EP1159390B1 - Procede de production de particules de detergent enrobees - Google Patents

Procede de production de particules de detergent enrobees Download PDF

Info

Publication number
EP1159390B1
EP1159390B1 EP00916147A EP00916147A EP1159390B1 EP 1159390 B1 EP1159390 B1 EP 1159390B1 EP 00916147 A EP00916147 A EP 00916147A EP 00916147 A EP00916147 A EP 00916147A EP 1159390 B1 EP1159390 B1 EP 1159390B1
Authority
EP
European Patent Office
Prior art keywords
detergent
coating
particle
mixer
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00916147A
Other languages
German (de)
English (en)
Other versions
EP1159390B2 (fr
EP1159390A1 (fr
Inventor
Paul R. Mort, Iii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26821563&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1159390(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Publication of EP1159390A1 publication Critical patent/EP1159390A1/fr
Publication of EP1159390B1 publication Critical patent/EP1159390B1/fr
Application granted granted Critical
Publication of EP1159390B2 publication Critical patent/EP1159390B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/046Salts
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/0082Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
    • C11D11/0088Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads the liquefied ingredients being sprayed or adsorbed onto solid particles
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/146Sulfuric acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols

Definitions

  • the present invention relates to detergent particles and a process for producing the particles. More particularly, the present invention relates detergent particles having a non-hydrating coating layer and a process for producing these particles from solutions of the inorganic material.
  • Granular detergent products are typically produced from one of two manufacturing methods. The first involves the spray-drying of a aqueous detergent slurry in a spray drying tower to produce detergent granules while the second involves dry mixing various components after which they are agglomerated with a binder such as surfactant. The resultant detergent particles are then dried to achieve an acceptable moisture content such that the finished product is flowable and non-caking in the package once delivered to the consumer.
  • the factors which impact these flow characteristics include chemical composition and type and length in the drying process.
  • US 5, 707, 953 relates to a process of coating an amidoperoxyacid bleach with a water-soluble salt.
  • US 4, 105, 827 relates a process of coating a bleach with a mixed salt.
  • the particles of the present invention have improved surface properties in that they are smoother and have a generally more uniform surface and appearance than prior art detergent particles. Further, the appearance of the particles have been improved in that they appear brighter and whiter than currently available detergent particles and have improved flow properties where the particles have reduced lumping and caking profiles.
  • the detergent particle comprises a particle core of a detergent active material such as conventional detergent particles of surfactant and carbonate blends or individual detergent ingredients such as enzymes, bleaching agents, etc.
  • a particle coating layer of a water soluble material which imparts the aforementioned improved properties.
  • Particularly preferred are non-hydratable inorganic coating materials including double salt combinations of alkali metal carbonates and sulfates.
  • the particle coating layer may also include detergent adjunct ingredients such as brighteners, chelants, nonionic surfactants, co-builders, etc.
  • the process includes the steps of passing the particle core as defined above through a coating mixer such as a low speed mixer or fluid bed mixer and coating the particle core with a coating solution or slurry of the water soluble, non-hydrating inorganic material.
  • a coating mixer such as a low speed mixer or fluid bed mixer
  • the resultant detergent particles Upon drying, the resultant detergent particles have improved appearance and flow properties and may be packaged and sold as a detergent material or mixed with various other detergent ingredients to provide a fully formulated detergent composition.
  • the word "particles” means the entire size range of a detergent final product or component or the entire size range of discrete particles, agglomerates, or granules in a final detergent product or component admixture. It specifically does not refer to a size fraction (i.e., representing less than 100% of the entire size range) of any of these types of particles unless the size fraction represents 100% of a discrete particle in an admixture of particles.
  • the entire size range of discrete particles of that type have the same or substantially similar composition regardless of whether the particles are in contact with other particles.
  • the agglomerates themselves are considered as discrete particles and each discrete particle may be comprised of a composite of smaller primary particles and binder compositions.
  • the phrase "geometric mean particle diameter” means the geometric mass median diameter of a set of discrete particles as measured by any standard mass-based particle size measurement technique, preferably by dry sieving.
  • the phrase “geometric standard deviation” or “span” of a particle size distribution means the geometric breadth of the best-fitted log-normal function to the above-mentioned particle size data which can be accomplished by the ratio of the diameter of the 84.13 percentile divided by the diameter of the 50 th percentile of the cumulative distribution (D 84.13 /D 50 ): See Gotoh et al, Powder Technology Handbook, pp. 6-11, Marcel Dekker 1997.
  • the phrase “builder” means any inorganic material having “builder” performance in the detergency context, and specifically, organic or inorganic material capable of removing water hardness from washing solutions.
