EP1165851A1 - Procede de fabrication d'une feuille d'aluminium aa6000 - Google Patents

Procede de fabrication d'une feuille d'aluminium aa6000

Info

Publication number
EP1165851A1
EP1165851A1 EP00906503A EP00906503A EP1165851A1 EP 1165851 A1 EP1165851 A1 EP 1165851A1 EP 00906503 A EP00906503 A EP 00906503A EP 00906503 A EP00906503 A EP 00906503A EP 1165851 A1 EP1165851 A1 EP 1165851A1
Authority
EP
European Patent Office
Prior art keywords
sheet
hot
ingot
temperature
recrystallisation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00906503A
Other languages
German (de)
English (en)
Inventor
Graeme John Marshall
Karl Albert Herbst
Martin Heinze
Richard Hamerton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto Alcan International Ltd
Original Assignee
Alcan International Ltd Canada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcan International Ltd Canada filed Critical Alcan International Ltd Canada
Priority to EP00906503A priority Critical patent/EP1165851A1/fr
Publication of EP1165851A1 publication Critical patent/EP1165851A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon

Definitions

  • AA6000 sheet is prone to a phenomenon called roping, which is the effect seen from macroscopic surface undulations caused by stretching during pressing.
  • Conventional routes to prevent this phenomenon i.e. to provide roping-free sheet, involve a recrystallisation anneal either before or between cold rolling passes and can be performed either by a batch or a continuous process. These processes are costly in terms of both time and energy. Additionally, the introduction of an annealing step can adversely influence the ability to solution heat-treat at final gauge, thus lowering the attainable strength before and after paint bake.
  • the invention provides a method of converting an ingot of a 6000 series aluminium alloy to self-annealing sheet, which method comprises subjecting the ingot to a two-stage homogenisation treatment, the first stage being at a temperature of at least 560°C and the second stage at a temperature of 450°C to 480°C, and then hot-rolling the homogenised ingot at a starting hot roll temperature of 450°C to 480°C and a finishing hot roll temperature of 320°C to 360°C.
  • the hot-rolled sheet is caused to be self-annealing by a careful control of treatment conditions, as discussed in more detail below, and also by control over the alloy composition.
  • Preferred alloy composition is (in wt %)
  • Mn-containing dispersoids coarsen and these coarsened dispersoids later contribute to the self- annealing properties of the hot-rolled sheet.
  • the Mn content of the alloy needs to be at least 0.03 or 0.04 % by weight.
  • Cr is preferably included in the alloy in order to keep Mn in a finely dispersed form.
  • Other alloy components e.g. Si, Fe and Mg, may be present at concentrations usual for AA6000 alloys for they do not have any major effect on the self- annealing properties described herein.
  • Alloy of the required composition is cast into ingots, typically by d.c. casting although the casting technique is not material to the invention.
  • Ingots are subjected to a two-stage homogenisation, the first stage being at a temperature of at least 560°C, preferably at least 570°C for at least one hour.
  • a maximum homogenisation temperature is set by the need to avoid re-melting the ingot, and is for practical purposes 590°C.
  • Mn is present as dispersoids and a major purpose of this high-temperature homogenisation is to coarsen the dispersoids, e.g. to a mean Dc (equivalent diameter) of at least 0.25 ⁇ m, to an extent that they enhance recrystallisation at a later stage.
  • Homogenisation time and temperature should be chosen with this in mind.
  • the ingots are brought to a temperature of 450°C to 480°C, preferably 460° to 480°C.
  • Ingots may be cooled from first stage homogenisation to ambient temperature and then re-heated, or more preferably may simply be cooled from first stage to second stage homogenisation temperature.
  • Ingots cooled from first stage homogenisation to below hot rolling temperature should preferably be reheated to at least 500°C, in order to re-solutionise Mn dispersoids, prior to cooling to the second homogenisation temperature of 450°C to 480°C.
  • the ingots should be brought into thermal equilibrium at the second stage homogenisation temperature, which is not otherwise metallurgically significant.
  • the homogenisation ingots are then hot rolled at a starting hot roll ingot temperature of 450°C to 480°C, preferably 460°C to 480°C, and a finishing hot roll ingot temperature of 320°C to 360°C, preferably 330°C to 350°C.
  • hot rolling is performed in two stages. In a first stage, an ingot is passed repeatedly forwards and backwards through a breakdown mill to reduce the thickness to 30 to 50 mm. This first stage is typically performed under substantially isothermal conditions, and the resulting slab preferably has a temperature of 430°C to 470°C. If the slab is too cold, it may be unrollable in the next stage. If the slab is too hot, it may be difficult to roll fast enough to achieve the desired final hot rolled sheet microstructure.
