EP1149167B1 - Viral vaccine - Google Patents

Viral vaccine Download PDF

Info

Publication number
EP1149167B1
EP1149167B1 EP99963478A EP99963478A EP1149167B1 EP 1149167 B1 EP1149167 B1 EP 1149167B1 EP 99963478 A EP99963478 A EP 99963478A EP 99963478 A EP99963478 A EP 99963478A EP 1149167 B1 EP1149167 B1 EP 1149167B1
Authority
EP
European Patent Office
Prior art keywords
mixture
sequence
nucleic acid
dna
loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99963478A
Other languages
German (de)
French (fr)
Other versions
EP1149167A2 (en
Inventor
Michael Schreiber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Strathmann GmbH and Co KG
Original Assignee
Strathmann GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Strathmann GmbH and Co KG filed Critical Strathmann GmbH and Co KG
Publication of EP1149167A2 publication Critical patent/EP1149167A2/en
Application granted granted Critical
Publication of EP1149167B1 publication Critical patent/EP1149167B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/21Retroviridae, e.g. equine infectious anemia virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16111Human Immunodeficiency Virus, HIV concerning HIV env
    • C12N2740/16122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16111Human Immunodeficiency Virus, HIV concerning HIV env
    • C12N2740/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the present invention relates to a pharmaceutical composition or a vaccine which comprises a mixture of viral protein molecules which are sequence variants of a single viral protein or a part thereof, the mixture containing 10 10 2 sequence variants which by expression of a plasmid DNA Mixture is available which has randomly distributed sequence combinations due to the variation of nucleotide positions.
  • the invention further relates, inter alia, to a DNA vaccine which codes for a mixture of structurally different virus proteins, the vaccine containing a mixture of sequence variants of a viral DNA molecule or a part thereof, which code sequence variants of a viral protein or part, where the mixture contains 10 10 2 DNA molecules which differ from one another in their nucleic acid sequence, the mixture having randomly distributed sequence combinations due to the variation in nucleotide positions.
  • the viral proteins are sequence variants of the GP120 protein of human immunodeficiency virus (HIV), each of which has an amino acid sequence in the region of the V2 loop and / or the V3 loop, preferably both the V2 - as well as the V3 loop.
  • HIV human immunodeficiency virus
  • the invention further relates to the production of the virus vaccines, including the related intermediate stages or constructs, production processes and uses.
  • HIV-1 infection For many viral infections, especially HIV-1 infection, one observes a strong immune defense, which in the Is able to get the virus over a period of several years check. The period during which the virus is checked and no symptoms of illness are observed than the asymptomatic phase of the (HIV) disease. In the course new variants of the virus keep arising. This enables the virus, the human immune system to escape and keep getting new immune system cells to infect (see M. Schreiber et al., J. Virol. 68 no. 6 (1994) 3908-3916; J. Gen. Virol. 77: 2403-2414 (1996); Clin. Exp. Immunol. 107 (1997) 15-20; J. Virol. 71 No. 12 (1997) 9198 to 9205).
  • Both GP120 molecules differ in the amino acid sequence, but especially in the amino acid sequence of the variable regions, such as the V3 loop (V3 loop).
  • the two virus strains have different phenotypic properties due to the different V3 loop sequences.
  • the HIV-1 MN strain is a virus variant that preferentially infects macrophages and cells that have the viral coreceptor CCR5.
  • viruses of the SF2 type preferentially reproduce in T cells and use the viral coreceptor CXCR4.
  • Such viruses are therefore also called T cell trophies (eg HIV strain SF2) or macrophagotrophs (eg HIV strain MN) virus variants.
  • Vaccination experiments were carried out in the chimpanzee with these two GP120 variants.
  • the object of the present invention is therefore a vaccine to provide, which is in particular able to Emergence of new virus variants in the course of a virus disease to prevent or significantly reduce and Ways to restrict or prevent the virus escape human immune defenses and always new ones Defense cells of the immune system can infect.
  • the present invention thus relates, inter alia, to a protein vaccine which comprises a mixture of viral protein molecules, the molecules being sequence variants of a single viral protein or a part thereof, the mixture containing 10 10 2 sequence variants which are produced by expression of a plasmid -DNA mixture is available, which has randomly distributed sequence combinations due to the variation of nucleotide positions.
  • Sequence variants of a protein are according to the invention understood such molecules that one versus a native viral protein or a part (fragment) thereof Have amino acid sequences, with the variants differ from one another in that at least one Amino acid at any point in the sequence or parts the same can be exchanged. preferably the Sequence variants of several amino acid exchanges at different Set up the sequence for the production, but also the Binding virus neutralizing antibodies are responsible. The number and location of the amino acids exchanged depend on this on the amino acid variability of the regions of the gp120 that observed in cell culture adapted and wild-type HIV isolates becomes.
  • the sequence variants have a Heterogeneity at at least two amino acid positions of the Sequence or parts thereof. One is particularly preferred Heterogeneity at three to eight and preferably at more than eight amino acid positions, with all occurring amino acids are possible at these positions. From the combination of the different amino acids that are possible for each position the number of possible sequence variants in their Whole represent the vaccine.
  • the invention relates to a vaccine which comprises a mixture of 10 10 2 sequence variants, ie a mixture of more than 10 2 molecules of different amino acid sequence (homologues).
  • a vaccine which comprises 10 10 3 and preferably 10 10 4 sequence variants is particularly preferred.
  • the vaccine not only the sequence variants but also the protein as may include such from which the sequence variants are derived are.
  • an active ingredient against viruses which includes virus-specific proteins, all of which are found in distinguish their sequences or parts thereof.
  • the protein-coding gene is newly synthesized, to create new interfaces for DNA-cutting enzymes, to allow the exchange of specific regions.
  • Encode protein section then becomes a gene bank for the Protein coding sequence prepared.
  • the expression vectors, which encode the protein are then called Mixture transfected into cells. For those protein-producing Cells can then mix different viral cells Proteins are isolated which are preferred according to the invention Represents active ingredient.
  • a virus that is in the patient against the immune system prevails and develops into the dominant virus variant, must inevitably overcome all antiviral barriers that the Provides immune system.
  • cytotoxic T cells are also able to multiply viruses to suppress. Cytotoxic T cells cause death HIV infected CD4 + T cells.
  • the HIV disease is characterized by this from the fact that the virus is constantly changing. This is through the Error rate of the viral enzyme reverse transcriptase causes which errors in the propagation of viral genetic information makes. This creates mutants that are due on the one hand their biological properties and antiviral effects of the human immune system can be selected. As with HIV there are also other pathogens that contain their genetic information without Rectify error correction, leading to the training of many Variants can lead. In addition to hepatitis A, B and C viruses also include Hanta and Lassa viruses. So you watch at Hepatitis B vaccinated individuals that there was approximately 2% vaccination failure comes. In this 2%, hepatitis B is "escape" Variants found that are not characterized by the Allow vaccine-induced immune response to be suppressed.
  • the present invention is a heterogeneous vaccine it is now possible for the first time to neutralize the loss To prevent V3 antibodies or at least prevent this loss to counteract clearly.
  • a immuno-constitutive treatment of virus-infected patients provided in particular by people infected with HIV which activates the immune system in a way that the naturally acquired immune defense against the virus population of the different virus variants regenerated and re-stimulated the virus variants present in the patient to prevent their multiplication.
  • the invention is based on the concept for one Drug against HIV-1 to produce a mixture of GP120 proteins, these GP120 proteins e.g. either in the V2 or V3 loop or simultaneously in the two variable domains, i.e. the V2 loop and the V3 loop.
  • the gene encoding GP120 be newly synthesized to form new (monovalent) Interfaces for DNA-cutting enzymes that match the specific Exchange of e.g. Allow V2 and V3 region.
  • V2 and V3 region Through chemical Synthesis of DNA fragments for the V2 loop and the Coding V3-Loop will then be a V2 / V3 library for GP120 manufactured.
  • the GP120 expression vectors will eventually transfected as a mixture into cells, and from these GP120-producing Cells can then mix the different ones GP120 proteins are isolated, which are used as active ingredients Prophylaxis and / or therapy of HIV disease or AIDS can be used.
  • the consideration underlying the present invention is therefore for immunotherapy or a vaccine to produce many different GP120 molecules against HIV-1, which carry V3 loop sequences (and / or V2 loop sequences), as they also identified in virus variants in patients can be.
  • the production of a mixture of natural virus variants in the Cell culture system is very complex. It is particularly important to note that the composition of a virus mixture changes because one has to use cells in the cell culture, that of HIV-1 can be infected. Some virus variants, the selective Have advantages, e.g. faster growth rate, are therefore in the cell culture system after just a few days dominate and supplant the other slower virus variants. This is especially the case when the different virus variants found in the peripheral mononuclear Blood cells (PBMC) or in the serum of patients should be isolated. Since it is not possible to have a consistent one Cultivating a mixture of HIV variants can also in this way no corresponding mixture of GP120 proteins are produced or isolated from virus cultures.
  • PBMC peripheral mononuclear Blood cells
  • a genetic engineering approach for the production of HIV-1 variants and GP120 variants was chosen within the scope of the present invention.
  • a cloning system consisting of two vectors was constructed to produce virus variants and recombinant GP120.
  • the central component of both vectors is a new, chemically synthesized HIV-1 coat protein gene (HIV-1 env gene), which codes for the GP120 protein.
  • HIV-1 env gene HIV-1 coat protein gene
  • One vector contains the entire genome of HIV-1. After transfection of this vector into cells, the cells produce infectious virus particles. This enables a mixture of virus variants to be produced since cells can be used which are resistant to HIV-1 infection. Therefore, in such a cell culture system, the composition of the virus mixture cannot change due to the biological properties of the virus variants.
  • the second vector enables the expression of GP120 variants in eukaryotic cells. This vector is used directly for the production of the vaccine (the vaccine).
  • a special gene construct for HIV-1 env was produced for the genetic engineering and expression of the V3 loop GP120 variants in eukaryotic cells, which is referred to below as a gene cassette.
  • the entire coding sequence of the env gene was chemically synthesized. With the help of this method, it is possible to change the coding sequence of the gene as desired, whereby new DNA recognition sequences for DNA-cutting restriction enzymes can be incorporated into the env gene sequence. Care must be taken to ensure that the amino acid sequence of the original GP120 (preferably of the strains NL4-3 and PI-932) does not change, whereas new restriction sites arise in the DNA sequence of the env gene.
  • interfaces for enzymes which occur several times in the env sequence are removed, so that there is only one interface for a particular restriction enzyme, such as BglII, in each case.
  • a particular restriction enzyme such as BglII
  • ten new, unique (monovalent) interfaces are inserted at intervals of approximately 150 base pairs in the env gene.
  • the new env gene thus generated is also referred to as a gene cassette in the context of the present invention.
  • the new env fragment is similar to a polylinker.
  • the interfaces for the restriction enzymes BstEII and BamHI limit the gene cassette preferred according to the invention (SEQ ID NO: 9).
  • SEQ ID NO: 9 The interfaces for the restriction enzymes BstEII and BamHI limit the gene cassette preferred according to the invention.
  • the interfaces for the restriction enzymes BstEII and BamHI limit the gene cassette preferred according to the invention (SEQ ID NO: 9).
  • SEQ ID NO: 10 The interfaces only once in the pBSCenvATG expression vector (SEQ ID NO: 10) for gp120 and in the retroviral vector pNL4-3 available.
  • the vector with the one assigned by the depositor Reference number pBSCenv-V3 was issued on January 6, 1999 at the DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Mascheroder Weg 1b, 38124 Braunschweig, Germany, under the Accession number DSM 12612 stored according to the Budapest contract.
  • the newly produced sections of the env gene which are also delimited by BstEII and BamHI, can be cloned into both vectors.
  • the PstI / BclI V2 loop and the BglII / XbaI V3 loop env fragment are synthesized chemically or enzymatically and then cloned into a standard vector such as pUC 18 or 19. In this vector the fragment is checked by sequencing and then cut from the vector by a Pst / BclI or BglII / XbaI digest and transferred into the pBSCenvATG and then into the pNL4-3 vector.
  • the PstI / BclI V2 loop and BglII / XbaI V3 loop fragments can also be cloned directly into pBSCenvATG.
  • all areas of the env gene, in particular the V3 loop or V2 loop, can be exchanged for any DNA fragments.
  • the section coding for the V3 loop can be replaced by a BglII-XbaI fragment which has a size of 244 base pairs (cf. SEQ ID NO: 9; nucleotides 708 to 955).
  • the aim is to replace the gene segments that code for the variable loops of the GP120 protein with new DNA fragments. The fragments are produced synthetically and then cloned into the env gene cassette.
  • V3 loop sequences of patient isolates are the basis for the preparation of the GP120 mixture. If these variants are cloned into the gp120 gene cassette, the corresponding GP120 proteins with the variable antigenic domains can be expressed in eukaryotic cells. Sequence data from HIV-1 patient isolates are available for the variation of the V3 loop region of the env gene.
  • Patient isolates are virus variants that have been grown in the laboratory directly from patient material, serum or infected cells from the blood. In contrast to HIV-1 viruses, which have been grown in the laboratory for a long time, these viruses have special properties. These viruses are more resistant to neutralizing antibodies and chemokines. In contrast to virus-adapted viruses, patient isolates use different coreceptors for the infection of cells. Since patient isolates are very different from laboratory-adapted viruses, the V2-Loop or V3-Loop sequence data collected from the env genes of such viruses should be used for the preparation of the GP120 mixture. Within the scope of the invention, additional base exchanges are possible in areas outside of the sequence sections coding for V2 and V3.
  • a Protein vaccine which is a mixture of Human immunodeficiency virus (HIV) GP120 proteins, each in their amino acid sequence in the area of the V3 loop and / or the V2 loop.
  • HIV Human immunodeficiency virus
  • sequence variations preferably in areas of the V3 loop introduced that lie outside of consensus sequences (cf. e.g. M. Schreiber et al., J. Virol. 71 No. 12 (1997) 9198-9205).
  • the consensus sequences are sequence sections, the both between different strains of virus as well as in the formation of virus variants progressive virus disease (HIV disease) in the body in the remain essentially. Such a section is in In the case of the B-subtype HIV-1, the sequence Gly-Pro-Gly-Arg-Ala-Phe (GPGRAF). To the left and right of this sequence motif short 4-10 amino acid long areas that vary widely can. In Fig. 1 this is based on the example of the V3 loop sequence variations represented by patient isolates.
  • the Molecules of the protein vaccine according to the invention also in the field of the V2 loop have sequence variations. In this case, too are changes in the amino acid sequence outside of consensus sequence ranges preferred (see Fig. 2). Furthermore are additional amino acid exchanges in areas outside the V2und V3 loops possible.
  • a Protein vaccine provided on genetic engineering Pathways are made and sequence variants more specific viral Antigens (proteins) includes.
  • the manufacture of the vaccine will described below using the example of the V3 loop of HIV.
  • Principle of synthesis on other viruses or viral proteins or Parts of their sequences can be transferred.
  • sequence coding for the GP120 protein is cloned piecewise into the plasmid pUC 18/19. This is done by a polylinker exchange, so that with the possible restriction sites which were previously inserted in the gp120 sequence by silent mutations, all interesting sections are flanked with monovalent restriction sites and can thus be cut out and exchanged later.
  • the oligonucleotides are then hybridized at complementary ends of a length of 20-30 bases that are not are variable.
  • the synthesis of the completely double-stranded Molecule takes place enzymatically with the help of a DNA polymerase.
  • Both isothermal DNA polymerases (Klenow fragment) or thermostable DNA polymerases can be used (Taq polymerase). If Taq polymerase is used, then larger ones can be used Amounts for cloning the V3-Loop DNA fragment also with Using the polymerase chain reaction. With With the help of these methods, a double-stranded DNA fragment is created manufactured, which is variable at certain positions. This degenerate DNA sequence codes for the corresponding one Variety of V3 loop amino acid sequences to be produced GP120 protein mixture, the protein vaccine.
  • the mixture of the synthesized V2 fragments has a PstI at the 5 'end and a BclI interface at the 3' end.
  • the mixture of the synthesized V3 fragments has a BglII and a XbaI interface at the 5 'end.
  • the fragment mixture is cloned into a vector, for example pUC18 delta-env or pUC 18 BstEII-BamHI (FIG. 3). After this cloning, a mixture or a pool of plasmid DNAs of the vector pUC 18 is produced, all of which have the complete BstEII-BamHI env fragment.
  • All plasmid DNAs differ only in the sequence of the env V2 loop or V3 loop.
  • the deletion (delta env) of the env gene segment in the pUC18 vector is canceled.
  • This plasmid pool is then isolated.
  • the env fragment is then cut out from the mixture of the plasmid DNAs by BstEII and BamHI digestion and cloned directly into the vector for the expression of the viral gp120 .
  • This vector has the advantage that the GP120 is also expressed in the eukaryotic cell system.
  • This pool of BSCenvATG vector DNA with variable gp120 construct is now transfected in Cos or Chinese Hamster Ovary cells (CHO cells). These eukaryotes then express this pool of plasmids, so that the corresponding protein is statistically translated for each variable and then - depending on which eukaryotes are used - glycosylated accordingly. This is followed by the harvest of the proteins with subsequent purification to the finished product (protein mixture or GP120 mixture with variable amino acid sequence).
  • V2 loop variations in the V2 loop and / or in the V3 loop.
  • the variation of the V2 loop can take place according to the same scheme described for V3.
  • the protein vaccine according to the invention is produced as described above, using different key constructs, i.e. Nucleic acid intermediates and DNA constructs used for Execution of the invention are essential.
  • the nucleic acid sequence encoding the GP120 protein is cloned piecewise into pUC 18/19, whereby according to the invention a gp120 sequence is assumed, in which the multiple restriction sites are first modified by silent mutations so that the remaining restriction sites each occurs only once in the sequence.
  • This sequence modification is necessary in order to be able to insert the expression cassette, which is required to generate the sequence variants, in a targeted manner at a very specific location, which is limited by two restriction cleavage sites which occur only once in the sequence.
  • Methods for introducing silent mutations in a nucleic acid sequence are well known to those skilled in the art.
  • nucleic acid sequence was generated which is derived from the env sequence in SEQ ID NO: 1 or a fragment thereof, and is modified such that it contains only monovalent restriction sites. The modification is preferably carried out by introducing silent mutations.
  • the nucleic acid sequence has the sequence shown in SEQ ID NO: 9.
  • the sequence of the gene cassette may be modified such that it contains the entire env gene or parts of the env gene of virus isolates from patients.
  • Such a gene cassette should preferably contain the env sequence of the patient isolate PI-932 (SEQ ID NO: 11).
  • a preferred gene cassette according to the invention based on the sequence PI-932 is shown in SEQ ID NO: 12.
  • the present invention also relates to a single-stranded Nucleic acid sequence that for the V3 loop and / or the area or fragments coding for the V2 loop or parts thereof, where in the case of the V3 loop a BglII-XbaI (247 bp) or a BglII-NheI (283 bp) fragment against a modified fragment which is present on at least 6, preferably at 9 to 20 positions, nucleic acid exchanges or carries mutations, and in the case of the V2 loop a PstI-BclI (139 bp) or a PstI-EcoRI (339 bp) fragment against one altered fragment which on at least 6, preferably on 9 up to 20 positions, nucleic acid exchanges or mutations carries, can be exchanged.
  • nucleotides within a nucleic acid sequence either by Inosine or in each case by a mixture of 2-4 nucleotides replaced. This is explained using the example in FIG. 5. Should on 7 Amino acid positions of the V3 loop 21 different amino acids 1152 variants are combined, then 11 Nucleic acid positions two nucleotides each by chemical Synthesis in the sequence of single-stranded nucleic acids (Oligonucleotides) are introduced (Fig. 5).
  • the single-stranded nucleic acid sequences are - as above already mentioned - hybridized or synthesized into a double strand.
  • the present invention therefore also relates to double-stranded DNA
  • the hybrid of the above single-stranded nucleic acid sequences comprises, each with a nucleic acid sequence (5'-3'-oligomer or 3'-5'-oligomer) to one or more selected Positions contains inosine and the other nucleic acid sequence (3'-5'-oligomer or 5'-3'-oligomer) to those in the later Hybridization corresponding complementary positions each two, three or four of the possible nucleotides (adenine, A; Thymine, T; Guanin, G; Contains cytosine, C).
  • inosine-containing single-stranded DNA is hybridized with oligomers to form the double-stranded DNA, each containing A, T, G or C at the corresponding positions at random, a mixture of double-stranded gp120 sequence or a part (fragment) thereof is obtained, where the nucleic acid sequences are each derived from the env sequence (SEQ ID NO: 1 or 12) and the nucleic acid sequences differ from one another in the region coding for the V2 loop and / or in the region coding for the V3 loop.
  • SEQ ID NO: 1 or 12 the nucleic acid sequences differ from one another in the region coding for the V2 loop and / or in the region coding for the V3 loop.
  • At least 10 2 preferably at least 10 3 and, according to a particularly preferred embodiment of the invention, at least 10 4 sequence variants can be obtained at the nucleic acid level (DNA level) in this way.
  • This DNA mixture which contains 10 10 2 DNA molecules which differ from one another in their nucleic acid sequence, the mixture having randomly distributed sequence combinations due to the variation in nucleotide positions, is referred to below as the DNA pool, based on the variants of the gp120 sequence this is referred to below as a pool with a variable gp120 construct ( gp120 pool).
  • Sequence variants of a DNA sequence are part of the present invention understood such molecules that a towards a native viral DNA molecule or part (Fragment) of the same derived nucleic acid sequence, the variants differ from one another in that at least one nucleotide at any point in the sequence can be exchanged.
  • the sequence variants preferably have multiple nucleotide exchanges at different locations on the Sequence on, the number and location of the exchanged Nucleic acids essentially the length of the nucleic acid sequence depends.
  • the heterogeneity of the plasmid-DNA mixture is demonstrated by the DNA sequencing of individual clones.
  • the mixture of the plasmid DNA is transformed into E. coli and individual clones are selected at random and their V2 or V3 loop sequence is determined. A total of approximately 100-200 different clones are to be sequenced.
  • the statistical distribution of the DNA sequences can be used to calculate the distribution of the entire mixture. The method largely corresponds to the method of taking samples, which is used as standard for the quality control of a wide variety of products.
  • the direct molecular analysis of the heterogeneity of the GP120 protein Mixing is a little more difficult because do not separate individual GP120 molecules from the mixture and have it proven. This is in the nature of things because of itself the individual GP120 variants only in a few amino acids distinguish from each other.
  • gel electrophoretic separation or a mass spectroscopic analysis can be determined be it a mix or a single Form of the GP120 molecule. If the GP120 mix e.g. used in the animal as a vaccine is that induced in the animal Immune response directly from the number and composition of the GP120 mix dependent. The animal's immune response, the neutralizing antibodies can then be used in virus neutralization tests to be examined.
  • Cross-variant immune response can be different Patient isolates of HIV-1 used in the neutralization test become. Patient isolates are preferred which are in the ability to differentiate different coreceptors for that To be able to use infection of the target cells. The neutralization potential the GP120 mixture then serves as a quality standard.
  • the present invention therefore also relates to a protein mixture which comprises GP120 proteins which each have different amino acid sequences in the V2 loop and / or in the V3 loop, the mixture at least 10 2 (preferably at least 10 3 and according to a particularly preferred embodiment of the invention, contains at least 10 4 ) sequence variants and can be obtained by expressing a plasmid-DNA mixture which, due to the variation in nucleotide positions, has randomly distributed sequence combinations.
  • the mixture of double-stranded DNA that can be obtained by hybridization of inosine-containing single-stranded DNA with randomly distributed A-, T-, G- and / or C-containing single-stranded DNA, ie the pool with variable GP120 construct , transformed and fermented in prokaryotic or eukaryotic host cells, preferably E. coli .
  • the present invention therefore relates to plasmids which contain inserted double-stranded DNA, the hybrids of the single-stranded, inosine-containing nucleic acid sequence (see above) with the single-stranded nucleic acid sequence (see above) containing a mixture of all four nucleotide variants (A, T, G, C). include.
  • the invention further relates to a vector mixture which comprises a mixture of these plasmids, the nucleic acid sequences of the plasmids differing from one another in the region coding for the V3 loop and / or in the region coding for the V2 loop, the vector Mixture contains at least 10 2 (preferably at least 10 3 and according to a particularly preferred embodiment of the invention at least 10 4 ) of the plasmids mentioned and it has randomly distributed sequence combinations due to the variation in nucleotide positions.
  • various expression systems and base vectors which are well known to the person skilled in the art are possible (cf. Methods in Enzymology, Vol.
  • the plasmid pUC 18/19 is preferred for expression in E. coli as the basic plasmid into which the nucleic acid sequence variants are cloned.
  • the vector mixtures can thus either in bacterial host cells such as E. coli , or in eukaryotic host cells, preferably from the group consisting of Cos, CHO, or baby hamster kidney cells (BHK cells), or in other host cells.
  • the present invention thus further relates to E. coli host cells or eukaryotic host cells which are transfected with a vector mixture according to the invention.
  • Transferred to the Cloning steps of the HIV vaccine means If one Heterogeneity of approximately 6000 virus variants is to be generated, would have to do thirteen times in each cloning step many clones are generated. A gene bank of approx. 80,000 clones can be made for the V3 loop. Starting from This gene bank then becomes the expression vectors for the Transfection of the CHO cells is made. During transfection the CHO cells then have to have approximately 80,000 transfection events be achieved. Such a mix of transfected CHO cells then generate the desired amount of 6000 different gp120 variants.
  • the present invention also relates to a method of manufacture a nucleic acid sequence coding for a viral protein (Expression cassette), in which the sequence is such modified or preferably so many silent mutations introduces that they then at least two and preferably contains only monovalent restriction sites. Especially the sequence preferably contains only monovalent ones Restriction sites. It is preferably that of the nucleic acid sequence encoded protein around GP120, whereby one by silent mutations the env wild-type sequence coding for the GP120 varied.
  • the present invention furthermore relates to a process for producing the vector mixture according to the invention, which preferably contains a mixture of plasmids whose nucleic acid sequences are in each case in the region coding for the V2 loop and / or in the region coding for the V3 loop Differentiate the random distribution of the bases from one another at the varied nucleotide positions, the plasmids according to the invention being ligated into a (base) vector which can be expressed in host cells (preferably E. coli , Cos, CHO or BHK cells).
  • the (basic) vector is preferably the pUC 18, the pUC 19 or the BSCenvATG vector.
  • a method for the production / production of host cells preferably selected from the group consisting of E, is also disclosed .
  • coli , Cos, BHK or CHO cells in which the host cells are transformed with a vector mixture according to the invention which contains a mixture of plasmids whose nucleic acid sequences are in the region coding for the V2 loop and / or in the Distinguish the region coding for the V3 loop from one another by random distribution of the bases at the varied nucleotide positions.
  • a method for producing a DNA vaccine is made available for the first time, in which the method according to the invention for producing the vector mixture is carried out, the plasmids according to the invention being applied to host cells (for example human and animal monocytes) by mixing the gp120 - Express proteins.
  • the DNA vaccine can optionally be formulated with pharmaceutically acceptable auxiliaries and / or carriers and, after administration in the organism, enable the sequence variants of viral proteins to be produced.
  • the present invention thus also relates to a pharmaceutical composition or a DNA vaccine which codes for a mixture of structurally different virus proteins, the vaccine containing a mixture of sequence variants of a viral DNA molecule or a part thereof, ie of DNA molecules whose nucleic acid sequences differ from one another in the region coding for the protein, a part or a fragment thereof.
  • the mixture contains 10 10 2 DNA molecules which differ from one another in their nucleic acid sequence, the mixture having randomly distributed sequence combinations due to the variation in nucleotide positions.
  • the term “structurally different virus proteins” is understood to mean those proteins whose amino acid sequences are derived from the wild-type sequence of the corresponding virus protein, the amino acid sequences differing in that they differ from one another and in comparison to the wild-type sequence distinguish one or more exchanged amino acids at the same or different positions in the sequence.
  • the nucleic acid sequences in the vaccine according to the invention preferably code for a mixture of structurally different GP120 proteins from HIV (sequence variants of GP120), a vaccine which contains a mixture of DNA molecules whose nucleic acid sequences differ in that being particularly preferred differentiate the V2 loop coding region and / or in the region coding for the V3 loop from gp120 of HIV-1.
  • FIG. 3 in which known structural differences or variations are shown in the V3 loop of GP120.
  • the DNA vaccine according to the invention is of particular importance in Framework of gene therapy.
  • a method for producing a pharmaceutical composition or a protein vaccine is provided for the first time, in which the host cells according to the invention, ie host cells which have been transformed with a vector mixture according to the invention, the vectors each containing plasmids and their nucleic acid sequences differ from each other in the region coding for the V2 loop and / or in the region coding for the V3 loop by random distribution of the bases at the varied nucleotide positions, cultivated under conditions which allow expression of the mixture of viral protein sequence variants.
  • the host cells are preferably bacterial host cells, such as E. coli , or eukaryotic host cells, preferably from the group consisting of Cos, Chinese Hamster Ovary (CHO), or Baby Hamster Kidney cells (BHK cells). ,
  • the therapeutic treatment the GP120 mixture (Protein vaccine) is used to decrease or decrease Counteract loss of HIV-neutralizing antibodies, by activating the immune system and the formation of new or additional HIV-1 neutralizing antibody is induced.
  • the mixture of structurally different viral proteins, the aforementioned sequence variants of a viral protein (preferably GP120) or a part thereof are used to produce a vaccine for the prevention and / or therapy of a virus infection in humans.
  • the present invention relates to the use of a mixture of DNA molecules which code for 10 10 2 sequence variants of a viral protein or a part thereof, the mixture having randomly distributed sequence combinations due to the variation in nucleotide positions, for producing a vaccine for prevention and / or Therapy of a virus infection in humans.
  • the invention relates to the use for producing a vaccine for the prevention and / or therapy of an HIV infection in humans.
  • the virus infection can be within the scope of the present Invention to deal with any infection in the course replicating virus variants arise from the disease, being as selected protein sequences or protein coding Nucleic acid sequences are those amino acid sequence sections or nucleic acid segments coding for them come into question according to the invention, in the course of which viral Diseases always or frequently variants, i.e. sequence variations, to be watched. It is preferably present sequence variants of the GP120 molecule (at protein level) or the region coding for GP120 (at DNA level) or parts the same, in particular to sequence variants in the V3 loop or in V2 loop, preferably both in the V3 and the V2 loop.
  • compositions are consequently according to the invention or vaccines provided at the immuno-constitutive treatment of virus-infected people Activate the immune system in a way that is natural acquired immune defense against the virus regenerates and is re-stimulated in order to replicate in the patient To prevent virus variants from multiplying.
  • the invention will be the first time Vaccines for the immuno-constitutive treatment of HIV-1 infected people provided.
  • the vaccines either as such, i.e. as DNA and / or protein mixtures without further additives, or together with other active ingredients, such as.
  • Immune stimulants such as interleukin-2, CC and CXC chemokines, and / or pharmaceutically acceptable auxiliary and Carriers are formulated or administered.
  • the vaccines according to the invention for intravenous administration formulated such as intravenous, intramuscular, subcutaneously.
  • the vaccines can be oral, mucosal (intravaginal, intrarectal) and transdermal use be formulated.
  • any Variants of a pathogen or a gene of the pathogen produce are provided.
  • the variations preferably concern the areas against the neutralizing antibody or cytotoxic T cells be formed.
  • This allows a vaccine to be in shape a mixture of variants of the pathogen or of Variants of the corresponding antigens of a pathogen produce.
  • the advantages of this concept in relation to HIV as Pathogens lie in the preparation of a mixture of the HIV-GP120, the outer membrane protein of HIV, against which the virus-neutralizing immune response of humans directed.
  • gp120 clones which, in the type or variety of the sequence variations observed, correspond to plasma isolates from HIV-infected or AIDS-sufferers (see M. Schreiber et al., J. Virol. 68 No. 6 (1994) 3908-3916).
  • no isolated GP120 molecule or an antigenic fragment thereof is used for the immunization, but rather a protein mixture which consists of a large number of sequence variants which are characterized by a complete GP120 sequence which also have the correct tertiary structure corresponding to the natural folding of the GP120 molecule.
  • the conformation of the virus variants made available in the vaccine is of importance insofar as it provides sequence and structural variants which are as close as possible in agreement with the GP120 variants detectable in the course of the virus disease with regard to the observed sequence variations and also for binding to CD4 and the coreceptor required conformation is achieved, whereby an effective immune stimulation can be achieved.
  • the invention provides a mixture of GP120 proteins, which is the protein vaccine.
  • the invention provides a mixture of the genes coding for this protein mixture. These genes can be converted into a vector which is suitable for direct use in humans (DNA vaccine) (Ulmer et al., 1995 Ann NY Acad Sci 772: 117-125; Donnelly et al., 1995 Ann NY Acad Sci 1995 772: 40-46).
  • a DNA vaccine has the advantage that the heterogeneity of the mixture of the DNA vectors can be higher than the mixture of the recombinant GP120 proteins. It is easier to produce a high heterogeneity of a DNA-vector mixture. Such a DNA vaccine would cover a much broader spectrum of HIV variants.
  • a prerequisite for the DNA vaccine is a gp120 expression vector which carries the two interfaces BstEII and BamHI. This enables the conversion of the V3-Loop and V2-Loop variables env gene fragments into such a vector.
  • virus variants which have a glycosylated V3 loop are worse neutralizable as virus variants in which the glycosylation is incomplete. Since virus variants with a complete V3 loop glycosylation of the neutralizing immune response can escape, they are for transmission and for establishing the infection is important. In the course of the disease, if part of the neutralizing antibody response has been lost, virus variants prevail whose V3 loop is not fully glycosylated.
  • V3 loop is no longer covered by sugar residues, they replicate Virus variants faster than the fully glycosylated V3 loop Mutants. According to the invention it is therefore advantageous to the construction of the GP120 vaccine Consider glycosylation of the GP120 V3 loop.
  • vaccines can be used against a variety of viruses be provided that have a broad immune response against many Induce virus variants in humans, which ideally against protects all variants. In therapy with such vaccines can the loss of neutralizing antibodies and the Effective loss of HIV-specific cellular immune response be fought.
  • pathogen types viruses
  • the each for variants of each of these proteins or fragments contain the same coding nucleic acid sequence to the Loss of neutralizing antibodies against all possible Counteract virus variants.
  • a pharmaceutical composition for the prevention and / or therapy of a virus infection which comprises a protein mixture and a nucleic acid mixture, the protein mixture comprising ⁇ 10 2 sequence variants of a viral protein or a part thereof and by Expression of a plasmid-DNA mixture is available, which has randomly distributed sequence combinations due to the variation of nucleotide positions, and wherein the nucleic acid mixture comprises ⁇ 10 2 DNA molecules which code for sequence variants of a viral protein or a part thereof, the nucleic acid mixture due to the variation Sequence combinations randomly distributed from nucleotide positions.
  • the pharmaceutical composition is a combination preparation which comprises both a protein mixture comprising one of the above-mentioned sequence variants of the GP120 protein and also one of the above-mentioned ones from the env sequence in SEQ ID NO: 1 or SEQ ID NO: 11 or a fragment of the same derived nucleic acid mixture.
  • the oligonucleotides are synthesized as described under 2.6.
  • a mutated sequence is an example of a V3 loop sequence of the HIV-1 patient isolate F1-01 (M. Schreiber et al., J. Virol. 68 No. 6 (1994) 3908-3916). Any other sequence or Mixing sequences is also possible.
  • To many different ones To clone variants of a V3 loop sequence at certain positions in the sequence instead of pure Nucleotide building block mixtures used. That way one a mixture of oligonucleotides, all in the Differentiate sequence and thus for different V3 loops encode.
  • Such oligonucleotide mixtures are also known as oligonucleotides with degenerate sequences. Starting from chemically synthesized oligonucleotides with degenerate Sequences becomes the coding for the different V3 loops Area shown.
  • An oligonucleotide in reading frame orientation is used for the env sequence section from the BglII interface to synthesized first degenerate position.
  • a second oligonucleotide, in a complementary orientation (reverse) is accordingly the sequence from a position 15 bases before The beginning of the variable range is synthesized (method 2.6).
  • By overlapping the 3 'region over a total length of 15 Bases are the hybridization of both oligonucleotides.
  • DNA polymerase e.g. Taq DNA polymerase or Klenow fragment
  • the DNA mixture thus obtained is used with the restriction endonucleases BglII and XbaI digested.
  • the cloning of the DNA mixture takes place in the expression vector cut with BglII and XbaI ⁇ V3-pBSCenvV3 (methods 2.15 and 2.16).
  • This vector contains the coding sequence of gp160 of HIV-1 strain NL4-3 (IIIB).
  • the NL4-3 env gene was manipulated so that it has the restriction sites BglII and XbaI as well as ApaLI, PstI and BclI only once.
  • the region coding for the V3 loop, which lies between the interfaces BglII and XbaI, was removed and replaced by a 15 base pair sequence, which introduces an analytical interface for the enzyme AscI.
  • the BglII and XbaI cut V3-loop DNA mixture is cloned into this vector (method 2.19).
  • the loss of the AscI interface in the finished V3-loop pBSCenvV3 vector can be used for the selection of the V3-loop coding clones (method 2.18).
  • the resulting plasmid mixture is transformed into DH5 ⁇ bacteria (method 2.12), a transformation rate of> 10 5 should be achieved.
  • the mixture should be analyzed by DNA sequencing (see 1.3). With the help of this method, a mixture of clones is obtained, all of which code for different V3-loop variants of the GP120 protein.
  • This mixture of vectors serves as a starting product for the preparation of the protein mixture for use as a vaccine and as a starting product for use as a DNA vaccine.
  • the pBSCenvV3 expression vectors transfected into COS cells and CHO cells (Method 2.22).
  • Variants of the V1-loop and V2-loop are made in the same way manufactured.
  • the expression vector ⁇ V3-pBSCenvV3 has for this three additional restriction interfaces.
  • the variation of the V1 loop is done by cloning into the ApaLI and PstI Interfaces.
  • the V2-loop is varied by cloning into the PstI and BclI interfaces.
  • V3 loop mixtures are analyzed by DNA sequencing (Method 2.20). The statistical selection of approx. 100-200 clones, their V1, V2 and V3 loop sequences determined should be. If all of these clones are different, use With the help of a statistical calculation the heterogeneity of the Gene library and thus also the heterogeneity of the protein mixture be determined.
  • Escherichia coli DH5 ⁇ F-, endA1, hsdr17, (rk-mk +), supE44, recA1, ⁇ -, gyrA96, relA1, ⁇ 80d lac z ⁇ M15
  • V3 loop for cloning in pNL4-3 / BgIII-NheI, F1-01, forward:
  • V3 loop for cloning in pNL4-3 / BglII-NheI, F1-01:
  • the oligonucleotides 7010, 7011 and the M13 standard primers (M13, M13r) were used for the sequencing of V3 loop clones.
  • YT medium 10 g tryptone 5 g yeast extract 5 g NaCl dYT Media: 16 g tryptone 10 g yeast extract 5 g NaCl dYT agar plates: 10 g tryptone 5 g yeast extract 5 g NaCl 15 g agar
  • the amounts given refer to 1000 ml of deionized water. The batches were autoclaved at 121 ° C. and 1.5 bar for 20 min. If the media contained antibiotics or other heat-sensitive reagents, the appropriate amounts were sterile filtered and added after the media had cooled. ampicillin 3.3 ml / l (60 mg / ml) IPTG 3 ml / l (100 mM) Xgal 3 ml / l (2% in DMF, do not filter)
  • Bacterial cultures were each with a single colony inoculated. To isolate a single colony, cells from one Spread liquid culture on an agar plate. After incubation isolated colonies grew at 37 ° C overnight. to The agar plates were kept for short-term storage of the bacteria sealed with parafilm and stored at 4 ° C. For a permanent Storage of bacterial strains was 0.75 ml of an YT overnight culture mixed with 0.25 ml sterile glycerin, in liquid Nitrogen snap frozen and stored at -70 ° C.
  • 100 ml of YT medium were inoculated with 100 ⁇ l of an overnight culture.
  • the cells were resuspended in 50 ml of 50 mM CaCl 2 and incubated on ice for 30 min. After centrifuging again, the bacteria were taken up in 2.5 ml sterile TFBII buffer and divided into portions of 100 ⁇ l each.
  • TFBII buffer 10 mM MOPS pH 7.0 75 mM CaCl 2 10 mM KCl 15% glycerin
  • vectors such as the pUC used enable a direct selection ( blue white screening) of recombinant bacteria via a plasmid-encoded ⁇ -galactosidase.
  • blue-white selection the bacteria were spread on Amp / IPTG / Xgal-YT agar plates.
  • the substrate Xgal is split into a blue dye by the ⁇ -galactosidase. Due to the destruction of the reading frame of the lacZ gene by the insertion of a foreign DNA fragment into the lacZ gene, white colonies are generated. In contrast, blue colonies mean that the lacZ gene remained functional during cloning and ligation and that no DNA was inserted.
  • the QIAprep Spin Miniprep Kit from Qiagen was used to isolate plasmid DNA from E. coli .
  • the DNA preparation was carried out according to the manufacturer's instructions (QIAprep Plasmid Handbook 03/95). Plasmid-containing E. coli bacteria were inoculated in dYT-amp medium and shaken at 37 ° C. overnight. Three ml of the E. coli overnight culture were used for plasmid isolation. The bacteria were harvested (1 min, 14,000 rpm, Heraeus centrifuge) and taken up in 250 ⁇ l P1 buffer. The bacteria were disrupted by alkaline lysis (250 ⁇ l, 0.2N NaOH / 1% SDS).
  • the mixture was neutralized by adding 3M potassium acetate (350 ⁇ l, pH 5.5).
  • the purification of the plasmid DNA is based on the selective binding of plasmid DNA to DEAE anion exchange columns. At the selected salt concentrations and pH conditions, the plasmid DNA binds to the DEAE matrix.
  • the DEAE matrix was washed (750 ul, PE buffer, Qiagen). The plasmid DNA was then eluted with 50 ul H 2 O and stored at -20 ° C.
  • DNA was separated by gel electrophoresis in agarose gels. Depending on the size of the fragments examined, 0.8-2% agarose was dissolved in TBE buffer (for analytical agarose gels) or TAE buffer (for preparative agarose gels) by boiling. After cooling to about 60 ° C., 1 ⁇ l of ethidium bromide (10 mg / ml) was added to the gel liquid and poured into a prepared gel bed with a comb inserted. The completely cooled gel was overlaid in an electrophoresis chamber with TBE or TAE buffer and the comb removed. The DNA samples were mixed with 1/5 vol. Application buffer and pipetted into the sample pockets.
  • TBE buffer for analytical agarose gels
  • TAE buffer for preparative agarose gels
  • TBE buffer 100 mM Tris 100 mM boric acid 3 mM EDTA
  • TAE buffer 40 mM Tris 2 mM EDTA 0.114% glacial acetic acid
  • Order buffer 0.25% bromophenol 0.25% xylenecyanol 30% glycerin 50 mM EDTA
  • the "QIAquick Gel Extraction Kit” (Qiagen, Hilden) was used to extract the DNA from agarose gels.
  • the buffer conditions were chosen so that the nucleic acids bind to the silica membrane of the columns, while low-molecular bacterial components pass through the membrane (method 2.15).
  • the "QIAquick Gel Extraction Kit Protocol” from the QIAqick Spin Handbook 07/97 was followed.
  • the purified DNA was eluted from the silica membrane with 50 ⁇ l H 2 O in each case.
  • the separation of radioactively labeled DNA fragments for DNA sequencing was carried out using denaturing polyacrylamide gels.
  • Two cleaned glass plates were cleaned of grease residues with ethanol and coated with 1 ml Sigmacote per plate in order to obtain a hydrophobic surface. The coating should prevent the gel from tearing when pulled off the glass plate. Between the two glass plates the spacer (spacers) were placed, which served at the same time for the lateral sealing. The whole apparatus was fixed with several clips.
  • 21 g of urea were dissolved in about 20 ml of water. After adding 7.5 ml of acrylamide mix and 5 ml of 10x TBE buffer (see 2.15), the mixture was made up to 50 ml with water.
  • the polymerization of the gel was started by adding 300 ⁇ l APS and 100 ⁇ l TEMED. Immediately afterwards, the gel solution was poured into the prepared gel apparatus and the pocket bottom was formed by inserting the flat back of the sawtooth comb. The gel was stored horizontally at room temperature until the polymerization was complete. After the gel had been inserted into the gel chamber, it was filled with TBE buffer. The job pockets were formed by turning the sawtooth comb over. In order to heat the gel to the optimal operating temperature, a lead time of 20 minutes was carried out. The bags were rinsed thoroughly with TBE buffer and then filled with 4-5 ⁇ l of the samples. The electrophoresis was carried out at 2 kV (150 watts) for about 2-3 hours.
  • Restriction endonucleases recognize and hydrolyze enzyme-specific palindromic DNA sequences, mostly 4-8 nucleotides in length. Depending on the type of enzyme, hydrolysis results in blunt ends or overhanging ends of single-stranded DNA ( sticky ends ).
  • a restriction digest 0.1-60 ⁇ g of DNA were incubated with 2-120 units ( units ) of a restriction enzyme in the buffer specified by the manufacturer for 2-5 h at 37 ° C. The total volume was between 10 ⁇ l for analytical and 300 ⁇ l for preparative approaches.
  • a buffer was chosen in which both enzymes have sufficient activity, for example the EcoRI buffer for an EcoRI / BamHI digestion, or the conditions for the second enzyme were set after incubation with the first enzyme.
  • DNA ligases catalyze the linking of DNA molecules using NAD + or ATP by forming a phosphodiester bond between a free 5'-phosphate group and a 3'-hydroxyl group.
  • a three- to five-fold excess of DNA fragment was incubated with 100-500 ng cut plasmids and 5 units of T4-DNA ligase and 10 nmol ATP overnight at 12 ° C. in ligation buffer. Only cohesive end ligations were performed.
  • Ligation buffer 40 mM Tris-HCl pH 7.8 10 mM MgCl2 10 mM DTT 0.5 mM ATP
  • Double-stranded plasmid DNA served as the substrate. Double-stranded DNA can be synthesized from single-stranded DNA starting from an oligonucleotide primer in the presence of dNTPs by a DNA polymerase. If a small proportion of dideoxynucleotides (ddNTPs) is contained in the nucleotide mixture, this leads to a randomly distributed incorporation of the ddNTPs, since the DNA polymerase cannot differentiate between dNTPs and ddNTPs.
  • ddNTPs dideoxynucleotides
  • the incorporation leads to a termination of the double-strand synthesis and, since it is statistically distributed, to DNA strands of different lengths. Since the synthesis approach is divided into four and only one of the four ddNTPs is present in each sample, base-specific chain terminations occur in the respective approaches.
  • ⁇ - 35 S-dATP is added to the reaction. After denaturation and separation of the DNA via polyacrylamide gel electrophoresis, the bands can be detected autoradiographically and the sequence of the DNA strand can be read directly.
  • the sequencing was carried out using the T7 sequencing kit (Pharmacia) according to the manufacturer's instructions. Either the M13 universal primer (Pharmacia) or primer M13r was used as the oligonucleotide primer.
  • 32 ⁇ l (approx. 2 ⁇ g) of purified double-stranded plasmid DNA were denatured with 8 ⁇ l 2 M NaOH for 10 min at RT. After adding 7 ⁇ l 3 M sodium acetate pH 4.8, 4 ⁇ l H20 and 120 ⁇ l -20 ° C ethanol, the DNA was precipitated at -70 ° C for 20 min. The DNA was isolated by centrifugation (15 min, 4 ° C.), washed twice with cold 70% ethanol at ⁇ 20 ° C.
  • Annealing buffer 1 st Tris-HCl pH 7.6 100 mM MgCl 2 160 mM DTT Labeling mix: 1.375 ⁇ M dCTP 1.375 ⁇ M dGTP 1.375 ⁇ M dTTP 333.5 mM NaCl Enzyme Dilution Buffer: 20 mM Tris-HCl pH 7.5 5 mM DTT 100 ⁇ g / ml BSA 5% glycerin Stop Solution: 10 mM EDTA 97.5% formamide 0.3% bromophenol 0.3% xylenecyanol A mix 840 ⁇ M dCTP C-Mix 840 ⁇ M dATP 840 ⁇ M dGTP 840 ⁇ M dGTP 840 ⁇ M dTTP 840 ⁇ M dTTP 93.5 ⁇ M dATP 93.5 ⁇ M dCTP 14 ⁇ M ddATP 14 ⁇ M ddCTP 40 mM Tris-HCl pH 7.6 40 m
  • the oligonucleotides were used to prepare the DNA mixture hybridized at 60 ° C. 100 pmol were used per oligonucleotide. 1 pmol of the hybridized sample was used for the PCR or 100 pmol used for the Klenow reaction.
  • PCR primers were used in all PCR reactions carried out in a final concentration of 0.1 pmol / ⁇ l. 1 unit of the Taq polymerase was used per 50 ⁇ l of the reaction mixture. The concentration of the dNTPs in the PCR mixture was set to 0.1 mM.
  • Klenow buffer 50 mM Tris-HCl, pH 8.0; 50 mM MgCl 2 , 10 mM DTT, 0.05 mM dNTP
  • the reaction was started by adding 5 units of DNA polymerase I (Klenow fragment). After 30 min at 37 ° C the reaction was stopped by heating to 75 ° C (10 min).
  • the starting material for the production of the DNA vaccine is the mixture of the BstEII-BamHI DNA fragments of the env gene, which were used for the production of the GP120-protein mixture.
  • a eukaryotic expression vector for the HIV-1 GP120 which is approved for DNA vaccinations (see, for example, JD Boyer et al., J Infect Dis 1997, 176: 1501-1509; JD Boyer et al., Nat Med 1997, 3: 526 -532; ML Bagarazzi et al., J Med Primatol 1997, 26: 27-33) is changed so that the interfaces for BstEII and BamHI are located at identical positions on the gp120 reading grid in the env gene.
  • the mutated, variable env gene fragments (BstEII-BamHI) are cloned into such a vector.
  • the change of the env genes in the V2 loop and V3 loop area and their cloning in the DNA vaccine vector is carried out analogously to the cloning steps which are carried out for the preparation of the gp120 mixture.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Communicable Diseases (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Hematology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Oncology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • AIDS & HIV (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention relates to a pharmaceutical composition or a vaccine which comprises a mixture of viral protein molecules which are sequence variants of a single viral protein or of part of same. The invention furthermore relates inter alia to a DNA vaccine which codes for a mixture of structurally different virus proteins, the vaccine containing a mixture of sequence variants of a viral DNA molecule or of part of same which code for sequence variants of a viral protein or part. According to a preferred version of the invention, the viral proteins are sequence variants of the GP120 protein of the human immunodeficiency virus (HIV) which differ from each another in their amino acid sequence in the region of the V2 loop and/or of the V3 loop. The invention furthermore relates to the preparation of the virus vaccines including the intermediate stages or constructs, preparation processes and uses connected with them.