  • the term “bulk density” refers to the uncompressed, untapped powder bulk density, as measured by pouring an excess of powder sample through a funnel into a smooth metal vessel (e.g., a 500 ml volume cylinder), scraping off the excess from the heap above the rim of the vessel, measuring the remaining mass of powder and dividing the mass by the volume of the vessel.
  • compositions and “granular detergent composition” are intended to include both final products and additives/components of a detergent composition. That is, the compositions produced by the processes claimed herein may be complete laundry detergent compositions or they may be additives that are used along with other detergent ingredients for laundering fabrics and the like.
  • surface area mean the total amount of surface of a powder available for gas adsorption and thus includes both internal (i.e. that within cracks and crevices) and external surface area. Surface area is measured using BET multi point surface area analysis.
  • the novel detergent particles of the present invention comprise a particle core which is at least partially coated with a water soluble coating material.
  • the particle core may comprise a detergent particle, agglomerate, flake, etc.
  • the particle core will preferably comprise a blend of surfactant ingredients, particularly anionic surfactants with dry detergent ingredients such as carbonates, aluminosilicate builders, silicate builder materials, alkali metal sulfates, chelants and various other dry detergent ingredients in minor amounts.
  • the particle core may comprise an individual detergent ingredient such as an enzyme, bleaching agent, perfume or mixtures thereof.
  • Particularly preferred particle cores include detergent agglomerates formed by an agglomeration of a highly viscous surfactant paste or a liquid acid precursor of a surfactant and the aforementioned dry detergent ingredients.
  • the agglomeration of the surfactant material and dry detergent material may be carried out in a high or moderate speed mixer after which an optional low or moderate speed mixer may be employed for further agglomeration, if necessary.
  • the agglomeration may be carried out in a single mixer that can be low, moderate or high speed.
  • the particular mixer used in the present process should include pulverizing or grinding and agglomeration tools so that both techniques can be carried forth simultaneously in a single mixer.
  • the first processing step can be successfully completed, under the process parameters described herein, in a Lodige KMTM (Ploughshare) 600 moderate speed mixer, Lodige CBTM high speed mixer, or mixers made by Fukae, Drais, Schugi or similar brand mixer.
  • the Lodige KMTM (Ploughshare) 600 moderate speed mixer which is a preferred mixer for use in the present invention, comprises a horizontal, hollow static cylinder having a centrally mounted rotating shaft around which several plough-shaped blades are attached.
  • the shaft rotates at a speed of from about 15 rpm to about 140 rpm, more preferably from about 80 rpm to about 120 rpm.
  • the grinding or pulverizing is accomplished by cutters, generally smaller in size than the rotating shaft, which preferably operate at about 3600 rpm.
  • Other mixers similar in nature which are suitable for use in the process include the Lodige PloughshareTM mixer and the Drais® K-T 160 mixer.
  • the mean residence time of the various starting detergent ingredients in the low, moderate or high speed mixer is preferably in range from about 0.05 minutes to about 15 minutes, most preferably the residence time is about 0.5 to about 5 minutes. In this way, the density of the resulting detergent agglomerates is at the desired level.
  • This agglomeration is typically followed by a drying step.
  • This drying step may be carried out in a wide variety of equipment including, but not limited to a fluid bed drying apparatus.
  • dryer characteristics include fixed or vibrating; rectangular bed or round bed; and straight or serpentine dryers. Manufacturers of such dryers include Niro, Bepex, Spray Systems and Glatt.
  • apparatus such as a fluidized bed can be used for drying while an airlift can be used for cooling should it be necessary.
  • the air lift can also be used to force out the "fine" particles so that they can be recycled to the particle agglomeration process.
  • the particles of the present invention comprise at least about 50% by weight of particles having a geometric mean particle diameter of from about 500 microns to about 1500 microns and preferably have a geometric standard deviation of from about 1 to about 2.
  • the geometric standard deviation is from about 1.0 to about 1.7, preferably from about 1.0 to about 1.4.
  • the granular detergent composition resulting from the processes may comprise fine particles, wherein "fine, particles” are defined as particles that have a geometric mean particle diameter that is less than about 1.65 standard deviations below the chosen geometric mean particle diameter of the granular detergent composition. Large particles may also exist wherein "large particles” are defined as particles that have a geometric mean particle diameter that is greater than about 1.65 standard deviations above the chosen geometric mean particle diameter of the granular detergent composition.
  • the fine particles are preferably separated from the granular detergent composition and returned to the process by adding them to at least one of the mixers and/or the fluid bed dryer as described in detail below.
  • the large particles are preferably separated from the granular detergent composition and then fed to a grinder where their geometric mean particle diameter is reduced. After the geometric mean particle diameter of the large particles is reduced, the large particles are returned to the process by adding them to at least one of the mixers and/or the fluid bed dryer.
