the increase in the speed of the flow around the obstacle. This increase in speed is itself created by the Venturi effect.
  • Such a probe therefore makes it possible to effectively evacuate impurities and, thus, to avoid measurement errors linked to these particles.
  • the upstream and downstream are identified in relation to the channeled flow of the fluid inside the tube.
  • the stopping region and the pressure tap are therefore located before the obstacle, in the direction of flow.
  • the tube extends along a central axis. It can be of any section. Generally, the tube has the general shape of a cylinder of revolution, in which case, its central axis is the axis of revolution and its section is circular. In the present discussion, an axial direction is a direction parallel to the central axis while a radial direction is a direction perpendicular to the central axis. The alignment is assessed in an axial direction. Thus, the pressure tap and the obstacle are aligned in an axial direction.
  • the obstacle forms a projection on the wall in the sense that it is raised relative to the internal surface of the wall.
  • the front face of the obstacle is located inside the cylindrical volume of mathematically infinite length delimited by the internal surface of the tube.
  • the obstacle extends in height, in a radial or substantially radial direction, from its lower edge which is connected to the wall to its upper edge which is free.
  • the stopping region is located at the foot of the obstacle, i.e. along the wall at the level of the lower edge of the obstacle, and upstream of the latter.
  • An empty space for the passage of the fluid extends between the upper edge of the obstacle and the wall which surrounds it.
  • the front face of the obstacle is delimited in height by an upper edge and a lower edge, and in width by side edges.
  • the lower edge is connected to the wall.
  • the top edge and side edges are free, so fluid can flow over the obstacle, between the top edge and the wall, and down the sides of the obstacle, between the side edges and the wall. wall.
  • the proposed probe In contrast to known probes, in which the bottom of the collection tube is blocked to stop the flow of the fluid, the proposed probe has a collection tube open at its two ends so as to channel the flow of the fluid along the tube, from the upstream end to the downstream end of the tube and even beyond the downstream end. In the proposed probe, the flow of fluid is only stopped locally, in a limited region upstream of the obstacle, namely said stopping region.
  • the "minimum passage section” of the fluid is called the section delimited by the internal wall of the tube and the free edges (lateral and upper) of the obstacle.
  • maximum passage section the surface perpendicular to the flow in the tube when there is no obstacle.
  • the minimum passage section located at the level of the obstacle is at least equal to 20% of the maximum passage section.
  • the tube is therefore widely open, including at the level of the obstacle, so as to promote the flow of fluid along the tube.
  • an airliner can be equipped with two or three probes in order to compensate for the failure of one of the probes.
  • the proposed probe could, for example, be used in addition to or as a replacement for one of these probes.
  • the invention also relates to a pressure measurement system comprising a probe as previously described and a pressure sensor pneumatically connected to the pressure tap.
  • FIG. 1 is a schematic and are not necessarily to scale; they are primarily intended to illustrate the principles of the invention.
  • This figure is an axial section of an example of a collection probe.
  • This figure is a right-hand view, according to arrow II, of the probe of the .
  • This figure is a detailed perspective view of the downstream end of the probe of the .
  • This figure is an axial section of another example of a collection probe.
  • This figure is a right-hand view, according to arrow V, of the probe of the .
  • This figure is a detailed perspective view of the downstream end of the probe of the .
  • This figure is a view similar to that of the , of a variant embodiment.
  • This figure is a view similar to that of the , of a variant embodiment.
  • This figure is a view similar to that of the , of a variant embodiment.
  • This figure is an axial section of another example of a collection probe.
  • This figure is a right-hand view, according to arrow XI, of the probe of the .
  • This figure is a detail and top view, according to arrow XII, of the downstream end of the probe of the .
  • This figure is a detailed view, in axial section, of the downstream end of another example of a collection probe.
  • This figure is a perspective view of the .
  • This figure is a detailed view, in axial section, of the downstream end of another example of a collection probe.
  • This figure is a detailed view, in axial section, of the downstream end of another example of a collection probe.
  • This figure represents an example of a sensing probe, in axial section, mounted on the fuselage of an aircraft.
  • This figure is a graph representing different measured pressures P, expressed in pascal (Pa), as a function of the Mach number of the flow M0 measured in the wind tunnel vein.
  • This figure is a graph representing the Mach number of the flow Mc calculated from the pressure Pi_S1 measured in the stopping region S1, as a function of the Mach number M0 measured in the vein of the wind tunnel.
  • This figure is a graph which represents the rectified Mach number McR resulting from the correction method described below.
  • the pressure sensing probe 1 comprises a wall 12 defining a tube 10, or sensing tube, inside which a fluid can penetrate.
  • a probe 1 can be mounted, in particular, on a land, air or sea vehicle.
  • the probe 1 can equip an aircraft such as an airplane. In this case, the flowing fluid is air.
  • the probe 1 includes a pressure tap 40 passing through the wall 12.
  • the pressure can be measured from the pressure tap 40 by a pressure sensor P (shown in dotted lines in Figures 1 and 17).
  • the pressure sensor P is connected to the pressure tap 40 by a pneumatic connection.
  • the information is transmitted pneumatically from the pressure tap 40 to the sensor P which performs the pressure measurement. This pressure measurement can then serve as a basis for calculating the Mach number of the vehicle on which probe 1 is mounted.
  • the tube 10 is hollow and open at its two ends 10A, 10B, so as to channel the flow of the fluid along the tube 10.
  • the current lines F of the flow are represented by arrowed lines in Figures 1, 4,10 and 13.
  • the fluid rushes into the tube 10 and its flow is channeled along the tube 10.
  • An obstacle 30 projecting relative to the wall 12 creates a stopping region S1 of the fluid in upstream and at the foot of the obstacle 30, while allowing the fluid to flow around the obstacle 30, that is to say between the obstacle 30 and the wall 12 which surrounds it.
  • the obstacle 30 can, for example, be a protrusion or a rising step.
  • the pressure tap 40 is located in alignment and upstream of the obstacle 30, in the stopping region S1.
  • the length L of the tube 10 is sufficiently large so that the incident flow is channeled and uniform before arriving at the obstacle 30.
  • the length L of the tube 10 can be greater than five times the largest dimension of its section.
  • the tube 10 is of cylindrical shape and of circular section, so that the largest dimension of its section corresponds to the internal diameter d of the tube 10.
  • Other shapes of tube could nevertheless be considered without departing from the framework of the invention.
  • the tube 10 could have a divergent frustoconical shape upstream of its length L, to limit the introduction of impurities.
  • the leading edge of the front end 10A of the tube 10 could, moreover, be cut with a knife, or rounded, to better capture the flow of the fluid in the tube.
  • the obstacle 30 has a first face, called the front face 32, facing the channeled flow of the fluid and opposing this flow.
  • the front face 32 has a height H and a width W, as marked on the .
  • the obstacle 30 is of substantially constant section, but this is not necessarily the case.
  • the obstacle 30 can become thinner towards the downstream.
  • the obstacle 30 may, moreover, have beveled or rounded edges as shown in Figures 11 and 15. Roundings 47, 48 at the edges of the front face 32 and the side edges 33 of the obstacle make it possible to promote the evacuation of the flow between the obstacle 30 and the wall 12 ( Figures 11, 15 and 16).
  • a rounding 39 or a corner break 49 at the junction of the front face 32 and the wall 12 makes it possible to promote the evacuation of impurities which could temporarily rush into the stopping region S1.
  • the shape of the obstacle 30 and its front face 32 can vary.
  • the position of the obstacle 30 relative to the exit plane PS of the tube 10 can vary.
  • the obstacle 30 is fixed to the downstream end 10B of the tube 10 so that the front face 32 of the obstacle is located in the exit plane PS of the tube 10.
  • the obstacle 30 has the shape of a plate and has a thickness E, measured in an axial direction, less than the height H and the width W of the obstacle.
  • Figures 4 to 6 differs from that of Figures 1 to 3 in that the obstacle 30 has a greater thickness E so that it has a general shape of a rectangular parallelepiped, it being understood that the lower face of this parallelepiped is not plane since it is in contact with the wall 12 and follows the curvature of the wall 12. Furthermore, the obstacle 30 is positioned inside the tube 10 so that its rear face 36, or downstream face, is located upstream of the outlet plane PS of tube 10.
  • the rear face 36 of the obstacle 30 is aligned with the exit plane PS of the tube 10.
  • the rear face 36 of the obstacle 30 could also be located outside the tube without departing from the scope of the invention.
  • Figures 8 and 9 differ from that of Figures 4 to 7 essentially by the shape of the obstacle 30.
  • the obstacle can have different shapes without departing from the scope of the invention, its front face 32 and, more generally, the cross section of the obstacle 30, which can be of generally rectangular, square, trapezoidal, polygonal, semi-circular, etc. shape, it being understood that the lower edge 35 of the front face 32 is in contact with the wall 12 and follows the curvature thereof.
  • Figures 10 to 16 differ from that of Figures 1 to 3 in that the obstacle 30 has the shape of a plate fixed to the downstream end 10B of the tube 10 so that the front face 32 of the obstacle is located downstream of the exit plane PS of tube 10 (and not in the exit plane PS).
  • the downstream end 10B of the tube is delimited by an outlet plane PS, and a portion 12B of the wall 12 extends downstream of the outlet plane PS.
  • the portion 12B forms a tongue extending from one side of the tube 10, in the extension thereof.
  • the obstacle 30 forms a projection on this wall portion 12B.
  • the front face 32 of the obstacle 30 is located downstream of the exit plane PS.
  • the projection of the transverse passage zones ZT in an axial section plane passing through the pressure tap 40 is represented in hatched form on the .
  • the transverse passage zones ZT lead to a three-dimensional passage (or evacuation) surface greater than in the configurations where the front face 32 is positioned inside the tube 10 or in the outlet plane PS.
  • the ZT transverse passage zones promote the lateral evacuation of impurities.
  • the front face 32 is located downstream of the outlet plane PS so that XF ⁇ 0.5 dS, where XF is the axial distance between the front face 32 and the outlet plane PS and dS is the largest dimension of the internal straight section of the tube 10 in the outlet plane PS.
  • XF is the axial distance between the front face 32 and the outlet plane PS
  • dS is the largest dimension of the internal straight section of the tube 10 in the outlet plane PS.
  • the tube 10 is of circular section
  • the largest dimension dS of its section corresponds to its internal diameter d.
  • the front face 32 of the obstacle is delimited in height by an upper edge 31 and a lower edge 35, and in width by side edges 33.
  • the lower edge 35 is connected to the wall of the tube 12 while the upper edge 31 and the side edges 33 are free in the sense that they are not connected to the wall of the tube 12, but separated from it by an empty space.
  • These surfaces ZA and ZB are marked in Figures 2, 5 and 11.
  • the surfaces ZA and ZB are contiguous and flat when the front face 32 of the obstacle 30 is located upstream or in the exit plane PS of the tube 10 (that is to say when the obstacle 30 is located inside or at the exit of the tube 10).
  • These surfaces ZA and ZB are contiguous and three-dimensional, when the front face 32 of the obstacle is located downstream of the outlet plane PS of the tube 10, that is to say when there are transverse passage zones ZT.
  • the tube 10 delimits passage sections for the fluid.
  • the passage section the surface through which the fluid flows (or is evacuated) between the obstacle 30 and the wall 12 of the tube.
  • the tube 10 delimits a minimum passage section and a maximum passage section for the fluid, the minimum passage section being located at the level of the obstacle and being at least equal to 20% of the section of maximum passage.
  • the maximum passage section can be equal to the area of the internal circular section of the tube, i.e. ⁇ d 2 /4 where d is the internal diameter of the tube.
  • the minimum passage section corresponds to the sum of the surfaces ZA and ZB which surround the obstacle.
  • the section of the obstacle, at the level of its front face 32 measures between 20% and 80%, in particular between 30% and 70%, of the passage section of the tube 10 located just upstream of the front face 32.
  • the section of the The obstacle, at the level of its front face 32 therefore measures between 20% and 80% of the interior circular section of the tube.
  • the front face 32 of the obstacle 30 is substantially perpendicular to the wall 12 of the tube (in the examples of the drawings, the front face 32 of the obstacle 30 is perpendicular to the wall 12).
  • the front face can form with the wall 12 an angle of between 60° and 120°, in particular between 70° and 110°. A lower angle risks creating an impurity retention zone at the lower edge 35 of the front face 32, while a higher angle risks reducing the size of the stopping region S1.
  • a stopping region S1 is created in the vicinity and upstream of the front face 32.
  • the stopping region S1 is characterized by a zone called isobaric swirling dead water, delimited, in the cutting plane axial, by a line (shown in dotted lines on the ) connecting a point of separation A1 of the flow to the point of joining A2 of the flow.
  • the separation point A1 is located on the wall 12 in alignment with and upstream of the obstacle 30.
  • the separation point A2 is located towards the top of the obstacle.
  • the pressure tap 40 must be located in the stopping region S1, upstream of the front face 32 of the obstacle and downstream of the separation point A1.
  • the separation point A1 is defined by a zero average friction coefficient. This separation point A1 can be obtained without particular difficulty by fluid mechanics calculations of the Navier Stokes type within the reach of those skilled in the art.
  • the pressure tap 40 thus captures the pressure denoted Pi_S1 prevailing in the stopping region S1.
  • the pressure tap 40 is located upstream of the obstacle 30 so that 0.2 H ⁇ X ⁇ 2 H, where X is the axial distance between the pressure tap 40 and the face front 32 of the obstacle, and H the height of the front face. Below 0.2 ⁇ H, the pressure tap 40 is too close to the front face, which presents a risk of temporary blockage by impurities not yet evacuated. Beyond 2 ⁇ H, the pressure tap 40 risks being outside the stop region S1. To further reduce these risks, the pressure tap 40 can be located upstream of the obstacle 30 at an axial distance X such that 0.3 ⁇ H ⁇ X ⁇ H.
  • a secondary vortex in the stopping region S1, it is possible for a secondary vortex to form in the corner between the front face 32 of the obstacle and the wall 12 used to channel the flow, i.e. say at the level of the lower edge 35 of the front face 32.
  • a corner break 49 or a rounding 39 judiciously dimensioned can be formed in the corner at the foot of obstacle 30, as illustrated in Figures 13, 15 and 16.
  • probe 1 mounted, via a support 93, on the fuselage 91 of an aircraft.
  • a pneumatic connection 42 passes through the support 93 and connects the pressure tap 40 to a pressure sensor P present on board the aircraft.
  • a heating device such as a heating resistor 95 can be integrated into the obstacle 30 in order to increase the temperature of the materials constituting the obstacle 30 and, thus, further limit the risk that condensed phases of humid or icing air do not are formed or persist in contact with the walls of the obstacle 30 and in the stopping region S1.
  • the pressure sensor P (connected to the pressure tap 40) measures the pressure Pi_S1 in the stopping region S1 upstream of the obstacle. It is then possible, by applying a correction law described below, to go back to the Mach number of the aircraft, if we also measure the static pressure P0.
  • the static pressure P0 can be measured, for example, using one or more other pressure taps located elsewhere on the fuselage 91.
  • the proposed probe 1 makes it possible to prevent the pressure sensing from being exposed frontally to the flow and to establish a more effective evacuation of impurities.
  • the probe 1 can have a general shape similar to that of a Pitot probe and can be integrated in the same way into an aircraft or any other vehicle. It can therefore be mounted in place of a Pitot probe.
  • Probe 1 can be fixedly mounted on a vehicle because it allows reliable measurement of the stopping pressure for an angle of attack or slip range of + or – 15°. Probe 1 can also be mounted on a weather vane. These characteristics respond to the constraints posed by manufacturers to re-equip existing aircraft.
  • the difference between the two Mach numbers M0 and Mc is linked to the difference between the two measurements of the stopping pressure, that measured in the wind tunnel noted Pi0 and that measured by the probe noted Pi_S1.
  • the difference between the measurements of Pi0 and Pi_S1 is however relatively small. This difference is almost linear.
  • the least squares line gives a multiple correlation coefficient R 2 of 0.9996.
  • the difference between the Mach numbers M0 and Mc is also almost linear.
  • the least squares line gives a multiple correlation coefficient R 2 of 0.9999.
  • Step 1 Calculate the Mach number Mc with the static pressure P0 measured in the wind tunnel, and the stopping pressure Pi_S1 measured by the probe (which is considered as an approximate measurement of the stopping pressure) using the following relationship .
  • Step 2 Calculate the dynamic pressure Q0_S1 with Mc using the following relationship.
  • Step 3 Apply a correction law to calculate a rectified dynamic pressure Q0_R.
  • a correction law is established beforehand, following calibration tests carried out in a wind tunnel.
  • the correction law is, for example, of linear form with parameters a and b, so that:
  • Step 4 Calculate the rectified Mach number McR from Q0_R using the following relationship.