Description

Die vorliegende Erfindung betrifft eine pharmazeutische Zusammensetzung bzw. eine Vakzine, die eine Mischung viraler Protein-Moleküle umfaßt, die Sequenzvarianten eines einzigen viralen Proteins oder eines Teils desselben sind, wobei die Mischung ≥ 102 Sequenzvarianten enthält, die durch Expression einer Plasmid-DNA-Mischung erhältlich ist, die aufgrund der Variation von Nukleotidpositionen zufallsverteilte Sequenzkombinationen aufweist. Die Erfindung betrifft ferner u.a. eine DNA-Vakzine, die für eine Mischung strukturell unterschiedlicher Virus-Proteine kodiert, wobei die Vakzine eine Mischung von Sequenzvarianten eines viralen DNA-Moleküls oder eines Teils desselben enthält, die Sequenzvarianten eines viralen Proteins oder eines Teils kodieren, wobei die Mischung ≥ 102 DNA-Moleküle enthält, die sich in ihrer Nukleinsäuresequenz voneinander unterscheiden, wobei die Mischung aufgrund der Variation von Nukleotidpositionen zufallsverteilte Sequenzkombinationen aufweist. Gemäß einer bevorzugten Ausführungsform der Erfindung handelt es sich bei den viralen Proteinen um Sequenzvarianten des GP120-Proteins des Humanen Immundefizienzvirus (HIV), die sich jeweils in ihrer Aminosäuresequenz im Bereich der V2-Scheife und/oder der V3-Schleife, vorzugsweise sowohl der V2- als auch der V3-Schleife, voneinander unterscheiden. Die Erfindung betrifft ferner die Herstellung der Virus-Vakzinen einschließlich der damit im Zusammenhang stehenden Zwischenstufen bzw. Konstrukte, Herstellungsverfahren und Verwendungen.The present invention relates to a pharmaceutical composition or a vaccine which comprises a mixture of viral protein molecules which are sequence variants of a single viral protein or a part thereof, the mixture containing 10 10 2 sequence variants which by expression of a plasmid DNA Mixture is available which has randomly distributed sequence combinations due to the variation of nucleotide positions. The invention further relates, inter alia, to a DNA vaccine which codes for a mixture of structurally different virus proteins, the vaccine containing a mixture of sequence variants of a viral DNA molecule or a part thereof, which code sequence variants of a viral protein or part, where the mixture contains 10 10 2 DNA molecules which differ from one another in their nucleic acid sequence, the mixture having randomly distributed sequence combinations due to the variation in nucleotide positions. According to a preferred embodiment of the invention, the viral proteins are sequence variants of the GP120 protein of human immunodeficiency virus (HIV), each of which has an amino acid sequence in the region of the V2 loop and / or the V3 loop, preferably both the V2 - as well as the V3 loop. The invention further relates to the production of the virus vaccines, including the related intermediate stages or constructs, production processes and uses.