  • the agglomeration may comprise the step of spraying an additional binder in the mixers to facilitate production of the desired detergent particles,
  • a binder is added for purposes of enhancing agglomeration by providing a "binding" or "sticking" agent for the detergent components.
  • the binder is preferably selected from the group consisting of water, anionic surfactants, nonionic surfactants, polyethylene glycol, polyvinyl pyrrolidone polyacrylates, citric acid and mixtures thereof.
  • suitable binder materials including those listed herein are described in Beerse et al, U.S. Patent No. 5.108.646 (Procter & Gamble Co.)
  • Another optional processing step to form the particle core of the present invention includes continuously adding a coating agent such as zeolites, recycled "fines" as described above and fumed silica to the mixer to improve the particle color, increase the particle "whiteness or facilitate free flowability of the resulting detergent particles and to prevent over agglomeration.
  • a coating agent such as zeolites, recycled "fines" as described above and fumed silica
  • the fines are preferably in the approximate size range of 0.1 to 0.5 times the mean particle size of the larger particles.
  • the particle coating layer will also improve the integrity of the fines layering and provide abrasion and attrition resistance during handling.
  • the detergent starting materials can be fed into a pre-mixer, such as a Lodige CB mixer or a twin-screw extruder, prior to entering in the mixer. This step, although optional, does indeed facilitate agglomeration.
  • particle cores which comprise tower blown particles.
  • the core particle is formed by the preparation of a slurry of surfactant materials, water and dry starting detergent materials.
  • the resultant slurry is then passed to a tower where the slurry is sprayed into a stream of air at temperatures typically ranging from about 175°C to about 225°C to dry the detergent slurry and formed detergent particles.
  • resultant densities of these particles range from about 200 to about 500 g/l.
  • the particle coating layer of the present invention is a water soluble coating material.
  • the particle coating layer imparts dramatically new surface and appearance properties on the detergent particles of the present invention.
  • the coated particles of the present invention have an appearance which is brighter and/or whiter than current detergent particles. This provides a more favorable response from consumers who prefer white detergent products.
  • the particle coating layer of the present invention imparts a dramatically improved feel to the particles of the present invention.
  • the coated particles of the present invention have a glassy, smoother feel than prior art detergent products. This again provides a more favorable response from consumers who prefer a rounded, uniform product.
  • the coated particles of the present invention provide improved sound to a detergent product containing the particles of the present invention.
  • the coated particles have a crisper sound than current detergent products, thereby leaving the consumer with a more favorable overall impression of the product.
  • the coated particles of the present invention provide improved clumping and flowability profiles to detergent products containing the particles of the present invention.
  • the particle coating layer provides a coating which is crisper and non-tacky. While effective at improving flowability in all detergent products, it is particularly effective at preventing clumping in products containing surfactants which are more difficult to dry to a non-tacky state including nonionic surfactants, linear alkyl benzene sulfonates ("LAS"), and ethoxylated alkyl sulfates or in detergent products containing high amounts of surfactant actives (i.e. greater than about 25 wt % surfactant active).
  • LAS linear alkyl benzene sulfonates
  • surfactant actives i.e. greater than about 25 wt % surfactant active
  • the particle coating layer of the present invention at least partially coats the particle core. While the desired state is for particles which are completely coated by the particle coating, it is, of course, anticipated that complete coverage will not be possible in all cases in a continuous, high speed manufacturing process. While it is rather difficult to quantify the extent of the coating layer coverage, it is observed that increasing the amount of coating solids, either by increasing the solids concentration in the solution or by spraying on more of the solution, results in improved benefits and the appearance of a more uniform coverage. The benefits of increased coverage is balanced with the cost of drying excess water in the process. Accordingly, in preferred embodiments of the present invention, adequate coverage is achieved by applying coating solids at more than about 3 wt.% and most preferably more than about 5 wt.% of the particle core mass.
  • the particle coating layer of the present invention comprises a water soluble coating material.
  • the coating material is not an alkali metal silicate as presents stability problems in the detergent composition and has a tendency to form insoluble residues in the processing of the detergent.
  • the water soluble coating material is applied to provide a smoother more uniform appearance to the resultant detergent particles.
  • the coating material may be selected from a wide variety of materials provided the coating imparts the appearance, flowability and surface properties described herein.
  • Preferred materials include inorganic salts.
  • Most preferred are non-hydrating materials. By non-hydrating it is intended that the material does not have a strong tendency to react with environmental water such as moisture present in composition or humidity in the air to form higher hydrate phases.
  • a non-hydrating coating means a coating layer in which at least 40 wt.% of the coating consists of a non-hydrating inorganic material, preferably more than about 60 wt.% and most preferably more than about 80 wt.% non-hydrating.