Abstract

The invention relates to a pressure sensing probe comprising: a wall (12) defining a tube (10) into which a fluid can enter; and a pressure tap (40) passing through the wall (12), from which tap the pressure is measured. The tube (10) is open at both ends (10A, 10B) so as to channel the flow of fluid along the tube (10). The probe (1) comprises an obstacle (30) having a front face (32) which faces the channelled flow of fluid and opposes this flow, the obstacle (30) forming a projection on the wall (12) and being dimensioned so as to create a stop region (S1) for stopping the fluid upstream and at the bottom of the front face (32), while allowing the fluid to flow around the obstacle (30), between the obstacle (30) and the wall (12). The pressure tap (40) is located in alignment with and upstream of the obstacle (30), in the stop region (S1).

Description

Sonde de captage de pressionPressure sensing probe
L'invention concerne une sonde de captage de pression. Cette sonde est utilisée pour capter la pression d'un fluide. Elle peut être montée, en particulier, sur un aéronef pour capter la pression dans une région d’arrêt.The invention relates to a pressure sensing probe. This probe is used to sense the pressure of a fluid. It can be mounted, in particular, on an aircraft to sense the pressure in a stopping region.
Arrière-planBackground
A bord d'un avion, on utilise des systèmes pour mesurer la pression de l'air en vol, de manière à pouvoir calculer ensuite le nombre de Mach de l'avion ou son altitude. Ces systèmes comprennent généralement des sondes de captage de pression comme des sondes Pitot, des sondes statiques ou des sondes Pitot-statiques (aussi appelées antennes de Prandtl). Toutes ces sondes sont constituées d'un tube de captage à l'intérieur duquel le flux d'air peut pénétrer.On board an aircraft, systems are used to measure air pressure in flight, so that the aircraft's Mach number or altitude can then be calculated. These systems generally include pressure sensing probes such as Pitot probes, static probes or Pitot-static probes (also called Prandtl antennas). All these probes consist of a collection tube inside which the air flow can penetrate.
Le nombre de Mach d’un avion est généralement calculée à partir de la pression d’arrêt mesurée et de la pression statique. En dynamique des fluides, la pression d'arrêt est la pression en un point d'arrêt dans un écoulement de fluide. Or, la mesure de la pression d’arrêt obtenue par le biais des sondes actuelles peut être faussée par différents phénomènes.The Mach number of an aircraft is generally calculated from the measured stopping pressure and the static pressure. In fluid dynamics, stopping pressure is the pressure at a stopping point in a fluid flow. However, the measurement of the stopping pressure obtained using current probes can be distorted by various phenomena.
D'abord, le tube de captage peut être encrassé par des débris ou des insectes. Pour éviter l’introduction d’insectes, les sondes actuelles sont couvertes lorsque l'avion est au sol. Des insectes ou des débris peuvent néanmoins s'introduire dans la sonde dès qu'elle est découverte.First, the collection tube may become clogged with debris or insects. To avoid the introduction of insects, current probes are covered when the plane is on the ground. However, insects or debris can enter the probe as soon as it is uncovered.
Ensuite, lors d'un vol en conditions givrantes ou par fortes pluies, malgré le chauffage de la sonde et la présence d'un dispositif de purge, la mesure de la pression d’arrêt peut être faussée en raison de la mauvaise évacuation de l'eau et des cristaux accumulés dans le tube de captage, par le dispositif de purge. Then, during a flight in icing conditions or in heavy rain, despite the heating of the probe and the presence of a purge device, the measurement of the shutdown pressure can be distorted due to poor evacuation of the gas. water and crystals accumulated in the collection tube, by the purge device.
Dans la suite, par souci de concision, l'eau, les cristaux, les débris, les insectes et les impuretés présents dans l'atmosphère, quels qu'ils soient, sont désignés conjointement et individuellement par "impuretés".Hereinafter, for the sake of brevity, water, crystals, debris, insects and impurities present in the atmosphere, whatever they may be, are referred to jointly and individually as "impurities".
Le brevet FR3067115 décrit une sonde dans laquelle le fond du tube de captage est bouché par une cloison arrière, de manière à stopper l'écoulement du fluide et permettre de mesurer la pression d’arrêt. Cette sonde présente par ailleurs un trou de drainage usiné au centre de la cloison arrière du tube (i.e. au fond du tube). Ce trou de faible diamètre vise à évacuer les impuretés vers l'extérieur. Toutefois, le trou de drainage étant situé dans l'axe de symétrie du tube, des impuretés risquent de s’accumuler autour du trou, à la périphérie de la cloison arrière, dans la zone d'intersection (i.e. dans le coin) entre la cloison arrière et le tube.Patent FR3067115 describes a probe in which the bottom of the collection tube is blocked by a rear partition, so as to stop the flow of the fluid and allow the stopping pressure to be measured. This probe also has a drainage hole machined in the center of the rear wall of the tube (i.e. at the bottom of the tube). This small diameter hole aims to evacuate impurities to the outside. However, the drainage hole being located in the axis of symmetry of the tube, impurities risk accumulating around the hole, at the periphery of the rear partition, in the intersection zone (i.e. in the corner) between the rear bulkhead and tube.
Il existe donc un besoin pour une nouvelle sonde de captage de pression permettant d'évacuer efficacement les impuretés. There is therefore a need for a new pressure sensing probe to effectively evacuate impurities.
Présentation généraleGeneral presentation
Une sonde de captage de pression selon l'invention comprend : une paroi définissant un tube à l'intérieur duquel un fluide peut pénétrer ; et une prise de pression traversant la paroi, à partir de laquelle la pression est mesurée. Le tube est ouvert à ses deux extrémités de manière à canaliser l'écoulement du fluide le long du tube. La sonde comprend un obstacle ayant une face avant, ou face amont, ou encore face frontale, qui fait face à l'écoulement canalisé du fluide et s'oppose à cet écoulement. L'obstacle forme une saillie sur la paroi et est dimensionné de manière à créer une région d'arrêt du fluide en amont et au pied de la face avant, tout en laissant le fluide s'écouler autour de l'obstacle, entre l'obstacle et la paroi. La prise de pression se situe dans l'alignement et en amont de l'obstacle, dans la région d'arrêt.A pressure sensing probe according to the invention comprises: a wall defining a tube inside which a fluid can penetrate; and a pressure tap passing through the wall, from which the pressure is measured. The tube is open at both ends so as to channel the flow of fluid along the tube. The probe comprises an obstacle having a front face, or upstream face, or even frontal face, which faces the channeled flow of the fluid and opposes this flow. The obstacle forms a projection on the wall and is dimensioned so as to create a fluid stopping region upstream and at the foot of the front face, while allowing the fluid to flow around the obstacle, between the obstacle and the wall. The pressure tap is located in line and upstream of the obstacle, in the stopping region.
Une telle sonde est de conception simple et robuste, et son risque d'encrassement par des impuretés est limité. En outre, sa maintenance est facilitée du fait que le tube est ouvert à ses extrémités.Such a probe is simple and robust in design, and its risk of clogging by impurities is limited. In addition, its maintenance is facilitated by the fact that the tube is open at its ends.
Lorsqu'une telle sonde est montée sur un aéronef, les impuretés sont évacuées directement et efficacement en étant entrainées dans l'écoulement canalisé du fluide. Cet écoulement canalisé est dévié à l'opposé de la prise de pression, par l'obstacle, ce qui protège la prise de pression des impuretés. Malgré cela, si des impuretés venaient à se loger au pied de l'obstacle, elles seraient rapidement délogées par un phénomène d'aspiration les attirant dans l'écoulement canalisé. Ce phénomène d'aspiration est le résultat d'une dépression créée par l'augmentation de la vitesse de l'écoulement autour de l'obstacle. Cette augmentation de vitesse est elle-même créée par effet Venturi. Une telle sonde permet donc d'évacuer efficacement les impuretés et, ainsi, d'éviter les erreurs de mesure liées à ces particules.When such a probe is mounted on an aircraft, the impurities are evacuated directly and efficiently by being entrained in the channeled flow of the fluid. This channeled flow is deflected away from the pressure tap, by the obstacle, which protects the pressure tap from impurities. Despite this, if impurities were to lodge at the foot of the obstacle, they would be quickly dislodged by a suction phenomenon drawing them into the channeled flow. This suction phenomenon is the result of a depression created by the increase in the speed of the flow around the obstacle. This increase in speed is itself created by the Venturi effect. Such a probe therefore makes it possible to effectively evacuate impurities and, thus, to avoid measurement errors linked to these particles.
Dans la présente demande, l'amont et l'aval sont repérés par rapport à l'écoulement canalisé du fluide à l'intérieur du tube. La région d'arrêt et la prise de pression se situent donc avant l'obstacle, dans le sens de l'écoulement. In the present application, the upstream and downstream are identified in relation to the channeled flow of the fluid inside the tube. The stopping region and the pressure tap are therefore located before the obstacle, in the direction of flow.
Le tube s'étend suivant un axe central. Il peut être de section quelconque. Généralement, le tube présente une forme générale de cylindre de révolution, auquel cas, il a pour axe central l'axe de révolution et sa section est circulaire. Dans le présent exposé, une direction axiale est une direction parallèle à l'axe central tandis qu'une direction radiale est une direction perpendiculaire à l'axe central. L'alignement s'apprécie suivant une direction axiale. Ainsi, la prise de pression et l'obstacle sont alignés suivant une direction axiale. The tube extends along a central axis. It can be of any section. Generally, the tube has the general shape of a cylinder of revolution, in which case, its central axis is the axis of revolution and its section is circular. In the present discussion, an axial direction is a direction parallel to the central axis while a radial direction is a direction perpendicular to the central axis. The alignment is assessed in an axial direction. Thus, the pressure tap and the obstacle are aligned in an axial direction.
L'obstacle forme une saillie sur la paroi en ce sens qu'il est en relief par rapport à la surface interne de la paroi. En d'autres termes, dans le cas particulier d'une paroi définissant un tube cylindrique, la face avant de l'obstacle se situe à l'intérieur du volume cylindrique de longueur mathématiquement infinie délimité par la surface interne du tube.The obstacle forms a projection on the wall in the sense that it is raised relative to the internal surface of the wall. In other words, in the particular case of a wall defining a cylindrical tube, the front face of the obstacle is located inside the cylindrical volume of mathematically infinite length delimited by the internal surface of the tube.
L'obstacle s'étend en hauteur, suivant une direction radiale ou sensiblement radiale, depuis son bord inférieur qui est relié à la paroi jusqu'à son bord supérieur qui est libre. La région d'arrêt se situe au pied de l'obstacle, i.e. le long de la paroi au niveau du bord inférieur de l'obstacle, et en amont de ce dernier. Un espace vide pour le passage du fluide s'étend entre le bord supérieur de l'obstacle et la paroi qui l'entoure. The obstacle extends in height, in a radial or substantially radial direction, from its lower edge which is connected to the wall to its upper edge which is free. The stopping region is located at the foot of the obstacle, i.e. along the wall at the level of the lower edge of the obstacle, and upstream of the latter. An empty space for the passage of the fluid extends between the upper edge of the obstacle and the wall which surrounds it.