Bei vielen viralen Infektionen, insbesondere bei der HIV-1-Infektion, beobachtet man eine starke Immunabwehr, die in der Lage ist, das Virus über einen Zeitraum von mehreren Jahren zu kontrollieren. Den Zeitraum, in dem das virus kontrolliert wird und keine Krankheitssymptome beobachtet werden, bezeichnet man als die asymptomatische Phase der (HIV-) Erkrankung. Im Verlauf der Erkrankung entstehen immer wieder neue Virusvarianten. Dadurch ist es dem Virus möglich, der Immunabwehr des Menschen zu entkommen und immer wieder neue Abwehrzellen des Immunsystems zu infizieren (vgl. M. Schreiber et al., J. Virol. 68 Nr. 6 (1994) 3908-3916; J. Gen. Virol. 77 (1996) 2403-2414; Clin. Exp. Immunol. 107 (1997) 15-20; J. Virol. 71 Nr. 12 (1997) 9198-9205).For many viral infections, especially HIV-1 infection, one observes a strong immune defense, which in the Is able to get the virus over a period of several years check. The period during which the virus is checked and no symptoms of illness are observed than the asymptomatic phase of the (HIV) disease. In the course new variants of the virus keep arising. This enables the virus, the human immune system to escape and keep getting new immune system cells to infect (see M. Schreiber et al., J. Virol. 68 no. 6 (1994) 3908-3916; J. Gen. Virol. 77: 2403-2414 (1996); Clin. Exp. Immunol. 107 (1997) 15-20; J. Virol. 71 No. 12 (1997) 9198 to 9205).

Im Stand der Technik sind zur Behandlung viraler Erkrankungen, wie z. B. der Poliovirus- (Horaud F et al., Biologicals, 1993, 21:311-316), Hantavirus- (Ulrich R et al., 1998 Vaccine 16:272-280; Schmaljohn CS et al., 1992 Vaccine 10:10-13), Lassavirus- (Morrison HG et al., 1989 Virology 171:179-188; Clegg JC et al., 1987 Lancet 2:186-188), Hepatitis-A-Virus- (Clemens et al., 1995 J. Infect. Dis. 171:Suppl1:S44-S49; Andre et al., 1990 Prog. Med. Virol. 37:72-95) und Hepatitis-B-Virus-Infektion (McAleer et al., 1984 Nature 307:178-180) aber auch der HIV-Infektion (Egan et al., 1995 J. Infect. Dis. 171:1623-1627, Kovac et al., 1993 J. Clin. Invest. 92:919-928) nur einzelne, genetisch unveränderte, spezifische Virus-Antigene oder einzelne inaktivierte Virusstämme zu Untersuchungen geeigneter Vakzinierungsstrategien eingesetzt worden. Im Falle von HIV wurden bisher beispielsweise die externen Hüllproteine von zwei Virusstämmen für Impfstoffexperimente am Menschen hergestellt (MN und SF2) (Zolla-Pazner et al., J. Infect. Dis. 178 (1998) 1502-1506). Beide GP120-Moleküle unterscheiden sich in der Aminosäuresequenz, besonders aber in der Aminosäuresequenz der variablen Bereiche, wie z.B. der V3-Schleife (V3-Loop). Die beiden Virusstämme haben aufgrund der verschiedenen V3-Loop-Sequenzen unterschiedliche phänotypische Eigenschaften. Der HIV-1 MN-Stamm ist eine Virusvariante, die bevorzugt Makrophagen und Zellen, die den viralen Korezeptor CCR5 besitzen, infiziert. Viren des SF2-Typs dagegen vermehren sich bevorzugt in T-Zellen und benutzen den viralen Korezeptor CXCR4. Man nennt solche Viren daher auch T-Zelltrophe (z.B. HIV-Stamm SF2) oder Makrophagotrophe (z.B. HIV-Stamm MN) Virusvarianten. Im Schimpansen sind mit diesen beiden GP120-Varianten Impfexperimente durchgeführt worden. In diesen Experimenten ist gezeigt worden, daß man eine Immunantwort induzieren kann, die nicht nur gegen die beiden HIV-Stämme MN und SF2 schützt, sondern auch in der Lage ist, die Infektion mit anderen Virusstämmen, aber auch mit HIV-1-Patientenisolaten zu verhindern. Im Unterschied zum Schimpansen hat man beim Menschen bisher nur eine der beiden GP120-Varianten für Impfexperimente eingesetzt. Sowohl MN GP120 als auch SF2 GP120 schützen nicht mit Sicherheit vor einer Infektion durch eine Virusvariante wie sie in einem HIV-1-Infizierten vorkommt (Patienten-Isolat oder Wildtyp-Virus). Einen Überblick über den Stand der Forschung im Zusammenhang mit der Vakzinierung mit GP120-Hüllprotein bietet J.A. Levy in "HIV and the Pathogenesis of AIDS", Herausgeber: Jay A. Levy, Kapitel 15, 2. Auflage, ASM Press Washington, D.C., 1998).In the prior art for the treatment of viral diseases, such as. B. Poliovirus (Horaud F et al., Biologicals, 1993, 21: 311-316), Hantavirus (Ulrich R et al., 1998 Vaccine 16: 272-280; Schmaljohn CS et al., 1992 Vaccine 10: 10-13), Lassavirus- (Morrison HG et al., 1989 Virology 171: 179-188; Clegg JC et al., 1987 Lancet 2: 186-188), Hepatitis A virus (Clemens et al., 1995 J. Infect. Dis. 171: Suppl1: S44-S49; Andre et al., 1990 Prog. Med. Virol. 37: 72-95) and hepatitis B virus infection (McAleer et al., 1984 Nature 307: 178-180) but also HIV infection (Egan et al., 1995 J. Infect. Dis. 171: 1623-1627, Kovac et al., 1993 J. Clin. Invest. 92: 919-928) only a few, Genetically unchanged, specific virus antigens or individual inactivated virus strains have been used to investigate suitable vaccination strategies. In the case of HIV, for example, the external coat proteins of two virus strains for vaccine experiments in humans have so far been produced (MN and SF2) (Zolla-Pazner et al., J. Infect. Dis. 178 (1998) 1502-1506). Both GP120 molecules differ in the amino acid sequence, but especially in the amino acid sequence of the variable regions, such as the V3 loop (V3 loop). The two virus strains have different phenotypic properties due to the different V3 loop sequences. The HIV-1 MN strain is a virus variant that preferentially infects macrophages and cells that have the viral coreceptor CCR5. In contrast, viruses of the SF2 type preferentially reproduce in T cells and use the viral coreceptor CXCR4. Such viruses are therefore also called T cell trophies (eg HIV strain SF2) or macrophagotrophs (eg HIV strain MN) virus variants. Vaccination experiments were carried out in the chimpanzee with these two GP120 variants. In these experiments it has been shown that an immune response can be induced which not only protects against the two HIV strains MN and SF2, but is also capable of infection with other virus strains but also with HIV-1 patient isolates prevent. In contrast to chimpanzees, only one of the two GP120 variants has been used in humans for vaccination experiments. Both MN GP120 and SF2 GP120 do not provide certain protection against infection by a virus variant such as is found in an HIV-1 infected person (patient isolate or wild-type virus). JA Levy provides an overview of the state of research in connection with vaccination with GP120 coat protein in " HIV and the Pathogenesis of AIDS ", editor: Jay A. Levy, Chapter 15, 2nd Edition, ASM Press Washington, DC, 1998 ).

Der Nachteil der im Stand der Technik bislang diskutierten bzw. untersuchten Vakzinierungsstrategien besteht unter anderem darin, daß man mit den eingesetzten Vakzinen nicht in der Lage ist, die Entstehung immer neuer Virusvarianten im Verlauf der Virus-Erkrankung zu verhindern. The disadvantage of the previously discussed or vaccination strategies examined exist among other things in that you are unable with the vaccines used is, the emergence of new virus variants in the course of To prevent virus disease.

Aufgabe der vorliegenden Erfindung ist es daher, eine Vakzine zur verfügung zu stellen, die insbesondere in der-Lage ist, die Entstehung neuer Virusvarianten im Verlauf einer Virus-Erkrankung zu verhindern bzw. deutlich zu vermindern und die Möglichkeiten einzuschränken bzw. zu verhindern, daß das Virus der Immunabwehr des Menschen entkommen und immer wieder neue Abwehrzellen des Immunsystems infizieren kann.The object of the present invention is therefore a vaccine to provide, which is in particular able to Emergence of new virus variants in the course of a virus disease to prevent or significantly reduce and Ways to restrict or prevent the virus escape human immune defenses and always new ones Defense cells of the immune system can infect.

Zur Lösung der Aufgabe werden erfindungsgemäß die in den nachfolgenden Ansprüchen zum Ausdruck kommenden Gegenstände vorgeschlagen.To achieve the object, the in the Subsequent claims expressed items proposed.

Gegenstand der vorliegenden Erfindung ist somit unter anderem eine Protein-Vakzine, die eine Mischung viraler Protein-Moleküle umfaßt, wobei die Moleküle Sequenzvarianten eines einzigen viralen Proteins oder eines Teils desselben sind, wobei die Mischung ≥ 102 Sequenzvarianten enthält, die durch Expression einer Plasmid-DNA-Mischung erhältlich ist, die aufgrund der Variation von Nukleotidpositionen zufallsverteilte Sequenzkombinationen aufweist.The present invention thus relates, inter alia, to a protein vaccine which comprises a mixture of viral protein molecules, the molecules being sequence variants of a single viral protein or a part thereof, the mixture containing 10 10 2 sequence variants which are produced by expression of a plasmid -DNA mixture is available, which has randomly distributed sequence combinations due to the variation of nucleotide positions.

Unter Sequenzvarianten eines Proteins werden erfindungsgemäß solche Moleküle verstanden, die eine gegenüber einem nativen viralen Protein oder einem Teil (Fragment) desselben abgeleitete Aminosäuresequenzen aufweisen, wobei sich die Varianten dadurch voneinander unterscheiden, daß mindestens eine Aminosäure an beliebigen Stellen der Sequenz bzw. Teilen derselben ausgetauscht sein kann. vorzugsweise weisen die Sequenzvarianten mehrere Aminosäureaustausche an verschiedenen Stellen der Sequenz auf, die für die Produktion, aber auch die Bindung virusneutralisierender Antikörper verantwortlich sind. Die Zahl und Lage der ausgetauschten Aminosäuren hängt dabei von der Aminosäurevariabilität der Regionen des gp120 ab, die bei Zellkultur adaptierten und Wildtyp HIV-Isolaten beobachtet wird. Erfindungsgemäß weisen die Sequenzvarianten eine Heterogenität an mindestens zwei Aminosäurepositionen der Sequenz oder Teilen derselben auf. Besonders bevorzugt ist eine Heterogenität an drei bis acht und vorzugsweise an mehr als acht Aminosäurepositionen, wobei alle vorkommenden Aminosäuren an diesen Positionen möglich sind. Aus der Kombination der verschiedenen Aminosäuren, die je Position möglich sind, ergibt sich die Anzahl der möglichen Sequenzvarianten, die in ihrer Gesamtheit die Vakzine darstellen.Sequence variants of a protein are according to the invention understood such molecules that one versus a native viral protein or a part (fragment) thereof Have amino acid sequences, with the variants differ from one another in that at least one Amino acid at any point in the sequence or parts the same can be exchanged. preferably the Sequence variants of several amino acid exchanges at different Set up the sequence for the production, but also the Binding virus neutralizing antibodies are responsible. The number and location of the amino acids exchanged depend on this on the amino acid variability of the regions of the gp120 that observed in cell culture adapted and wild-type HIV isolates becomes. According to the invention, the sequence variants have a Heterogeneity at at least two amino acid positions of the Sequence or parts thereof. One is particularly preferred Heterogeneity at three to eight and preferably at more than eight amino acid positions, with all occurring amino acids are possible at these positions. From the combination of the different amino acids that are possible for each position the number of possible sequence variants in their Whole represent the vaccine.

Die Erfindung betrifft eine Vakzine, die eine Mischung von ≥ 102 Sequenzvarianten umfaßt, d.h. eine Mischung von mehr als 102 Molekülen unterschiedlicher Aminosäuresequenz (Homologen). Besonders bevorzugt ist eine Vakzine, die ≥ 103 und vorzugsweise ≥ 104 Sequenzvarianten umfaßt.The invention relates to a vaccine which comprises a mixture of 10 10 2 sequence variants, ie a mixture of more than 10 2 molecules of different amino acid sequence (homologues). A vaccine which comprises 10 10 3 and preferably 10 10 4 sequence variants is particularly preferred.

Im Rahmen der vorliegenden Erfindung wird davon ausgegangen, daß die Vakzine neben den Sequenzvarianten auch das Protein als solches umfassen kann, von dem die Sequenzvarianten abgeleitet sind.In the context of the present invention, it is assumed that that the vaccine not only the sequence variants but also the protein as may include such from which the sequence variants are derived are.

Erfindungsgemäß wird somit ein Wirkstoff gegen Viren bereitgestellt, der virusspezifische Proteine umfaßt, die sich alle in ihren Sequenzen bzw. Teilen derselben unterscheiden. Um dies zu erreichen, wird das Protein-kodierende Gen neu synthetisiert, um neue Schnittstellen für DNA-schneidende Enzyme zu erzeugen, um den Austausch spezifischer Regionen zu erlauben. Durch chemische Synthese von DNA-Fragmenten, die für den betreffenden Proteinabschnitt kodieren, wird dann eine Genbank für die Protein-kodierende Sequenz hergestellt. Die Expressionsvektoren, die das Protein kodieren, werden dann als Mischung in Zellen transfiziert. Aus diesen Protein-produzierenden Zellen kann dann die Mischung der verschiedenen viralen Proteine isoliert werden, die erfindungsgemäß den bevorzugten Wirkstoff darstellt. According to the invention, an active ingredient against viruses is thus provided, which includes virus-specific proteins, all of which are found in distinguish their sequences or parts thereof. To do this the protein-coding gene is newly synthesized, to create new interfaces for DNA-cutting enzymes, to allow the exchange of specific regions. By chemical synthesis of DNA fragments relevant to the subject Encode protein section, then becomes a gene bank for the Protein coding sequence prepared. The expression vectors, which encode the protein are then called Mixture transfected into cells. For those protein-producing Cells can then mix different viral cells Proteins are isolated which are preferred according to the invention Represents active ingredient.

Im Falle von HIV als viraler Erkrankung kommt es durch die chronische Infektion und die damit verbundene kontinuierliche Schädigung des Immunsystems im Verlauf der Erkrankung zum vollständigen Verlust der spezifischen Virusabwehr. Zur spezifischen Virusabwehr gehören neutralisierende Antikörper, die die Eigenschaft besitzen, mit bestimmten antigenen Strukturen eine spezifische, sehr feste Bindung einzugehen. Dadurch werden fremde Antigene markiert und deren Interaktion mit z.B. Virus-Rezeptoren blockiert. Eine solche spezifische Virusabwehr sind neutralisierende Antikörper gegen den V3-Loop des externen GP120-Hüllproteins. Solche anti-V3-Loop-Antikörper sind in der Lage, die Infektion von Zellen zu verhindern. Im Tiermodell ist gezeigt worden, daß sich durch die Verabreichung eines bestimmten monoklonalen V3-Loop-Antikörpers eine Infektion mit HIV-1 verhindern lässt. Durch die Gabe des gleichen monoklonalen Antikörpers war es ebenfalls möglich, eine bestehende Infektion zu heilen.In the case of HIV as a viral disease, it comes through chronic infection and the associated continuous Damage to the immune system in the course of the disease complete loss of the specific virus defense. to specific virus defenses include neutralizing antibodies, which have the property with certain antigens Structures to enter into a specific, very firm bond. This marks foreign antigens and their interaction with e.g. Virus receptors blocked. Such a specific one Defense against viruses are neutralizing antibodies against the V3 loop of the external GP120 coat protein. Such anti-V3 loop antibodies are able to prevent cell infection. in the Animal model has been shown to vary by administration of a particular monoclonal V3 loop antibody Prevent infection with HIV-1. By giving the same monoclonal antibody it was also possible to cure an existing infection.

Im Unterschied zu experimentellen Systemen beobachtet man jedoch im natürlichen Verlauf der HIV-Infektion die Entwicklung immer neuer Virusvarianten. So finden sich zu einem Zeitpunkt in einem einzigen Patienten hunderte von verschiedenen V3-Loop-Varianten, da die Variation des HIV-1 gerade im V3-Loop besonders hoch ist. Der V3-Loop ist eine wichtige dominante antigene Domäne des GP120. Daher wird gegen jeden V3-Loop eine sehr spezifische humorale Immunantwort gebildet. Resultat der Induktion einer hoch spezifischen Immunantwort gegen den V3-Loop ist, daß neutralisierende Antikörper gegen den V3-Loop der HIV-1-Variante A nicht in der Lage sind, die Variante B zu neutralisieren und umgekehrt (Schreiber et al., J. Virol. 68 (1994) 3908-16, Abrahamsson et al., 4 (1990) 107-12).In contrast to experimental systems, one observes however, in the natural course of HIV infection, development always new virus variants. So find yourself at a time hundreds of different in a single patient V3 loop variants because the variation of HIV-1 is precisely in the V3 loop is particularly high. The V3 loop is an important dominant antigenic domain of the GP120. Therefore, there will be one against every V3 loop very specific humoral immune response is formed. Result of Induction of a highly specific immune response against the V3-Loop is that neutralizing antibody against the V3-Loop HIV-1 variant A are unable to convert variant B. neutralize and vice versa (Schreiber et al., J. Virol. 68 (1994) 3908-16, Abrahamsson et al., 4 (1990) 107-12).

In der asymptomatischen Phase der HIV-Erkrankung werden die zellfreien Virusvarianten im Serum durch Antikörper neutralisiert. Erst zu einem späteren Zeitpunkt können Virusvarianten im Serum beobachtet werden, die sich der autologen Neutralisation entziehen. Diese V3-Loop-Escape-Varianten werden nicht mehr durch V3-Loop-Antikörper erkannt und daher auch nicht mehr neutralisiert. Alle anderen Virusvarianten, die im Serum der Patienten gefunden werden, werden aber durch autologe V3-Loop-Antikörper erkannt. Dies deutet darauf hin, daß im Verlauf der Erkrankung Virusvarianten auftreten, gegen die keine V3-Loop-Antikörper existieren. Überpüft man den Antikörpergehalt von Serumproben eines Patienten über einen Zeitraum von mehreren Jahren, so kann man in den Serumproben, die am Anfang der asymptomatischen Phase entnommen wurden, die V3-Loop-Antikörper gegen die im späteren Stadium auftretende V3-Loop-Escape-Variante nachweisen. Es kommt daher nicht wie bei anderen Infektionserkrankungen zum klassischen Escape des Erregers durch immer neue antigene Variation, sondern zum Abschalten der neutralisierenden Immunantwort gegen eines der im Patienten replizierenden Viren. Das beoachtete Fehlen der neutralisierenden V3-Loop-Antikörper ist daher das Resultat eines kontinuierlichen Verlusts der typenspezifischen V3-Loop-Antikörper. Durch den Verlust der neutralisierenden Antikörper kann sich das entsprechende Virus vermehren, was zum Anstieg der Viruslast im Serum der Patienten führt. Im Verlauf der Erkrankung beobachtet man ebenfalls den Anstieg der Viruslast im Lymphknoten (Chun et al., Nature 387 (1997) 183-188).In the asymptomatic phase of HIV disease, the cell-free virus variants in serum neutralized by antibodies. Virus variants can only be used at a later point in time can be observed in the serum, the autologous neutralization revoke. These V3 loop escape variants will not recognized by V3 loop antibodies and therefore no longer neutralized. All other virus variants in the serum of the Patients are found but are autologous V3 loop antibody detected. This indicates that in Course of the disease virus variants occur against which no V3 loop antibodies exist. Check it out Antibody content of a patient's serum samples via a Period of several years, as can be seen in the serum samples, taken at the beginning of the asymptomatic phase, the V3 loop antibodies against the later stage Detect V3 loop escape variant. So it doesn't come like for other infectious diseases to the classic escape of Pathogen by always new antigenic variation, but to Switch off the neutralizing immune response against one of the viruses replicating in the patient. The observed lack of neutralizing V3 loop antibody is therefore the result a continuous loss of type-specific V3 loop antibodies. By losing the neutralizing Antibodies can multiply the corresponding virus, which leads to Increases in viral load in the patient's serum leads. In the course the disease is also observed to increase Viral load in the lymph node (Chun et al., Nature 387 (1997) 183-188).

Ein Virus, welches sich im Patienten gegen das Immunsystem durchsetzt und sich zur dominierenden Virusvariante entwickelt, muß zwangsläufig alle antiviralen Barrieren überwinden, die das Immunsystem bereitstellt. Neben neutralisierenden Antikörpern sind cytotoxische T-Zellen ebenfalls in der Lage die Virusvermehrung zu unterdrücken. Cytotoxische T-Zellen bewirken den Tod HIV infizierter CD4+ T-Zellen. Neben dem Verlust der neutralisierenden Antikörper wird auch der Verlust solcher cytotoxischer T-Zellen gegen HIV infizierte Zellen beobachtet (Zerhoui et al., Thymus 24 (1997) 203-219; Gould et al., Semin Cell Dev Biol 9 (1998) 321-328; Wagner et al., J Gen Virol 74 (1993) 1261-1269; O'Toole et al., AIDS Res Hum Retroviruses 8 (1992) 1361-1368; Shearer et al., 137 (1986) 2514-2521). Daher ist die Aufgabe einer heterologen Vakzine, der Mischung von vielen verschiedenen GP120 Hüllproteinen des HIV, sowohl neutralisierende Antikörper als auch cytotoxische T-Zellen gegen viele verschiedenen Virusvarianten zu induzieren bzw. zu aktivieren.A virus that is in the patient against the immune system prevails and develops into the dominant virus variant, must inevitably overcome all antiviral barriers that the Provides immune system. In addition to neutralizing antibodies cytotoxic T cells are also able to multiply viruses to suppress. Cytotoxic T cells cause death HIV infected CD4 + T cells. In addition to the loss of neutralizing The loss of such cytotoxic antibodies also becomes more T cells against HIV-infected cells observed (Zerhoui et al., Thymus 24 (1997) 203-219; Gould et al., Semin Cell Dev Biol 9 (1998) 321-328; Wagner et al., J Gen Virol 74 (1993) 1261-1269; O'Toole et al., AIDS Res Hum Retroviruses 8 (1992) 1361-1368; Shearer et al., 137: 2514-2521 (1986). Hence the Task of a heterologous vaccine, the mixture of many various GP120 envelope proteins of HIV, both neutralizing Antibodies as well as cytotoxic T cells against many to induce or activate different virus variants.

Wie schon ausgeführt, zeichnet sich die HIV-Erkrankung dadurch aus, daß sich das Virus ständig verändert. Dies wird durch die Fehlerrate des viralen Enzyms Reverse-Transkriptase bewirkt, welches bei der Vermehrung der viralen Erbinformation Fehler macht. Dadurch werden Mutanten erzeugt, die einerseits aufgrund ihrer biologischen Eigenschaften und der antiviralen Wirkung des humanen Immunsystems selektiert werden. Wie bei HIV so gibt es auch weitere Krankheitserreger, die ihre Erbinformation ohne Fehlerkorrektur umschreiben, was zur Ausbildung von vielen Varianten führen kann. Dazu zählen neben Hepatitis A-, B- und C-Viren auch Hanta- und Lassa-Viren. So beobachtet man bei Hepatitis B geimpften Personen, daß es bei ca 2% zum Impfversagen kommt. Bei diesen 2% werden Hepatitis B "escape" Varianten gefunden, die sich nicht durch die durch den Impfstoff induzierte Immunantwort unterdrücken lassen.As already stated, the HIV disease is characterized by this from the fact that the virus is constantly changing. This is through the Error rate of the viral enzyme reverse transcriptase causes which errors in the propagation of viral genetic information makes. This creates mutants that are due on the one hand their biological properties and antiviral effects of the human immune system can be selected. As with HIV there are also other pathogens that contain their genetic information without Rectify error correction, leading to the training of many Variants can lead. In addition to hepatitis A, B and C viruses also include Hanta and Lassa viruses. So you watch at Hepatitis B vaccinated individuals that there was approximately 2% vaccination failure comes. In this 2%, hepatitis B is "escape" Variants found that are not characterized by the Allow vaccine-induced immune response to be suppressed.