  • the non-hydrating material is preferably selected from alkali and/or alkaline earth metal sulfate and carbonate salts or mixtures of the two.
  • a highly preferred materials are double salts of sulfate and carbonate having the formula M n X n :MSO 4 :MCO 3 , where MX can a salt compound such as a metal halide, and the molar fractions of MSO 4 and MCO 3 are both at least 10 mol% of the formula. More preferred, the molar ratio of MSO 4 :MCO 3 is from about 90:10 to about 10:90 and more preferably from about 75:25 to about 60:40 where M independently represents an alkali or alkaline earth metal and n is an integer or fraction thereof from 0 to 5.
  • Examples of these highly preferred materials are the water-free sulfates and water-free carbonate minerals that are formed naturally by evaporative deposition, such as Hanksite, KNa22(SO4)9(CO3)2Cl, and Tychite, Na6Mg2(CO3)4(SO4).
  • An especially preferred material is a 2:1 molar ratio of the double salt Na 2 SO 4 :Na 2 CO 3 otherwise known as "Burkeite", Na6(CO3)(SO4)2.
  • the particle coating layer may also include an detergent adjunct ingredient in addition to the particle coating material.
  • detergent adjunct ingredients may include a wide variety of ingredients, including but not limited to optical brighteners, pigments or dyes, chelants, nonionic surfactants, pH control agents, detergency co-builders and mixtures of these materials. Particularly preferred are pigments or dyes such as titanium dioxide, bluing agents such as copper sulfate, zinc thiosulfate and Ultramarine blue, Sparkle enhancers such as mica flake, and co-builders such as citrates and nonionic surfactants.
  • the particles of the present invention are produced by coating the particle core as described hereinbefore with the particle coating material in a coating mixer.
  • the coating mixer may be any of a number of mixers including high, moderate, and low speed mixers such as a Lodige KMTM (Ploughshare) 600 moderate speed mixer, Lodige CBTM high speed mixer, or mixers made by Fukae, Drais, Schugi or similar brand mixer.
  • Particularly preferred for use in the present invention are low speed drum mixers and low shear fluidized bed mixers.
  • the mixer is preferably followed in sequence by a drying apparatus, for example a fluid bed, wherein the coated particles are then dried to achieve the coated particles of the present invention.
  • the coating mixer is a fluidized bed.
  • the preferred particle core of detergent agglomerates, spray-dried particles or most preferably mixtures thereof is passed into a fluid bed dryer having multiple internal "stages" or "zones".
  • a stage or zone is any discrete area within the dryer, and these terms are used interchangeably herein.
  • the process conditions within a stage may be different or similar to the other stages in the dryer. It is understood that two adjacent dryers are equivalent to a single dryer having multiple stages.
  • the various feed streams of particle core and coating material can be added at the different stages, depending on, for example, the particle size and moisture level of the feed stream. Feeding different streams to different stages can minimize the heat load on the dryer, and optimize the particle size and shape as defined herein.
  • the fluid bed mixer of the present invention comprises a first coating zone where the particle coating material of the present invention is applied.
  • the coating zone involves the spraying of the coating material in aqueous or slurry form onto the fluidized particles.
  • the bed is typically fluidized with heated air in order to dry or partially dry moisture from the spray coating as it is applied.
  • the spraying is achieved via nozzles capable of delivering a fine or atomized spray of the coating mixture to achieve complete coverage of the particles.
  • the droplet size from the atomizer is less than about 100 um. This atomization can be achieved either through a conventional two-fluid nozzle with atomizing air, or alternatively by means of a conventional pressure nozzle.
  • the solution or slurry rheology is typically characterized by a viscosity of less than about 500 centipoise, preferably less than about 200 centipoise.
  • the nozzle location in the fluid bed may be in most any location, the preferred location is a positioning that allows a vertical down spray of the coating mixture such as a top spray configuration.
  • the nozzle location is placed at or above the fluidized height of the particles in the fluid bed.
  • the fluidized height is typically determined by a weir or overflow gate height.
  • the coating zone of the fluid bed is then typically followed by a drying zone and a cooling zone.
  • a drying zone and a cooling zone are also possible to achieve the resultant coated particles of the present invention.
  • An alternative embodiment uses an agitated fluid bed, which includes mechanical and/or pneumatic mixing elements in addition to the conventional bed that is fluidized air passing through holes in a distributor plate.
  • the advantage of the agitated bed is that it can be used to apply additional shear as a means to control granular shape and smoothness while performing the coating operation.
  • Typical conditions within a fluid bed or agitated fluid bed apparatus of the present invention include (i) from about 1 to about 20 minutes of mean residence time, (ii) from about 100 to about 600 mm of depth of unfluidized bed, (iii) preferably not more than about 50 micron of droplet spray size, (iv) from about 175 to about 250 mm of spray height, (v) from about 0.4 to about 2.0 m/s of fluidizing velocity and (vi) from about 12 to about 100 °C of bed temperature.
  • the conditions in the fluid bed may vary depending on a number of factors.