  • a second hot rolling stage typically involves passage through a three or four or five stand Tandem mill. Typically passage through each stand cools the slab by 40°C to 50°C, but in the current invention this is reduced by high speed rolling of a relatively cold slab. Preferably there is at least a 90% thickness reduction during this second hot-rolling stage with preferably (to encourage recrystallisation) a larger than average reduction in the last stand. Preferably the thickness reduction in the last stand is greater than in the immediately preceding stand e.g. is at least 45%. Energy imparted during this Tandem mill rolling stage should be enough to cause recrystallisation, but not so much that significant recovery takes place between rolling passes.
  • the hot rolled sheet exits the last stand at a temperature of 320°C to 360°C preferably 330°C to 350°C. If the exit temperature is either too high or too low, then recrystallisation may not take place due to a lack of either stored energy or thermal energy, respectively.
  • the hot rolled sheet is coiled and allowed to cool to ambient temperature. Recrystallisation typically takes place during the early stages of cooling, while the sheet is still above 270°C to 290°C.
  • the hot rolled sheet typically has a thickness of 2 to 4 mm. It is then cold-rolled down to a desired final thickness, under conditions which may be conventional except that no recrystallisation anneal is required either before or during cold rolling (although a recovery anneal or recrystallisation anneal is not excluded).
  • the cold rolled sheet is subjected to solution heat treatment under conditions which may be conventional, is optionally lubricated or coated, and may then be coiled or cut to length.
  • the as hot rolled sheet constitutes another aspect of this invention. It is in a recrystallised state and has a texture characterised by a Cube recrystallisation component lower than that found in an alloy of the same composition that has been given a recrystallisation anneal after hot rolling.
  • the Cube recrystallisation component of the invention product is at least 3 volume % less than that of a comparable product produced by a conventional process.
  • the invention product had a Cube component of 29.0 volume %, where the conventional product had a Cube component of 35.9 to 37.4 volume % (see Table 2).
  • the sheet which has been hot rolled, cold rolled and then solution heat treated constitutes another aspect of the invention which may be defined in different ways.
  • the sheet has a texture in which the combined volume % of the Brass (Bs) and Cu and S recrystallisation components is at least 1 .5 times the combined volume % of the Cube and Goss recrystallisation components.
  • Products according to the invention are substantially more balanced between recrystallisation components (Cube and Goss) and deformation components (Brass, Cu and S) than is a comparable product produced by a conventional route including a recrystallisation anneal.
  • For measurement of the recrystallisation components see Van Houtte 1991 Textures & Microstructures', 13 pages 199-212. Measurements reported herein have been made at 15°
  • the invention products are also free of roping which generally implies a rather low Goss recrystallisation component, typically below 5.
  • the 6000 series aluminium sheet which has been hot rolled, cold rolled and then solution heat treated has a mean planar anisotropy r value of at least 0.53. This is higher than generally found with comparable alloys processed by conventional route involving recrystallisation anneal (see Figure 3 below).
  • Mean planar anisotropy of rolled sheet is defined as: (longitudinal plus transverse plus twice the 45° anisotropies) divided by 4.
  • composition of the alloy was: Si 1 .09%; Fe 0.30%; Mg 0.38%; Cu 0.07%; Mn 0.05%; Cr 0.03%; Ti 0.01 %; Al balance.
  • the ingot processed by the conventional route was numbered 4681 1.
  • the two ingots processed by the trial route were numbered 50170 and 50171.
  • the finishing hot roll temperatures (coil temperatures) of the two trial materials were not under precise control, but were determined to be 344°C for 50170 and 355°C for 50171.
  • the conventional route has been established to produce unrecrystallised hot-rolled sheet which subsequently recrystallises during batch annealing. In contrast, the self- anneal coils were expected to recrystallise and this was indeed found to be the case. On inspection after holding for 24 hours at ambient temperature, there was found to be little or no difference between them regarding grain structure or grain size.
  • Figure 1 shows T4 proof strength measured after 8 weeks in three directions at 0, 45° and 90° to longitudinal. Although the control coil is consistently 5 MPa stronger, this would be expected to fit within a normal statistical production range.
  • Figure 3 shows the T4 planar anisotropy "r" value at 10% strain, which is substantially different between the conventional and trial products.
  • the mean r value (r L + r ⁇ + 2r 45 / 4) is increased by approximately 10% in the self anneal coils, and this will benefit formability.
  • Figure 4 shows the T8X proof strength of the three coils after 8 weeks natural ageing. There is again a small difference between the self anneal coils and the control coil. In this data, it is believed that the processing route has in some unspecified manner reduced the paint bake response of the two trial coils.