Das Entstehen von Impfstoff-, Therapie- und Immun-Escape-Varianten beruht auf der genetischen Variabilität dieser Viren (Blum, Int J Clin Lab Res 27 (1997) 213-214; Jongerius et al., Transfusion 38 (1998) 56-59).The emergence of vaccine, therapy and immune escape variants is based on the genetic variability of these viruses (Blum, Int J Clin Lab Res 27 (1997) 213-214; Jongerius et al., Transfusion 38 (1998) 56-59).

Im Stand der Technik ist bislang nicht bekannt, wie einem solchen Verlust Virus-neutralisierender Antikörper entgegengewirkt werden kann. Die bisher eingeschlagenen Strategien waren jeweils nur punktuell erfolgreich, d.h. in Bezug auf die Bildung und den Erhalt einzelner variantenspezifischer Antikörper gegen bestimmte Viren, dem Verlust typenspezifischer Antikörper gegen die Viel-falt der vom Virus im Verlauf der Erkrankung gebildeten Proteinvarianten können die bislang vorgeschlagenen Behandlungsmethoden in Form von antiviralen Medikamenten oder Impfstoffen auf der Basis einer Memo-Substanz jedoch nicht entgegenwirken.It is not yet known in the prior art how one counteracted such loss of virus neutralizing antibodies can be. The strategies adopted so far were only occasionally successful, i.e. in terms of Formation and maintenance of individual variant-specific Antibodies against certain viruses, the loss of type-specific Antibodies against the diversity of the virus in the course of Protein variants formed due to disease can be the so far proposed treatment methods in the form of antiviral Medicines or vaccines based on a memo substance however do not counteract.

Durch die vorliegende Erfindung einer heterogenen Vakzine ist es nunmehr erstmals möglich, den Verlust neutralisierender V3-Antikörper zu verhindern oder diesem Verlust zumindest deutlich entgegenzuwirken.By the present invention is a heterogeneous vaccine it is now possible for the first time to neutralize the loss To prevent V3 antibodies or at least prevent this loss to counteract clearly.

Auf der Basis der vorliegenden Erfindung wird erstmals eine immunrekonstitutive Behandlung von Virus-infizierten Patienten, insbesondere von HIV-1-Infizierten, zur Verfügung gestellt, bei der man das Immunsystem in einer Art und Weise aktiviert, daß die natürlich erworbene Immunabwehr gegen die Virus-Population der verschiedenen Virusvarianten regeneriert und neu stimuliert wird, um so die im Patienten vorhandenen Virusvarianten an ihrer Vermehrung zu hindern.On the basis of the present invention, a immuno-constitutive treatment of virus-infected patients, provided in particular by people infected with HIV which activates the immune system in a way that the naturally acquired immune defense against the virus population of the different virus variants regenerated and re-stimulated the virus variants present in the patient to prevent their multiplication.

Die Erfindung basiert kurz gesagt auf dem Konzept, für einen Wirkstoff gegen HIV-1 ein Gemisch von GP120-Proteinen herzustellen, wobei sich diese GP120-Proteine z.B. entweder in der V2- oder der V3-Schleife oder gleichzeitig in den beiden variablen Domänen, d.h. dem V2-Loop und dem V3-Loop, unterscheiden. Um dies zu erreichen, muß das GP120-kodierende Gen neu synthetisiert werden unter Bildung neuer (monovalenter) Schnittstellen für DNA-schneidende Enzyme, die den spezifischen Austausch der z.B. V2- und V3-Region erlauben. Durch chemische Synthese von DNA-Fragmenten, die für den V2-Loop und den V3-Loop kodieren, wird dann eine V2/V3-Genbank für GP120 hergestellt. Die GP120-Expressionsvektoren werden schließlich als Mischung in Zellen transfiziert, und aus diesen GP120-produzierenden Zellen kann dann die Mischung der verschiedenen GP120-Proteine isoliert werden, die als Wirkstoff zur Prophylaxe und/oder Therapie der HIV-Erkrankung bzw. AIDS eingesetzt werden kann.In short, the invention is based on the concept for one Drug against HIV-1 to produce a mixture of GP120 proteins, these GP120 proteins e.g. either in the V2 or V3 loop or simultaneously in the two variable domains, i.e. the V2 loop and the V3 loop. To achieve this, the gene encoding GP120 be newly synthesized to form new (monovalent) Interfaces for DNA-cutting enzymes that match the specific Exchange of e.g. Allow V2 and V3 region. Through chemical Synthesis of DNA fragments for the V2 loop and the Coding V3-Loop will then be a V2 / V3 library for GP120 manufactured. The GP120 expression vectors will eventually transfected as a mixture into cells, and from these GP120-producing Cells can then mix the different ones GP120 proteins are isolated, which are used as active ingredients Prophylaxis and / or therapy of HIV disease or AIDS can be used.

Die der vorliegenden Erfindung zugrundeliegende Überlegung besteht somit darin, für eine Immuntherapie oder einen Impfstoff gegen HIV-1 viele verschiedene GP120-Moleküle herzustellen, die V3-Loop-Sequenzen (und/oder V2-Loop-Sequenzen) tragen, wie sie auch bei Virusvarianten in Patienten identifiziert werden können.The consideration underlying the present invention is therefore for immunotherapy or a vaccine to produce many different GP120 molecules against HIV-1, which carry V3 loop sequences (and / or V2 loop sequences), as they also identified in virus variants in patients can be.

Die Produktion einer Mischung von natürlichen Virusvarianten im Zellkultursystem ist sehr aufwendig. Beonders zu beachten ist, daß sich die Zusammensetzung einer Virus-Mischung verändert, da man Zellen in der Zellkultur einsetzen muß, die von HIV-1 infiziert werden können. Einige Virusvarianten, die selektive Vorteile besitzen, z.B. eine schnellere Wachstumskinetik, werden daher im Zellkultursystem schon nach wenigen Tagen dominieren und die anderen langsameren Virusvarianten verdrängen. Dies ist vor allen Dingen dann gegeben, wenn die verschiedenen Virusvarianten, die in den peripheren mononukleären Blutzellen (PBMC) oder im Serum von Patienten vorkommen, isoliert werden sollen. Da es nicht möglich ist, eine gleichbleibende Mischung von HIV-Varianten zu kultivieren, kann auch auf diese Weise keine entsprechende Mischung von GP120-Proteinen aus Viruskulturen produziert bzw. isoliert werden.The production of a mixture of natural virus variants in the Cell culture system is very complex. It is particularly important to note that the composition of a virus mixture changes because one has to use cells in the cell culture, that of HIV-1 can be infected. Some virus variants, the selective Have advantages, e.g. faster growth rate, are therefore in the cell culture system after just a few days dominate and supplant the other slower virus variants. This is especially the case when the different virus variants found in the peripheral mononuclear Blood cells (PBMC) or in the serum of patients should be isolated. Since it is not possible to have a consistent one Cultivating a mixture of HIV variants can also in this way no corresponding mixture of GP120 proteins are produced or isolated from virus cultures.

Daher wurde im Rahmen der vorliegenden Erfindung ein gentechnischer Ansatz für die Herstellung von HIV-1-Varianten und GP120-Varianten gewählt. Zur Herstellung von Virusvarianten und rekombinantem GP120 wurde ein Klonierungsystem konstruiert, das aus zwei Vektoren besteht. Zentraler Bestandteil beider Vektoren ist ein neues, chemisch synthetisiertes HIV-1 Hüllprotein-Gen (HIV-1 env-Gen), welches für das GP120-Protein kodiert. Ein Vektor enthält das gesamte Genom des HIV-1. Nach Transfektion dieses Vektors in Zellen produzieren die Zellen infektiöse Viruspartikel. Dies ermöglicht die Produktion einer Mischung von Virusvarianten, da Zellen verwendet werden können, die resistent gegen eine HIV-1-Infektion sind. Daher kann sich in einem solchen Zellkultursystem die Zusammensetzung der Virusmischung nicht aufgrund der biologischen Eigenschaften der Virusvarianten ändern. Der zweite Vektor ermöglicht die Expression von GP120-Varianten in eukaryontischen Zellen. Dieser Vektor dient direkt zur Herstellung des Impfstoffs (der Vakzine).Therefore, a genetic engineering approach for the production of HIV-1 variants and GP120 variants was chosen within the scope of the present invention. A cloning system consisting of two vectors was constructed to produce virus variants and recombinant GP120. The central component of both vectors is a new, chemically synthesized HIV-1 coat protein gene (HIV-1 env gene), which codes for the GP120 protein. One vector contains the entire genome of HIV-1. After transfection of this vector into cells, the cells produce infectious virus particles. This enables a mixture of virus variants to be produced since cells can be used which are resistant to HIV-1 infection. Therefore, in such a cell culture system, the composition of the virus mixture cannot change due to the biological properties of the virus variants. The second vector enables the expression of GP120 variants in eukaryotic cells. This vector is used directly for the production of the vaccine (the vaccine).

Für die gentechnische Herstellung und Expression der V3-Loop-GP120-Varianten in eukaryotischen Zellen wurde ein spezielles Genkonstrukt für HIV-1-env hergestellt, welches im nachfolgenden als Genkassette bezeichnet wird. Zur Herstellung der Genkassette wurde erfindungsgemäß die gesamte kodierende Sequenz des env-Gens chemisch synthetisiert. Mit Hilfe dieser Methode ist es möglich, die kodierende Sequenz des Gens beliebig zu verändern, wobei neue DNA-Erkennungssequenzen für DNA-schneidende Restriktionsenzyme in die env-Gensequenz eingebaut werden können. Dabei muß darauf geachtet werden, daß sich die Aminosäuresequenz des ursprünglichen GP120 (vorzugsweise der Stämme NL4-3 und PI-932) nicht ändert, während in der DNA-Sequenz des env-Gens hingegen neue Restriktionsschnittstellen entstehen. Gleichzeitig werden erfindungsgemäß Schnittstellen für Enzyme, die in der env-Sequenz mehrfach vorkommen, entfernt, so daß jeweils nur eine Schnittstelle für ein bestimmtes Restriktionsenzym, wie z.B. BglII, vorhanden ist. Gemäß einer bevorzugten Ausführungsform der Erfindung werden im env-Gen zehn neue, einmal-vorkommende (monovalente) Schnittstellen in Abständen von ca. 150 Basenpaaren eingefügt. Das so erzeugte neue env-Gen wird im Rahmen der vorliegenden Erfindung auch als Genkassette bezeichnet. Im Prinzip ist das neue env-Fragment einem Polylinker ähnlich.A special gene construct for HIV-1 env was produced for the genetic engineering and expression of the V3 loop GP120 variants in eukaryotic cells, which is referred to below as a gene cassette. To produce the gene cassette, the entire coding sequence of the env gene was chemically synthesized. With the help of this method, it is possible to change the coding sequence of the gene as desired, whereby new DNA recognition sequences for DNA-cutting restriction enzymes can be incorporated into the env gene sequence. Care must be taken to ensure that the amino acid sequence of the original GP120 (preferably of the strains NL4-3 and PI-932) does not change, whereas new restriction sites arise in the DNA sequence of the env gene. At the same time, according to the invention, interfaces for enzymes which occur several times in the env sequence are removed, so that there is only one interface for a particular restriction enzyme, such as BglII, in each case. According to a preferred embodiment of the invention, ten new, unique (monovalent) interfaces are inserted at intervals of approximately 150 base pairs in the env gene. The new env gene thus generated is also referred to as a gene cassette in the context of the present invention. In principle, the new env fragment is similar to a polylinker.

Die Schnittstellen für die Restriktionsenzyme BstEII und BamHI begrenzen die erfindungsgemäß bevorzugte Genkassette (SEQ ID NO: 9). Um den Bereich des env-Gens austauschen zu können, sind beide Schnittstellen nur einmal im pBSCenvATG Expressionsvektor (SEQ ID NO: 10) für gp120 und im retroviralen Vektor pNL4-3 vorhanden. Der Vektor mit dem vom Hinterleger zugeteilten Bezugszeichen pBSCenv-V3 wurde am 6. Januar 1999 bei der DSMZ - Deutschen Sammlung von Mikroorganismen und Zellkulturen GmbH, Mascheroder Weg 1b, 38124 Braunschweig, Deutschland, unter der Zugriffsnummer DSM 12612 nach dem Budapester Vertrag hinterlegt.The interfaces for the restriction enzymes BstEII and BamHI limit the gene cassette preferred according to the invention (SEQ ID NO: 9). To be able to exchange the area of the env gene, are both interfaces only once in the pBSCenvATG expression vector (SEQ ID NO: 10) for gp120 and in the retroviral vector pNL4-3 available. The vector with the one assigned by the depositor Reference number pBSCenv-V3 was issued on January 6, 1999 at the DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Mascheroder Weg 1b, 38124 Braunschweig, Germany, under the Accession number DSM 12612 stored according to the Budapest contract.

Durch den Austausch des durch BstEII und BamHI begrenzten Genabschnitts lassen sich die neu hergestellten Abschnitte des env-Gens, die ebenfalls durch BstEII und BamHI begrenzt sind, in beide Vektoren klonieren. Das PstI/BclI V2-Loop und das BglII/ XbaI V3-Loop env-Fragment werden chemisch bzw. enzymatisch synthetisiert und anschließend in einen Standardvektor wie z.B. pUC 18 oder 19 kloniert. In diesem vektor wird das Fragment durch Sequenzierung überprüft und anschließend durch einen Pst/BclI oder BglII/XbaI Verdau aus dem Vektor geschnitten und in den pBSCenvATG und dann in den pNL4-3 Vektor überführt. Anstelle der Zwischenklonierung in einen Standardvektor (pUC 18, pUC 19 etc.) können die PstI/BclI V2-Loop- und BglII/XbaI V3-Loop-Fragmente auch direkt in pBSCenvATG kloniert werden.By exchanging the gene section delimited by BstEII and BamHI, the newly produced sections of the env gene, which are also delimited by BstEII and BamHI, can be cloned into both vectors. The PstI / BclI V2 loop and the BglII / XbaI V3 loop env fragment are synthesized chemically or enzymatically and then cloned into a standard vector such as pUC 18 or 19. In this vector the fragment is checked by sequencing and then cut from the vector by a Pst / BclI or BglII / XbaI digest and transferred into the pBSCenvATG and then into the pNL4-3 vector. Instead of intermediate cloning into a standard vector (pUC 18, pUC 19 etc.), the PstI / BclI V2 loop and BglII / XbaI V3 loop fragments can also be cloned directly into pBSCenvATG.

Da sich in der Genkassette alle ca. 100 Basenpaare eine Schnittstelle für ein Restriktionsenzym befindet, können alle Bereiche des env-Gens, insbesondere der V3-Loop oder V2-Loop, gegen beliebige DNA-Fragmente ausgetauscht werden. Der für den V3-Loop kodierende Abschnitt läßt sich durch ein BglII-XbaI-Fragment, das eine Größe von 244 Basenpaaren besitzt (vgl. SEQ ID NO: 9; Nukleotide 708 bis 955), austauschen. Ziel ist es, die Genabschnitte, die für die variablen Loops des GP120-Proteins kodieren, gegen neue DNA-Fragmente auszutauschen. Die Fragmente werden synthetisch hergestellt und anschliessend in die envGenkassette kloniert. Wenn man bei der Synthese der V2-Loop- und V3-Loop-DNA-Fragmente an bestimmten Positionen die Sequenz variiert, d.h. alle vier Nukleotide gleichberechtigt einbaut oder an dieser Position das Nukleotid Inosin verwendet, lassen sich env-Genvarianten mit einer vorgegebenen Variation der dadurch kodierten Aminosäuresequenz herstellen. Die V3-Loop-Sequenzen von Patientenisolaten sind Ausgangsbasis für die Herstellung der GP120-Mischung. Werden diese Varianten in die gp120-Genkassette kloniert, so können die entsprechenden GP120-Proteine mit den variablen antigenen Domänen in eukaryontischen Zellen exprimiert werden. Für die variation der V3-Loop Region des env-Gens stehen Sequenzdaten von HIV-1 Patientenisolaten zur Verfügung. Patientenisolate sind Virusvarianten, die direkt aus Patientenmaterial, Serum oder infizierten Zellen aus dem Blut im Labor angezüchtet worden sind. Diese Viren zeichnen sich, im Unterschied zu HIV-1 Viren, die lange im Labor gezüchtet wurden, durch besondere Eigenschaften aus. Diese Viren sind resistenter gegen neutralisierende Antikörper und Chemokine. Im Unterschied zu Zellkultur-adaptierten Viren benutzen Patientenisolate verschiedene Corezeptoren für die Infektion von Zellen. Da sich Patientenisolate sehr von Laboradaptierten Viren unterscheiden, sollen die gesammelten V2-Loop- bzw. V3-Loop-Sequenzdaten der env-Gene solcher Viren für die Herstellung der GP120-Mischung benutzt werden. Im Rahmen der Erfindung sind zusätzliche Basenaustausche in Bereichen außerhalb der für V2 und V3 kodierenden Sequenzabschnitte möglich.Since there is an interface for a restriction enzyme in the gene cassette every approx. 100 base pairs, all areas of the env gene, in particular the V3 loop or V2 loop, can be exchanged for any DNA fragments. The section coding for the V3 loop can be replaced by a BglII-XbaI fragment which has a size of 244 base pairs (cf. SEQ ID NO: 9; nucleotides 708 to 955). The aim is to replace the gene segments that code for the variable loops of the GP120 protein with new DNA fragments. The fragments are produced synthetically and then cloned into the env gene cassette. If you vary the sequence at certain positions in the synthesis of the V2-Loop and V3-Loop DNA fragments, i.e., insert all four nucleotides with equal rights or use the nucleotide inosine at this position, you can create env gene variants with a predetermined variation of the thereby produce the encoded amino acid sequence. The V3 loop sequences of patient isolates are the basis for the preparation of the GP120 mixture. If these variants are cloned into the gp120 gene cassette, the corresponding GP120 proteins with the variable antigenic domains can be expressed in eukaryotic cells. Sequence data from HIV-1 patient isolates are available for the variation of the V3 loop region of the env gene. Patient isolates are virus variants that have been grown in the laboratory directly from patient material, serum or infected cells from the blood. In contrast to HIV-1 viruses, which have been grown in the laboratory for a long time, these viruses have special properties. These viruses are more resistant to neutralizing antibodies and chemokines. In contrast to virus-adapted viruses, patient isolates use different coreceptors for the infection of cells. Since patient isolates are very different from laboratory-adapted viruses, the V2-Loop or V3-Loop sequence data collected from the env genes of such viruses should be used for the preparation of the GP120 mixture. Within the scope of the invention, additional base exchanges are possible in areas outside of the sequence sections coding for V2 and V3.

Gemäß einer besonderen Ausführungsform der Erfindung wird eine Protein-Vakzine zur Verfügung gestellt, die eine Mischung von GP120-Proteinen des Humanen Immundefizienzvirus (HIV) umfaßt, die sich jeweils in ihrer Aminosäuresequenz im Bereich der V3-Scheife und/oder der V2-Schleife voneinander unterscheiden.According to a particular embodiment of the invention, a Protein vaccine is provided which is a mixture of Human immunodeficiency virus (HIV) GP120 proteins, each in their amino acid sequence in the area of the V3 loop and / or the V2 loop.

Im Rahmen der vorliegenden Erfindung werden bei der gentechnischen Herstellung der Protein-Mischung bzw. der Protein-Vakzine Sequenzvariationen vorzugsweise in Bereichen des V3-Loops eingeführt, die außerhalb von Konsensussequenzen liegen (vgl. z.B. M. Schreiber et al., J. Virol. 71 Nr. 12 (1997) 9198-9205). Bei den Konsensussequenzen handelt es sich um Sequenzabschnitte, die sowohl zwischen verschiedenen Virusstämmen als auch bei der Bildung von Virusvarianten bei fortschreitender Virus-Erkrankung (HIV-Erkrankung) im Körper im wesentlichen erhalten bleiben. Ein solcher Abschnitt ist im Falle des HIV-1 vom B Subtyp die Sequenz Gly-Pro-Gly-Arg-Ala-Phe (GPGRAF). Links und rechts von diesem Sequenzmotiv liegen kurze 4-10 Aminosäure lange Bereiche, die stark variieren können. In Fig. 1 ist dies am Beispiel des V3-Loop Sequenzvariationen von Patientenisolaten dargestellt.Within the scope of the present invention, genetic engineering Production of the protein mixture or the protein vaccine Sequence variations preferably in areas of the V3 loop introduced that lie outside of consensus sequences (cf. e.g. M. Schreiber et al., J. Virol. 71 No. 12 (1997) 9198-9205). The consensus sequences are sequence sections, the both between different strains of virus as well as in the formation of virus variants progressive virus disease (HIV disease) in the body in the remain essentially. Such a section is in In the case of the B-subtype HIV-1, the sequence Gly-Pro-Gly-Arg-Ala-Phe (GPGRAF). To the left and right of this sequence motif short 4-10 amino acid long areas that vary widely can. In Fig. 1 this is based on the example of the V3 loop sequence variations represented by patient isolates.

Zusätzlich zu Variationen im Bereich des V3-Loops können die Moleküle der erfindungsgemäßen Protein-Vakzine auch im Bereich des V2-Loops Sequenzvariationen aufweisen. Auch in diesem Fall sind Änderungen in der Aminosäuresequenz außerhalb von Konsensussequenz-Bereichen bevorzugt (siehe Fig. 2). Ferner sind zusätzliche Aminosäureaustausche in Bereichen außerhalb der V2und V3-Loops möglich.In addition to variations in the area of the V3 loop, the Molecules of the protein vaccine according to the invention also in the field of the V2 loop have sequence variations. In this case, too are changes in the amino acid sequence outside of consensus sequence ranges preferred (see Fig. 2). Furthermore are additional amino acid exchanges in areas outside the V2und V3 loops possible.

In Zusammenhang mit der vorliegenden Erfindung werden stets die üblichen Ein- bzw. Dreibuchstabencodes zur Bezeichnung der Aminosäuren verwendet. Bei der Variation der Aminosäuresequenzen innerhalb der erfindungsgemäßen Protein-Vakzine sind beliebige Aminosäureaustausche möglich. In jedem Fall werden aber Aminosäuren der viralen GP120 Sequenz bzw. der Sequenzen des V2-Loop und V3-Loop vorzugsweise durch Aminosäuren ausgetauscht, die auch bei anderen Virusvarianten an den entsprechenden Sequenzpositionen vorkommen (siehe Fig. 2, Stand der Sequenzdaten 1997 in: Human Retroviruses and AIDS, A compilation and analysis of nucleic acid and amino acid sequences, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A., Editors: B. Korber, B. Hahn, B. Foley, J.W. Mellors, T. Leitner, G. Myers, F. McCutchan, C. Kuiken).In connection with the present invention, the usual one- or three-letter codes to denote the amino acids used. When varying the amino acid sequences there are any within the protein vaccine according to the invention Amino acid exchange possible. In any case, however Amino acids of the viral GP120 sequence or the sequences of the V2 loop and V3 loop preferably replaced by amino acids, which also applies to the corresponding virus variants Sequence positions occur (see Fig. 2, Stand of the sequence data 1997 in: Human Retroviruses and AIDS, A compilation and analysis of nucleic acid and amino acid sequences, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A., Editors: B. Korber, B. Hahn, B. Foley, J.W. Mellors, T. Leitner, G. Myers, F. McCutchan, C. Kuiken).

Im Rahmen der vorliegenden Erfindung wird erstmals eine Protein-Vakzine zur Verfügung gestellt, die auf gentechnischem Wege hergestellt wird und Sequenzvarianten spezifischer viraler Antigene (Proteine) umfaßt. Die Herstellung der Vakzine wird nachfolgend am Beispiel des V3-Loops von HIV beschrieben. Für den Fachmann versteht es sich, daß das nachfolgend beschriebene Synthese-Prinzip auf andere Viren bzw. virale Proteine oder Teile von deren Sequenzen übertragen werden kann.Within the scope of the present invention, a Protein vaccine provided on genetic engineering Pathways are made and sequence variants more specific viral Antigens (proteins) includes. The manufacture of the vaccine will described below using the example of the V3 loop of HIV. For those skilled in the art will understand that that described below Principle of synthesis on other viruses or viral proteins or Parts of their sequences can be transferred.

Kurz gesagt wird als Basis für die Vakzine eine Mischung aus GP120-Proteinen mit variablen V3-Sequenzen hergestellt, die der Variabilität des V3-Loops des GP120-Proteins von HIV nachempfunden sind.In short, a mixture of is used as the basis for the vaccine GP120 proteins with variable V3 sequences produced by the Variability of the V3 loop of the GP120 protein modeled on HIV are.

Dafür wird zunächst die für das GP120-Protein kodierende Sequenz stückweise in das Plasmid pUC 18/19 hineinkloniert. Dies erfolgt durch einen Polylinkeraustausch, so daß mit den möglichen Restriktionssites, die vorher in der gp120-Sequenz durch stille Mutationen eingefügt wurden, alle interessanten Abschnitte mit monovalenten Restriktionssites flankiert sind und somit später herausgeschnitten und ausgetauscht werden können.For this purpose, the sequence coding for the GP120 protein is cloned piecewise into the plasmid pUC 18/19. This is done by a polylinker exchange, so that with the possible restriction sites which were previously inserted in the gp120 sequence by silent mutations, all interesting sections are flanked with monovalent restriction sites and can thus be cut out and exchanged later.