Dans certains modes de réalisation, la face avant de l'obstacle est délimitée en hauteur par un bord supérieur et un bord inférieur, et en largeur par des bords latéraux. Le bord inférieur est relié à la paroi. Le bord supérieur et les bords latéraux sont libres, de sorte que le fluide peut s'écouler au-dessus de l'obstacle, entre le bord supérieur et la paroi, et sur les côtés de l'obstacle, entre les bords latéraux et la paroi. Une telle configuration permet d'évacuer plus efficacement les particules en ménageant, de part et d'autre de l'obstacle, des zones d'évacuation latérales. In certain embodiments, the front face of the obstacle is delimited in height by an upper edge and a lower edge, and in width by side edges. The lower edge is connected to the wall. The top edge and side edges are free, so fluid can flow over the obstacle, between the top edge and the wall, and down the sides of the obstacle, between the side edges and the wall. wall. Such a configuration makes it possible to evacuate the particles more effectively by providing, on either side of the obstacle, lateral evacuation zones.
Par contraste avec les sondes connues, dans lesquelles le fond du tube de captage est bouché pour stopper l'écoulement du fluide, la sonde proposée présente un tube de captage ouvert à ses deux extrémités de manière à canaliser l'écoulement du fluide le long du tube, depuis l'extrémité amont jusqu'à l'extrémité aval du tube et même au-delà de l'extrémité aval. Dans la sonde proposée, l'écoulement du fluide n'est stoppé que localement, dans une région limitée en amont de l'obstacle, à savoir ladite région d'arrêt. In contrast to known probes, in which the bottom of the collection tube is blocked to stop the flow of the fluid, the proposed probe has a collection tube open at its two ends so as to channel the flow of the fluid along the tube, from the upstream end to the downstream end of the tube and even beyond the downstream end. In the proposed probe, the flow of fluid is only stopped locally, in a limited region upstream of the obstacle, namely said stopping region.
Dans le présent exposé, on appelle "section de passage minimum" du fluide la section délimitée par la paroi interne du tube et les bords libres (latéraux et supérieur) de l’obstacle. On appelle "section de passage maximum", la surface perpendiculaire à l’écoulement dans le tube lorsqu’il n’y a pas d’obstacle. In this presentation, the "minimum passage section" of the fluid is called the section delimited by the internal wall of the tube and the free edges (lateral and upper) of the obstacle. We call "maximum passage section" the surface perpendicular to the flow in the tube when there is no obstacle.
Dans certains modes de réalisation, la section de passage minimum se situant au niveau de l'obstacle est au moins égale à 20% de la section de passage maximum. Le tube est donc largement ouvert, y compris au niveau de l'obstacle, de manière à favoriser l'écoulement du fluide le long du tube.In certain embodiments, the minimum passage section located at the level of the obstacle is at least equal to 20% of the maximum passage section. The tube is therefore widely open, including at the level of the obstacle, so as to promote the flow of fluid along the tube.
Actuellement, un avion de ligne peut être équipé de deux ou trois sondes de manière à pallier la défaillance d'une des sondes. La sonde proposée pourra, par exemple, être utilisée en complément ou en remplacement de l'une de ces sondes.Currently, an airliner can be equipped with two or three probes in order to compensate for the failure of one of the probes. The proposed probe could, for example, be used in addition to or as a replacement for one of these probes.
L'invention a également pour objet un système de mesure de pression comprenant une sonde telle que précédemment décrite et un capteur de pression relié pneumatiquement à la prise de pression.The invention also relates to a pressure measurement system comprising a probe as previously described and a pressure sensor pneumatically connected to the pressure tap.
Les caractéristiques et avantages précités, ainsi que d'autres, apparaîtront à la lecture de la description détaillée qui suit, de modes de réalisation de la sonde. Cette description détaillée fait référence aux dessins annexés.The aforementioned characteristics and advantages, as well as others, will become apparent on reading the following detailed description of embodiments of the probe. This detailed description refers to the accompanying drawings.
Les dessins annexés sont schématiques et ne sont pas nécessairement à l'échelle, ils visent avant tout à illustrer les principes de l'invention. Sur ces dessins, d'une figure (fig) à l'autre, des éléments (ou parties d'élément) identiques sont repérés par les mêmes signes de référence.
Cette figure est une coupe axiale d'un exemple de sonde de captage.
Cette figure est une vue de droite, selon la flèche II, de la sonde de la .
Cette figure est une vue de détail, en perspective, de l'extrémité aval de la sonde de la .
Cette figure est une coupe axiale d'un autre exemple de sonde de captage.
Cette figure est une vue de droite, selon la flèche V, de la sonde de la .
Cette figure est une vue de détail, en perspective, de l'extrémité aval de la sonde de la .
Cette figure est une vue analogue à celle de la , d'une variante de réalisation.
Cette figure est une vue analogue à celle de la , d'une variante de réalisation.
Cette figure est une vue analogue à celle de la , d'une variante de réalisation.
Cette figure est une coupe axiale d'un autre exemple de sonde de captage.
Cette figure est une vue de droite, selon la flèche XI, de la sonde de la .
Cette figure est une vue de détail et de dessus, selon la flèche XII, de l'extrémité aval de la sonde de la .
Cette figure est une vue de détail, en coupe axiale, de l'extrémité aval d'un autre exemple de sonde de captage.
Cette figure est une vue en perspective de la .
Cette figure est une vue de détail, en coupe axiale, de l'extrémité aval d'un autre exemple de sonde de captage.
Cette figure est une vue de détail, en coupe axiale, de l'extrémité aval d'un autre exemple de sonde de captage.
Cette figure représente un exemple de sonde de captage, en coupe axiale, montée sur le fuselage d'un aéronef.
Cette figure est un graphique représentant différentes pressions P mesurées, exprimées en pascal (Pa), en fonction du nombre de Mach de l'écoulement M0 mesuré dans la veine de la soufflerie.
Cette figure est un graphique représentant le nombre de Mach de l'écoulement Mc calculé à partir de la pression Pi_S1 mesurée dans la région d’arrêt S1, en fonction du nombre de Mach M0 mesuré dans la veine de la soufflerie.
Cette figure est un graphique qui représente le nombre de Mach rectifié McR issu de la méthode de correction décrite ci-après.
The accompanying drawings are schematic and are not necessarily to scale; they are primarily intended to illustrate the principles of the invention. In these drawings, from one figure (fig) to another, identical elements (or parts of elements) are identified by the same reference signs.
This figure is an axial section of an example of a collection probe.
This figure is a right-hand view, according to arrow II, of the probe of the .
This figure is a detailed perspective view of the downstream end of the probe of the .
This figure is an axial section of another example of a collection probe.
This figure is a right-hand view, according to arrow V, of the probe of the .
This figure is a detailed perspective view of the downstream end of the probe of the .
This figure is a view similar to that of the , of a variant embodiment.
This figure is a view similar to that of the , of a variant embodiment.
This figure is a view similar to that of the , of a variant embodiment.
This figure is an axial section of another example of a collection probe.
This figure is a right-hand view, according to arrow XI, of the probe of the .
This figure is a detail and top view, according to arrow XII, of the downstream end of the probe of the .
This figure is a detailed view, in axial section, of the downstream end of another example of a collection probe.
This figure is a perspective view of the .
This figure is a detailed view, in axial section, of the downstream end of another example of a collection probe.
This figure is a detailed view, in axial section, of the downstream end of another example of a collection probe.
This figure represents an example of a sensing probe, in axial section, mounted on the fuselage of an aircraft.
This figure is a graph representing different measured pressures P, expressed in pascal (Pa), as a function of the Mach number of the flow M0 measured in the wind tunnel vein.
This figure is a graph representing the Mach number of the flow Mc calculated from the pressure Pi_S1 measured in the stopping region S1, as a function of the Mach number M0 measured in the vein of the wind tunnel.
This figure is a graph which represents the rectified Mach number McR resulting from the correction method described below.
Description détailléedetailed description
Des modes de réalisation particuliers de la sonde de l'invention sont décrits en détail ci-après, en référence aux exemples représentés sur les dessins annexés. Ces modes de réalisation et ces exemples illustrent les caractéristiques et les avantages de l'invention. Il est toutefois rappelé que l'invention ne se limite ni à ces modes de réalisation particuliers, ni aux exemples représentés.Particular embodiments of the probe of the invention are described in detail below, with reference to the examples shown in the accompanying drawings. These embodiments and examples illustrate the characteristics and advantages of the invention. However, it is recalled that the invention is not limited either to these particular embodiments or to the examples shown.
Comme illustré sur les dessins, la sonde de captage de pression 1 comprend une paroi 12 définissant un tube 10, ou tube de captage, à l'intérieur duquel un fluide peut pénétrer. Une telle sonde 1 peut être montée, notamment, sur un véhicule terrestre, aérien ou maritime. En particulier, la sonde 1 peut équiper un aéronef comme un avion. Dans ce cas, le fluide en écoulement est de l'air. As illustrated in the drawings, the pressure sensing probe 1 comprises a wall 12 defining a tube 10, or sensing tube, inside which a fluid can penetrate. Such a probe 1 can be mounted, in particular, on a land, air or sea vehicle. In particular, the probe 1 can equip an aircraft such as an airplane. In this case, the flowing fluid is air.
La sonde 1 comprend une prise de pression 40 traversant la paroi 12. La pression peut être mesurée à partir de la prise de pression 40 par un capteur de pression P (représenté en pointillés sur les figures 1 et 17). Le capteur de pression P est relié à la prise de pression 40 par une liaison pneumatique. En d'autres termes, l'information est transmise par voie pneumatique depuis la prise de pression 40 jusqu'au capteur P qui effectue la mesure de pression. Cette mesure de pression peut ensuite servir de base au calcul du nombre de Mach du véhicule sur lequel la sonde 1 est montée.The probe 1 includes a pressure tap 40 passing through the wall 12. The pressure can be measured from the pressure tap 40 by a pressure sensor P (shown in dotted lines in Figures 1 and 17). The pressure sensor P is connected to the pressure tap 40 by a pneumatic connection. In other words, the information is transmitted pneumatically from the pressure tap 40 to the sensor P which performs the pressure measurement. This pressure measurement can then serve as a basis for calculating the Mach number of the vehicle on which probe 1 is mounted.