  • the coated particles exiting the coating mixer may comprise in and of themselves a fully formulated detergent composition or in preferred embodiments may be admixed with additional ingredients, such as bleaching agents, enzymes, perfumes, non-coated detergent particles, and various other ingredients to produce a fully formulated detergent composition.
  • the coated particles of the present invention have improved surface properties in that the particles are more uniform in shape and smoother on the surface than the uncoated spray-dried or agglomerated detergent particles. These features are reflected in a reduction of the overall surface area of particles having the coating of the present invention as opposed to particles not having the coatings of the present invention.
  • the coatings of the present invention reduce total surface area by smoothing irregularities and filling crevices on the surface of the particles.
  • a reduction in surface area as provided by the present invention leads to improved flow properties and to improved overall aesthetics by providing a more reflective surface.
  • the surface area of the particles of the present invention are measured according to the following procedure.
  • Detergent Particles are placed into a Micromeritics VacPrep 061. available from Micromeritics of Norcross, Georgia, for pre-test preparation.
  • the particles are placed under a vacuum of approximately 500 millitorr and heated to a temperature of between 80 and 100°C for approximately 16 hours.
  • the BET multi-point surface area is then measured in a Micromeritics Gemini 2375 surface area analyzer using a mixture of helium and nitrogen gases and the following general conditions: Evacuation rate - 500.0 mmHg/min; Analysis Mode - Equilibration; Evacuation Time - 1.0 min.; Saturation Pressure - 771.77 mmHg; Equilibration Time - 5 sec. Helium/Nitrogen Pressure - 15 psig; Helium and Nitrogen purity 99.9%, free space is measured and P/Po points cover 0.05 to 0.3 with 5 data points taken.
  • the granular detergent compositions of this invention have a standard deviation of the number distribution of circularity less than about 20, that is preferably less than about 10, more preferably less than about 7 most preferably less than about 4.
  • the standard deviation of the number distribution of aspect ratios is preferably less than about 1, more preferably less than about 0.5, even more preferably less than about 0.3, most preferably less than about 0.2.
  • granular detergent compositions are produced wherein the product of circularity and aspect ratio is less than about 100, preferably less than about 50, more preferably less than about 30, and most preferably less than about 20. Also preferred are granular detergent compositions with the standard deviation of the number distribution of the product of circularity and aspect ratio of less than about 45, preferably less than about 20, more preferably less than about 7 most preferably less than about 2.
  • the coated particles of the present invention may be treated with a post coating gloss treatment to provide a gloss layer on the coated detergent particle.
  • the gloss layer may comprise inorganic salt materials, chelating materials, polymeric materials and mixtures thereof.
  • Preferred inorganic materials are sulfate salts such as magnesium sulfate
  • preferred chelants are diamines such as ethylene diamine disuccinic acids (EDDS)
  • preferred polymers include acrylic polymers and copolymers such as acrylic/maleic copolymers.
  • the surfactant system of the detergent composition may include anionic, nonionic, zwitterionic, ampholytic and cationic classes and compatible mixtures thereof.
  • Detergent surfactants are described in U.S. Patent 3,664,961, Norris, issued May 23, 1972, and in U.S. Patent 3,919,678, Laughlin et al., issued December 30, 1975.
  • Cationic surfactants include those described in U.S. Patent 4,222,905, Cockrell, issued September 16, 1980, and in U.S. Patent 4,239,659, Murphy, issued December 16, 1980.
  • Nonlimiting examples of surfactant systems include the conventional C 11 -C 18 alkyl benzene sulfonates ("LAS") and primary, branched-chain and random C 10 -C 20 alkyl sulfates (“AS”), the C 10 -C 18 secondary (2,3) alkyl sulfates of the formula CH 3 (CH 2 ) x (CHOSO 3 - M + ) CH 3 and CH 3 (CH 2 ) y (CHOSO 3 - M + ) CH 2 CH 3 where x and (y + 1) are integers of at least about 7, preferably at least about 9, and M is a water-solubilizing cation, especially sodium, unsaturated sulfates such as oleyl sulfate, the C 10 -C 18 alkyl alkoxy sulfates (“AE x S”; especially EO 1-7 ethoxy sulfates), C 10 -C 18 alkyl alkoxy carboxylates (especially the EO 1-5 eth
  • the conventional nonionic and amphoteric surfactants such as the C 12 -C 18 alkyl ethoxylates ("AE") including the so-called narrow peaked alkyl ethoxylates and C 6 -C 12 alkyl phenol alkoxylates (especially ethoxylates and mixed ethoxy/propoxy), C 12 -C 18 betaines and sulfobetaines ("sultaines"), C 10 -C 18 amine oxides, and the like, can also be included in the surfactant system.
  • the C 10 -C 18 N-alkyl polyhydroxy fatty acid amides can also be used. Typical examples include the C 12 -C 18 N-methylglucamides. See WO 9,206,154.
  • sugar-derived surfactants include the N-alkoxy polyhydroxy fatty acid amides, such as C 10 -C 18 N-(3-methoxypropyl) glucamide.
  • the N-propyl through N-hexyl C 12 -C 18 glucamides can be used for low sudsing.
  • C 10 -C 20 conventional soaps may also be used. If high sudsing is desired, the branched-chain C 10 -C 16 soaps may be used. Mixtures of anionic and nonionic surfactants are especially useful. Other conventional useful surfactants are listed in standard texts.
  • the detergent composition can, and preferably does, include a detergent builder.
  • Builders are generally selected from the various water-soluble, alkali metal, ammonium or substituted ammonium phosphates, polyphosphates, phosphonates, polyphosphonates, carbonates, silicates, berates, polyhydroxy sulfonates, polyacetates, carboxylates, and polycarboxylates.
  • the alkali metal especially sodium, salts of the above.