Anschließend werden zwei homologe Nukleinsäureoligomere mit Hilfe eines DNA-Synthesizers hergestellt (Länge ca. 300 Basenpaare). Nach erfolgter Hybridisierung bildet sich das doppelsträngige DNA-Fragment mit der DNA-Sequenz des V3-Loops. Für die Herstellung des doppelsträngigen V3-Loop DNA-Fragments können verschiedene Standardmethoden aus der Molekularbiologie verwendet werden. Bei einer Methode werden die Variablen durch Inosine eingeführt und bei dem entsprechendem komplementären Strang werden die Variablen durch einen Nukleotiod-Mix (AGCT, AGC, AG, ...) eingeführt. Bei dieser Methode wird das DNA-Fragment ausschließlich chemisch hergestellt. Bei einer anderen Methode, einer Kombination aus chemischer und enzymatischer DNA-Synthese, werden die Variablen durch Nukleotid-Mischungen eingeführt. Die Hybridisierung der Oligonukleotide erfolgt dann an komplementären Enden einer Länge von 20-30 Basen, die nicht variabel sind. Die Synthese zum vollständig doppelsträngigen Molekül erfolgt enzymatisch mit Hilfe einer DNA-Polymerase. Dabei können sowohl isotherme DNA-Polymerasen (Klenow-Fragment) oder thermostabile DNA-Polymerasen verwendet werden (Taq-Polymerase). Verwendet man Taq-Polymerase, dann können größere Mengen für die Klonierung des V3-Loop DNA-Fragments auch mit Hilfe der Polymerase-Ketten-Reaktion hergestellt werden. Mit Hilfe dieser Methoden wird ein doppelsträngiges DNA-Fragment hergestellt, welches an bestimmten Positionen variabel ist. Diese degenerierte DNA-Sequenz kodiert für die entsprechende Vielzahl von V3-Loop Aminosäure-Sequenzen der herzustellenden GP120-Proteinmischung, der Protein-Vakzine.Then two homologous nucleic acid oligomers with Made with the help of a DNA synthesizer (length approx. 300 Base pairs). After hybridization, this forms double-stranded DNA fragment with the DNA sequence of the V3 loop. For the production of the double-stranded V3-Loop DNA fragment can use various standard methods from molecular biology be used. In a method, the variables are Inosine introduced and at the corresponding complementary The variables are stranded by a nucleotidic mix (AGCT, AGC, AG, ...) introduced. With this method, the DNA fragment manufactured exclusively chemically. Another one Method, a combination of chemical and enzymatic DNA synthesis, the variables are made up of nucleotide mixtures introduced. The oligonucleotides are then hybridized at complementary ends of a length of 20-30 bases that are not are variable. The synthesis of the completely double-stranded Molecule takes place enzymatically with the help of a DNA polymerase. Both isothermal DNA polymerases (Klenow fragment) or thermostable DNA polymerases can be used (Taq polymerase). If Taq polymerase is used, then larger ones can be used Amounts for cloning the V3-Loop DNA fragment also with Using the polymerase chain reaction. With With the help of these methods, a double-stranded DNA fragment is created manufactured, which is variable at certain positions. This degenerate DNA sequence codes for the corresponding one Variety of V3 loop amino acid sequences to be produced GP120 protein mixture, the protein vaccine.

Die Mischung der synthetisierten V2-Fragmente besitzt am 5'-Ende eine PstI- und am 3'-Ende eine BclI-Schnittstelle. Die Mischung der synthetisierten V3-Fragmente besitzt am 5'-Ende eine BglII- und am 3'-Ende eine XbaI-Schnittstelle. Mit Hilfe der jeweiligen zwei Schnittstellen wird die Fragment-Mischung in einen Vektor, z.B. pUC18 delta-env oder pUC 18 BstEII-BamHI (Fig. 3), kloniert. Es entsteht nach dieser Klonierung eine Mischung oder ein Pool von Plasmid-DNAs des Vektors pUC 18, die alle das vollständige BstEII-BamHI env Fragment besitzen. Alle Plasmid-DNAs unterscheiden sich ausschließlich in der Sequenz des env V2-Loop oder V3-Loop. Durch Insertion der V2 bzw. der V3 Fragmente wird die Deletion (delta env) des env-Genabschitts im pUC18 Vektor aufgehoben.The mixture of the synthesized V2 fragments has a PstI at the 5 'end and a BclI interface at the 3' end. The mixture of the synthesized V3 fragments has a BglII and a XbaI interface at the 5 'end. With the help of the respective two interfaces, the fragment mixture is cloned into a vector, for example pUC18 delta-env or pUC 18 BstEII-BamHI (FIG. 3). After this cloning, a mixture or a pool of plasmid DNAs of the vector pUC 18 is produced, all of which have the complete BstEII-BamHI env fragment. All plasmid DNAs differ only in the sequence of the env V2 loop or V3 loop. By inserting the V2 or the V3 fragments, the deletion (delta env) of the env gene segment in the pUC18 vector is canceled.

Diese so hergestellte Mischung der Plasmid-DNAs mit variablen env-Fragmenten wird in E. coli transformiert und fermentiert. Dabei amplifiziert und repliziert E. coli diese Mischung an Plasmid-DNA. Dabei werden alle möglichen Variablen dieser V2-/V3-Loop-Plasmide erzeugt.This mixture of the plasmid DNAs with variable env fragments thus produced is described in E. coli transformed and fermented. E amplifies and replicates. coli this mixture of plasmid DNA. All possible variables of these V2 / V3 loop plasmids are generated.

Anschließend wird dieser Plasmid Pool isoliert. Aus der Mischung der Plasmid-DNAs wird dann das env-Fragment durch BstEII- und BamHI-Verdau ausgeschnitten und direkt in den Vektor für die Expression des viralen gp120 kloniert. Dieser Vektor hat den Vorteil, daß das GP120 auch im eukaryotischen Zellsystem exprimiert wird.This plasmid pool is then isolated. The env fragment is then cut out from the mixture of the plasmid DNAs by BstEII and BamHI digestion and cloned directly into the vector for the expression of the viral gp120 . This vector has the advantage that the GP120 is also expressed in the eukaryotic cell system.

Dieser Pool an BSCenvATG-Vektor-DNA mit variablem gp120-Konstrukt wird nun in Cos- bzw. Chinese Hamster Ovary-Zellen (CHO-Zellen) transfiziert. Diese Eukaryonten exprimieren dann diesen Pool an Plasmiden, so daß statistisch das entsprechende Protein zu jeder Variablen translatiert und anschließend - je nachdem, welche Eukaryonten eingesetzt werden - entsprechend glykosyliert wird. Es schließt sich die Ernte der Proteine mit anschließender Aufreinigung bis zum Fertigprodukt (Protein-Mischung bzw. GP120-Mischung mit variabler Aminosäuresequenz) an.This pool of BSCenvATG vector DNA with variable gp120 construct is now transfected in Cos or Chinese Hamster Ovary cells (CHO cells). These eukaryotes then express this pool of plasmids, so that the corresponding protein is statistically translated for each variable and then - depending on which eukaryotes are used - glycosylated accordingly. This is followed by the harvest of the proteins with subsequent purification to the finished product (protein mixture or GP120 mixture with variable amino acid sequence).

Zur Veranschaulichung wird das Verfahren zur Erzeugung der erfindungsgemäßen Protein-Vakzine in Fig. 4 übersichtlich dargestellt.The method for generating the Protein vaccine according to the invention in FIG. 4 clearly shown.

Wie bereits dargelegt, können Variationen im V2-Loop und/oder im V3-Loop vorgenommen werden. Die Variation des V2-Loops kann dabei nach demselben, für V3 beschriebenen Schema erfolgen.As already explained, variations in the V2 loop and / or in the V3 loop. The variation of the V2 loop can take place according to the same scheme described for V3.

Die Herstellung der erfindungsgemäßen Protein-Vakzine erfolgt, wie oben beschrieben, über verschiedene Schlüssel-Konstrukte, d.h. Nukleinsäure-Zwischenstufen und DNA-Konstrukte, die zur Ausführung der Erfindung wesentlich sind.The protein vaccine according to the invention is produced as described above, using different key constructs, i.e. Nucleic acid intermediates and DNA constructs used for Execution of the invention are essential.

Wie oben bereits ausgeführt, wird die das GP120-Protein kodierende Nukleinsäuresequenz stückweise in pUC 18/19 hineinkloniert, wobei erfindungsgemäß von einer gp120-Sequenz ausgegangen wird, bei der die mehrfach vorhandenen Restriktionsspaltorte zunächst durch stille Mutationen so modifiziert werden, daß von den verbleibenden Restriktionsspaltorten jeder nur noch einmal in der Sequenz vorkommt. Diese Sequenzmodifikation ist notwendig, um die Expressionskassette, die zur Erzeugung der Sequenzvarianten erforderlich ist, gezielt an einer ganz bestimmten Stelle, die durch zwei, nur je einmal in der Sequenz vorkommende Restriktionsspaltorte begrenzt ist, einfügen zu können. Dem Fachmann sind Verfahren zur Einführung stiller Mutationen in einer Nukleinsäuresequenz wohlbekannt.As already explained above, the nucleic acid sequence encoding the GP120 protein is cloned piecewise into pUC 18/19, whereby according to the invention a gp120 sequence is assumed, in which the multiple restriction sites are first modified by silent mutations so that the remaining restriction sites each occurs only once in the sequence. This sequence modification is necessary in order to be able to insert the expression cassette, which is required to generate the sequence variants, in a targeted manner at a very specific location, which is limited by two restriction cleavage sites which occur only once in the sequence. Methods for introducing silent mutations in a nucleic acid sequence are well known to those skilled in the art.

Für die vorliegende Erfindung wurde unter anderem eine Nukleinsäuresequenz erzeugt, die von der env-Sequenz in SEQ ID NO: 1 oder einem Fragment derselben abgeleitet ist, wobei sie derart modifiziert ist, daß sie ausschließlich monovalente Restriktionsspaltorte enthält. Vorzugsweise erfolgt die Modifikation durch Einführen stiller Mutationen. Gemäß einer bevorzugten Ausführungsform der Erfindung weist die Nukleinsäuresequenz die in SEQ ID NO: 9 dargestellte Sequenz auf. Die Sequenz der Genkassette kann derart modifiziert sein, daß sie das gesamte env-Gen oder Teile des env-Gens von Virusisolaten aus Patienten enthält. Vorzugsweise soll eine solche Genkassette die env-Sequenz des Pateientenisolats PI-932 (SEQ ID NO: 11) enthalten. Eine erfindungsgemäß bevorzugte Genkassette basierend auf der Sequenz PI-932 ist in SEQ ID NO: 12 dargestellt.For the present invention, inter alia, a nucleic acid sequence was generated which is derived from the env sequence in SEQ ID NO: 1 or a fragment thereof, and is modified such that it contains only monovalent restriction sites. The modification is preferably carried out by introducing silent mutations. According to a preferred embodiment of the invention, the nucleic acid sequence has the sequence shown in SEQ ID NO: 9. The sequence of the gene cassette may be modified such that it contains the entire env gene or parts of the env gene of virus isolates from patients. Such a gene cassette should preferably contain the env sequence of the patient isolate PI-932 (SEQ ID NO: 11). A preferred gene cassette according to the invention based on the sequence PI-932 is shown in SEQ ID NO: 12.

Gegenstand der vorliegenden Erfindung ist auch eine einzelsträngige Nukleinsäuresequenz, die den für den V3-Loop und/oder den für den V2-Loop kodierenden Bereich oder Fragmente bzw. Teile derselben enthält, wobei im Falle des V3-Loop ein BglII-XbaI (247 bp) oder auch ein BglII-NheI (283 bp) Fragment gegen ein verändertes Fragment welches an mindestens 6, vorzugsweise an 9 bis 20 Positionen, Nukleinsäureaustausche oder Mutationen trägt, und im Falle des V2-Loop ein PstI-BclI (139 bp) oder auch ein PstI-EcoRI (339 bp) Fragment gegen ein verändertes Fragment welches an mindestens 6, vorzugsweise an 9 bis 20 Positionen, Nukleinsäureaustausche oder Mutationen trägt, ausgetauscht sein kann. Dabei sind die Nukleotide innerhalb einer Nukleinsäuresequenz entweder jeweils durch Inosin oder jeweils durch eine Mischung von 2-4 Nukleotiden ersetzt. Am Beispiel in Fig. 5 ist dies erläutert. Sollen an 7 Aminosäurepositionen des V3-Loop 21 verschiedene Aminosäuren zu 1152 Varianten kombiniert werden, dann müssen an 11 Nukleinsäurepositionen jeweils zwei Nukleotide durch chemische Synthese in die Sequenz der einzelsträngigen Nukleinsäuren (Oligonukleotide) eingeführt werden (Fig. 5).The present invention also relates to a single-stranded Nucleic acid sequence that for the V3 loop and / or the area or fragments coding for the V2 loop or parts thereof, where in the case of the V3 loop a BglII-XbaI (247 bp) or a BglII-NheI (283 bp) fragment against a modified fragment which is present on at least 6, preferably at 9 to 20 positions, nucleic acid exchanges or carries mutations, and in the case of the V2 loop a PstI-BclI (139 bp) or a PstI-EcoRI (339 bp) fragment against one altered fragment which on at least 6, preferably on 9 up to 20 positions, nucleic acid exchanges or mutations carries, can be exchanged. Here are the nucleotides within a nucleic acid sequence either by Inosine or in each case by a mixture of 2-4 nucleotides replaced. This is explained using the example in FIG. 5. Should on 7 Amino acid positions of the V3 loop 21 different amino acids 1152 variants are combined, then 11 Nucleic acid positions two nucleotides each by chemical Synthesis in the sequence of single-stranded nucleic acids (Oligonucleotides) are introduced (Fig. 5).

Die einzelsträngigen Nukleinsäuresequenzen werden - wie oben bereits erwähnt - zum Doppelstrang hybridisiert bzw. synthetisiert.The single-stranded nucleic acid sequences are - as above already mentioned - hybridized or synthesized into a double strand.

Die vorliegende Erfindung betrifft daher ferner doppelsträngige DNA, die Hybride der o.g. einzelsträngigen Nukleinsäuresequenzen umfaßt, wobei jeweils eine Nukleinsäuresequenz (5'-3'-Oligomer oder 3'-5'-Oligomer) an ein oder mehreren ausgewählten Positionen Inosine enthält und die andere Nukleinsäuresequenz (3'-5'-Oligomer oder 5'-3'-Oligomer) an den bei der späteren Hybridisierung entsprechenden komplementären Positionen jeweils zwei, drei oder vier der möglichen Nukleotide (Adenin, A; Thymin, T; Guanin, G; Cytosin, C) enthält. Dadurch werden Sequenzen erzeugt, bei denen die vier Basen zufallsverteilt an den jeweiligen Positionen der einzelsträngigen Nukleinsäuresequenz (DNA) vorhanden sind, so daß die gewünschten Kombinationen von A, T, G oder C für die entsprechenden gewünschten Aminosäure Codone (ein Codon wird aus einer Abfolge von drei Nukleotiden gebildet) erzeugt werden. Aufgrund der Variation von Nukleotidpositionen kommt es zu zufallsverteilten Sequenzkombinationen. Daher entstehen z.B. für die Kombination aus (A,C) (ACT) (ACGT) insgesamt 2x3x4=24 mögliche DNA-Sequenzen, die für verschiedene Aminosäuren kodieren. Die Anzahl der variablen Positionen bestimmt auch gleichzeitig die Anzahl und Position der eingeführten Inosine in der komplementären DNA-Sequenz. Die Berechnung der Heterogenität eines solchen Konstruktes ist in Fig. 5 dargestellt.The present invention therefore also relates to double-stranded DNA, the hybrid of the above single-stranded nucleic acid sequences comprises, each with a nucleic acid sequence (5'-3'-oligomer or 3'-5'-oligomer) to one or more selected Positions contains inosine and the other nucleic acid sequence (3'-5'-oligomer or 5'-3'-oligomer) to those in the later Hybridization corresponding complementary positions each two, three or four of the possible nucleotides (adenine, A; Thymine, T; Guanin, G; Contains cytosine, C). This will Sequences are generated in which the four bases are randomly distributed the respective positions of the single-stranded nucleic acid sequence (DNA) are present, so that the desired combinations of A, T, G or C for the corresponding desired ones Amino acid codons (a codon is made up of a sequence of three Nucleotides formed) are generated. Because of the variation Randomly distributed sequence combinations occur from nucleotide positions. Therefore, e.g. for the combination of (A, C) (ACT) (ACGT) total 2x3x4 = 24 possible DNA sequences, that code for different amino acids. The number of variable positions also determines the number and Position of the introduced inosine in the complementary DNA sequence. The calculation of the heterogeneity of such Construct is shown in Fig. 5.

Da zur Bildung der doppelsträngigen DNA jeweils Inosine enthaltende einzelsträngige DNA mit Oligomeren hybridisiert wird, das an den entsprechenden Positionen jeweils zufallverteilt A, T, G oder C enthält, wird eine Mischung aus doppelsträngiger gp120-Sequenz oder eines Teils (Fragments) derselben erhalten, wobei die Nukleinsäuresequenzen jeweils von der env-Sequenz (SEQ ID NO: 1 oder 12) abgeleitet sind und wobei sich die Nukleinsäuresequenzen in dem für die V2-Schleife kodierenden Bereich und/oder in dem für die V3-Schleife kodierenden Bereich jeweils voneinander unterscheiden. Das heißt, daß sich die in der Mischung enthaltenen Nukleinsäuresequenzen derart voneinander unterscheiden, daß sie für eine Mischung von Proteinen kodieren, die in der V2-Scheife und/oder in der V3-Schleife jeweils voneinander verschiedene Aminosäuresequenzen aufweisen.Since inosine-containing single-stranded DNA is hybridized with oligomers to form the double-stranded DNA, each containing A, T, G or C at the corresponding positions at random, a mixture of double-stranded gp120 sequence or a part (fragment) thereof is obtained, where the nucleic acid sequences are each derived from the env sequence (SEQ ID NO: 1 or 12) and the nucleic acid sequences differ from one another in the region coding for the V2 loop and / or in the region coding for the V3 loop. This means that the nucleic acid sequences contained in the mixture differ from one another in such a way that they code for a mixture of proteins which each have different amino acid sequences in the V2 loop and / or in the V3 loop.

Im Rahmen der Erfindung können auf diese Weise mindestens 102, vorzugsweise mindestens 103 und gemäß einer besonders bevorzugten Ausführungsform der Erfindung mindestens 104 Sequenzvarianten auf Nukleinsäure-Ebene (DNA-Ebene) erhalten werden. Diese DNA-Mischung, die ≥ 102 DNA-Moleküle enthält, die sich in ihrer Nukleinsäuresequenz voneinander unterscheiden, wobei die Mischung aufgrund der Variation von Nukleotidpositionen zufallsverteilte Sequenzkombinationen aufweist, wird nachfolgend als DNA-Pool bezeichnet, bezogen auf die Varianten der gp120-Sequenz wird dieser nachfolgend als Pool mit variablem gp120-Konstrukt (gp120-Pool) bezeichnet.In the context of the invention, at least 10 2 , preferably at least 10 3 and, according to a particularly preferred embodiment of the invention, at least 10 4 sequence variants can be obtained at the nucleic acid level (DNA level) in this way. This DNA mixture which contains 10 10 2 DNA molecules which differ from one another in their nucleic acid sequence, the mixture having randomly distributed sequence combinations due to the variation in nucleotide positions, is referred to below as the DNA pool, based on the variants of the gp120 sequence this is referred to below as a pool with a variable gp120 construct ( gp120 pool).

Unter Sequenzvarianten eines DNA-Sequenz werden im Rahmen der vorliegenden Erfindung solche Moleküle verstanden, die eine gegenüber einer nativen viralen DNA-Molekül oder einem Teil (Fragment) desselben abgeleitete Nukleinsäuresequenz aufweisen, wobei sich die Varianten dadurch voneinander unterscheiden, daß mindestens ein Nukleotid an beliebigen Stellen der Sequenz ausgetauscht sein kann. Vorzugsweise weisen die Sequenzvarianten mehrere Nukleotidaustausche an verschiedenen Stellen der Sequenz auf, wobei die Zahl und die Lage der ausgetauschten Nukleinsäuren im wesentlichen von der Länge der Nukleinsäuresequenz abhängt.Sequence variants of a DNA sequence are part of the present invention understood such molecules that a towards a native viral DNA molecule or part (Fragment) of the same derived nucleic acid sequence, the variants differ from one another in that at least one nucleotide at any point in the sequence can be exchanged. The sequence variants preferably have multiple nucleotide exchanges at different locations on the Sequence on, the number and location of the exchanged Nucleic acids essentially the length of the nucleic acid sequence depends.

Bei der Expression der env-Gen Varianten ausgehend von der hergestellten Plasmid-DNA-Mischung ist zu erwarten, daß aufgrund der Zufallsverteilung alle möglichen DNA Sequenzen exprimiert werden. Daher werden dann auch alle aufgrund der vorgegebenen DNA-Mischung möglichen Sequenzvarianten des gp120-Moleküls oder eines Teils desselben gebildet. Die Heterogenität des gp120-Gemisches berechnet sich einerseits anhand der Heterogenität der DNA-Sequenz und der Degeneration des genetischen Codes für die Aminosäuren (siehe auch Fig. 5).When expressing the env gene variants starting from the plasmid-DNA mixture prepared, it can be expected that all possible DNA sequences will be expressed due to the random distribution. Therefore, all sequence variants of the gp120 molecule or a part thereof that are possible on the basis of the predetermined DNA mixture are then formed. The heterogeneity of the gp120 mixture is calculated on the one hand based on the heterogeneity of the DNA sequence and the degeneration of the genetic code for the amino acids (see also FIG. 5).

Der Nachweis der Heterogenität der Plasmid-DNA Mischung erfolgt durch die DNA-Sequenzierung von einzelnen Klonen. Dazu wird die Mischung der Plasmid-DNA in E. coli transformiert und einzelne Klone werden zufällig ausgewählt und deren V2- bzw. V3-Loop-Sequenz bestimmt. Insgesamt sollen ca. 100-200 verschiedene Klone sequenziert werden. Aus der statistischen Verteilung der DNA-Sequenzen kann auf die Verteilung der gesamten Mischung zurückgerechnet werden. Die Methode entspricht weitestgehend der Methode der Stichproben-Entnahme, wie sie standardmäßig für die Qualitätskontrolle von verschiedensten Produkten eingesetzt wird.The heterogeneity of the plasmid-DNA mixture is demonstrated by the DNA sequencing of individual clones. For this purpose, the mixture of the plasmid DNA is transformed into E. coli and individual clones are selected at random and their V2 or V3 loop sequence is determined. A total of approximately 100-200 different clones are to be sequenced. The statistical distribution of the DNA sequences can be used to calculate the distribution of the entire mixture. The method largely corresponds to the method of taking samples, which is used as standard for the quality control of a wide variety of products.

Die direkte molekulare Analyse der Heterogenität der GP120-Protein Mischung gestaltet sich etwas schwieriger, da sich einzelne GP120-Moleküle aus der Mischung nicht abtrennen und nachweisen lassen. Dies liegt in der Natur der Sache, weil sich die einzelnen GP120-Varianten nur in wenigen Aminosäuren voneinander unterscheiden. Durch Gelelektrophoretische Auftrennung oder eine Massenspektroskopische Analyse kann festgestellt werden, ob es sich um eine Mischung oder eine einzelne Form des GP120-Moleküls handelt. Wenn die GP120-Mischung z.B. im Tier als Vakzine eingesetzt wird, ist die im Tier induzierte Immunantwort direkt von der Anzahl und der Zusammensetzung der GP120-Mischung abhängig. Die Immunantwort des Tieres, die neutralisierenden Antikörper kann dann in Virus-Neutralisations-Tests untersucht werden. Zur Kontrolle einer entsprechend Varianten-übergreifenden Immunantwort können verschiedene Patientenisolate des HIV-1 im Neutralisationtest eingesetzt werden. Bevorzugt werden Patientenisolate gewählt, die sich in der Fähigkeit unterscheiden, verschiedene Corezeptoren für die Infektion der Zielzellen benutzen zu können. Das Neutralisationspotential der GP120-Mischung dient dann als Qualitätsmaßstab.The direct molecular analysis of the heterogeneity of the GP120 protein Mixing is a little more difficult because do not separate individual GP120 molecules from the mixture and have it proven. This is in the nature of things because of itself the individual GP120 variants only in a few amino acids distinguish from each other. By gel electrophoretic separation or a mass spectroscopic analysis can be determined be it a mix or a single Form of the GP120 molecule. If the GP120 mix e.g. used in the animal as a vaccine is that induced in the animal Immune response directly from the number and composition of the GP120 mix dependent. The animal's immune response, the neutralizing antibodies can then be used in virus neutralization tests to be examined. To control one accordingly Cross-variant immune response can be different Patient isolates of HIV-1 used in the neutralization test become. Patient isolates are preferred which are in the ability to differentiate different coreceptors for that To be able to use infection of the target cells. The neutralization potential the GP120 mixture then serves as a quality standard.

Gegenstand der vorliegenden Erfindung ist daher ferner eine Protein-Mischung, die GP120-Proteine umfaßt, die in der V2-Scheife und/oder in der V3-Schleife jeweils voneinander verschiedene Aminosäuresequenzen aufweisen, wobei die Mischung mindestens 102 (vorzugsweise mindestens 103 und gemäß einer besonders bevorzugten Ausführungsform der Erfindung mindestens 104) Sequenzvarianten enthält und durch Expression einer Plasmid-DNA-Mischung erhältlich ist, die aufgrund der Variation von Nukleotidpositionen zufallsverteilte Sequenzkombinationen aufweist.The present invention therefore also relates to a protein mixture which comprises GP120 proteins which each have different amino acid sequences in the V2 loop and / or in the V3 loop, the mixture at least 10 2 (preferably at least 10 3 and according to a particularly preferred embodiment of the invention, contains at least 10 4 ) sequence variants and can be obtained by expressing a plasmid-DNA mixture which, due to the variation in nucleotide positions, has randomly distributed sequence combinations.

Wie bereits zuvor erwähnt, wird die Mischung doppelsträngiger DNA, die durch Hybridisierung von Inosine-enthaltender einzelsträngiger DNA mit zufallsverteilt A-, T-, G- und/oder C-enthaltender einzelsträngiger DNA erhalten werden kann, d.h. der Pool mit variablem GP120-Konstrukt, in prokaryontischen oder eukaryontischen Wirtszellen, vorzugsweise E. coli, transformiert und fermentiert.As previously mentioned, the mixture of double-stranded DNA that can be obtained by hybridization of inosine-containing single-stranded DNA with randomly distributed A-, T-, G- and / or C-containing single-stranded DNA, ie the pool with variable GP120 construct , transformed and fermented in prokaryotic or eukaryotic host cells, preferably E. coli .