Le tube 10 est creux et ouvert à ses deux extrémités 10A, 10B, de manière à canaliser l'écoulement du fluide le long du tube 10. Les lignes de courant F de l'écoulement sont représentées par des lignes fléchées sur les figures 1, 4,10 et 13. Comme illustré, le fluide s’engouffre dans le tube 10 et son écoulement est canalisé le long du tube 10. Un obstacle 30 en saillie par rapport à la paroi 12 crée une région d'arrêt S1 du fluide en amont et au pied de l'obstacle 30, tout en laissant le fluide s'écouler autour de l'obstacle 30, c’est-à-dire entre l'obstacle 30 et la paroi 12 qui l'entoure. L'obstacle 30 peut, par exemple, être une protubérance ou une marche montante. La prise de pression 40 se situe dans l'alignement et en amont de l'obstacle 30, dans la région d'arrêt S1.The tube 10 is hollow and open at its two ends 10A, 10B, so as to channel the flow of the fluid along the tube 10. The current lines F of the flow are represented by arrowed lines in Figures 1, 4,10 and 13. As illustrated, the fluid rushes into the tube 10 and its flow is channeled along the tube 10. An obstacle 30 projecting relative to the wall 12 creates a stopping region S1 of the fluid in upstream and at the foot of the obstacle 30, while allowing the fluid to flow around the obstacle 30, that is to say between the obstacle 30 and the wall 12 which surrounds it. The obstacle 30 can, for example, be a protrusion or a rising step. The pressure tap 40 is located in alignment and upstream of the obstacle 30, in the stopping region S1.
La longueur L du tube 10 est suffisamment importante pour que l’écoulement incident soit canalisé et uniforme avant d'arriver sur l’obstacle 30. Par exemple, la longueur L du tube 10 peut être supérieure à cinq fois la plus grande dimension de sa section. Dans les exemples des dessins, le tube 10 est de forme cylindrique et de section circulaire, de sorte que la plus grande dimension de sa section correspond au diamètre interne d du tube 10. D'autres formes de tube pourraient néanmoins être envisagées sans sortir du cadre de l'invention. Par exemple, le tube 10 pourrait comporter en amont de sa longueur L une forme tronconique divergente, pour limiter l'introduction des impuretés. Le bord d’attaque de l’extrémité avant 10A du tube 10 pourrait, par ailleurs, être coupé au couteau, ou arrondi, pour mieux capter l’écoulement du fluide dans le tube.The length L of the tube 10 is sufficiently large so that the incident flow is channeled and uniform before arriving at the obstacle 30. For example, the length L of the tube 10 can be greater than five times the largest dimension of its section. In the examples of the drawings, the tube 10 is of cylindrical shape and of circular section, so that the largest dimension of its section corresponds to the internal diameter d of the tube 10. Other shapes of tube could nevertheless be considered without departing from the framework of the invention. For example, the tube 10 could have a divergent frustoconical shape upstream of its length L, to limit the introduction of impurities. The leading edge of the front end 10A of the tube 10 could, moreover, be cut with a knife, or rounded, to better capture the flow of the fluid in the tube.
L'obstacle 30 a une première face, appelée face avant 32, faisant face à l'écoulement canalisé du fluide et s'opposant à cet écoulement. La face avant 32 a une hauteur H et une largeur W, comme repéré sur la . Dans les exemples des dessins, l'obstacle 30 est de section sensiblement constante, mais ce n'est pas nécessairement le cas. Par exemple, l'obstacle 30 peut s'affiner vers l'aval. L'obstacle 30 peut, par ailleurs, présenter des bords biseautés ou arrondis comme représenté sur les figures 11 et 15. Des arrondis 47, 48 aux bords de la face avant 32 et des bords latéraux 33 de l’obstacle permettent de favoriser l’évacuation de l’écoulement entre l’obstacle 30 et la paroi 12 (figures 11, 15 et 16). The obstacle 30 has a first face, called the front face 32, facing the channeled flow of the fluid and opposing this flow. The front face 32 has a height H and a width W, as marked on the . In the examples of the drawings, the obstacle 30 is of substantially constant section, but this is not necessarily the case. For example, the obstacle 30 can become thinner towards the downstream. The obstacle 30 may, moreover, have beveled or rounded edges as shown in Figures 11 and 15. Roundings 47, 48 at the edges of the front face 32 and the side edges 33 of the obstacle make it possible to promote the evacuation of the flow between the obstacle 30 and the wall 12 (Figures 11, 15 and 16).
Comme représenté sur les figures 13, 15 et 16, un arrondi 39 ou une cassure d’angle 49 à la jonction de la face avant 32 et de la paroi 12 permet de favoriser l’évacuation des impuretés qui pourraient temporairement s’engouffrer dans la région d’arrêt S1.As shown in Figures 13, 15 and 16, a rounding 39 or a corner break 49 at the junction of the front face 32 and the wall 12 makes it possible to promote the evacuation of impurities which could temporarily rush into the stopping region S1.
De manière générale, la forme de l'obstacle 30 et de sa face avant 32 peuvent varier. De même, la position de l'obstacle 30 par rapport au plan de sortie PS du tube 10 peut varier. Ainsi, dans l'exemple des figures 1 à 3, l'obstacle 30 est fixé à l'extrémité aval 10B du tube 10 de sorte que la face avant 32 de l'obstacle se situe dans le plan de sortie PS du tube 10. On dit alors que l'obstacle 30 se situe "à la sortie" du tube 10. L'obstacle 30 a la forme d'une plaque et présente une épaisseur E, mesurée suivant une direction axiale, inférieure à la hauteur H et à la largeur W de l'obstacle.Generally speaking, the shape of the obstacle 30 and its front face 32 can vary. Likewise, the position of the obstacle 30 relative to the exit plane PS of the tube 10 can vary. Thus, in the example of Figures 1 to 3, the obstacle 30 is fixed to the downstream end 10B of the tube 10 so that the front face 32 of the obstacle is located in the exit plane PS of the tube 10. We then say that the obstacle 30 is located "at the exit" of the tube 10. The obstacle 30 has the shape of a plate and has a thickness E, measured in an axial direction, less than the height H and the width W of the obstacle.
L'exemple des figures 4 à 6 diffère de celui des figures 1 à 3 en ce que l'obstacle 30 a une épaisseur E plus importante de sorte qu'il a une forme générale de parallélépipède rectangle, étant entendu que la face inférieure de ce parallélépipède n'est pas plane puisqu'elle est au contact de la paroi 12 et suit la courbure de la paroi 12. Par ailleurs, l'obstacle 30 est positionné à l'intérieur du tube 10 de sorte que sa face arrière 36, ou face aval, se situe en amont du plan de sortie PS du tube 10.The example of Figures 4 to 6 differs from that of Figures 1 to 3 in that the obstacle 30 has a greater thickness E so that it has a general shape of a rectangular parallelepiped, it being understood that the lower face of this parallelepiped is not plane since it is in contact with the wall 12 and follows the curvature of the wall 12. Furthermore, the obstacle 30 is positioned inside the tube 10 so that its rear face 36, or downstream face, is located upstream of the outlet plane PS of tube 10.
L'exemple de la diffère de celui des figures 4 à 6 en ce que l'obstacle, bien qu'il soit toujours positionné à l'intérieur du tube 10, est plus proche du plan de sortie PS du tube 10. En particulier, la face arrière 36 de l'obstacle 30 est alignée avec le plan de sortie PS du tube 10. La face arrière 36 de l'obstacle 30 pourrait également se situer à l'extérieur du tube sans sortir du cadre de l'invention.The example of the differs from that of Figures 4 to 6 in that the obstacle, although it is still positioned inside the tube 10, is closer to the exit plane PS of the tube 10. In particular, the rear face 36 of the obstacle 30 is aligned with the exit plane PS of the tube 10. The rear face 36 of the obstacle 30 could also be located outside the tube without departing from the scope of the invention.
Les exemples des figures 8 et 9 diffèrent de celui des figures 4 à 7 essentiellement par la forme de l'obstacle 30. On comprend que l'obstacle peut présenter différentes formes sans sortir du cadre de l'invention, sa face avant 32 et, plus généralement, la section transversale de l'obstacle 30, pouvant être de forme générale rectangulaire, carrée, trapézoïdale, polygonale, semi-circulaire, etc., étant entendu que le bord inférieur 35 de la face avant 32 est au contact de la paroi 12 et suit la courbure de celle-ci.The examples of Figures 8 and 9 differ from that of Figures 4 to 7 essentially by the shape of the obstacle 30. It is understood that the obstacle can have different shapes without departing from the scope of the invention, its front face 32 and, more generally, the cross section of the obstacle 30, which can be of generally rectangular, square, trapezoidal, polygonal, semi-circular, etc. shape, it being understood that the lower edge 35 of the front face 32 is in contact with the wall 12 and follows the curvature thereof.
Les exemples des figures 10 à 16 diffèrent de celui des figures 1 à 3 par le fait que l'obstacle 30 a la forme d'une plaque fixée à l'extrémité aval 10B du tube 10 de sorte que la face avant 32 de l'obstacle se situe en aval du plan de sortie PS du tube 10 (et non pas dans le plan de sortie PS).The examples of Figures 10 to 16 differ from that of Figures 1 to 3 in that the obstacle 30 has the shape of a plate fixed to the downstream end 10B of the tube 10 so that the front face 32 of the obstacle is located downstream of the exit plane PS of tube 10 (and not in the exit plane PS).
Dans certains modes de réalisation, comme dans les exemples des figures 10 à 16, l'extrémité aval 10B du tube est délimitée par un plan de sortie PS, et une portion 12B de la paroi 12 se prolonge en aval du plan de sortie PS. En particulier, la portion 12B forme une languette s'étendant d'un côté du tube 10, dans le prolongement de celui-ci. L'obstacle 30 forme une saillie sur cette portion 12B de paroi. La face avant 32 de l'obstacle 30 est située en aval du plan de sortie PS. Il existe ainsi des zones de passage transversal ZT entre le plan de sortie PS et la face avant 32 de l'obstacle 30, de chaque côté de l'obstacle 30. Plus la distance axiale XF entre la face avant 32 et le plan de sortie PS augmente, plus la taille des zones de passage transversal ZT augmente. La projection des zones de passage transversal ZT dans un plan de coupe axial passant par la prise de pression 40 est représentée en hachuré sur la . In certain embodiments, as in the examples of Figures 10 to 16, the downstream end 10B of the tube is delimited by an outlet plane PS, and a portion 12B of the wall 12 extends downstream of the outlet plane PS. In particular, the portion 12B forms a tongue extending from one side of the tube 10, in the extension thereof. The obstacle 30 forms a projection on this wall portion 12B. The front face 32 of the obstacle 30 is located downstream of the exit plane PS. There are thus transverse passage zones ZT between the exit plane PS and the front face 32 of the obstacle 30, on each side of the obstacle 30. Plus the axial distance XF between the front face 32 and the exit plane PS increases, the more the size of the transverse passage zones ZT increases. The projection of the transverse passage zones ZT in an axial section plane passing through the pressure tap 40 is represented in hatched form on the .
Les zones de passage transversal ZT conduisent à une surface de passage (ou d’évacuation) tridimensionnelle plus grande que dans les configurations où la face avant 32 est positionnée à l’intérieur du tube 10 ou dans le plan de sortie PS. Les zones de passage transversal ZT favorisent l'évacuation latérale des impuretés.The transverse passage zones ZT lead to a three-dimensional passage (or evacuation) surface greater than in the configurations where the front face 32 is positioned inside the tube 10 or in the outlet plane PS. The ZT transverse passage zones promote the lateral evacuation of impurities.