  • Preferred for use herein are the phosphates, carbonates, silicates, C 10-18 fatty acids, polycarboxylates, and mixtures thereof. More preferred are sodium tripolyphosphate, tetrasodium pyrophosphate, citrate, tartrate mono- and di-succinates, sodium silicate, and mixtures thereof (see below).
  • inorganic phosphate builders are sodium and potassium tripolyphosphate, pyrophosphate, polymeric metaphosphate having a degree of polymerization of from about 6 to 21, and orthophosphates.
  • polyphosphonate builders are the sodium and potassium salts of ethylene diphosphonic acid, the sodium and potassium salts of ethane 1-hydroxy-1, 1-diphosphonic acid and the sodium and potassium salts of ethane, 1,1,2-triphosphonic acid.
  • Other phosphorus builder compounds are disclosed in U.S. Patents 3,159,581; 3,213,030; 3,422,021; 3,422,137; 3,400,176 and 3,400,148.
  • nonphosphorus, inorganic builders are sodium and potassium carbonate, bicarbonate, sesquicarbonate, tetraborate decahydrate, and silicates having a weight ratio of SiO 2 to alkali metal oxide of from about 0.5 to about 4.0, preferably from about 1.0 to about 2.4.
  • Water-soluble, nonphosphorus organic builders useful herein include the various alkali metal, ammonium and substituted ammonium polyacetates, carboxylates, polycarboxylates and polyhydroxy sulfonates.
  • polyacetate and polycarboxylate builders are the sodium, potassium, lithium, ammonium and substituted ammonium salts of ethylene diamine tetraacetic acid, nitrilotriacetic acid, oxydisuccinic acid, mellitic acid, benzene polycarboxylic acids, and citric acid.
  • Polymeric polycarboxylate builders are set forth in U.S. Patent 3,308,067, Diehl, issued March 7, 1967. Such materials include water-soluble salts of homo- and copolymers of aliphatic carboxylic acids such as maleic acid, itaconic acid, mesaconic acid, fumaric acid, aconitic acid, citraconic acid and methylenemalonic acid. Some of these materials are useful as the water-soluble anionic polymer as hereinafter described, but only if in intimate admixture with the nonsoap anionic surfactant.
  • polyacetal carboxylates for use herein are the polyacetal carboxylates described in U.S. Patent 4,144,226, issued March 13, 1979 to Crutchfield et al., and U.S. Patent 4,246,495, issued March 27, 1979 to Crutchfield et al., These polyacetal carboxylates can be prepared by bringing together under polymerization conditions an ester of glyoxylic acid and a polymerization initiator. The resulting polyacetal carboxylate ester is then attached to chemically stable end groups to stabilize the polyacetal carboxylate against rapid depolymerization in alkaline solution, converted to the corresponding salt, and added to a detergent composition.
  • Particularly preferred polycarboxylate builders are the ether carboxylate builder compositions comprising a combination of tartrate monosuccinate and tartrate disuccinate described in U.S. Patent 4,663,071, Bush et al., issued May 5, 1987.
  • Water-soluble silicate solids represented by the formula SiO 2 •M 2 O, M being an alkali metal, and having a SiO 2 :M 2 O weight ratio of from about 0.5 to about 4.0, are useful salts in the detergent granules of the invention at levels of from about 2% to about 15% on an anhydrous weight basis, preferably from about 3% to about 8%.
  • Anhydrous or hydrated particulate silicate can be utilized, as well.
  • any number of additional ingredients can also be included as components in the granular detergent composition.
  • these include other detergency builders, bleaches, bleach activators, suds boosters or suds suppressors, anti-tarnish and anti-corrosion agents, soil suspending agents, soil release agents, germicides, pH adjusting agents, nonbuilder alkalinity sources, chelating agents, smectite clays, enzymes, enzyme-stabilizing agents and perfumes. See U.S. Patent 3,936,537, issued February 3, 1976 to Baskerville, Jr. et al.,
  • Suitable smectite clays for use herein are described in U.S. Patent 4,762,645, Tucker et al., issued August 9, 1988, Column 6, line 3 through Column 7, line 24.
  • Suitable additional detergency builders for use herein are enumerated in the Baskerville patent, Column 13, line 54 through Column 16, line 16, and in U.S. Patent 4,663,071, Bush et al., issued May 5, 1987,
  • a detergent agglomerate composition was made using the following formula using dry neutralization of HLAS in a highspeed mixer, followed by paste agglomeration with a pre-neutralized NaLAS paste in a second medium speed mixer, followed by spray-on of a Burkeite solution (5% solids basis) in a fluid bed dryer.
  • the spray solution can be made from a burkeite starting material, dissolved in water at -28.5 wt % solids, or by dissolving a mixture of Sodium Carbonate and Sodium Sulfate salts in a ratio of -30:70 with a total salt solids loading of -28.5 wt % in water.
  • the solution is atomized to form droplets which coat or partially coat the particle core agglomerates, then the water is evaporated at a bed temperature of about 40 to 80 °C. Upon evaporation, the salts co-precipitate to form the Burkeite coating.
  • a granular detergent composition was made using the following formula using a spray-dried core granule, followed by spray-on of a Potassium Citrate solution (5% solids basis) in a fluid bed dryer. Fluid Bed Coating and Drying Spray-dried core particle 100% Spray on solution* (wet basis) 9% Evaporation -3% Net coating solids (Potassium Citrate) 6% Coated Product 106% *Solution made up of 3.1 wt% K2CO3, 2.9% Citric Acid and 3 wt % H2O.
  • the spray solution was made by co-dissolving Potassium Carbonate and Citric Acid in water.
  • the solution is atomized to form droplets which coat or partially coat the core agglomerates, then the water is evaporated at a bed temperature of about 40 to 80 degrees Centigrade.
  • the organic salt, Potassium Citrate forms a, coating or partial-coating layer on the surface of the spray-dried granules.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Claims (10)