Gegenstand der vorliegenden Erfindung sind daher Plasmide, die doppelsträngige DNA insertiert enthalten, die jeweils Hybride der einzelsträngigen, Inosin-enthaltenden Nukleinsäuresequenz (s.o.) mit der einzelsträngigen, eine Mischung aller vier Nukleotidvarianten (A, T, G, C) enthaltende Nukleinsäuresequenz (s.o.) umfassen. Ferner betrifft die Erfindung eine Vektor-Mischung, die eine Mischung dieser Plasmide, wobei sich die Nukleinsäuresequenzen der Plasmide in dem für die V3-Schleife kodierenden Bereich und/oder in dem für die V2-Schleife kodierenden Bereich jeweils voneinander unterscheiden, wobei die Vektor-Mischung mindestens 102 (vorzugsweise mindestens 103 und gemäß einer besonders bevorzugten Ausführungsform der Erfindung mindestens 104) der genannten Plasmide enthält und sie aufgrund der Variation von Nukleotidpositionen zufallsverteilte Sequenzkombinationen aufweist. Je nachdem, welche Wirtszellen zur Expression der Vektoren (Plasmide) verwendet werden sollen, kommen verschiedene, dem Fachmann wohlbekannte Expressionssysteme und Basisvektoren in Frage (vgl. Methods in Enzymology, Vol. 185, Gene Expression Technology, 1991, Herausgeber D.V. Goeddel, Academic Press, Inc.). So ist das Plasmid pUC 18/19 für die Expression in E. coli als Basisplasmid bevorzugt, in das die Nukleinsäuresequenz-Varianten hineinkloniert werden. Im Rahmen der vorliegenden Erfindung lassen sich die Vektor-Mischungen somit entweder in bakteriellen Wirtszellen, wie E. coli, oder in eukaryontischen Wirtszellen, vorzugsweise aus der Gruppe bestehend aus Cos-, CHO-, oder Baby Hamster Kidney-Zellen (BHK-Zellen), oder in anderen Wirtszellen exprimieren.The present invention therefore relates to plasmids which contain inserted double-stranded DNA, the hybrids of the single-stranded, inosine-containing nucleic acid sequence (see above) with the single-stranded nucleic acid sequence (see above) containing a mixture of all four nucleotide variants (A, T, G, C). include. The invention further relates to a vector mixture which comprises a mixture of these plasmids, the nucleic acid sequences of the plasmids differing from one another in the region coding for the V3 loop and / or in the region coding for the V2 loop, the vector Mixture contains at least 10 2 (preferably at least 10 3 and according to a particularly preferred embodiment of the invention at least 10 4 ) of the plasmids mentioned and it has randomly distributed sequence combinations due to the variation in nucleotide positions. Depending on which host cells are to be used for the expression of the vectors (plasmids), various expression systems and base vectors which are well known to the person skilled in the art are possible (cf. Methods in Enzymology, Vol. 185, Gene Expression Technology, 1991, publisher DV Goeddel, Academic Press , Inc.). The plasmid pUC 18/19 is preferred for expression in E. coli as the basic plasmid into which the nucleic acid sequence variants are cloned. In the context of the present invention, the vector mixtures can thus either in bacterial host cells such as E. coli , or in eukaryotic host cells, preferably from the group consisting of Cos, CHO, or baby hamster kidney cells (BHK cells), or in other host cells.

Die vorliegende Erfindung betrifft somit ferner E. coli-Wirtszellen oder eukaryontische Wirtszellen, die mit einer erfindungsgemäßen Vektor-Mischung transfiziert ist.The present invention thus further relates to E. coli host cells or eukaryotic host cells which are transfected with a vector mixture according to the invention.

Da Wirtszellen mit dem DNA-Pool (der Vektor-Mischung) transfiziert werden, ist zu erwarten, daß eine ebenso große oder zumindest annähernd ebenso große Anzahl unterschiedlich transformierter Wirtszellen entsteht, wie Sequenzvarianten im DNA-Pool vorhanden sind. Bei der Herstellung der Vakzine ist besonderes Augenmerk auf die Ausbeuten bei den einzelnen Klonierungsschritten zu legen. Die Ausbeuten der Herstellung der doppelsträngigen DNA-Fragmente, der Ligation der V3-Loop und V2-Loop DNA-Fragmente in das env-Gen und die Transformation bzw. die Herstellung der Bakterien und Zellklone muß so gestaltet sein, daß die zu erzielende Heterogenität des Gemisches nicht eingeschränkt wird. An einem Beispiel soll dies verdeutlicht werden. Wenn z.B. aus einer Menge von Kugeln, die sich aufgrund zweier Farben unterscheiden, eine Anzahl Kugeln entnommen werden soll, aber beide Farben mit 99,9 % Wahrscheinlichkeit in dieser Auswahl vorhanden sein sollen, müßten ca. 13 Kugeln entnommen werden (G. Schreiber, Ein kombinatorisches Problem aus der Genetik; Bioengineering 1988, 2:32-35). Übertragen auf die Klonierungsschritte der HIV-Vakzine bedeutet dies: Wenn eine Heterogenität von ca. 6000 Virusvarianten erzeugt werden soll, müßten in jedem einzelnen Klonierungsschritt dreizehnmal so viele Klone erzeugt werden. Es muß also eine Genbank von ca. 80000 Klonen für den V3-Loop hergestellt werden. Ausgehend von dieser Genbank werden dann die Expressionsvektoren für die Transfektion der CHO-Zellen hergestellt. Bei der Transfektion der CHO-Zellen müßen dann demzufolge ca. 80000 Transfektionsereignisse erzielt werden. Eine solche Mischung von transfizierten CHO-Zellen erzeugt dann die gewünschte Menge von 6000 verschiedenen gp120 Varianten.Because host cells are transfected with the DNA pool (the vector mixture) are expected to be as large, or at least an almost equally large number of differently transformed ones Host cells emerge like sequence variants in the DNA pool available. There is something special in the manufacture of the vaccine Attention to the yields in the individual cloning steps to lay. The yields of the production of double-stranded DNA fragments, the ligation of the V3 loop and V2 loop DNA fragments in the env gene and the transformation respectively Production of the bacteria and cell clones must be designed that the heterogeneity of the mixture to be achieved is not restricted becomes. This should be illustrated using an example. If e.g. out of a lot of balls that are due to two Distinguish colors, a number of balls should be taken, but both colors with 99.9% probability in this one If there were to be a selection, approximately 13 balls would have to be removed (G. Schreiber, a combinatorial problem from the Genetics; Bioengineering 1988, 2: 32-35). Transferred to the Cloning steps of the HIV vaccine means: If one Heterogeneity of approximately 6000 virus variants is to be generated, would have to do thirteen times in each cloning step many clones are generated. A gene bank of approx. 80,000 clones can be made for the V3 loop. Starting from This gene bank then becomes the expression vectors for the Transfection of the CHO cells is made. During transfection the CHO cells then have to have approximately 80,000 transfection events be achieved. Such a mix of transfected CHO cells then generate the desired amount of 6000 different gp120 variants.

Die vorliegende Erfindung betrifft auch ein Verfahren zur Herstellung einer für ein virales Protein kodierenden Nukleinsäuresequenz (Expressionskassette), bei dem man die Sequenz derart modifiziert oder vorzugsweise so viele stille Mutationen einführt, daß sie anschließend mindestens zwei und vorzugsweise ausschließlich monovalente Restriktionsspaltorte enthält. Besonders bevorzugt enthält die Sequenz nur noch monovalente Restriktionsspaltorte. Vorzugsweise handelt es sich bei dem von der Nukleinsäuresequenz kodierten Protein um GP120, wobei man durch stille Mutationen die für das GP120 kodierende env-Wildtyp-Sequenz variiert.The present invention also relates to a method of manufacture a nucleic acid sequence coding for a viral protein (Expression cassette), in which the sequence is such modified or preferably so many silent mutations introduces that they then at least two and preferably contains only monovalent restriction sites. Especially the sequence preferably contains only monovalent ones Restriction sites. It is preferably that of the nucleic acid sequence encoded protein around GP120, whereby one by silent mutations the env wild-type sequence coding for the GP120 varied.

Ferner ist Gegenstand der vorliegenden Erfindung ein verfahren zur Herstellung der erfindungsgemäßen vektor-Mischung, die vorzugsweise eine Mischung von Plasmiden enthält, deren Nukleinsäuresequenzen sich in dem für die V2-Schleife kodierenden Bereich und/oder in dem für die V3-Schleife kodierenden Bereich jeweils durch Zufallsverteilung der Basen an den variierten Nukleotidpositionen voneinander unterscheiden, wobei man die erfindungsgemäßen Plasmide in einen in Wirtszellen (vorzugsweise E. coli-, Cos-, CHO- oder BHK-Zellen) exprimierbaren (Basis-)Vektor hineinligiert. Bei dem (Basis-)Vektor handelt es sich vorzugsweise um den pUC 18-, den pUC 19- oder den BSCenvATG-Vektor.The present invention furthermore relates to a process for producing the vector mixture according to the invention, which preferably contains a mixture of plasmids whose nucleic acid sequences are in each case in the region coding for the V2 loop and / or in the region coding for the V3 loop Differentiate the random distribution of the bases from one another at the varied nucleotide positions, the plasmids according to the invention being ligated into a (base) vector which can be expressed in host cells (preferably E. coli , Cos, CHO or BHK cells). The (basic) vector is preferably the pUC 18, the pUC 19 or the BSCenvATG vector.

Im Rahmen der vorliegenden Erfindung wird ferner ein Verfahren zur Herstellung/Erzeugung von Wirtszellen, vorzugsweise ausgewählt aus der Gruppe bestehend aus E. coli-, Cos-, BHK- oder CHO-Zellen, bei dem man die Wirtszellen mit einer erfindungsgemäßen Vektor-Mischung transformiert, die eine Mischung von Plasmiden enthält, deren Nukleinsäuresequenzen sich in dem für die V2-Schleife kodierenden Bereich und/oder in dem für die V3-Schleife kodierenden Bereich jeweils durch Zufallsverteilung der Basen an den variierten Nukleotidpositionen voneinander unterscheiden.Within the scope of the present invention, a method for the production / production of host cells, preferably selected from the group consisting of E, is also disclosed . coli , Cos, BHK or CHO cells, in which the host cells are transformed with a vector mixture according to the invention which contains a mixture of plasmids whose nucleic acid sequences are in the region coding for the V2 loop and / or in the Distinguish the region coding for the V3 loop from one another by random distribution of the bases at the varied nucleotide positions.

Schließlich wird erfindungsgemäß erstmals ein Verfahren zur Herstellung einer DNA-Vakzine zur Verfügung gestellt, bei dem man das erfindungsgemäße Verfahren zur Herstellung der Vektor-Mischung durchführt, wobei die erfindungsgemäßen Plasmide nach Applikation in Wirtszellen (z.B. menschliche und tierische Monocyten) die Mischung der gp120-Proteine exprimieren. Die DNA-Vakzine kann zur Applikation gegebenenfalls mit pharmazeutisch verträglichen Hilfs- und/oder Trägerstoffen formuliert sein und nach Verabreichung im Organismus die Produktion der Sequenzvarianten viraler Proteine ermöglichen.Finally, according to the invention, a method for producing a DNA vaccine is made available for the first time, in which the method according to the invention for producing the vector mixture is carried out, the plasmids according to the invention being applied to host cells (for example human and animal monocytes) by mixing the gp120 - Express proteins. For application, the DNA vaccine can optionally be formulated with pharmaceutically acceptable auxiliaries and / or carriers and, after administration in the organism, enable the sequence variants of viral proteins to be produced.

Die vorliegende Erfindung betrifft somit auch eine pharmazeutische Zusammensetzung bzw. eine DNA-Vakzine, die für eine Mischung strukturell unterschiedlicher Virus-Proteine kodiert, wobei die Vakzine eine Mischung von Sequenzvarianten eines viralen DNA-Moleküls oder eines Teils desselben enthält, d.h. von DNA-Molekülen, deren Nukleinsäuresequenzen sich in dem für das Protein kodierenden Bereich, einem Teil oder einem Fragment desselben voneinander unterscheiden. Die Mischung enthält ≥ 102 DNA-Moleküle, die sich in ihrer Nukleinsäuresequenz voneinander unterscheiden, wobei die Mischung aufgrund der Variation von Nukleotidpositionen zufallsverteilte Sequenzkombinationen aufweist. Unter dem Begriff "strukturell unterschiedlichen Virus-Proteinen" werden erfindungsgemäß solche Proteine verstanden, deren Aminosäuresequenzen sich von der Wildtyp-Sequenz des entsprechenden Virus-Proteins ableiten, wobei die Aminosäuresequenzen insofern voneinander abweichen, als sie sich untereinander und im Vergleich zur Wildtyp-Sequenz durch ein oder mehrere ausgetauschte Aminosäuren an gleichen oder unterschiedlichen Positionen der Sequenz unterscheiden. Wie bereits ausgeführt, kodieren die Nukleinsäuresequenzen in der Vakzine erfindungsgemäß bevorzugt für eine Mischung strukturell unterschiedlicher GP120-Proteine von HIV (Sequenzvarianten von GP120), wobei eine Vakzine besonders bevorzugt ist, die eine Mischung von DNA-Molekülen enthält, deren Nukleinsäuresequenzen sich in dem für die V2-Schleife kodierenden Bereich und/oder in dem für die V3-Schleife kodierenden Bereich von gp120 des HIV-1 voneinander unterscheiden. In diesem Zusammenhang wird auch auf Fig. 3 verwiesen, in der im V3-Loop von GP120 bekannte strukturelle Unterschiede bzw. Variationen dargestellt sind.The present invention thus also relates to a pharmaceutical composition or a DNA vaccine which codes for a mixture of structurally different virus proteins, the vaccine containing a mixture of sequence variants of a viral DNA molecule or a part thereof, ie of DNA molecules whose nucleic acid sequences differ from one another in the region coding for the protein, a part or a fragment thereof. The mixture contains 10 10 2 DNA molecules which differ from one another in their nucleic acid sequence, the mixture having randomly distributed sequence combinations due to the variation in nucleotide positions. According to the invention, the term “structurally different virus proteins” is understood to mean those proteins whose amino acid sequences are derived from the wild-type sequence of the corresponding virus protein, the amino acid sequences differing in that they differ from one another and in comparison to the wild-type sequence distinguish one or more exchanged amino acids at the same or different positions in the sequence. As already stated, the nucleic acid sequences in the vaccine according to the invention preferably code for a mixture of structurally different GP120 proteins from HIV (sequence variants of GP120), a vaccine which contains a mixture of DNA molecules whose nucleic acid sequences differ in that being particularly preferred differentiate the V2 loop coding region and / or in the region coding for the V3 loop from gp120 of HIV-1. In this connection, reference is also made to FIG. 3, in which known structural differences or variations are shown in the V3 loop of GP120.

Die erfindungsgemäße DNA-Vakzine besitzt besondere Bedeutung im Rahmen einer Gentherapie.The DNA vaccine according to the invention is of particular importance in Framework of gene therapy.

Schließlich wird erfindungsgemäß erstmals ein Verfahren zur Herstellung einer pharmazeutischen Zusammensetzung bzw. einer Protein-Vakzine zur Verfügung gestellt, bei dem man die erfindungsgemäßen Wirtszellen, d.h. Wirtszellen, die mit einer erfindungsgemäßen Vektor-Mischung transformiert sind, wobei die Vektoren jeweils Plasmide enthalten, deren Nukleinsäuresequenzen sich in dem für die V2-Schleife kodierenden Bereich und/oder in dem für die V3-Schleife kodierenden Bereich jeweils durch Zufallsverteilung der Basen an den variierten Nukleotidpositionen voneinander unterscheiden, unter Bedingungen kultiviert, die die Expression der Mischung viraler Protein-Sequenzvarianten gestatten. Bei den Wirtszellen handelt es sich vorzugsweise um bakterielle Wirtszellen, wie E. coli, oder um eukaryontische Wirtszellen, vorzugsweise aus der Gruppe bestehend aus Cos-, Chinese Hamster Ovary- (CHO-), oder Baby Hamster Kidney-Zellen (BHK-Zellen).Finally, according to the invention, a method for producing a pharmaceutical composition or a protein vaccine is provided for the first time, in which the host cells according to the invention, ie host cells which have been transformed with a vector mixture according to the invention, the vectors each containing plasmids and their nucleic acid sequences differ from each other in the region coding for the V2 loop and / or in the region coding for the V3 loop by random distribution of the bases at the varied nucleotide positions, cultivated under conditions which allow expression of the mixture of viral protein sequence variants. The host cells are preferably bacterial host cells, such as E. coli , or eukaryotic host cells, preferably from the group consisting of Cos, Chinese Hamster Ovary (CHO), or Baby Hamster Kidney cells (BHK cells). ,

Durch die vorliegende Erfindung ist es somit möglich, eine Vakzine aus variablen GP120-Proteinen zur Verfügung zu stellen, die bei der prophylaktischen und/oder therapeutischen Behandlung einer HIV-Infektion oder AIDS

  • 1. das Immunsystem aktiviert,
  • 2. die Bildung HIV-1-neutralisierender Antikörper induziert,
  • 3. den Verlust von neutralisierenden Antikörpern verhindert und
  • 4. die Kontrolle über die Stimulation der GP120-spezifischen Immunantwort durch den Wirkstoff übernommen wird.
  • The present invention thus makes it possible to provide a vaccine made from variable GP120 proteins which are used in the prophylactic and / or therapeutic treatment of HIV infection or AIDS
  • 1. activates the immune system,
  • 2. induces the formation of HIV-1 neutralizing antibodies,
  • 3. prevents the loss of neutralizing antibodies and
  • 4. Control over the stimulation of the GP120-specific immune response is taken over by the active ingredient.
  • Dies erfolgt vorzugsweise dadurch, daß bereits vor dem mit dem Ausbruch von AIDS im Zusammenhang stehenden Verlust HIV-neutralisierender Antikörper ausreichend Antigene zur Verfügung stehen, die aufgrund ihrer Vielfalt unterschiedlicher Aminosäuresequenzen (d.h. ihrer Sequenzvariationen) in der Lage sind, die Bildung derjenigen HIV-Antikörper zu induzieren, die normalerweise, d.h. ohne entsprechende Prophylaxe gemäß der vorliegenden Erfindung, bei Progression der Erkrankung verloren gehen oder in ihrer Konzentration abnehmen. Neben einer vorbeugenden Behandlung betrifft die vorliegende Erfindung auch die therapeutische Behandlung, wobei die GP120-Mischung (Protein-Vakzine) eingesetzt wird, um einer Abnahme bzw. einem Verlust HIV-neutralisierender Antikörpen entgegenzuwirken, indem das Immunsystem aktiviert und die Bildung neuer bzw. zusätzlicher HIV-1-neutralisierender Antikörper induziert wird.This is preferably done in that even before the Outbreak of AIDS related loss of HIV neutralizing Antibodies have sufficient antigens available stand because of their variety of different amino acid sequences (i.e. their sequence variations) are able to induce the formation of those HIV antibodies that normally, i.e. without appropriate prophylaxis according to the present invention, lost in disease progression go or decrease in concentration. In addition to one preventive treatment also relates to the present invention the therapeutic treatment, the GP120 mixture (Protein vaccine) is used to decrease or decrease Counteract loss of HIV-neutralizing antibodies, by activating the immune system and the formation of new or additional HIV-1 neutralizing antibody is induced.

    Erfindungsgemäß wird daher die Mischung strukturell unterschiedlicher viraler Proteine, die vorgenannte Sequenzvarianten eines viralen Proteins (vorzugsweise von GP120) oder eines Teils desselben sind zur Herstellung einer Vakzine zur Prävention und/oder Therapie einer Virus-Infektion beim Menschen verwendet. Ferner betrifft die vorliegende Erfindung die Verwendung einer Mischung von DNA-Molekülen, die für ≥ 102 Sequenzvarianten eines viralen Proteins oder eines Teils desselben kodieren, wobei die Mischung aufgrund der Variation von Nukleotidpositionen zufallsverteilte Sequenzkombinationen aufweist, zur Herstellung einer Vakzine zur Prävention und/oder Therapie einer Virus-Infektion beim Menschen. Gemäß einer bevorzugten Ausführungsform betrifft die Erfindung die Verwendung zur Herstellung einer Vakzine zur Prävention und/oder Therapie einer HIV-Infektion beim Menschen.According to the invention, therefore, the mixture of structurally different viral proteins, the aforementioned sequence variants of a viral protein (preferably GP120) or a part thereof, are used to produce a vaccine for the prevention and / or therapy of a virus infection in humans. Furthermore, the present invention relates to the use of a mixture of DNA molecules which code for 10 10 2 sequence variants of a viral protein or a part thereof, the mixture having randomly distributed sequence combinations due to the variation in nucleotide positions, for producing a vaccine for prevention and / or Therapy of a virus infection in humans. According to a preferred embodiment, the invention relates to the use for producing a vaccine for the prevention and / or therapy of an HIV infection in humans.

    Bei der Virus-Infektion kann es sich im Rahmen der vorliegenden Erfindung um jede beliebige Infektion handeln, bei der im Verlauf der Erkrankung sich replizierende Virusvarianten entstehen, wobei als ausgewählte Protein-Sequenzen oder proteinkodierende Nukleinsäuresequenzen diejenigen Aminosäuresequenzabschnitte oder für diese kodierende Nukleinsäureabschnitte erfindungsgemäß in Frage kommen, bei denen im Verlauf viraler Erkrankungen stets bzw. häufig Varianten, d.h Sequenzvariationen, beobachtet werden. Vorzugsweise handelt es sich vorliegend um Sequenzvarianten des GP120-Moleküls (auf Protein-Ebene) bzw. des für GP120 kodierenden Bereichs (auf DNA-Ebene) oder Teilen derselben, insbesondere um Sequenzvarianten im V3-Loop oder im V2-Loop, vorzugsweise sowohl im V3- als auch im V2-Loop.The virus infection can be within the scope of the present Invention to deal with any infection in the course replicating virus variants arise from the disease, being as selected protein sequences or protein coding Nucleic acid sequences are those amino acid sequence sections or nucleic acid segments coding for them come into question according to the invention, in the course of which viral Diseases always or frequently variants, i.e. sequence variations, to be watched. It is preferably present sequence variants of the GP120 molecule (at protein level) or the region coding for GP120 (at DNA level) or parts the same, in particular to sequence variants in the V3 loop or in V2 loop, preferably both in the V3 and the V2 loop.

    Erfindungsgemäß werden folglich pharmazeutische Zusammensetzungen bzw. vakzinen zur Verfügung gestellt, die bei der immunrekonstitutiven Behandlung von Virus-Infizierten das Immunsystem in einer Art und Weise aktivieren, daß die natürlich erworbene Immunabwehr gegen das Virus regeneriert und neu stimuliert wird, um so die im Patienten replizierenden Virusvarianten an ihrer Vermehrung zu hindern. Gemäß einer bevorzugten Ausführungsform der Erfindung werden erstmals Vakzinen zur immunrekonstitutiven Behandlung von HIV-1--Infizierten bereitgestellt.Pharmaceutical compositions are consequently according to the invention or vaccines provided at the immuno-constitutive treatment of virus-infected people Activate the immune system in a way that is natural acquired immune defense against the virus regenerates and is re-stimulated in order to replicate in the patient To prevent virus variants from multiplying. According to one preferred embodiment of the invention will be the first time Vaccines for the immuno-constitutive treatment of HIV-1 infected people provided.

    Im Rahmen der vorliegenden Erfindung können die Vakzinen entweder als solche, d.h. als DNA- und/oder Protein-Mischungen ohne weitere Zusätze, oder zusammen mit weiteren Wirkstoffen, wie z.B. Immunstimulantien wie Interleukin-2, CC- und CXC-Chemokine, und/oder pharmazeutisch verträglichen Hilfs- und Trägerstoffen formuliert bzw. verabreicht werden. In der Regel sind die erfindungsgemäßen Vakzinen zur intravenösen Applikation formuliert, wie z.B. intravenös, intramuskulär, subcutan. Außerdem können die Vakzinen zur oralen, mucosalen (intravaginalen, intrarektalen) und transdermalen Anwendung formuliert sein.In the context of the present invention, the vaccines either as such, i.e. as DNA and / or protein mixtures without further additives, or together with other active ingredients, such as. Immune stimulants such as interleukin-2, CC and CXC chemokines, and / or pharmaceutically acceptable auxiliary and Carriers are formulated or administered. Usually are the vaccines according to the invention for intravenous administration formulated such as intravenous, intramuscular, subcutaneously. In addition, the vaccines can be oral, mucosal (intravaginal, intrarectal) and transdermal use be formulated.

    Die vorliegende Erfindung weist folgende Vorteile auf:The present invention has the following advantages:

    Durch eine gezielte gentechnische Manipulation der Nukleinsäuresequenz, mit Hilfe einer Genkassette, lassen sich beliebige Varianten eines Krankheitserregers oder eines Gens des Erregers herstellen. Die Variationen betreffen bevorzugt die Bereiche, gegen die neutralisierende Antikörper oder cytotoxische T-Zellen gebildet werden. Dadurch läßt sich ein Impfstoff in Form einer Mischung von Varianten des Krankheitserregers oder von Varianten der entsprechenden Antigene eines Krankheitserregers herstellen. Die Vorteile dieses Konzeptes in Bezug auf HIV als Krankheitserreger liegen in der Herstellung einer Mischung des HIV-GP120, dem äußeren Membranprotein des HIV, gegen welches sich die virusneutralisierende Immunantwort des Menschen richtet. Da gerade im Falle der HIV-Erkrankung jeder Patient einer Vielzahl von HIV-Varianten ausgesetzt ist, die sich alle in der Sequenz des GP120 Proteins unterscheiden, ist der Einsatz einer Vielzahl von GP120-Varianten als Impfstoff von besonderem Vorteil, wobei diese GP120-Mischung sowohl für die Immunisierung normaler gesunder Personen aber auch für die Therapie von bereits mit HIV infizierten Personen eingesetzt werden kann. Bei der Immunisierung mit der GP120-Mischung wird eine möglichst breite Immunantwort gegen möglichst viele Virusvarianten im Menschen induziert, die im idealen Falle gegen alle HIV-Varianten schützt. Bei der Therapie mit der GP120-Mischung kann der Verlust von neutralisierenden Antikörpern und der Verlust der HIV-spezifischen zellulären Immunantwort bekämpft werden. Through targeted genetic engineering manipulation of the nucleic acid sequence, with the help of a gene cassette, any Variants of a pathogen or a gene of the pathogen produce. The variations preferably concern the areas against the neutralizing antibody or cytotoxic T cells be formed. This allows a vaccine to be in shape a mixture of variants of the pathogen or of Variants of the corresponding antigens of a pathogen produce. The advantages of this concept in relation to HIV as Pathogens lie in the preparation of a mixture of the HIV-GP120, the outer membrane protein of HIV, against which the virus-neutralizing immune response of humans directed. Because in the case of HIV, every patient is exposed to a variety of HIV variants, all of which in the sequence of the GP120 protein is the Use of a variety of GP120 variants as a vaccine from particular advantage, this GP120 mixture for both Immunization of normal healthy people but also for them Therapy of people already infected with HIV can be. When immunized with the GP120 mixture the broadest possible immune response against as many as possible Virus variants induced in humans, which in the ideal case protects against all types of HIV. In therapy with the GP120 mixture can result in the loss of neutralizing antibodies and the loss of the HIV-specific cellular immune response be fought.