Dans certains modes de réalisation, la face avant 32 est située en aval du plan de sortie PS de sorte que XF < 0,5·dS, où XF est la distance axiale entre la face avant 32 et le plan de sortie PS et dS la plus grande dimension de la section droite intérieure du tube 10 dans le plan de sortie PS. Lorsque le tube 10 est de section circulaire, la plus grande dimension dS de sa section correspond à son diamètre interne d. Une telle configuration garantit le fait que l'obstacle 30 soit situé dans l'écoulement canalisé du fluide. En d'autres termes, la zone en aval du tube 10 dans laquelle se situe l'obstacle 30 est suffisamment proche du plan de sortie PS du tube 10 pour que l'écoulement du fluide soit encore canalisé dans cette zone.In certain embodiments, the front face 32 is located downstream of the outlet plane PS so that XF < 0.5 dS, where XF is the axial distance between the front face 32 and the outlet plane PS and dS is the largest dimension of the internal straight section of the tube 10 in the outlet plane PS. When the tube 10 is of circular section, the largest dimension dS of its section corresponds to its internal diameter d. Such a configuration guarantees the fact that the obstacle 30 is located in the channeled flow of the fluid. In other words, the zone downstream of the tube 10 in which the obstacle 30 is located is sufficiently close to the exit plane PS of the tube 10 so that the flow of the fluid is still channeled in this zone.
Dans certains modes de réalisation, la face avant 32 de l'obstacle est délimitée en hauteur par un bord supérieur 31 et un bord inférieur 35, et en largeur par des bords latéraux 33. Le bord inférieur 35 est relié à la paroi du tube 12 tandis que le bord supérieur 31 et les bords latéraux 33 sont libres en ce sens qu'ils ne sont pas reliés à la paroi du tube 12, mais séparés de celle-ci par un espace vide. Il existe donc une surface supérieure ZA, au-dessus de l'obstacle 30, et des surfaces latérales ZB, de part et d'autre de l'obstacle 30, à travers lesquelles s'écoule le fluide. Ces surfaces ZA et ZB, sont repérées sur les figures 2, 5 et 11. Les surfaces ZA et ZB sont contiguës et planes lorsque la face avant 32 de l'obstacle 30 se situe en amont ou dans le plan de sortie PS du tube 10 (c’est-à-dire lorsque l'obstacle 30 se situe à l'intérieur ou à la sortie du tube 10). Ces surfaces ZA et ZB sont contiguës et tridimensionnelles, lorsque la face avant 32 de l'obstacle se situe en aval du plan de sortie PS du tube 10, c’est-à-dire lorsqu'il existe des zones de passage transversal ZT.In certain embodiments, the front face 32 of the obstacle is delimited in height by an upper edge 31 and a lower edge 35, and in width by side edges 33. The lower edge 35 is connected to the wall of the tube 12 while the upper edge 31 and the side edges 33 are free in the sense that they are not connected to the wall of the tube 12, but separated from it by an empty space. There is therefore an upper surface ZA, above the obstacle 30, and lateral surfaces ZB, on either side of the obstacle 30, through which the fluid flows. These surfaces ZA and ZB are marked in Figures 2, 5 and 11. The surfaces ZA and ZB are contiguous and flat when the front face 32 of the obstacle 30 is located upstream or in the exit plane PS of the tube 10 (that is to say when the obstacle 30 is located inside or at the exit of the tube 10). These surfaces ZA and ZB are contiguous and three-dimensional, when the front face 32 of the obstacle is located downstream of the outlet plane PS of the tube 10, that is to say when there are transverse passage zones ZT.
Le tube 10 délimite des sections de passage pour le fluide. On appelle section de passage la surface à travers laquelle s'écoule (ou s’évacue) le fluide entre l’obstacle 30 et la paroi 12 du tube. Dans certains modes de réalisation, le tube 10 délimite une section de passage minimum et une section de passage maximum pour le fluide, la section de passage minimum se situant au niveau de l'obstacle et étant au moins égale à 20% de la section de passage maximum. Dans le cas particulier d'un tube cylindrique de révolution, la section de passage maximum peut être égale à l'aire de la section circulaire intérieure du tube, soit π·d2/4 où d est le diamètre interne du tube.The tube 10 delimits passage sections for the fluid. We call the passage section the surface through which the fluid flows (or is evacuated) between the obstacle 30 and the wall 12 of the tube. In certain embodiments, the tube 10 delimits a minimum passage section and a maximum passage section for the fluid, the minimum passage section being located at the level of the obstacle and being at least equal to 20% of the section of maximum passage. In the particular case of a cylindrical tube of revolution, the maximum passage section can be equal to the area of the internal circular section of the tube, i.e. π·d 2 /4 where d is the internal diameter of the tube.
Dans les exemples des figures, la section de passage minimum correspond à la somme des surfaces ZA et ZB qui entourent l'obstacle.In the examples in the figures, the minimum passage section corresponds to the sum of the surfaces ZA and ZB which surround the obstacle.
Dans les modes de réalisation où l'obstacle 30 se situe à l'intérieur ou à la sortie du tube 10, comme dans les exemples des figures 1 à 9, la section de l'obstacle, au niveau de sa face avant 32, mesure entre 20 % et 80 %, en particulier entre 30% et 70%, de la section de passage du tube 10 située juste en amont de la face avant 32. Dans le cas particulier d'un tube cylindrique de révolution, la section de l'obstacle, au niveau de sa face avant 32, mesure donc entre 20 % et 80 % de la section circulaire intérieure du tube.In the embodiments where the obstacle 30 is located inside or at the exit of the tube 10, as in the examples of Figures 1 to 9, the section of the obstacle, at the level of its front face 32, measures between 20% and 80%, in particular between 30% and 70%, of the passage section of the tube 10 located just upstream of the front face 32. In the particular case of a cylindrical tube of revolution, the section of the The obstacle, at the level of its front face 32, therefore measures between 20% and 80% of the interior circular section of the tube.
Dans certains modes de réalisation, la face avant 32 de l'obstacle 30 est sensiblement perpendiculaire à la paroi 12 du tube (dans les exemples des dessins, la face avant32 de l'obstacle 30 est perpendiculaire à la paroi 12). En particulier, la face avant peut former avec la paroi 12 un angle compris entre 60° et 120°, en particulier entre 70° et 110°. Un angle plus faible risque de créer une zone de rétention des impuretés au niveau du bord inférieur 35 de la face avant 32, tandis qu'un angle plus élevé risque de diminuer la taille de la région d'arrêt S1.In certain embodiments, the front face 32 of the obstacle 30 is substantially perpendicular to the wall 12 of the tube (in the examples of the drawings, the front face 32 of the obstacle 30 is perpendicular to the wall 12). In particular, the front face can form with the wall 12 an angle of between 60° and 120°, in particular between 70° and 110°. A lower angle risks creating an impurity retention zone at the lower edge 35 of the front face 32, while a higher angle risks reducing the size of the stopping region S1.
Plus précisément et en référence à la prise comme exemple, une région d’arrêt S1 est créée au voisinage et en amont de la face avant 32. La région d’arrêt S1 est caractérisée par une zone dite d’eau-morte tourbillonnaire isobare, délimitée, dans le plan de coupe axial, par une ligne (représentée en pointillés sur la ) reliant un point de décollement A1 de l’écoulement au point de recollement A2 de l’écoulement. Le point de décollement A1 est situé sur la paroi 12 dans l'alignement et en amont de l’obstacle 30. Le point de recollement A2 est situé vers le sommet de l’obstacle.More precisely and with reference to the taken as an example, a stopping region S1 is created in the vicinity and upstream of the front face 32. The stopping region S1 is characterized by a zone called isobaric swirling dead water, delimited, in the cutting plane axial, by a line (shown in dotted lines on the ) connecting a point of separation A1 of the flow to the point of joining A2 of the flow. The separation point A1 is located on the wall 12 in alignment with and upstream of the obstacle 30. The separation point A2 is located towards the top of the obstacle.
La prise de pression 40 doit être située dans la région d'arrêt S1, en amont de la face avant 32 de l’obstacle et en aval du point A1 de décollement. Le point de décollement A1 est défini par un coefficient de frottement moyen nul. Ce point de décollement A1 peut être obtenu sans difficulté particulière par des calculs de mécanique des fluides de type Navier Stokes à la portée de la personne du métier. La prise de pression 40 capte ainsi la pression notée Pi_S1 régnant dans la région d'arrêt S1.The pressure tap 40 must be located in the stopping region S1, upstream of the front face 32 of the obstacle and downstream of the separation point A1. The separation point A1 is defined by a zero average friction coefficient. This separation point A1 can be obtained without particular difficulty by fluid mechanics calculations of the Navier Stokes type within the reach of those skilled in the art. The pressure tap 40 thus captures the pressure denoted Pi_S1 prevailing in the stopping region S1.
Dans certains modes de réalisation, la prise de pression 40 se situe en amont de l'obstacle 30 de sorte que 0,2·H ≤ X ≤ 2·H, où X est la distance axiale entre la prise de pression 40 et la face avant 32 de l'obstacle, et H la hauteur de la face avant. En deçà de 0,2·H, la prise de pression 40 est trop proche de la face avant ce qui présente un risque d'obturation temporaire par des impuretés non encore évacuées. Au-delà de 2·H, la prise de pression 40 risque de se trouver en dehors de la région d'arrêt S1. Pour diminuer encore ces risques, la prise de pression 40 peut se situer en amont de l'obstacle 30 à une distance axiale X telle que 0,3·H ≤ X ≤ H.In certain embodiments, the pressure tap 40 is located upstream of the obstacle 30 so that 0.2 H ≤ X ≤ 2 H, where X is the axial distance between the pressure tap 40 and the face front 32 of the obstacle, and H the height of the front face. Below 0.2·H, the pressure tap 40 is too close to the front face, which presents a risk of temporary blockage by impurities not yet evacuated. Beyond 2·H, the pressure tap 40 risks being outside the stop region S1. To further reduce these risks, the pressure tap 40 can be located upstream of the obstacle 30 at an axial distance X such that 0.3·H ≤ X ≤ H.
Par ailleurs, dans la région d’arrêt S1, il est possible qu'un tourbillon secondaire se forme dans le coin entre la face avant 32 de l'obstacle et la paroi 12 servant à canaliser l’écoulement, c’est-à-dire au niveau du bord inférieur 35 de la face avant 32. Dans certains modes de réalisation, pour éviter la formation d'un tel tourbillon secondaire qui pourrait favoriser l’accumulation de impuretés, une cassure d'angle 49 ou un arrondi 39 judicieusement dimensionné peut être formé dans le coin au pied de l’obstacle 30, comme illustré sur les figures 13, 15 et 16.Furthermore, in the stopping region S1, it is possible for a secondary vortex to form in the corner between the front face 32 of the obstacle and the wall 12 used to channel the flow, i.e. say at the level of the lower edge 35 of the front face 32. In certain embodiments, to avoid the formation of such a secondary swirl which could promote the accumulation of impurities, a corner break 49 or a rounding 39 judiciously dimensioned can be formed in the corner at the foot of obstacle 30, as illustrated in Figures 13, 15 and 16.