Abstract

L'invention concerne un procédé permettant de convertir un lingot d'un alliage d'aluminium de série 6000 en une feuille à recuisson automatique. Ce procédé consiste à soumettre le lingot à un traitement d'homogénéisation en deux étapes, premièrement à une température d'au moins 560 °C, puis à une température comprise entre 450 °C et 480 °C. Ce procédé consiste ensuite à laminer à chaud le lingot homogénéisé à une température de départ comprise entre 450 °C et 480 °C, puis à une température d'arrivée comprise entre 320 °C et 360 °C. On obtient ainsi une feuille laminée à chaud comprenant un composant de recristallisation Cube exceptionnellement bas.
EP00906503A 1999-03-01 2000-02-28 Procede de fabrication d'une feuille d'aluminium aa6000 Withdrawn EP1165851A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP00906503A EP1165851A1 (fr) 1999-03-01 2000-02-28 Procede de fabrication d'une feuille d'aluminium aa6000

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP99301494 1999-03-01
EP99301494 1999-03-01
PCT/GB2000/000702 WO2000052219A1 (fr) 1999-03-01 2000-02-28 Procede de fabrication d'une feuille d'aluminium aa6000
EP00906503A EP1165851A1 (fr) 1999-03-01 2000-02-28 Procede de fabrication d'une feuille d'aluminium aa6000

Publications (1)

Publication Number Publication Date
EP1165851A1 true EP1165851A1 (fr) 2002-01-02

Family

ID=8241249

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00906503A Withdrawn EP1165851A1 (fr) 1999-03-01 2000-02-28 Procede de fabrication d'une feuille d'aluminium aa6000

Country Status (9)

Country Link
US (1) US6652678B1 (fr)
EP (1) EP1165851A1 (fr)
JP (1) JP2003518192A (fr)
AU (1) AU2816300A (fr)
BR (1) BR0008694A (fr)
CA (1) CA2362978A1 (fr)
IS (1) IS6066A (fr)
NO (1) NO20014244L (fr)
WO (1) WO2000052219A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021245355A1 (fr) 2020-06-04 2021-12-09 Constellium Neuf-Brisach Procede et equipement de refroidissement sur un laminoir reversible a chaud
FR3112297A1 (fr) 2020-07-07 2022-01-14 Constellium Neuf-Brisach Procédé et équipement de refroidissement sur un Laminoir réversible à chaud