    Erfindungsgemäß ist es ferner erstmals möglich, gp120-Klone herzustellen, die in der Art bzw. Vielfalt der beobachteten Sequenzvariationen Plasmaisolaten von HIV-Infizierten bzw. an AIDS Erkrankten entsprechen (vgl. M. Schreiber et al., J. Virol. 68 No. 6 (1994) 3908-3916). In diesem Zusammenhang wird im Gegensatz zu verschiedenen bisher verfolgten Ansätzen kein isoliertes GP120-Molekül oder ein antigenes Fragment desselben zur Immunisierung verwendet, sondern eine Protein-Mischung, die aus einer Vielzahl von Sequenzvarianten besteht, die durch eine vollständige GP120-Sequenz charakterisiert sind, die darüber hinaus die korrekte, der natürlichen Faltung des GP120-Moleküls entsprechende Tertiärstruktur aufweisen. Die Konformation der in der Vakzine zur Verfügung gestellten Virusvarianten ist insofern von Bedeutung, als dadurch Sequenz- und Strukturvarianten bereitgestellt werden, die mit den im Verlauf der viruserkrankung nachweisbaren GP120-Varianten eine größtmögliche Übereinstimmung hinsichtlich der beobachteten Sequenzvariationen als auch der für die Bindung an CD4 und den Corezeptor erforderlichen Konformation erzielt wird, wodurch eine effektive Immunstimulation erzielt werden kann.According to the invention, it is also possible for the first time to produce gp120 clones which, in the type or variety of the sequence variations observed, correspond to plasma isolates from HIV-infected or AIDS-sufferers (see M. Schreiber et al., J. Virol. 68 No. 6 (1994) 3908-3916). In this context, in contrast to various approaches pursued to date, no isolated GP120 molecule or an antigenic fragment thereof is used for the immunization, but rather a protein mixture which consists of a large number of sequence variants which are characterized by a complete GP120 sequence which also have the correct tertiary structure corresponding to the natural folding of the GP120 molecule. The conformation of the virus variants made available in the vaccine is of importance insofar as it provides sequence and structural variants which are as close as possible in agreement with the GP120 variants detectable in the course of the virus disease with regard to the observed sequence variations and also for binding to CD4 and the coreceptor required conformation is achieved, whereby an effective immune stimulation can be achieved.

    Durch die Erfindung wird eine Mischung von GP120-Proteinen bereitgestellt, die die Protein-Vakzine darstellt. Gleichzeitig wird durch die Erfindung eine Mischung der für diese Protein-Mischung kodierenden Gene bereitgestellt. Diese Gene können in einen Vektor überführt werden der sich für die direkte Anwendung am Menschen eignet (DNA-Vakzine) (Ulmer et al., 1995 Ann NY Acad Sci 772:117-125; Donnelly et al., 1995 Ann NY Acad Sci 1995 772:40-46). Eine DNA-Vakzine hat den Vorteil, daß die Heterogenität der Mischung der DNA-Vektoren höher sein kann als die Mischung der rekombinanten GP120-Proteine. Es ist leichter, eine hohe Heterogenität eines DNA-Vektorgemisches herzustellen. Eine solche DNA-Vakzine würde ein viel breiteres Spektrum an HIV-Varianten abdecken. Von der technischen Seite betrachtet ist die Herstellung der DNA-Mischung einfacher. Voraussetzung für die DNA-Vakzine ist ein gp120-Expressionsvektor, der die beiden Schnittstellen BstEII und BamHI trägt. Dies ermöglicht die Umsetzung der V3-Loop und V2-Loop Variablen env-Genfragmente in einen solchen Vektor.The invention provides a mixture of GP120 proteins, which is the protein vaccine. At the same time, the invention provides a mixture of the genes coding for this protein mixture. These genes can be converted into a vector which is suitable for direct use in humans (DNA vaccine) (Ulmer et al., 1995 Ann NY Acad Sci 772: 117-125; Donnelly et al., 1995 Ann NY Acad Sci 1995 772: 40-46). A DNA vaccine has the advantage that the heterogeneity of the mixture of the DNA vectors can be higher than the mixture of the recombinant GP120 proteins. It is easier to produce a high heterogeneity of a DNA-vector mixture. Such a DNA vaccine would cover a much broader spectrum of HIV variants. From a technical point of view, the preparation of the DNA mixture is easier. A prerequisite for the DNA vaccine is a gp120 expression vector which carries the two interfaces BstEII and BamHI. This enables the conversion of the V3-Loop and V2-Loop variables env gene fragments into such a vector.

    Im Hinblick auf die GP120-Proteine ist zu beachten, daß sich im Bereich des V3-Loop 5 potentielle Stellen für die N-Glykosylierung befinden. Die Zuckerreste schützen den V3-Loop vor der Erkennung durch neutralisierende Antikörper. Virusvarianten, die einen glykosylierten V3-Loop aufweisen sind schlechter neutralisierbar als Virusvarianten bei denen die Glykosylierung unvollständig ist. Da sich Virusvarianten mit einer vollständigen V3-Loop-Glykosylierung der neutralisierenden Immunantwort entziehen können, sind sie für die Übertragung und für das Etablieren der Infektion von Bedeutung. Im Verlauf der Erkrankung, wenn ein Teil der neutralisierenden Antikörperantwort verlorengegangen ist, setzen sich Virusvarianten durch, deren V3-Loop nicht vollständig glykosyliert ist. Da der V3-Loop nicht mehr durch Zuckerreste verdeckt ist, replizieren diese Virusvarianten schneller als die vollständig glykosylierten V3-Loop Mutanten. Erfindungsgemäß ist es daher von Vorteil, bei der Konstruktion der GP120-Vakzine die unterschiedliche Glykosylierung des GP120 V3-Loop zu berücksichtigen.With regard to the GP120 proteins, it should be noted that in Area of the V3 loop 5 potential sites for N-glycosylation are located. The sugar residues protect the V3 loop from the Detection by neutralizing antibodies. Virus variants which have a glycosylated V3 loop are worse neutralizable as virus variants in which the glycosylation is incomplete. Since virus variants with a complete V3 loop glycosylation of the neutralizing immune response can escape, they are for transmission and for establishing the infection is important. In the course of the disease, if part of the neutralizing antibody response has been lost, virus variants prevail whose V3 loop is not fully glycosylated. Because the V3 loop is no longer covered by sugar residues, they replicate Virus variants faster than the fully glycosylated V3 loop Mutants. According to the invention it is therefore advantageous to the construction of the GP120 vaccine Consider glycosylation of the GP120 V3 loop.

    Im Rahmen der vorliegenden Erfindung kann das an HIV dargestellte Prinzip auf andere Viren, die im Verlauf der viralen Erkrankung ebenfalls Varianten ausbilden, übertragen werden. Insbesondere können Vakzinen gegen eine Vielzahl von Viren bereitgestellt werden, die eine breite Immunantwort gegen viele Virusvarianten im Menschen induzieren, die im Idealfall gegen alle Varianten schützt. Bei der Therapie mit solchen Vakzinen kann der Verlust von neutralisierenden Antikörpern und der Verlust der HIV-spezifischen zellulären Immunantwort wirksam bekämpft werden. In diesem Zusammenhang ist es ferner möglich oder sogar ratsam, bei Erregertypen (Viren), die im Verlauf einer Erkrankung Sequenzvarianten mehrerer Proteine bilden, mehrere erfindungsgemäße Genkassetten bereitzustellen, die jeweils die für Varianten jedes dieser Proteine oder Fragmente derselben kodierende Nukleinsäuresequenz enthalten, um dem Verlust neutralisierender Antikörper gegen alle denkbaren Virusvarianten entgegenzuwirken.In the context of the present invention, that shown in HIV Principle on other viruses that are in the course of viral Disease also develop variants, are transmitted. In particular, vaccines can be used against a variety of viruses be provided that have a broad immune response against many Induce virus variants in humans, which ideally against protects all variants. In therapy with such vaccines can the loss of neutralizing antibodies and the Effective loss of HIV-specific cellular immune response be fought. In this context it is also possible or even advisable for pathogen types (viruses) that develop in the course form sequence variants of several proteins of a disease, to provide several gene cassettes according to the invention, the each for variants of each of these proteins or fragments contain the same coding nucleic acid sequence to the Loss of neutralizing antibodies against all possible Counteract virus variants.

    Im Rahmen der vorliegenden Erfindung können die Vorteile einer Protein-Vakzine und einer DNA-Vakzine in vorteilhafter Weise kombiniert werden, um den Erfolg einer präventiven und/oder therapeutischen Behandlung einer viralen Erkrankung zu erhöhen. Es wird somit ferner eine pharmazeutische Zusammensetzung zur Prävention und/oder Therapie einer Virus-Infektion zur Verfügung gestellt, die eine Protein-Mischung und eine Nukleinsäuremischung umfaßt, wobei die Protein-Mischung ≥ 102 Sequenzvarianten eines viralen Proteins oder eines Teils desselben umfaßt und durch Expression einer Plasmid-DNA-Mischung erhältlich ist, die aufgrund der Variation von Nukleotidpositionen zufallsverteilte Sequenzkombinationen aufweist, und wobei die Nukleinsäuremischung ≥ 102 DNA-Moleküle umfaßt, die für Sequenzvarianten eines viralen Proteins oder eines Teils desselben kodieren, wobei die Nukleinsäuremischung aufgrund der Variation von Nukleotidpositionen zufallsverteilte Sequenzkombinationen aufweist. Insbesondere handelt es sich bei der pharmazeutischen Zusammensetzung um ein Kombinationspräparat, das sowohl eine der oben genannten Sequenzvarianten des GP120-Proteins umfassende Protein-Mischung als auch eine der oben genannten, von der env-Sequenz in SEQ ID NO: 1 oder SEQ ID NO: 11 oder einem Fragment derselben abgeleitete Nukleinsäuremischung umfaßt.In the context of the present invention, the advantages of a protein vaccine and a DNA vaccine can advantageously be combined in order to increase the success of a preventive and / or therapeutic treatment of a viral disease. A pharmaceutical composition for the prevention and / or therapy of a virus infection is thus also provided, which comprises a protein mixture and a nucleic acid mixture, the protein mixture comprising ≥ 10 2 sequence variants of a viral protein or a part thereof and by Expression of a plasmid-DNA mixture is available, which has randomly distributed sequence combinations due to the variation of nucleotide positions, and wherein the nucleic acid mixture comprises ≥ 10 2 DNA molecules which code for sequence variants of a viral protein or a part thereof, the nucleic acid mixture due to the variation Sequence combinations randomly distributed from nucleotide positions. In particular, the pharmaceutical composition is a combination preparation which comprises both a protein mixture comprising one of the above-mentioned sequence variants of the GP120 protein and also one of the above-mentioned ones from the env sequence in SEQ ID NO: 1 or SEQ ID NO: 11 or a fragment of the same derived nucleic acid mixture.

    Die vorliegende Erfindung wird nachfolgend anhand von Beispielen, Figuren und einem Sequenzprotokoll erläutert. The present invention is described below using examples, Figures and a sequence listing explained.

    BEISPIELEEXAMPLES

  • 1. Allgemeine Beschreibung des Herstellungsverfahrens
  • 1.1 Klonierung von V3-loop kodierenden Oligonukleotiden
  • 1.2 Klonierung der V3-env-Varianten
  • 1.3 Analyse der Variabilität
  • 1. General description of the manufacturing process
  • 1.1 Cloning of V3-loop encoding oligonucleotides
  • 1.2 Cloning of the V3 env variants
  • 1.3 Analysis of variability
  • 2. Material und Methoden
  • 2.1 Abkürzungen
  • 2.1.1 Allgemeine Abkürzungen
  • 2.1.2 Nukleinsäuren
  • 2.2 Bakterienstämme
  • 2.3 Plasmide
  • 2.4 Enzyme
  • 2.5 Chemikalien
  • 2.6 Oligonukleotide
  • 2.7 Molekulargewichtsstandards
  • 2.8 Verwendete Reagenzien-Kits
  • 2.9 Medien
  • 2.10 Sterilisieren von Lösungen
  • 2.11 Anzucht und Lagerung von Bakterien
  • 2.12 Herstellung kompetenter Zellen
  • 2.13 Transformation in E.coli
  • 2.14 Plasmid-DNA Präparation
  • 2.15 Auftrennung von DNA in Agarosegelen
  • 2.16 Reinigung von DNA aus Agarosegelen
  • 2.17 Auftrennung von DNA in Polyacrylamidgelen
  • 2.18 Schneiden von DNA
  • 2.19 Ligation von DNA
  • 2.20 DNA-Sequenzierung
  • 2.21 Herstellung doppelsträngiger DNA mit Hilfe von Oligonukleotiden
  • 2.22 Transfektion von COS-Zellen und CHO-Zellen
  • 2.23 Chromatographische Reinigung der GP120-Mischung
  • 2.24 Herstellung der DNA-Vakzine
  • 2. Material and methods
  • 2.1 Abbreviations
  • 2.1.1 General abbreviations
  • 2.1.2 nucleic acids
  • 2.2 bacterial strains
  • 2.3 Plasmids
  • 2.4 enzymes
  • 2.5 chemicals
  • 2.6 oligonucleotides
  • 2.7 Molecular Weight Standards
  • 2.8 Reagent kits used
  • 2.9 Media
  • 2.10 Sterilize solutions
  • 2.11 Cultivation and storage of bacteria
  • 2.12 Production of competent cells
  • 2.13 Transformation in E.coli
  • 2.14 Plasmid DNA preparation
  • 2.15 Separation of DNA in agarose gels
  • 2.16 Purification of DNA from Agarose Gels
  • 2.17 Separation of DNA in polyacrylamide gels
  • 2.18 Cutting DNA
  • 2.19 Ligation of DNA
  • 2.20 DNA sequencing
  • 2.21 Production of double-stranded DNA using oligonucleotides
  • 2.22 Transfection of COS cells and CHO cells
  • 2.23 Chromatographic purification of the GP120 mixture
  • 2.24 Preparation of the DNA vaccine
  • 1. Allgemeine Beschreibung des Herstellungsverfahrens1. General description of the manufacturing process 1.1 Klonierung einer Mischung von V3-loop gp120-Varianten1.1 Cloning a mixture of V3-loop gp120 variants

    Die Oligonukleotide werden wie unter 2.6 beschrieben synthetisiert. Als V3-loop-Sequenz ist beispielhaft eine mutierte Sequenz des HIV-1 Patientenisolates F1-01 (M. Schreiber et al., J. Virol. 68 Nr. 6 (1994) 3908-3916) angegeben. Jede andere Sequenz oder Mischung von Sequenzen ist ebenfalls möglich. Um viele verschiedene Varianten einer V3-loop-Sequenz zu klonieren, werden an bestimmten Positionen der Sequenz anstelle von reinen Nukleotidbausteinen Gemische verwendet. Auf diese Weise erhält man ein Gemisch von Oligonukleotiden, die sich alle in der Sequenz unterscheiden und somit für unterschiedliche V3-loops kodieren. Man bezeichnet solche Oligonukleotid-Mischungen auch als Oligonukleotide mit degenerierten Sequenzen. Ausgehend von chemisch synthetisierten Oligonukleotiden mit degenerierten Sequenzen wird der für die verschiedenen V3-loops kodierende Bereich dargestellt.The oligonucleotides are synthesized as described under 2.6. A mutated sequence is an example of a V3 loop sequence of the HIV-1 patient isolate F1-01 (M. Schreiber et al., J. Virol. 68 No. 6 (1994) 3908-3916). Any other sequence or Mixing sequences is also possible. To many different ones To clone variants of a V3 loop sequence at certain positions in the sequence instead of pure Nucleotide building block mixtures used. That way one a mixture of oligonucleotides, all in the Differentiate sequence and thus for different V3 loops encode. Such oligonucleotide mixtures are also known as oligonucleotides with degenerate sequences. Starting from chemically synthesized oligonucleotides with degenerate Sequences becomes the coding for the different V3 loops Area shown.

    Ein Oligonukleotide in Leseraster-Orientierung (forward) wird für den env-Sequenzabschnitt von der BglII Schnittstelle bis zur ersten degenerierten Position synthetisiert. Ein zweites Oligonukleotid, in komplementärer Orientierung (reverse) wird entsprechend der Sequenz ab einer Position, die 15 Basen vor dem Beginn des variablen Bereiches liegt synthetisiert (Methode 2.6). Durch Überlappung der 3'-Region auf einer Länge von insgesamt 15 Basen erfolgt die Hybridisierung beider Oligonukleotide. In einer anschließenden Reaktion mit DNA-Polymerase (z.B. Taq DNA Polymerase oder Klenow-Fragment) entsteht aus den beiden hybridisierten Oligonukleotide ein vollständig doppelsträngiges DNA-Molekül (Methode 2.21). An oligonucleotide in reading frame orientation (forward) is used for the env sequence section from the BglII interface to synthesized first degenerate position. A second oligonucleotide, in a complementary orientation (reverse) is accordingly the sequence from a position 15 bases before The beginning of the variable range is synthesized (method 2.6). By overlapping the 3 'region over a total length of 15 Bases are the hybridization of both oligonucleotides. In a subsequent reaction with DNA polymerase (e.g. Taq DNA polymerase or Klenow fragment) arises from the two hybridized Oligonucleotides a completely double-stranded DNA molecule (Method 2.21).

    Das so erhaltene DNA-Gemisch wird mit den Restriktionsendonucleasen BglII und XbaI verdaut. Die Klonierung des DNA-Gemisches erfolgt in den mit BglII und XbaI geschnittenen Expressionsvektor ΔV3-pBSCenvV3 (Methoden 2.15 und 2.16).The DNA mixture thus obtained is used with the restriction endonucleases BglII and XbaI digested. The cloning of the DNA mixture takes place in the expression vector cut with BglII and XbaI ΔV3-pBSCenvV3 (methods 2.15 and 2.16).

    Dieser Vektor enthält die kodierende Sequenz des gp160 des HIV-1 Stammes NL4-3 (IIIB). Das NL4-3 env Gen wurde so manipuliert, daß es die Restriktionschnittstellen BglII und XbaI sowie ApaLI, PstI und BclI nur jeweils einmal besitzt. Der für den V3 loop kodierende Bereich, der zwischen den Schnittstellen BglII und XbaI liegt, wurde entfernt und durch eine 15 Basenpaar Sequenz ersetzt, wodurch eine analytische Schnittstelle für das Enzym AscI eingeführt wird. In diesen Vektor wird das BglII und XbaI geschnittene V3-loop DNA-Gemisch kloniert (Methode 2.19). Der Verlust der AscI Schnittstelle im fertigen V3-loop pBSCenvV3 Vektor kann für die Selektion der V3-loop kodierenden Klone benutzt werden (Methode 2.18).This vector contains the coding sequence of gp160 of HIV-1 strain NL4-3 (IIIB). The NL4-3 env gene was manipulated so that it has the restriction sites BglII and XbaI as well as ApaLI, PstI and BclI only once. The region coding for the V3 loop, which lies between the interfaces BglII and XbaI, was removed and replaced by a 15 base pair sequence, which introduces an analytical interface for the enzyme AscI. The BglII and XbaI cut V3-loop DNA mixture is cloned into this vector (method 2.19). The loss of the AscI interface in the finished V3-loop pBSCenvV3 vector can be used for the selection of the V3-loop coding clones (method 2.18).

    Das so entstandene Plasmidgemisch wird in DH5α-Bakterien transformiert (Methode 2.12), wobei eine Transformationsrate von >105 erreicht werden soll. Dadurch erhält man eine Genbibliothek von V3-loop-Fragmenten mit einer Größe von ca. 105 Klonen. Das Gemisch soll durch DNA-Sequenzierung analysiert werden (siehe 1.3). Mit Hilfe dieses Verfahrens erhält man ein Gemisch von Klonen, die alle für verschiedene V3-loop Varianten des GP120 Proteins kodieren. Dieses Gemisch von Vektoren dient als Ausgangsprodukt für die Herstellung des Proteingemisches für die Verwendung als Impfstoff und als Ausgangsprodukt für die Anwendung als DNA Vaccine.The resulting plasmid mixture is transformed into DH5α bacteria (method 2.12), a transformation rate of> 10 5 should be achieved. This results in a gene library of V3 loop fragments with a size of approximately 10 5 clones. The mixture should be analyzed by DNA sequencing (see 1.3). With the help of this method, a mixture of clones is obtained, all of which code for different V3-loop variants of the GP120 protein. This mixture of vectors serves as a starting product for the preparation of the protein mixture for use as a vaccine and as a starting product for use as a DNA vaccine.

    Für die Herstellung der GP120-Proteinmischung werden die pBSCenvV3 Expressionvektoren in COS-Zellen und CHO-Zellen transfiziert (Methode 2.22). Die Reinigung der verschiedenen GP120-Proteine, der Wirkstoffmischung, wird, wie in der Literatur beschrieben, nach Methode 2.23 durchgeführt. For the production of the GP120 protein mixture, the pBSCenvV3 expression vectors transfected into COS cells and CHO cells (Method 2.22). The purification of the various GP120 proteins, the mixture of active ingredients, as in the literature described, carried out according to method 2.23.

    1.2 Klonierung einer Mischung von V2-loop gp120-Varianten1.2 Cloning a mixture of V2-loop gp120 variants

    Varianten des V1-loop und V2-loop werden in gleicher Weise hergestellt. Der Expressionsvektor ΔV3-pBSCenvV3 besitzt dafür drei zusätzliche Restriktionsschnittstellen. Die Variation des V1-loop erfolgt durch Klonierung in die ApaLI und PstI Schnittstellen. Die Variation des V2-loop erfolgt durch Klonierung in die PstI und BclI Schnittstellen.Variants of the V1-loop and V2-loop are made in the same way manufactured. The expression vector ΔV3-pBSCenvV3 has for this three additional restriction interfaces. The variation of the V1 loop is done by cloning into the ApaLI and PstI Interfaces. The V2-loop is varied by cloning into the PstI and BclI interfaces.

    1.3 Analyse der Variabilität1.3 Analysis of variability

    Die Analyse der V3-loop-Gemische erfolgt durch DNA-Sequenzierung (Methode 2.20). Geplant ist die statistische Auswahl von ca. 100-200 Klonen, deren V1-, V2- und V3-loop Sequenzen bestimmt werden sollen. Sind alle diese Klone unterschiedlich, kann mit Hilfe einer statistischen Berechnung die Heterogenität der Genbibliothek und somit auch die Heterogenität der Proteinmischung bestimmt werden.The V3 loop mixtures are analyzed by DNA sequencing (Method 2.20). The statistical selection of approx. 100-200 clones, their V1, V2 and V3 loop sequences determined should be. If all of these clones are different, use With the help of a statistical calculation the heterogeneity of the Gene library and thus also the heterogeneity of the protein mixture be determined.

    2. Material und Methoden2. Material and methods 2.1 Abkürzungen2.1 Abbreviations 2.1.1 Allgemeine Abkürzungen2.1.1 General abbreviations

    µgug Mikrogrammmicrograms µlul Mikrolitermicroliter µmol.mu.mol Mikromolmicromoles APSAPS Ammoniumpersulfatammonium persulfate bpbp Basenpaarebase pairs dNTPdNTP Desoxynukleosidtriphosphatdeoxynucleoside triphosphate DNADNA Desoxyribonukleinsäuredeoxyribonucleic acid DTTDTT Dithiothreitoldithiothreitol EDTAEDTA Ethylendiamintetraessigsäureethylenediaminetetraacetic gG Grammgram GPGP Glykoprotein glycoprotein hH Stundehour HIVHIV Human Immunodeficiency VirusHuman immunodeficiency virus IPTGIPTG Isopropyl-β-D-thiogalaktopyranosidIsopropyl-β-D-thiogalactopyranoside MOPSPUG 3-Morpholinopropansulfonsäure3-morpholino propane ODOD Optische DichteOptical density PAGEPAGE Poly-Acrylamid-Gel-ElektrophoresePoly-acrylamide gel electrophoresis PCRPCR Polymerase-Ketten-ReaktionPolymerase chain reaction RTRT Raumtemperaturroom temperature TEMEDTEMED N,N,N',N'-TetramethylethylendiaminN, N, N ', N'-tetramethylethylenediamine

    2.1.2 Nukleinsäuren2.1.2 nucleic acids

    AA Adeninadenine CC Cytosincytosine GG Guaninguanine TT Thymidinthymidine

    2.2 Bakterienstämme2.2 bacterial strains

    Escherichia coli DH5α:Escherichia coli DH5α: F-, endA1, hsdr17, (rk-mk+), supE44, recA1, λ-, gyrA96, relA1, Φ80d lac z ΔM15F-, endA1, hsdr17, (rk-mk +), supE44, recA1, λ-, gyrA96, relA1, Φ80d lac z ΔM15

    2.3 Plasmide2.3 Plasmids

    pBSCenvATGpBSCenvATG Eigenkonstruktion, die Sequenz ist in SEQ ID NO: 10 angegeben.Own construction, the sequence is given in SEQ ID NO: 10.