La illustre un exemple de sonde 1 montée, via un support 93, sur le fuselage 91 d'un aéronef. Une liaison pneumatique 42 traverse le support 93 et relie la prise de pression 40 à un capteur de pression P présent à bord de l'aéronef. Un dispositif de chauffage comme une résistance chauffante 95 peut être intégré à l'obstacle 30 afin d’augmenter la température des matériaux constituant l'obstacle 30 et, ainsi, limiter encore le risque que des phases condensées de l’air humide ou givrant ne se forment ou perdurent au contact des parois de l'obstacle 30 et dans la région d’arrêt S1.There illustrates an example of probe 1 mounted, via a support 93, on the fuselage 91 of an aircraft. A pneumatic connection 42 passes through the support 93 and connects the pressure tap 40 to a pressure sensor P present on board the aircraft. A heating device such as a heating resistor 95 can be integrated into the obstacle 30 in order to increase the temperature of the materials constituting the obstacle 30 and, thus, further limit the risk that condensed phases of humid or icing air do not are formed or persist in contact with the walls of the obstacle 30 and in the stopping region S1.
Le capteur de pression P (relié à la prise de pression 40) mesure la pression Pi_S1 dans la région d’arrêt S1 en amont de l’obstacle. Il est alors possible, en appliquant une loi de correction décrite plus loin, de remonter au nombre de Mach de l'aéronef, si l'on mesure par ailleurs la pression statique P0. La pression statique P0 peut être mesurée, par exemple, à l'aide d'une ou plusieurs autres prises de pression situées ailleurs sur le fuselage 91.The pressure sensor P (connected to the pressure tap 40) measures the pressure Pi_S1 in the stopping region S1 upstream of the obstacle. It is then possible, by applying a correction law described below, to go back to the Mach number of the aircraft, if we also measure the static pressure P0. The static pressure P0 can be measured, for example, using one or more other pressure taps located elsewhere on the fuselage 91.
Comparativement à une sonde Pitot de l'art antérieur, la sonde 1 proposée permet d’éviter que le captage de pression soit exposé frontalement à l’écoulement et d’établir une évacuation des impuretés plus efficace. La sonde 1 peut avoir une forme générale similaire à celle d’une sonde Pitot et s’intégrer de la même manière à un aéronef ou tout autre véhicule. Elle peut donc être montée en lieu et place d'une sonde Pitot. La sonde 1 peut être montée fixe sur un véhicule car elle permet une mesure fiable de la pression d’arrêt pour une plage d’incidence ou de dérapage de + ou – 15°. La sonde 1 peut aussi être montée sur girouette. Ces caractéristiques répondent aux contraintes posées par les industriels pour rééquiper les avions existants.Compared to a Pitot probe of the prior art, the proposed probe 1 makes it possible to prevent the pressure sensing from being exposed frontally to the flow and to establish a more effective evacuation of impurities. The probe 1 can have a general shape similar to that of a Pitot probe and can be integrated in the same way into an aircraft or any other vehicle. It can therefore be mounted in place of a Pitot probe. Probe 1 can be fixedly mounted on a vehicle because it allows reliable measurement of the stopping pressure for an angle of attack or slip range of + or – 15°. Probe 1 can also be mounted on a weather vane. These characteristics respond to the constraints posed by manufacturers to re-equip existing aircraft.
La qualité et la fiabilité des mesures de pression effectuées au moyen de la sonde 1 proposée ont été évaluées lors d'essais en soufflerie.The quality and reliability of the pressure measurements carried out using the proposed probe 1 were evaluated during wind tunnel tests.
Ces essais ont été réalisés pour plusieurs nombres de Mach dans la soufflerie transsonique "ONERA–S3Ch", qui comprend un circuit à retour pourvu d’une régulation thermique et d’une veine d’essai de section rectangulaire de 0,80 m x 0,76 m de côtés, alimentée par un moteur développant jusqu’à 3,5 MW de puissance.These tests were carried out for several Mach numbers in the “ONERA–S3Ch” transonic wind tunnel, which includes a return circuit provided with thermal regulation and a test vein with a rectangular section of 0.80 m x 0. 76 m sides, powered by a motor developing up to 3.5 MW of power.
La sonde 1 testée présentait une forme générale identique à celle des figures 1 à 3, à savoir celle d'un tube cylindrique de révolution creux, de longueur L = 120mm, et de diamètre intérieur d = 18mm. L'obstacle 30 avait la forme d'une plaque rectangulaire de hauteur H = 10mm, de largeur W = 12mm et d'épaisseur E = 1mm. Pour réaliser une sonde à plus petite échelle, il est possible, par exemple, de procéder à une homothétie dans toutes les directions spatiales de la sonde testée.The probe 1 tested had a general shape identical to that of Figures 1 to 3, namely that of a hollow cylindrical tube of revolution, of length L = 120mm, and of internal diameter d = 18mm. The obstacle 30 had the shape of a rectangular plate of height H = 10mm, width W = 12mm and thickness E = 1mm. To produce a probe on a smaller scale, it is possible, for example, to carry out a scale in all the spatial directions of the probe tested.
La montre les mesures de pression relevées pendant une séquence d’essai, réalisée pour une plage de Mach 0,3 à 0,9. Sur cette figure, sont données la pression statique P0 mesurée en soufflerie, la pression génératrice Pi0 mesurée en soufflerie et la pression Pi_S1 mesurée dans la région d’arrêt S1 de la sonde. D'autres séquences d’essai ont permis de constater la bonne répétitivité de la mesure de la pression Pi_S1 dans la région d’arrêt S1. There shows the pressure measurements taken during a test sequence, carried out for a range of Mach 0.3 to 0.9. In this figure, the static pressure P0 measured in the wind tunnel, the generating pressure Pi0 measured in the wind tunnel and the pressure Pi_S1 measured in the stopping region S1 of the probe are given. Other test sequences made it possible to note the good repeatability of the pressure measurement Pi_S1 in the stop region S1.
La montre une comparaison entre le nombre de Mach M0 mesuré dans la veine de la soufflerie et le nombre de Mach Mc calculé à partir de la pression Pi_S1 mesurée.There shows a comparison between the Mach number M0 measured in the wind tunnel vein and the Mach number Mc calculated from the measured pressure Pi_S1.
L’écart entre les deux nombres de Mach M0 et Mc est lié à l’écart entre les deux mesures de la pression d’arrêt, celle mesurée dans la soufflerie notée Pi0 et celle mesurée par la sonde notée Pi_S1. L’écart entre les mesures de Pi0 et Pi_S1 est toutefois relativement faible. Cet écart est quasiment linéaire. La droite des moindres carrés donne un coefficient de corrélation multiple R2 de 0,9996. L’écart entre les nombres de Mach M0 et Mc est également quasiment linéaire. La droite des moindres carrés donne un coefficient de corrélation multiple R2 de 0,9999. Ces écarts ne sont donc pas importants en eux-mêmes puisque, du fait de leur évolution monotone et quasi linéaire, ils peuvent être corrigés facilement par des lois de correction. Ainsi, dans certains modes de réalisation, une loi de correction linéaire est utilisée pour la mesure de pression Pi_S1 ou pour la pression dynamique Q0_S1 issue de la mesure de pression Pi_S1. On aboutit ainsi à la détermination d’une pression dynamique rectifiée, Q0_R.The difference between the two Mach numbers M0 and Mc is linked to the difference between the two measurements of the stopping pressure, that measured in the wind tunnel noted Pi0 and that measured by the probe noted Pi_S1. The difference between the measurements of Pi0 and Pi_S1 is however relatively small. This difference is almost linear. The least squares line gives a multiple correlation coefficient R 2 of 0.9996. The difference between the Mach numbers M0 and Mc is also almost linear. The least squares line gives a multiple correlation coefficient R 2 of 0.9999. These deviations are therefore not important in themselves since, due to their monotonic and almost linear evolution, they can be easily corrected by correction laws. Thus, in certain embodiments, a linear correction law is used for the pressure measurement Pi_S1 or for the dynamic pressure Q0_S1 resulting from the pressure measurement Pi_S1. This leads to the determination of a rectified dynamic pressure, Q0_R.
Les étapes pour appliquer cette correction sont les suivantes :The steps to apply this fix are as follows:
(Etape 1) Calculer le nombre de Mach Mc avec la pression statique P0 mesurée en soufflerie, et la pression d'arrêt Pi_S1 mesurée par la sonde (qui est considérée comme une mesure approchée de la pression d’arrêt) en utilisant la relation suivante.(Step 1) Calculate the Mach number Mc with the static pressure P0 measured in the wind tunnel, and the stopping pressure Pi_S1 measured by the probe (which is considered as an approximate measurement of the stopping pressure) using the following relationship .
(Etape 2) Calculer la pression dynamique Q0_S1 avec Mc en utilisant la relation suivante.(Step 2) Calculate the dynamic pressure Q0_S1 with Mc using the following relationship.
(Etape 3) Appliquer une loi de correction pour calculer une pression dynamique rectifiée Q0_R. Une telle loi de correction est établie au préalable, à l'issue de tests de calibration réalisés en soufflerie. La loi de correction est, par exemple, de forme linéaire avec des paramètres a et b, de sorte que : (Step 3) Apply a correction law to calculate a rectified dynamic pressure Q0_R. Such a correction law is established beforehand, following calibration tests carried out in a wind tunnel. The correction law is, for example, of linear form with parameters a and b, so that:
(Etape 4) Calculer le nombre de Mach rectifié McR à partir de Q0_R en utilisant la relation suivante.(Step 4) Calculate the rectified Mach number McR from Q0_R using the following relationship.
En appliquant ces étapes, une valeur du nombre de Mach d’écoulement rectifié McR à 0,002 près du nombre de Mach réel M0 a été obtenue. Ceci est illustré sur la qui montre l’efficacité de la correction proposée. Un tel résultat répond parfaitement aux exigences de précision actuelles pour la mesure du nombre de Mach, en particulier dans le domaine de l'aéronautique.By applying these steps, a value of the rectified flow Mach number McR within 0.002 of the actual Mach number M0 was obtained. This is illustrated on the which shows the effectiveness of the proposed correction. Such a result perfectly meets current precision requirements for measuring the Mach number, particularly in the field of aeronautics.
Les modes de réalisation décrits dans le présent exposé sont donnés à titre illustratif et non limitatif, une personne du métier pouvant facilement, au vu de cet exposé, modifier ces modes de réalisation, ou en envisager d'autres, tout en restant dans le cadre de l'invention.The embodiments described in this presentation are given for illustrative and non-limiting purposes, a person skilled in the art can easily, in view of this presentation, modify these embodiments, or consider others, while remaining within the framework of the invention.
En particulier, une personne du métier pourra facilement envisager des variantes ne comprenant qu'une partie des caractéristiques des modes de réalisation précédemment décrits, si ces caractéristiques à elles seules suffisent pour procurer un des avantages de l'invention. De plus, les différentes caractéristiques de ces modes de réalisation peuvent être utilisées seules ou être combinées entre elles. Lorsqu'elles sont combinées, ces caractéristiques peuvent l'être comme décrit ci-dessus ou différemment, l'invention ne se limitant pas aux combinaisons spécifiques décrites dans le présent exposé. En particulier, sauf précision contraire, une caractéristique décrite en relation avec un mode de réalisation peut être appliquée de manière analogue à un autre mode de réalisation.In particular, a person skilled in the art can easily consider variants comprising only part of the characteristics of the embodiments previously described, if these characteristics alone are sufficient to provide one of the advantages of the invention. In addition, the different characteristics of these embodiments can be used alone or combined with each other. When combined, these features may be as described above or differently, the invention not being limited to the specific combinations described herein. In particular, unless otherwise specified, a characteristic described in relation to one embodiment can be applied analogously to another embodiment.