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO312597B1 (no) * 2000-11-08 2002-06-03 Norsk Hydro As En metode for tildannelse av formede produkter av en aluminiumslegering samt anvendelse av samme
EP1967599B1 (fr) 2001-03-28 2011-01-26 Sumitomo Light Metal Industries, Inc. Feuille d'alliage d'aluminium présentant une formabilité ainsi qu'une trempabilité par cuisson de peinture excellentes et procédé pour sa production
US6780259B2 (en) * 2001-05-03 2004-08-24 Alcan International Limited Process for making aluminum alloy sheet having excellent bendability
FR2835533B1 (fr) * 2002-02-05 2004-10-08 Pechiney Rhenalu TOLE EN ALLIAGE Al-Si-Mg POUR PEAU DE CARROSSERIE AUTOMOBILE
DE10324453B4 (de) * 2002-07-01 2008-06-26 Corus Aluminium N.V. Gewalztes wärmebehandelbares Al-Mg-Si-Legierungsprodukt
DE10324452B4 (de) * 2002-07-01 2010-05-06 Aleris Aluminum Duffel Bvba AI-Mg-Si-Legierungsblech
US7666267B2 (en) * 2003-04-10 2010-02-23 Aleris Aluminum Koblenz Gmbh Al-Zn-Mg-Cu alloy with improved damage tolerance-strength combination properties
CA2519390C (fr) 2003-04-10 2015-06-02 Corus Aluminium Walzprodukte Gmbh Alliage al-zn-mg-cu
US20050034794A1 (en) * 2003-04-10 2005-02-17 Rinze Benedictus High strength Al-Zn alloy and method for producing such an alloy product
US20060032560A1 (en) * 2003-10-29 2006-02-16 Corus Aluminium Walzprodukte Gmbh Method for producing a high damage tolerant aluminium alloy
EP1533394A1 (fr) 2003-11-20 2005-05-25 Alcan Technology & Management Ltd. Composant de carrosserie pour voiture
US7883591B2 (en) 2004-10-05 2011-02-08 Aleris Aluminum Koblenz Gmbh High-strength, high toughness Al-Zn alloy product and method for producing such product
JP4634249B2 (ja) * 2005-08-05 2011-02-16 古河スカイ株式会社 成形加工用アルミニウム合金板およびその製造方法
US8088234B2 (en) * 2006-07-07 2012-01-03 Aleris Aluminum Koblenz Gmbh AA2000-series aluminum alloy products and a method of manufacturing thereof
FR2907796B1 (fr) * 2006-07-07 2011-06-10 Aleris Aluminum Koblenz Gmbh Produits en alliage d'aluminium de la serie aa7000 et leur procede de fabrication
US10161020B2 (en) 2007-10-01 2018-12-25 Arconic Inc. Recrystallized aluminum alloys with brass texture and methods of making the same
JP4312819B2 (ja) * 2008-01-22 2009-08-12 株式会社神戸製鋼所 成形時のリジングマーク性に優れたアルミニウム合金板
EP2156945A1 (fr) 2008-08-13 2010-02-24 Novelis Inc. Produit de tôle plaquée automobile
KR102121156B1 (ko) 2015-01-12 2020-06-10 노벨리스 인크. 표면 로핑이 감소되거나 없는 고성형성 자동차 알루미늄 시트 및 제조 방법
KR102313176B1 (ko) * 2015-07-20 2021-10-15 노벨리스 인크. 높은 양극산화 품질을 갖는 aa6xxx 알루미늄 합금 시트 및 이를 만드는 방법
CN108474066A (zh) * 2015-12-18 2018-08-31 诺维尔里斯公司 高强度6xxx铝合金和其制造方法
KR20190003703A (ko) * 2016-05-02 2019-01-09 노벨리스 인크. 증강된 성형성을 갖는 알루미늄 합금들 및 관련된 방법들
JP6208389B1 (ja) 2016-07-14 2017-10-04 株式会社Uacj 曲げ加工性及び耐リジング性に優れたアルミニウム合金からなる成形加工用アルミニウム合金圧延材の製造方法
US11384418B2 (en) 2017-05-11 2022-07-12 Aleris Aluminum Duffel Bvba Method of manufacturing an Al—Si—Mg alloy rolled sheet product with excellent formability
US10030295B1 (en) 2017-06-29 2018-07-24 Arconic Inc. 6xxx aluminum alloy sheet products and methods for making the same
FR3076837B1 (fr) 2018-01-16 2020-01-03 Constellium Neuf-Brisach Procede de fabrication de toles minces en alliage d'aluminium 6xxx a haute qualite de surface
JP2022513644A (ja) * 2018-12-03 2022-02-09 リオ ティント アルカン インターナショナル リミテッド アルミニウム押出合金
EP3666915A1 (fr) * 2018-12-11 2020-06-17 Constellium Neuf Brisach Methode de fabrication de toles en alliages 6000 avec une qualite de surface elevee

