EP1159776B1 - Optisches system mit mehreren funktionellen sektoren verbunden durch dämpfungskopplung und herstellungsverfahren - Google Patents

Optisches system mit mehreren funktionellen sektoren verbunden durch dämpfungskopplung und herstellungsverfahren Download PDF

Info

Publication number
EP1159776B1
EP1159776B1 EP00909439A EP00909439A EP1159776B1 EP 1159776 B1 EP1159776 B1 EP 1159776B1 EP 00909439 A EP00909439 A EP 00909439A EP 00909439 A EP00909439 A EP 00909439A EP 1159776 B1 EP1159776 B1 EP 1159776B1
Authority
EP
European Patent Office
Prior art keywords
sections
intermediate section
multilayer
layer
modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00909439A
Other languages
English (en)
French (fr)
Other versions
EP1159776A1 (de
Inventor
Philippe Legay
Abderrahim Ramdane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orange SA
Original Assignee
France Telecom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom SA filed Critical France Telecom SA
Publication of EP1159776A1 publication Critical patent/EP1159776A1/de
Application granted granted Critical
Publication of EP1159776B1 publication Critical patent/EP1159776B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1028Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
    • H01S5/1032Coupling to elements comprising an optical axis that is not aligned with the optical axis of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0265Intensity modulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers

Definitions

  • the present invention relates to the field of optoelectronics.
  • End-to-end coupling consists of epitaxial first a laser structure, to engrave this first structure at the locations dedicated to a modulator, then to effect then in these locations, the epitaxy of the modulator structure.
  • This technique involves minus three epitaxy stages [1].
  • An example of a structure obtained with this method is illustrated in Figure 1 in which the wavelengths ⁇ 1, ⁇ 2, ⁇ 3 symbolize the different transition energies of each section.
  • Selective organometallic epitaxy requires only one single epitaxy step. Its principle is based on the possibility of being able modify locally, by the presence of a dielectric mask well-defined geometry, thickness and composition of the material, and hence the wavelength corresponding to the prohibited bandwidth of the area active of the epitaxial structure (with reference to that of the structure on a unmasked area) [2]. It is thus possible to obtain, side by side, several zones with different band gap intervals corresponding as many optical functions.
  • DBR-modulator DBR or Distributed Bragg Reflector according to the terminology generally used Anglo-Saxon, i.e.
  • Bragg grating laser distributed these three intervals correspond to the active section of the laser, to a Bragg zone and a modulator.
  • Illustrated in Figure 2 a view schematic in section of a growth by this epitaxy method selective. In this figure 2, the transition energy of each section is represented by its equivalent wavelength.
  • the evanescent (or vertical) coupling allows the realization of two guiding structures placed on top of each other in a single step epitaxy.
  • An engraving makes it possible to identify the regions where the layer upper is undesirable, thus clearing the modulator or guide section.
  • the optical mode remains confined in the upper layer of index of higher refraction, then, from the laser-modulator interface, will propagate in the lower layer [3], [4].
  • Figure 3 shows the diagram in principle of the evanescent coupling method. Optical mode changes from one layer to another through the play of differences in index and geometry guides used.
  • the so-called “single structure” method consists in using the same stacking with quantum multiwells for each of the sections of the component (3 if it is a DBR-modulator laser integration) [5], [6]. She relies on the effects of widening the optical gain spectrum for semiconductors forced when carriers are injected into them. This property provides an optical amplification effect and therefore a laser emission for a lower energy than the transition energy (of the semiconductor without injected carriers). Wavelength compatibility between the laser and the modulator (typically 1.55 ⁇ m for the laser and 1.50 ⁇ m for the modulator) is obtained by a slight red shift in the length Bragg wave.
  • Figure 4 shows a block diagram of the unique structure. The difference in transition energy between the two sections is obtained by narrowing the band gap during the injection of carriers.
  • the main advantage is optimization of the two structures separately.
  • the method implies a good mastery of engraving and resumption of epitaxy on a substrate not prepared for epitaxy, so as to align the layers different sections from each other.
  • the coupling between the two sections is responsible for losses and reflections can disrupt the operation of high integrated sources frequency.
  • the process requires several epitaxy steps, which which has a cost.
  • Localized epitaxy provides excellent results in terms integration of components.
  • the coupling losses between the different sections are in this case very small and the band gap intervals different sections can be adjusted to precise values by function of the mask (for example based on silicon nitride) used.
  • the mask for example based on silicon nitride
  • its main drawback is that the same type of structure is used for each section of the component. Unlike the end-to-end coupling, so you cannot separately adjust the structures of each section of the component.
  • the maximum tunability that can be obtained is limited by the fact that the thickness of the Bragg section must be lower than that of the active area of the laser.
  • a step Surface preparation criticism is also required.
  • the main advantage is the almost independent optimization of two sections of the component (structure lower and upper structure).
  • it is a technique relatively simple to implement.
  • it is delicate integrate more than two different sections. This is a handicap in the case for example of DBR-modulator integration where three sections are required.
  • the main advantage of the "unique structure" is its simplicity. However, as with selective epitaxy, the different sections do not can be optimized separately. The result is a compromise that does not allows integration only of optical functions with an offset in relatively short wavelength (laser-modulator, modulator-amplifier ). The integration of a laser with a passive guide is impossible because it requires a wavelength shift too important.
  • Document US-4054363 describes a guide formed by a heterostructure of the optical integrated circuit type provided with a thin film element such as a semiconductor laser coupled through a directional coupler to a guide having low transmission loss.
  • the present invention now aims to provide i new means of integration, using a simple technique compatible with industrial processes, at least three sections different band gap energies with structures if possible optimized for each section.
  • a optoelectronic system comprising at least three sections corresponding to specific respective functions and presenting respective, different band gap energies, at least for adjacent pairs of sections, consisting of at least two layers superimposed by an epitaxy, the upper layer being engraved to define said sections as two sections separate ends limited in the upper layer on both sides an intermediate section defined in the lower layer, and allow a coupling between the intermediate section and each of the sections which surround it, by evanescent coupling, in which the length "L" of the intermediate section, in which a network is engraved of Bragg, is such that the product K.L. (where K is the coupling coefficient of network) is around 1.
  • this length L is of the order of 200 ⁇ m.
  • the present invention also relates to a method of realization of the above system.
  • the above concept in accordance with the present invention makes it possible to realize, with a simple and industrializable technology, lasers tunable on more than 10nm, soliton sources, tandems of modulators, integrated sources for SSB etc ...
  • the metal electrode 50 formed on the lower surface of the substrate 10 is intended to be brought to ground potential.
  • the electrodes 52 and 54 are intended to be connected to respective voltage generators suitable for polarizing so suitable respectively the two sections A and C.
  • the structure constituted by the upper layers 30, of energy transition located around 1.50 ⁇ m, has quantum wells forced. Its gain spectrum, during current injection is therefore quite flat around 1.50 ⁇ m including towards the longest wavelengths (band renormalization prohibited). A shift towards low energies is therefore possible as described in documents [5] and [6].
  • a program lower energy laser (for example 1.55 ⁇ m) depends on the period of the Bragg grating defined in the intermediate zone B.
  • the equivalent index of the upper set 30 is greater than that of the lower assembly 20. It is also necessary that the guide section produced in the lower assembly 20 is transparent to the wavelength of laser A.
  • the optical mode emitted by section A forming the laser source is propagates mainly in the set of upper layers 30 then passes through the guide structure formed by the set of lower layers 20, at the intermediate section B, when the active structure 30 disappears.
  • a software simulation of this structure indicates that one obtains coupling coefficients close to 90% during the transition from optical mode initially propagating mainly throughout upper 30 at the level of section A, towards the constituted guide structure by the lower assembly 20 at the level of section B.
  • the structure 30 is of new present and the optical mode mainly returns to it, at the end section C where the confined Stark effect can allow to modulate its intensity.
  • the simulated coupling coefficient, during this transition from the guide structure 20 towards the modulator structure 30 is also close to 90%.
  • the method according to the present invention comprising a single epitaxy step and including a very simple technological process allows the integration of a modulator with a tunable laser over a wide tunability range (typically greater than 10nm), do not depending only on the confinement coefficient of the optical mode in the guide section B / 20 (ie the Bragg section for a DBR laser).
  • FIG. 6 Another family of applications has been illustrated in FIG. 6. concerning the DFB-modulator (s) laser sources where the set of layers 20 is used as a passive guide centered around 1.3 ⁇ m to avoid optical losses.
  • a structure comprising on a substrate 10 a first set of layers 20 forming a passive guide, on which are superimposed three sections A, C and E delimited by etching in a second set of layers 30, to delimit respectively a first intermediate section B and a second section intermediate D respectively between the active sections A, C and E above.
  • Section A can be used as a DFB laser
  • Section C can be used as a first pulse generator modulator
  • section E can serve as a second modulator for coding purposes.
  • the mode emitted by section A forming the source pass, by evanescent coupling in section B of the guide structure 20, goes back by evanescent coupling in section C forming a modulator made in the assembly 30, passes by evanescent coupling in the section D of the guide structure 20, at the exit of section C, then ascends, always by evanescent coupling in the second modulator formed by the section E of the assembly 30.
  • This provides a source for RZ transmissions.
  • the same principle can be applied for the realization of a BLU type source for radio applications on fibers involving the integration of a DFB laser and two modulators coupled using a passive optical circuit.
  • this length L is of the order of 200 ⁇ m.
  • intermediate sections B, D with a length L of between 50 and 800 ⁇ m, preferably between 100 and 500 ⁇ m and very advantageously between 150 and 400 ⁇ m.
  • the process for producing the structure illustrated in FIG. 6 is generally identical to that previously described with regard to FIG. 5.
  • the substrate 10 is of the type InP: n
  • the first set of layers 20 is formed by deposits of a layer 21 of InP: n, of a layer 22 of GalnAsP (1.3 ⁇ m) with a typical thickness of the order of 400.0 nm (4000 ⁇ ) (where appropriate such layer can also be formed by quantum multi-wells), a layer 23 based on InGaAsP, intended to form a network, of a thickness typical of the order of 50.0nm 500 ⁇ / and of a stop layer 24 based on InP: n of a typical thickness of the order of 20.0nm (200 ⁇ ) while the second set of layers 30 is formed by the superposition of a layer 31 based on GalnAsP (1.25 ⁇ m) with a typical thickness of around 30.0nm (300 ⁇ ), a layer 32 with quantum multi-wells (1.50 ⁇ m) (for example 10 wells) of a typical thickness of the order of 143.0
  • a simulation of such a structure shows that the coefficient of coupling between the laser section A and the Bragg section B is 90% and the mode confinement in the Bragg section is 42%. This last value is compatible with 10nm tunability. Then we find the same coupling coefficient when switching from section mode Bragg B to modulator C which is centered at 1.50 ⁇ m while the emission laser is 1.55 ⁇ m.
  • the modulation characteristics will therefore be good.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Claims (19)