Claims (9)

  1. Sonde de captage de pression comprenant :
    une paroi (12) définissant un tube (10) à l'intérieur duquel un fluide peut pénétrer; et
    une prise de pression (40) traversant la paroi (12), à partir de laquelle la pression est mesurée ;
    dans laquelle le tube (10) est ouvert à ses deux extrémités (10A, 10B) de manière à canaliser l'écoulement du fluide le long du tube (10),
    dans laquelle la sonde (1) comprend un obstacle (30) ayant une face avant (32) qui fait face à l'écoulement canalisé du fluide et s'oppose à cet écoulement, l'obstacle (30) formant une saillie sur la paroi (12) et étant dimensionné de manière à créer une région d'arrêt (S1) du fluide en amont et au pied de la face avant (32), tout en laissant le fluide s'écouler autour de l'obstacle (30), entre l'obstacle (30) et la paroi (12),
    dans laquelle la prise de pression (40) se situe dans l'alignement et en amont de l'obstacle (30), dans la région d'arrêt (S1).
    Pressure sensing probe including:
    a wall (12) defining a tube (10) into which fluid can penetrate; And
    a pressure tap (40) passing through the wall (12), from which the pressure is measured;
    in which the tube (10) is open at its two ends (10A, 10B) so as to channel the flow of the fluid along the tube (10),
    in which the probe (1) comprises an obstacle (30) having a front face (32) which faces the channeled flow of the fluid and opposes this flow, the obstacle (30) forming a projection on the wall (12) and being dimensioned so as to create a stopping region (S1) of the fluid upstream and at the foot of the front face (32), while allowing the fluid to flow around the obstacle (30), between the obstacle (30) and the wall (12),
    in which the pressure tap (40) is located in alignment and upstream of the obstacle (30), in the stopping region (S1).
  2. Sonde selon la revendication 1, dans laquelle la face avant (32) de l'obstacle est délimitée en hauteur par un bord supérieur (31) et un bord inférieur (35), et en largeur par des bords latéraux (33), dans laquelle le bord inférieur (35) est relié à la paroi (12), et dans laquelle le bord supérieur (31) et les bords latéraux (33) sont libres, de sorte que le fluide peut s'écouler au-dessus de l'obstacle (30), entre le bord supérieur (31) et la paroi (12), et sur les côtés de l'obstacle (30), entre les bords latéraux (33) et la paroi (12).Probe according to claim 1, in which the front face (32) of the obstacle is delimited in height by an upper edge (31) and a lower edge (35), and in width by lateral edges (33), in which the lower edge (35) is connected to the wall (12), and in which the upper edge (31) and the side edges (33) are free, so that the fluid can flow over the obstacle (30), between the upper edge (31) and the wall (12), and on the sides of the obstacle (30), between the side edges (33) and the wall (12).
  3. Sonde selon la revendication 1 ou 2, dans laquelle le tube (10) délimite une section de passage minimum et une section de passage maximum pour le fluide, la section de passage minimum se situant au niveau de l'obstacle (30) et étant au moins égale à 20% de la section de passage maximum.Probe according to claim 1 or 2, in which the tube (10) delimits a minimum passage section and a maximum passage section for the fluid, the minimum passage section being located at the level of the obstacle (30) and being at less equal to 20% of the maximum passage section.
  4. Sonde selon l'une quelconque des revendications 1 à 3, dans laquelle la face avant (32) de l'obstacle (30) est sensiblement perpendiculaire à la paroi (12).Probe according to any one of claims 1 to 3, in which the front face (32) of the obstacle (30) is substantially perpendicular to the wall (12).
  5. Sonde selon l'une quelconque des revendications 1 à 4, dans laquelle l'obstacle (30) se situe à l'intérieur ou à la sortie du tube (10) et dans laquelle la section de l'obstacle, au niveau de sa face avant (32), mesure entre 20 % et 80 %, en particulier entre 30% et 70%, de la section de passage du tube située juste en amont de la face avant (32).Probe according to any one of claims 1 to 4, in which the obstacle (30) is located inside or at the outlet of the tube (10) and in which the section of the obstacle, at the level of its face front (32), measures between 20% and 80%, in particular between 30% and 70%, of the passage section of the tube located just upstream of the front face (32).
  6. Sonde selon l'une quelconque des revendications 1 à 4, dans laquelle l'extrémité aval (10B) du tube est délimitée par un plan de sortie (PS) du tube, dans laquelle une portion de la paroi (12) se prolonge en aval du plan de sortie (PS), dans laquelle l'obstacle (30) est relié à la portion de paroi, et dans laquelle la face avant (32) est située en aval du plan de sortie (PS).Probe according to any one of claims 1 to 4, in which the downstream end (10B) of the tube is delimited by an outlet plane (PS) of the tube, in which a portion of the wall (12) extends downstream of the exit plane (PS), in which the obstacle (30) is connected to the wall portion, and in which the front face (32) is located downstream of the exit plane (PS).
  7. Sonde selon la revendication 6, dans laquelle la face avant (32) est située en aval du plan de sortie (PS) de sorte que XF < 0,5·dS, où XF est la distance axiale entre la face avant (32) et le plan de sortie (PS) et dS la plus grande dimension de la section du tube (10) dans le plan de sortie (PS).Probe according to claim 6, in which the front face (32) is located downstream of the exit plane (PS) so that XF < 0.5 dS, where XF is the axial distance between the front face (32) and the outlet plane (PS) and dS the largest dimension of the section of the tube (10) in the outlet plane (PS).
  8. Sonde selon l'une quelconque des revendications 1 à 7, dans laquelle la prise de pression (40) se situe en amont de l'obstacle (30) de sorte que 0,2·H ≤ XP ≤ 2·H, où XP est la distance axiale entre la prise de pression (40) et la face avant (32) de l'obstacle, et H la hauteur de la face avant (32).Probe according to any one of claims 1 to 7, in which the pressure tap (40) is located upstream of the obstacle (30) so that 0.2·H ≤ XP ≤ 2·H, where XP is the axial distance between the pressure tap (40) and the front face (32) of the obstacle, and H the height of the front face (32).
  9. Système de mesure de pression comprenant une sonde (1) selon l'une quelconque des revendications 1 à 8, et un capteur de pression (P) relié pneumatiquement à la prise de pression (40).Pressure measuring system comprising a probe (1) according to any one of claims 1 to 8, and a pressure sensor (P) pneumatically connected to the pressure tap (40).
PCT/EP2023/078384 2022-10-13 2023-10-12 Pressure sensing probe WO2024079278A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2210507 2022-10-13
FR2210507A FR3140943A1 (en) 2022-10-13 2022-10-13 Pressure sensing probe