  1. Procédé pour la préparation d'une particule détergente enrobée par les étapes de:
    i) fourniture d'un noyau de particule caractérisé par un matériau actif détergent;
    ii) passage dudit noyau de particule vers un mélangeur d'enrobage;
    iii) fourniture d'une solution d'enrobage d'un matériau inorganique hydrosoluble, non-hydratant audit mélangeur d'enrobage; et
    iv) enrobage au moins partiel dudit noyau de particule avec ledit matériau inorganique dans ledit mélangeur d'enrobage de façon à former une particule détergente, caractérisée en ce que ledit matériau inorganique est le sel double Na2SO4:Na2Co3 dans un rapport pondéral de Na2SO4 sur Na2Co3 allant de 80/20 à 20/80.
  2. Procédé tel que revendiqué dans la revendication 1, dans lequel ledit noyau de particule est caractérisé par un mélange d'agents tensioactifs anioniques et d'ingrédients détergent secs.
  3. Procédé tel que revendiqué dans l'une quelconque des revendications 1 à 2, dans lequel ledit mélange d'agent tensioactif anionique et d'ingrédients détergent secs est choisi parmi le groupe consistant en agglomérats de détergent, particules séchées par atomisation, paillettes de détergent et leurs mélanges.
  4. Procédé tel que revendiqué dans l'une quelconque des revendications 1 à 3, dans lequel ledit mélangeur d'enrobage est choisi parmi le groupe consistant en mélangeurs à faible vitesse, mélangeurs à lit fluidisé, et leurs combinaisons.
  5. Procédé tel que revendiqué dans l'une quelconque des revendications 1 à 4, dans lequel ledit mélangeur d'enrobage est un mélangeur à lit fluidisé.
  6. Procédé tel que revendiqué dans l'une quelconque des revendications 1 à 5, dans lequel ledit matériau inorganique hydrosoluble, non-hydratant est choisi dans le groupe constitué par les sels de carbonate de métal alcalin, les sels de sulfate de métal alcalin et leurs mélanges.
  7. Procédé tel que revendiqué dans l'une quelconque des revendications 1 à 6, dans lequel ledit matériau inorganique hydrosoluble, non-hydratant est du burkeïte.
  8. Procédé tel que revendiqué dans l'une quelconque des revendications 1 à 7, dans lequel ladite étape de fourniture de ladite solution d'enrobage aqueuse est en outre caractérisée par l'étape de pulvérisation de ladite solution d'enrobage dans ledit mélangeur d'enrobage.
  9. Procédé tel que revendiqué dans l'une quelconque des revendications 1 à 8, dans lequel ledit mélangeur d'enrobage est un lit fluidisé ayant un plan de dégagement et ladite solution d'enrobage est vaporisée dans ledit lit fluidisé à partir d'au-dessus dudit plan de dégagement.
  10. Procédé pour la préparation d'une particule détergente enrobée par les étapes de:
    a) fourniture d'un matériau de type agent tensioactif sous la forme d'une pâte ou d'un liquide et des matériaux détergents de départ secs;
    b) mélangeage dudit matériau de type agent tensioactif et desdits matériaux détergents de départ secs de façon à former un noyau de particule;
    c) passage dudit noyau de particule vers un mélangeur d'enrobage;
    d) fourniture d'une solution d'enrobage d'un matériau inorganique hydrosoluble, non-hydratant audit mélangeur d'enrobage; et
    e) enrobage au moins partiel dudit noyau de particule avec ledit matériau inorganique dans ledit mélangeur d'enrobage de façon à former une particule détergente, caractérisée en ce que ledit matériau inorganique est du burkeïte.
EP00916147A 1999-03-09 2000-03-08 Procede de production de particules de detergent enrobees Expired - Lifetime EP1159390B2 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US12344399P 1999-03-09 1999-03-09
US123443P 1999-03-09
US12777299P 1999-04-05 1999-04-05
US127772P 1999-04-05
PCT/US2000/005983 WO2000053714A1 (fr) 1999-03-09 2000-03-08 Procede de production de particules de detergent enrobees