  1. Optoelektronisches System mit wenigstens drei Sektoren (A, B, C), die jeweils spezifischen Funktionen entsprechen und bei denen wenigstens die jeweils benachbarten Sektoren verschiedene Bandlücken aufweisen, wobei die drei Sektoren wenigstens zwei übereinanderliegende epitaktische Schichten (20, 30) umfassen und die obere Schicht (30) mit Einschnitten versehen ist, so dass die Sektoren als zwei Randsektoren (A, C) abgetrennt sind, die in der oberen Schicht (30) beidseitig von einem Zwischensektor (B) in der unteren Schicht (20) begrenzt werden, und eine Kopplung als gedämpfte Kopplung zwischen dem Zwischensektor (B) und jedem der ihn einschließenden Randsektoren (A, C) ermöglicht wird, dadurch gekennzeichnet, dass die Länge (L) des Zwischensektors (B) derart gewählt ist, dass das Produkt (K · L), bei dem (K) dem Kopplungskoeffizienten in einem Zwischensektorgitter (B) entspricht, in der Ordnung von 1 liegt.
  2. System nach Anspruch 1, dadurch gekennzeichnet, dass die Länge (L) des Zwischensektors (B) zwischen 50 und 800µm, vorzugsweise zwischen 100 und 500µm, stärker bevorzugt zwischen 150 und 400µm und besonders bevorzugt in der Ordnung von 200µm liegt.
  3. System nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Zwischensektor (B) ein Bragg-Gitter umfasst.
  4. System nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die obere Schicht (30) drei Sektoren (A, C, E) umfasst, die jeweils beidseitig der beiden Zwischensektoren (B, D) in der Gruppe der unteren Zwischensektoren (20) vorgesehen sind.
  5. System nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass es einen integrierten Laser-Modulator bildet.
  6. System nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass es eine Einrichtung unter anderem in der Art einer optischen NRZ- oder RZ-Übertragungsvorrichtung, einer Verteilervorrichtung oder einer Kabelrundfunkvorrichtung wie BLU darstellt.
  7. System nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Gruppe der unteren Schichten (20) einen passiven Leiter im Bereich um 1,3µm herum bilden.
  8. System nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass es zwei Modulatoren (C, E) in der Gruppe der oberen Schichten (30) umfasst: einen ersten Modulator (C), der einen Impulsgenerator darstellt, und einen zweiten Modulator (E), der zum Kodieren dient.
  9. System nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Gruppe der unteren Schichten (20) eine aktive Schicht aus GaInAsP aufweist.
  10. System nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Gruppe der unteren Schichten (20) eine aktive Schicht mit Multi-Quantum-Wells aufweist.
  11. System nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Gruppe der unteren Schichten (20) eine aktive Schicht (22) zwischen zwei Schichten (21, 23) aus InP umfasst.
  12. System nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Gruppe der unteren Schichten (20) bedeckt ist mit einer Stopschicht (24), die beispielsweise aus InP besteht.
  13. System nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Gruppe der oberen Schichten (30) eine aktive Schicht (32) mit Multi-Quantum-Wells umfasst.
  14. System nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Gruppe der oberen Schichten (30) eine aktive Schicht (32) zwischen Schichten (31, 33) aus GaInAsP umfasst.
  15. Verfahren zum Herstellen eines Systems nach einem der Ansprüche 1 bis 14, gekennzeichnet durch die folgenden Schritte:
    i) epitaktisches Erzeugen einer Gruppe von zwei übereinanderliegenden Schichten (20, 30) auf einem Substrat (10),
    ii) Erzeugen von Einschnitten in der Gruppe der oberen Schichten (30) bis zu einer Stopschicht (24) oben auf der unteren Gruppe (20) zum Separieren von wenigstens zwei Randsektoren (A, C) in der Gruppe der oberen Schichten (30), so dass eine gedämpfte Kopplung zwischen dem Zwischensektor (B) und jedem der ihn umgebenden Randsektoren (A, C) ermöglicht wird.
  16. Verfahren nach Anspruch 15, gekennzeichnet durch den weiteren Schritt: Durchführen einer Spezialbehandlung des Zwischensektors (B).
  17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass die Spezialbehandlung ein Erzeugen von Einschnitten in einem Bragg- Gitter in dem Zwischensektor (B) umfasst.
  18. Verfahren nach einem der Ansprüche 15 bis 17, gekennzeichnet durch den weiteren Schritt: Aufbringen eines Materials, beispielsweise aus InP, auf der gesamten Scheibe des Systems.
  19. Verfahren nach einem der Ansprüche 15 bis 18, gekennzeichnet durch den weiteren Schritt: Anordnen von Elektroden auf der unteren Oberfläche des Substrats und auf der oberen Oberfläche der Randsektoren (A, C, E).
EP00909439A 1999-03-08 2000-03-07 Optisches system mit mehreren funktionellen sektoren verbunden durch dämpfungskopplung und herstellungsverfahren Expired - Lifetime EP1159776B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9902822 1999-03-08
FR9902822A FR2790837B1 (fr) 1999-03-08 1999-03-08 Systeme optoelectronique comprenant plusieurs sections a fonctions respectives couplees par couplage evanescent et procede de realisation
PCT/FR2000/000558 WO2000054379A1 (fr) 1999-03-08 2000-03-07 Systeme optoelectronique comprenant plusieurs sections a fonctions respectives couplees par couplage evanescent et procede de realisation