Publications (1)

Publication Number Publication Date
WO2024079278A1 true WO2024079278A1 (en) 2024-04-18

Family

ID=85121930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/078384 WO2024079278A1 (en) 2022-10-13 2023-10-12 Pressure sensing probe

Country Status (2)

Country Link
FR (1) FR3140943A1 (en)
WO (1) WO2024079278A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5365795A (en) * 1993-05-20 1994-11-22 Brower Jr William B Improved method for determining flow rates in venturis, orifices and flow nozzles involving total pressure and static pressure measurements
US20100071479A1 (en) * 2006-11-17 2010-03-25 Thales Device for measuring the total pressure of a flow and method implementing the device
US20170003151A1 (en) * 2015-07-01 2017-01-05 Rosemount Aerospace Inc. Device for measuring total pressure of fluid flow
US20180348076A1 (en) * 2017-06-02 2018-12-06 Thales Pressure measuring probe, in particular for aircraft

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5365795A (en) * 1993-05-20 1994-11-22 Brower Jr William B Improved method for determining flow rates in venturis, orifices and flow nozzles involving total pressure and static pressure measurements
US20100071479A1 (en) * 2006-11-17 2010-03-25 Thales Device for measuring the total pressure of a flow and method implementing the device
US20170003151A1 (en) * 2015-07-01 2017-01-05 Rosemount Aerospace Inc. Device for measuring total pressure of fluid flow
US20180348076A1 (en) * 2017-06-02 2018-12-06 Thales Pressure measuring probe, in particular for aircraft
FR3067115A1 (en) 2017-06-02 2018-12-07 Thales PRESSURE MEASURING SENSOR, IN PARTICULAR FOR AN AIRCRAFT

Also Published As

Publication number Publication date
FR3140943A1 (en) 2024-04-19

Similar Documents

Publication Publication Date Title
EP2539675B1 (en) Ice-breaking probe for measuring total air temperature
EP1517125B1 (en) Device and method for determining the total temperature for an aircraft
CH630175A5 (en) PITOT TUBE FLOWMETER.
EP2605021A1 (en) Probe for measuring local incidence and method using the probe
EP3301428B1 (en) Rake for measuring gas parameters at the outlet of a turbine engine flow section
FR3067115B1 (en) PRESSURE MEASURING SENSOR, IN PARTICULAR FOR AN AIRCRAFT
EP2113084A2 (en) Device for measuring the total pressure of a flow and method using said device
FR2978829A1 (en) VELOCIMETRE INSENSIBLE TO GIVING CONDITIONS AND TO HEAVY RAIN
FR3024494A1 (en) AIRCRAFT TURBOMACHINE COMPRISING A DEFLECTOR
EP3009819A1 (en) System for measuring tangential force applied by a fluid with increased sensitivity
EP2843420A1 (en) Aerodynamic measurement probe for aircraft
EP1454147B1 (en) Multipurpose probe with variable sweep
WO2017187073A1 (en) Aircraft propulsion system comprising a member covered with a grooved structure
WO2024079278A1 (en) Pressure sensing probe
EP1025366B1 (en) Fluid oscillator with extended slot
FR3038981A1 (en) DEVICE FOR MEASURING AERODYNAMIC SIZES FOR PLACING IN A FLOWING VEHIC OF A TURBOMACHINE
EP0592657B1 (en) Fluidic oscillator and flow meter comprising same
EP0886732B1 (en) Fluidic oscillator comprising an obstacle with improved profile
FR2996463A1 (en) PARTICLE SUSPENSION ASSEMBLY IN SUSPENSION IN A FLUID
WO2022194961A1 (en) Aeronautical probe
FR3035963A1 (en) DEVICE FOR MEASURING THE SPEED OF A FLUID
FR3053786A1 (en) DEVICE FOR MEASURING AERODYNAMIC SIZES FOR PLACING IN A FLOWING VEHIC OF A TURBOMACHINE
FR2862383A1 (en) Air flow incidence sensor for e.g. aircraft, has body located outside aircraft skin and air flow force sensors comprising plates that attach the body to the skin, and sensor of position of body with respect to skin
FR2748109A1 (en) DEVICE FOR MEASURING THE FLOW OF A FLOWING FLOW WITH ELEMENT (S) MODIFYING THE SPEED PROFILE OF SAID FLOW
FR3123449A1 (en) AERODYNAMIC MEASUREMENT PROBE