Publications (3)

Publication Number Publication Date
EP1159390A1 EP1159390A1 (fr) 2001-12-05
EP1159390B1 true EP1159390B1 (fr) 2006-05-03
EP1159390B2 EP1159390B2 (fr) 2009-08-12

Family

ID=26821563

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00916147A Expired - Lifetime EP1159390B2 (fr) 1999-03-09 2000-03-08 Procede de production de particules de detergent enrobees

Country Status (10)

Country Link
EP (1) EP1159390B2 (fr)
JP (1) JP2002538291A (fr)
CN (1) CN1343250A (fr)
AR (1) AR022885A1 (fr)
AT (1) ATE325183T1 (fr)
AU (1) AU3729600A (fr)
BR (1) BR0008852A (fr)
CA (1) CA2362413A1 (fr)
DE (1) DE60027707T2 (fr)
WO (1) WO2000053714A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10221742A1 (de) * 2002-05-16 2003-12-04 Henkel Kgaa Gerüststoffgranulate
EP2584028B1 (fr) * 2011-10-19 2017-05-10 The Procter & Gamble Company Particule
EP2639291A1 (fr) * 2012-03-13 2013-09-18 Unilever PLC Composition de détergent particulaire conditionnée
WO2013139702A1 (fr) * 2012-03-21 2013-09-26 Unilever Plc Particules de détergent à lessive
US20160177240A1 (en) * 2013-08-28 2016-06-23 Novozymes A/S Enzyme Granule with Fluorescent Whitening Agent
CN114774206A (zh) * 2014-04-10 2022-07-22 宝洁公司 复合洗涤剂颗粒和包含复合洗涤剂颗粒的衣物洗涤组合物
CN111893008B (zh) * 2020-08-10 2022-09-20 纳爱斯集团有限公司 一种洗涤制剂及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4105827A (en) * 1973-04-20 1978-08-08 Interox Particulate peroxygen compounds coated with sodium sesquicarbonate or Na2 SO4 mNa2 CO3
FR2226460B1 (fr) 1973-04-20 1976-12-17 Interox
DE2652776A1 (de) 1975-05-13 1978-05-24 Interox Chemicals Ltd Verfahren zur herstellung von natriumpercarbonat
LU72575A1 (fr) 1975-05-23 1977-02-10
US5707953A (en) * 1993-04-19 1998-01-13 Akzo Nobel N.V. Fluidized bed coated amidoperoxyacid bleach composition
US5462804A (en) 1993-05-06 1995-10-31 Mitsubishi Gas Chemical Co., Ltd. Stabilized particle of sodium percarbonate
ATE185838T1 (de) 1993-07-14 1999-11-15 Procter & Gamble Stabilisierte reinigungsmittelzusammensetzungen
US5576285A (en) * 1995-10-04 1996-11-19 The Procter & Gamble Company Process for making a low density detergent composition by agglomeration with an inorganic double salt
EP0889849A1 (fr) 1996-03-27 1999-01-13 SOLVAY INTEROX (Société Anonyme) Procede de fabrication d'un percarbonate
DE19713328A1 (de) * 1997-03-29 1998-10-01 Henkel Kgaa Verfahren zur Herstellung von Granulaten
EP0976819B1 (fr) 1998-07-17 2002-01-30 The Procter & Gamble Company Comprimé détergent

Also Published As

Publication number Publication date
BR0008852A (pt) 2002-01-08
AR022885A1 (es) 2002-09-04
CA2362413A1 (fr) 2000-09-14
JP2002538291A (ja) 2002-11-12
CN1343250A (zh) 2002-04-03
AU3729600A (en) 2000-09-28
EP1159390B2 (fr) 2009-08-12
EP1159390A1 (fr) 2001-12-05
DE60027707D1 (de) 2006-06-08
DE60027707T2 (de) 2007-04-05
WO2000053714A1 (fr) 2000-09-14
ATE325183T1 (de) 2006-06-15

Similar Documents

Publication Publication Date Title
US7022660B1 (en) Process for preparing detergent particles having coating or partial coating layers
EP1187903B1 (fr) Procede d'enrobage de granules de detergent dans un lit fluidise
US6900169B2 (en) Process for coating detergent granules in a fluidized bed
US6767882B1 (en) Process for producing coated detergent particles
US6858572B1 (en) Process for producing coated detergent particles
EP1159395B1 (fr) Particules de detergent enrobees ou partiellement enrobees de couches
WO1997030145A1 (fr) Procede d'obtention d'une composition de detergent a faible densite par agglomeration avec un double sel inorganique
US6258773B1 (en) Process for making a low density detergent composition by controlling agglomeration via particle size
EP1159390B1 (fr) Procede de production de particules de detergent enrobees
US6894018B1 (en) Process for making granular detergent in a fluidized bed granulator having recycling of improperly sized particles
EP1005522B1 (fr) Procede de production d'une composition detergente de faible densite par commande de la hauteur de la buse d'un sechoir a lit fluide
CA2375406C (fr) Procede de fabrication de detergent granulaire dans un granulateur a lit fluidise dote d'un recyclage pour particules de tailles irregulieres
EP1187902A1 (fr) Procede de production de particules de detergent enrobees
EP1187904B1 (fr) Procede de fabrication d'une composition granulaire detergente
US6906022B1 (en) Granular detergent compositions having homogenous particles and process for producing same
EP1115837B1 (fr) Compositions de detergent granulaires comportant des particules homogenes et procede de production de celles-ci
US6440342B1 (en) Process for making a low density detergent composition by controlling nozzle height in a fluid bed dryer
US6951837B1 (en) Process for making a granular detergent composition
MXPA98002733A (en) Procedure for manufacturing a low density detergent composition through agglomeration containing inorgan salt

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010917

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20041201

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060503

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60027707

Country of ref document: DE

Date of ref document: 20060608

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060803

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061003

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SOLVAY (SOCIETE ANONYME)

Effective date: 20070202

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070308

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060804

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20090812

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070308

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090331

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090306

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091113

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120227

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130308