Publications (2)

Publication Number Publication Date
EP1159776A1 EP1159776A1 (de) 2001-12-05
EP1159776B1 true EP1159776B1 (de) 2003-05-28

Family

ID=9542924

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00909439A Expired - Lifetime EP1159776B1 (de) 1999-03-08 2000-03-07 Optisches system mit mehreren funktionellen sektoren verbunden durch dämpfungskopplung und herstellungsverfahren

Country Status (7)

Country Link
US (1) US6633699B1 (de)
EP (1) EP1159776B1 (de)
JP (1) JP2002539617A (de)
AT (1) ATE241866T1 (de)
DE (1) DE60002997T2 (de)
FR (1) FR2790837B1 (de)
WO (1) WO2000054379A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002169042A (ja) * 2000-11-30 2002-06-14 Nec Corp 光導波路結合構造、光導波路及びその製造方法、並びに光導波路付き光素子部品及びその製造方法
EP1376170A3 (de) * 2002-06-19 2004-12-29 Matsushita Electric Industrial Co., Ltd. Optischer Wellenleiter, optisches Modul und Verfahren zur Herstellung des Moduls
JP2009094410A (ja) * 2007-10-11 2009-04-30 Nippon Telegr & Teleph Corp <Ntt> 半導体光集積素子及びその作製方法
US20130230274A1 (en) * 2012-03-05 2013-09-05 Gregory Alan Fish Photonic flexible interconnect
US10025029B2 (en) 2015-10-28 2018-07-17 International Business Machines Corporation Integration of bonded optoelectronics, photonics waveguide and VLSI SOI