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3990922A (en) 1975-10-20 1976-11-09 Swiss Aluminium Ltd. Processing aluminum alloys
US4066476A (en) * 1976-08-11 1978-01-03 Swiss Aluminium Ltd. Duplex process for improving the hot workability of aluminum-magnesium alloys
FR2489845B1 (fr) * 1980-09-11 1986-06-06 Cegedur Alliage d'aluminium brasable et son procede de fabrication
JPS63109146A (ja) * 1986-10-24 1988-05-13 Kobe Steel Ltd 時効硬化型アルミニウム合金板材の製造方法
JPH0747807B2 (ja) * 1992-03-17 1995-05-24 スカイアルミニウム株式会社 成形加工用アルミニウム合金圧延板の製造方法
JP2614686B2 (ja) * 1992-06-30 1997-05-28 住友軽金属工業株式会社 形状凍結性及び塗装焼付硬化性に優れた成形加工用アルミニウム合金の製造方法
US5480498A (en) 1994-05-20 1996-01-02 Reynolds Metals Company Method of making aluminum sheet product and product therefrom
WO1998035069A1 (fr) 1997-02-05 1998-08-13 Alcan International Limited Procede pour reduire la formation de stries dans des produits en tole pour automobiles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0052219A1 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021245355A1 (fr) 2020-06-04 2021-12-09 Constellium Neuf-Brisach Procede et equipement de refroidissement sur un laminoir reversible a chaud
FR3112297A1 (fr) 2020-07-07 2022-01-14 Constellium Neuf-Brisach Procédé et équipement de refroidissement sur un Laminoir réversible à chaud
FR3112296A1 (fr) 2020-07-07 2022-01-14 Constellium Neuf-Brisach Procédé et équipement de refroidissement sur un Laminoir réversible à chaud

Also Published As

Publication number Publication date
CA2362978A1 (fr) 2000-09-08
BR0008694A (pt) 2001-12-26
US6652678B1 (en) 2003-11-25
IS6066A (is) 2001-08-29
JP2003518192A (ja) 2003-06-03
NO20014244D0 (no) 2001-08-31
NO20014244L (no) 2001-10-25
WO2000052219A1 (fr) 2000-09-08
AU2816300A (en) 2000-09-21

Similar Documents

Publication Publication Date Title
US6652678B1 (en) AA6000 aluminum sheet method
JP4308834B2 (ja) 連続的に鋳造アルミニウムシートを製造する方法
CN1942595B (zh) 制造铝合金薄板的线内方法
US6086690A (en) Process of producing aluminum sheet articles
US4976790A (en) Process for preparing low earing aluminum alloy strip
US3563815A (en) Process for the production of fine grained aluminum alloy strip
US11472532B2 (en) Extrados structural element made from an aluminium copper lithium alloy
JP7282106B2 (ja) 耐疲労破壊性を向上させた7xxxシリーズアルミ合金プレート製品の製造方法
JP2022554035A (ja) アルミニウム合金圧延品の製造方法
Lentz et al. A modified processing route for high strength Al-Mg-Si aluminum conductors based on twin-roll cast strip
US5772804A (en) Method of producing aluminum alloys having superplastic properties
US9828649B2 (en) Process for the production of grain-oriented magnetic sheet with a high level of cold reduction
US3743549A (en) Thermomechanical process for improving the toughness of the high strength aluminum alloys
JPS62124253A (ja) 再結晶状態で使用し得るリチウム含有アルミニウムベ−ス製品及びその製法
EP1141433A2 (fr) Feuille d'alliage en aluminium a force ultime de tension elevee et procedes de fabrication
RU2770148C1 (ru) Способ изготовления катаных изделий с повышенной коррозионной стойкостью из деформируемых термически неупрочняемых сплавов системы алюминий - магний
JP2022519238A (ja) アルミニウム合金製の板または帯の製造方法ならびにそれにより製造された板、帯または成形品
JPWO2021130636A5 (fr)
EP4305219A1 (fr) Variantes d'alliage d'aluminium 5xxx à haute résistance et leurs procédés de préparation
JP4297671B2 (ja) 成形性に優れる展伸用マグネシウム薄板およびその製造方法
Visser et al. The Effect of Hot-Rolling Parameters on Texture Development and Microstructure in Aluminium AA5182
Ściężor et al. An examination of the heat treatment effect on mechanical properties of twin-roll cast followed by cold rolling sheets made of aluminium and its alloys
JPWO2004027103A1 (ja) 成形性に優れる展伸用マグネシウム薄板およびその製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010814

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20040219

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060210