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4054363A (en) * 1975-12-15 1977-10-18 Tokyo Institute Of Technology Multi-hetero-structure waveguide type optical integrated circuitry
JP2764845B2 (ja) * 1992-02-03 1998-06-11 国際電信電話株式会社 光パルス発生装置
FR2753285B1 (fr) * 1996-09-06 1998-10-09 Alsthom Cge Alcatel Amplificateur optique a semi conducteur

Also Published As

Publication number Publication date
WO2000054379A1 (fr) 2000-09-14
EP1159776A1 (de) 2001-12-05
DE60002997T2 (de) 2004-01-22
JP2002539617A (ja) 2002-11-19
DE60002997D1 (de) 2003-07-03
ATE241866T1 (de) 2003-06-15
FR2790837A1 (fr) 2000-09-15
FR2790837B1 (fr) 2002-02-01
US6633699B1 (en) 2003-10-14

Similar Documents

Publication Publication Date Title
EP0667660B1 (de) Wellenlängeabstimmbarer Laser mit virtuellem, selektiv ansteuerbarem verteiltem Bragg Reflektor
EP0720262B1 (de) Laservorrichtung mit organischem Bragg-Reflektor und Herstellungsverfahren
EP0627798B1 (de) Monolithisch integrierte Laser-Modulator-Anordnung mit Multiquantumwell-Struktur
FR2695212A1 (fr) Dispositif à filtre optique.
EP0240400B1 (de) Optischer Wellenleiter aus Halbleitermaterial, Anwendung dieses Wellenleiters in einem Laser und Verfahren zu dessen Verwirklichung
EP0159258A1 (de) Verfahren zur Herstellung einer monolitisch-integrierten, optischen Schaltung enthaltend einen LASER und eine nach diesem Verfahren erhaltene Schaltung
FR2737353A1 (fr) Laser a reflecteur de bragg distribue et a reseau echantillonne, tres largement accordable par variation de phase, et procede d&#39;utilisation de ce laser
EP0939324A1 (de) Optischer Halbleiterreflektor und Herstellungsverfahren
EP0665450B1 (de) Wellenleiterübergangvorrichtung und seine Herstellung
FR2728083A1 (fr) Commutateur optique binaire compact
EP3491438B1 (de) Multispektraler optischer koppler mit niedrigen empfangsverlusten
FR2761811A1 (fr) Technologie sans gravure pour integration de composants
EP0871061A1 (de) Wellenlängenwandler von optischen binären Signalen
EP1159776B1 (de) Optisches system mit mehreren funktionellen sektoren verbunden durch dämpfungskopplung und herstellungsverfahren
FR2713350A1 (fr) Composant optique à pluralité de réseaux de bragg et procédé de fabrication de ce composant.
EP0252565B1 (de) Integrierte Halbleitervorrichtung in Form einer Kopplungsanordnung zwischen einem Fotodetektor und einem Lichtwellenleiter
EP0831346A1 (de) Wellenleitergitter-Spektrograph als Multiplexer-Komponente
FR2770948A1 (fr) Demultiplexeur a reponse spectrale carree
EP0321328A1 (de) Verfahren zur Herstellung eines Brechungsgitters auf einem Halbleitermaterial und optoelektronische Vorrichtung, die ein gemäss diesem Verfahren hergestelltes Brechungsgitter enthält
FR3098312A1 (fr) composant semi-conducteur actif, composant passif à base de silicium, assemblage desdits composants et procédé de couplage entre guides d’ondes
EP3339924A1 (de) Optimierter integrierter photonenschaltkreis
FR2734676A1 (fr) Procede et dispositifs d&#39;emission ou reception laser pour la transmission d&#39;informations par voie optique
FR2749447A1 (fr) Dispositif optique a guide de lumiere semi-conducteur, a faisceau emergent de faible divergence, application aux lasers de fabry-perot et a contre-reaction distribuee
FR2574566A1 (fr) Diodes emettrices/receptrices de lumiere et elements de transmission optiques non reciproques integres, et leur procede de fabrication
WO1993009569A1 (fr) Procede de realisation de composants opto-electroniques par epitaxie selective dans un sillon

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011001

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020617

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030528

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030528

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030528

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030528

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 60002997

Country of ref document: DE

Date of ref document: 20030703

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030828

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030828

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030828

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030908

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040302

BERE Be: lapsed

Owner name: *FRANCE TELECOM

Effective date: 20040331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060227

Year of fee payment: 7

Ref country code: NL

Payment date: 20060227

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060329

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060331

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070307

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20071001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071001

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070402

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060223

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070307