    2.4 Enzyme2.4 enzymes

    Restriktionsenzymerestriction enzymes MBI-Fermentas, Gibco-BRL, BiolabsMBI-Fermentas, Gibco-BRL, Biolabs DNA-PolymerasenDNA polymerases MBI-Fermentas, Gibco-BRLMBI Fermentas, Gibco BRL T4-DNA-LigaseT4 DNA ligase MBI-FermentasMBI Fermentas

    2.5 Chemikalien2.5 chemicals

    [α-35S]dATP[Α-35S] dATP Amersham Life ScienceAmersham Life Science Agarose, ultra pureAgarose, ultra pure GIBCO BRLGIBCO BRL Ammoniumpersulfatammonium persulfate MerckMerck Ampicillinampicillin US BiochemicalU.S. Biochemical Bacto-AgarBacto agar Becton DickinsonBecton Dickinson Bacto-TryptonBactotryptone Becton DickinsonBecton Dickinson Borsäureboric acid MerckMerck Bromphenolblaubromophenol MerckMerck Calciumchloridcalcium chloride MerckMerck Desoxyribonukleotidedeoxyribonucleotides MBI-FermentasMBI Fermentas Dithiothreitoldithiothreitol Biotechnik, St. Leon-RotBiotechnology, St. Leon-Rot Eisessigglacial acetic acid MerckMerck Ethidiumbromidethidium bromide SigmaSigma Ethylendiamintetraessigsäureethylenediaminetetraacetic MerckMerck Glyceringlycerin MerckMerck Harnstoffurea ICN BiomedicalsICN Biomedicals Hefeextraktyeast extract Becton DickinsonBecton Dickinson Kaliumchloridpotassium chloride MerckMerck Kaliumdihydrogenphosphatpotassium MerckMerck Magnesiumchloridmagnesium chloride MerckMerck Acrylamid-MixAcrylamide mix RothRoth Natriumacetatsodium MerckMerck Natriumchloridsodium chloride MerckMerck di-Natriumhydrogenphosphatdisodium hydrogen phosphate MerckMerck Natriumdihydrogenphosphatsodium MerckMerck 2-Propanol2-propanol MerckMerck Sigmacote (Chloriertes Polysiloxan)Sigmacote (chlorinated polysiloxane) SigmaSigma N,N,N',N'-TetramethylethylendiaminN, N, N ', N'-tetramethylethylenediamine MerckMerck Tris(hydroxymethyl)-aminomethanTris (hydroxymethyl) aminomethane GIBCO BRLGIBCO BRL

    2.6 Oligonukleotide2.6 oligonucleotides

    Alle aufgeführten Oligonukleotide wurden mit dem Expedite™ Nucleic Acid Synthesis System der Firma PE Biosystems (Weiterstadt) hergestellt. Für die Klonierung von env Genen, die sich nur in der Sequenz für den V3 loop unterscheiden, werden Oligonukleotide verwendet. Am Beispiel der Klonierung der V3 loop Region für das HIV-1-Patienteisolat F1-01 sind die Sequenzen der Oligonukleotide aufgeführt.All oligonucleotides listed were with the Expedite ™ Nucleic Acid Synthesis System from PE Biosystems (Weiterstadt) manufactured. For the cloning of env genes that are only differ in the sequence for the V3 loop, oligonucleotides used. Using the example of cloning the V3 loop Region for the HIV-1 patient isolate F1-01 are the sequences of Oligonucleotides listed.

    V3-Loop: für die Klonierung in pNL4-3/BgIII-NheI, F1-01, forward:

    Figure 00400001
    V3 loop: for cloning in pNL4-3 / BgIII-NheI, F1-01, forward:
    Figure 00400001

    V3-Loop: für die Klonierung in pNL4-3/BglII-NheI, F1-01:

    Figure 00400002
    V3 loop: for cloning in pNL4-3 / BglII-NheI, F1-01:
    Figure 00400002

    Für die Sequenzierung von V3 loop-Klonen wurden die Oligonukleotide 7010, 7011 und die M13-Standard-Primer verwendet (M13, M13r).

    Figure 00400003
    The oligonucleotides 7010, 7011 and the M13 standard primers (M13, M13r) were used for the sequencing of V3 loop clones.
    Figure 00400003

    2.7 Molekulargewichtsstandards2.7 Molecular Weight Standards

    1 kb-Leiter1 kb ladder MBI-FermentasMBI Fermentas 100 bp Leiter100 bp ladder MBI FermentasMBI Fermentas

    2.8 Verwendete Reagenzien-Kits2.8 Reagent kits used

    T7-Sequenzier-KitT7 sequencing kit PharmaciaPharmacia Qiaquick PCR Purification KitQiaquick PCR Purification Kit QiagenQiagen Qiagen Plasmid KitQiagen plasmid kit QiagenQiagen

    2.9 Medien2.9 Media

    YT-Medium:YT medium: 10 g10 g Tryptontryptone 5 g5 g Hefeextraktyeast extract 5 g5 g NaClNaCl dYT-Medium:dYT Media: 16 g16 g Tryptontryptone 10 g10 g Hefeextraktyeast extract 5 g5 g NaClNaCl dYT-Agarplatten:dYT agar plates: 10 g10 g Tryptontryptone 5 g5 g Hefeextraktyeast extract 5 g5 g NaClNaCl 15 g15 g Agaragar

    Die angegebenen Mengen beziehen sich auf jeweils 1000 ml deionisiertes Wasser. Autoklaviert wurden die Ansätze bei 121°C und 1,5 bar für 20 min. Sollten die Medien Antibiotika oder andere hitzeempfindliche Reagenzien enthalten, wurden die entsprechenden Mengen sterilfiltriert und nach dem Abkühlen des Mediums zugegeben. Ampicillin 3,3 ml/l (60 mg/ml) IPTG 3 ml/l (100 mM) xgal 3 ml /l (2% in DMF, nicht filtrieren) The amounts given refer to 1000 ml of deionized water. The batches were autoclaved at 121 ° C. and 1.5 bar for 20 min. If the media contained antibiotics or other heat-sensitive reagents, the appropriate amounts were sterile filtered and added after the media had cooled. ampicillin 3.3 ml / l (60 mg / ml) IPTG 3 ml / l (100 mM) Xgal 3 ml / l (2% in DMF, do not filter)

    2.10 Sterilisieren von Lösungen und Geräten2.10 Sterilize solutions and devices

    Lösungen und Medien sowie Pipettenspitzen, Eppendorfgefäße und Glasgeräte wurden 20-40 min bei 121°C und 1,5 bar autoklaviert. Hitzeempfindliche Lösungen wie z.B. Antibiotika- und IPTG-Lösungen wurden sterilfiltriert.Solutions and media as well as pipette tips, Eppendorf tubes and Glassware was autoclaved at 121 ° C and 1.5 bar for 20-40 min. Heat sensitive solutions such as Antibiotic and IPTG solutions were sterile filtered.

    2.11 Anzucht und Lagerung von Bakterien2.11 Cultivation and storage of bacteria

    Bakterienkulturen wurden jeweils mit einer einzelnen Kolonie angeimpft. Zur Isolierung einer Einzelkolonie wurden Zellen einer Flüssigkultur auf einer Agarplatte ausgestrichen. Nach Inkubation bei 37°C über Nacht sind vereinzelte Kolonien gewachsen. Zur kurzfristigen Aufbewahrung der Bakterien wurden die Agar-Platten mit Parafilm versiegelt und bei 4°C-gelagert. Für eine dauerhafte Lagerung von Bakterienstämmen wurden 0,75 ml einer YT-Übernachtkultur mit 0,25 ml sterilem Glycerin vermischt, in flüssigem Stickstoff schockgefroren und bei -70°C aufbewahrt.Bacterial cultures were each with a single colony inoculated. To isolate a single colony, cells from one Spread liquid culture on an agar plate. After incubation isolated colonies grew at 37 ° C overnight. to The agar plates were kept for short-term storage of the bacteria sealed with parafilm and stored at 4 ° C. For a permanent Storage of bacterial strains was 0.75 ml of an YT overnight culture mixed with 0.25 ml sterile glycerin, in liquid Nitrogen snap frozen and stored at -70 ° C.

    2.12 Herstellung kompetenter Zellen2.12 Production of competent cells

    100 ml YT-Medium wurden mit 100 µl einer Übernachtkultur angeimpft. Die Bakterien wurden bis zum Erreichen einer OD560=0,4 bei 37°C im Schüttelinkubator inkubiert und anschließend 8 min bei 4°C und 1000 g zentrifugiert. Alle anschließenden Arbeiten erfolgten auf Eis unter Verwendung vorgekühlter Gefäße und 4°C kalter Lösungen. Die Zellen wurden in 50 ml 50 mM CaCl2 resuspendiert und 30 min auf Eis inkubiert. Nach erneutem Zentrifugieren wurden die Bakterien in 2,5 ml sterilem TFBII-Puffer aufgenommen und in Portionen von jeweils 100 µl aufgeteilt. Die 100 µl Portionen der kompetenten Zellen konnten, soweit sie nicht für eine sofortige Transformation benötigt wurden, nach Schockgefrieren in flüssigem Stickstoff bei -70°C gelagert werden. TFBII-Puffer : 10 mM MOPS pH 7,0 75 mM CaCl2 10 mM KCl 15% Glycerin 100 ml of YT medium were inoculated with 100 μl of an overnight culture. The bacteria were incubated in an shaking incubator at 37 ° C. until an OD 560 = 0.4 and then centrifuged at 4 ° C. and 1000 g for 8 min. All subsequent work was done on ice using pre-cooled vessels and 4 ° C cold solutions. The cells were resuspended in 50 ml of 50 mM CaCl 2 and incubated on ice for 30 min. After centrifuging again, the bacteria were taken up in 2.5 ml sterile TFBII buffer and divided into portions of 100 μl each. The 100 µl portions of the competent cells, if not required for immediate transformation, could be stored in liquid nitrogen at -70 ° C after shock freezing. TFBII buffer: 10 mM MOPS pH 7.0 75 mM CaCl 2 10 mM KCl 15% glycerin

    2.13 Transformation von E. coli 2.13 Transformation of E. coli

    (Hanahan, J. Mol. Biol. 166 (1983) 557-580)
    Eine 100 µl Portion kompetenter Zellen wurde im Eisbad aufgetaut und mit 1-100 ng Plasmid-DNA für 30 min bei 0°C inkubiert. Anschließend wurde der Transformationsansatz 1 min bei 42°C inkubiert. Danach wurde 1 ml YT-Medium zugegeben und bei 37°C für eine Stunde geschüttelt. Um eine Selektion der transformierten Zellen zu ermöglichen, wurden 100-500 µl des Ansatzes auf antibiotikahaltigen YT-Agarplatten ausgestrichen. Nach Inkubation über Nacht bei 37°C sind nur Kolonien gewachsen, die das plasmid-kodierte Resistenzgen tragen. Bei einer Transformation von Zellen, die keine funktionsfähige β-Galaktosidase enthalten (lacZΔM15 Mutation, z.B. DH5α), ermöglichen Vektoren wie der verwendete pUC über eine plasmid-kodierte β-Galaktosidase eine direkte Selektion (blue white screening) rekombinanter Bakterien. Für die Blau-Weiß-Selektion wurden die Bakterien auf Amp/IPTG/Xgal-YT-Agarplatten ausgestrichen. Das Substrat Xgal wird durch die β-Galaktosidase in einen blauen Farbstoff gespalten. Aufgrund der Zerstörung des Leserasters des lacZ-Gens durch die Insertion eines fremden DNA-Fragments in das lacZ-Gen werden weiße Kolonien erzeugt. Dagegen bedeuten blaue Kolonien, daß das lacZ-Gen bei der Klonierung und Ligation funktionsfähig geblieben ist und keine DNA inseriert wurde.
    (Hanahan, J. Mol. Biol. 166 (1983) 557-580)
    A 100 ul portion of competent cells was thawed in an ice bath and incubated with 1-100 ng plasmid DNA for 30 min at 0 ° C. The transformation mixture was then incubated at 42 ° C. for 1 min. Then 1 ml of YT medium was added and shaken at 37 ° C. for one hour. In order to enable selection of the transformed cells, 100-500 μl of the mixture were spread on YT agar plates containing antibiotics. After overnight incubation at 37 ° C, only colonies that carry the plasmid-encoded resistance gene have grown. When transforming cells that do not contain a functional β-galactosidase (lacZΔM15 mutation, e.g. DH5α), vectors such as the pUC used enable a direct selection ( blue white screening) of recombinant bacteria via a plasmid-encoded β-galactosidase. For the blue-white selection, the bacteria were spread on Amp / IPTG / Xgal-YT agar plates. The substrate Xgal is split into a blue dye by the β-galactosidase. Due to the destruction of the reading frame of the lacZ gene by the insertion of a foreign DNA fragment into the lacZ gene, white colonies are generated. In contrast, blue colonies mean that the lacZ gene remained functional during cloning and ligation and that no DNA was inserted.

    2.14 Plasmid-DNA Präparation2.14 Plasmid DNA preparation

    (Quiagen, Hilden)
    Um Plasmid-DNA aus E. coli zu isolieren, wurde der QIAprep Spin Miniprep Kit der Firma Qiagen verwendet. Die DNA-Präparation erfolgte nach Anleitung des Herstellers (QIAprep Plasmid Handbook 03/95). Plasmidhaltige E. coli-Bakterien wurden in dYT-amp-Medium angeimpft und bei 37°C über Nacht geschüttelt. Drei ml der E. coli-Übernachtkultur wurden für die Plasmid Isolierung eingesetzt. Die Bakterein wurden geerntet (1min, 14.000 U/min, Heraeus Zentrifuge) und in 250 µl P1-Puffer aufgenommen. Durch alkalische Lyse wurden die Bakterien aufgeschlossen (250 µl, 0,2N NaOH/1%-SDS). Durch Zugabe von 3M Kaliumacetat, (350 µl, pH 5,5) wurde die Mischung neutralisiert. Die Aufreinigung der Plasmid-DNA basiert auf der selektiven Bindung von Plasmid-DNA an DEAE-Anionenaustauschersäulen. Bei den gewählten Salzkonzentrationen und pH-Bedingungen bindet die Plasmid-DNA an der DEAE-Matrix. Die DEAE-Matrix wurde gewaschen (750 µl, PE-Puffer, Qiagen). Die Plasmid-DNA wurde anschließend mit 50 µl H2O eluiert und bei -20°C gelagert.
    (Quiagen, Hilden)
    The QIAprep Spin Miniprep Kit from Qiagen was used to isolate plasmid DNA from E. coli . The DNA preparation was carried out according to the manufacturer's instructions (QIAprep Plasmid Handbook 03/95). Plasmid-containing E. coli bacteria were inoculated in dYT-amp medium and shaken at 37 ° C. overnight. Three ml of the E. coli overnight culture were used for plasmid isolation. The bacteria were harvested (1 min, 14,000 rpm, Heraeus centrifuge) and taken up in 250 μl P1 buffer. The bacteria were disrupted by alkaline lysis (250 μl, 0.2N NaOH / 1% SDS). The mixture was neutralized by adding 3M potassium acetate (350 μl, pH 5.5). The purification of the plasmid DNA is based on the selective binding of plasmid DNA to DEAE anion exchange columns. At the selected salt concentrations and pH conditions, the plasmid DNA binds to the DEAE matrix. The DEAE matrix was washed (750 ul, PE buffer, Qiagen). The plasmid DNA was then eluted with 50 ul H 2 O and stored at -20 ° C.

    Um Plasmid-DNA in größerer Menge (ca. 100 µg) zu erhalten, wurden 25 ml Übernachtkultur eingesetzt. Für die Aufreinigung der DNA wurde der QIAGEN Plasmid Midi Kit verwendet. Die Aufreinigung beruht hier auf dem unter dem "QIAprep Spin Miniprep Kit" beschriebenen Prinzip und wurde nach Herstellerangaben (QIAGEN Plasmid Purification Handbook 01/97) durchgeführt.In order to obtain plasmid DNA in large quantities (approx. 100 µg), 25 ml overnight culture used. For the purification of the DNA the QIAGEN Plasmid Midi Kit was used. The purification based on the "QIAprep Spin Miniprep Kit" principle described and was based on the manufacturer's instructions (QIAGEN Plasmid Purification Handbook 01/97).

    2.15 Auftrennung von DNA in Agarosegelen2.15 Separation of DNA in agarose gels

    Die Trennung von DNA erfolgte durch Gelelektrophorese in Agarosegelen. In Abhängigkeit von der Größe der untersuchten Fragmente wurden 0,8-2% Agarose in TBE-Puffer (für analytische Agarosegele) oder TAE-Puffer (für präparative Agarosegele) durch Aufkochen gelöst. Nach dem Abkühlen auf ca. 60°C wurde die Gelflüssigkeit mit 1 µl Ethidiumbromid (10 mg/ml) versetzt und in ein vorbereitetes Gelbett mit eingesetztem Kamm gegossen. Das vollständig abgekühlte Gel wurde in einer Elektrophoresekammer mit TBE-, bzw. TAE-Puffer überschichtet und der Kamm entfernt. Die DNA-Proben wurden mit 1/5 Vol. Auftragspuffer gemischt und in die Probentaschen pipettiert. Die Fragmente wurden bei 5-10 Volt/cm Gellänge 0,5-2 h aufgetrennt. Zur Detektion wurde das Gel nach der Elektrophorese im UV-Durchlicht photographiert. Die Molekulargewichte der DNA-Banden wurden im Vergleich zu mitlaufenden DNA-Molekulargewichtsmarkern bestimmt. TBE-Puffer : 100 mM Tris 100 mM Borsäure 3 mM EDTA TAE-Puffer : 40 mM Tris 2mM EDTA 0,114% Eisessig Auftragspuffer : 0,25% Bromphenolblau 0,25% Xylencyanol 30% Glycerin 50 mM EDTA DNA was separated by gel electrophoresis in agarose gels. Depending on the size of the fragments examined, 0.8-2% agarose was dissolved in TBE buffer (for analytical agarose gels) or TAE buffer (for preparative agarose gels) by boiling. After cooling to about 60 ° C., 1 μl of ethidium bromide (10 mg / ml) was added to the gel liquid and poured into a prepared gel bed with a comb inserted. The completely cooled gel was overlaid in an electrophoresis chamber with TBE or TAE buffer and the comb removed. The DNA samples were mixed with 1/5 vol. Application buffer and pipetted into the sample pockets. The fragments were separated at 5-10 volts / cm gel length for 0.5-2 h. For detection, the gel was photographed after UV electrophoresis. The molecular weights of the DNA bands were determined in comparison to running DNA molecular weight markers. TBE buffer: 100 mM Tris 100 mM boric acid 3 mM EDTA TAE buffer: 40 mM Tris 2 mM EDTA 0.114% glacial acetic acid Order buffer: 0.25% bromophenol 0.25% xylenecyanol 30% glycerin 50 mM EDTA

    2.16 Reinigung von DNA aus Agarosegelen2.16 Purification of DNA from Agarose Gels

    Für die Extraktion der DNA aus Agarosegelen wurde der "QIAquick Gel Extraction Kit" (Qiagen, Hilden) verwendet. Die Pufferbedingungen wurden so gewählt, daß die Nukleinsäuren an die Silica-Membran der Säulen binden, während niedermolekulare Bakterienbestandteile die Membran passieren (Methode 2.15). Es wurde nach dem "QIAquick Gel Extraction Kit Protokoll" des QIAqick Spin Handbooks 07/97 vorgegangen. Die gereinigte DNA wurde jeweils mit 50 µl H2O von der Silica-Membran eluiert.The "QIAquick Gel Extraction Kit" (Qiagen, Hilden) was used to extract the DNA from agarose gels. The buffer conditions were chosen so that the nucleic acids bind to the silica membrane of the columns, while low-molecular bacterial components pass through the membrane (method 2.15). The "QIAquick Gel Extraction Kit Protocol" from the QIAqick Spin Handbook 07/97 was followed. The purified DNA was eluted from the silica membrane with 50 μl H 2 O in each case.

    2.17 Auftrennung von DNA in Polyacrylamidgelen2.17 Separation of DNA in polyacrylamide gels

    Die Trennung von radioaktiv markierten DNA-Fragmenten zur DNA-Sequenzierung wurde unter Verwendung von denaturierenden Polyacrylamidgelen durchgeführt. Zwei gereinigte Glasplatten wurden mit Ethanol von Fettresten befreit und mit 1 ml Sigmacote pro Platte beschichtet, um eine hydrophobe Oberfläche zu erhalten. Durch die Beschichtung sollte ein späteres Zerreißen des Gels beim Abziehen von der Glasplatte vermieden werden. Zwischen die beiden Glasplatten wurden Abstandshalter (Spacer) gelegt, welche gleichzeitig zum seitlichen Abdichten dienten. Die ganze Apparatur wurde mit mehreren Klammern fixiert. Zur Herstellung des Sequenzgels wurden 21 g Harnstoff in etwa 20 ml Wasser gelöst. Nach Zugabe von 7,5 ml Acrylamid-Mix und 5 ml 10x TBE-Puffer (siehe 2.15) wurde der Ansatz mit Wasser auf 50 ml aufgefüllt. Die Polymerisation des Gels wurde durch Zugabe von 300 µl APS und 100 µl TEMED gestartet. Sofort danach wurde die Gellösung in die vorbereitete Gelapparatur gegossen, und durch Einsetzen des flachen Rückens des Sägezahnkamms der Taschenboden geformt. Bis zur vollständigen Polymerisation wurde das Gel waagerecht bei Raumtemperatur gelagert. Nach dem Einsetzen des Gels in die Gelkammer wurde diese mit TBE-Puffer gefüllt. Durch Umdrehen des Sägezahnkammes wurden die Auftragstaschen gebildet. Um das Gel auf die optimale Betriebstemperatur zu erwärmen, wurde ein Vorlauf von 20 min durchgeführt. Die Taschen wurden gründlich mit TBE-Puffer gespült und anschließend mit 4-5 µl der Proben gefüllt. Die Elektrophorese erfolgte bei 2 kV (150 Watt) für etwa 2-3 h. Das Gel wurde nach Beenden der Elektrophorese aus der Gelkammer genommen und eine der Glasplatten vorsichtig abgehoben. Durch Auflegen und leichtes Andrücken wurde das Gel auf Schleicher & Schuell-Papier (Whatman, England) übertragen. Nach dem Trocknen bei 80°C unter Vakuum wurde das Gel 1-3 Tage bei RT auf einem Röntgen-Film (Kodak BioMax MR-1, Sigma Deisenhofen) exponiert. Acrylamid-Mix: 40% Polyacrylamid 0,8% Bisacrylamid The separation of radioactively labeled DNA fragments for DNA sequencing was carried out using denaturing polyacrylamide gels. Two cleaned glass plates were cleaned of grease residues with ethanol and coated with 1 ml Sigmacote per plate in order to obtain a hydrophobic surface. The coating should prevent the gel from tearing when pulled off the glass plate. Between the two glass plates the spacer (spacers) were placed, which served at the same time for the lateral sealing. The whole apparatus was fixed with several clips. To prepare the sequence gel, 21 g of urea were dissolved in about 20 ml of water. After adding 7.5 ml of acrylamide mix and 5 ml of 10x TBE buffer (see 2.15), the mixture was made up to 50 ml with water. The polymerization of the gel was started by adding 300 µl APS and 100 µl TEMED. Immediately afterwards, the gel solution was poured into the prepared gel apparatus and the pocket bottom was formed by inserting the flat back of the sawtooth comb. The gel was stored horizontally at room temperature until the polymerization was complete. After the gel had been inserted into the gel chamber, it was filled with TBE buffer. The job pockets were formed by turning the sawtooth comb over. In order to heat the gel to the optimal operating temperature, a lead time of 20 minutes was carried out. The bags were rinsed thoroughly with TBE buffer and then filled with 4-5 µl of the samples. The electrophoresis was carried out at 2 kV (150 watts) for about 2-3 hours. The gel was removed from the gel chamber after electrophoresis and one of the glass plates was carefully lifted off. The gel was transferred to Schleicher & Schuell paper (Whatman, England) by application and gentle pressure. After drying at 80 ° C. under vacuum, the gel was exposed to RT on an X-ray film (Kodak BioMax MR-1, Sigma Deisenhofen) for 1-3 days. Acrylamide mix: 40% polyacrylamide 0.8% bisacrylamide

    2.18 Schneiden von DNA2.18 Cutting DNA

    Restriktionsendonukleasen erkennen und hydrolysieren enzymspezifische palindrome DNA-Sequenzen von meist 4-8 Nukleotiden Länge. Bei der Hydrolyse entstehen je nach Art des Enzyms stumpfe (blunt ends) oder überhängende Enden einzelsträngiger DNA (sticky ends). Für einen Restriktionsverdau wurden 0,1-60 µg DNA mit 2-120 Einheiten (Units) eines Restriktionsenzyms in dem vom Hersteller angegebenen Puffer für 2-5 h bei 37°C inkubiert. Das Gesamtvolumen betrug zwischen 10 µl für analytische und 300 µl für präparative Ansätze. Für Restriktionen mit zwei verschiedenen Enzymen wurde ein Puffer gewählt, in dem beide Enzyme eine ausreichende Aktivität besitzen, z.B. den EcoRI-Puffer für einen EcoRI/BamHI-Verdau, oder es wurden nach Inkubation mit dem ersten Enzym die Bedingungen für das zweite Enzym eingestellt.Restriction endonucleases recognize and hydrolyze enzyme-specific palindromic DNA sequences, mostly 4-8 nucleotides in length. Depending on the type of enzyme, hydrolysis results in blunt ends or overhanging ends of single-stranded DNA ( sticky ends ). For a restriction digest, 0.1-60 μg of DNA were incubated with 2-120 units ( units ) of a restriction enzyme in the buffer specified by the manufacturer for 2-5 h at 37 ° C. The total volume was between 10 µl for analytical and 300 µl for preparative approaches. For restrictions with two different enzymes, a buffer was chosen in which both enzymes have sufficient activity, for example the EcoRI buffer for an EcoRI / BamHI digestion, or the conditions for the second enzyme were set after incubation with the first enzyme.

    2.19 Ligation von DNA2.19 Ligation of DNA

    DNA-Ligasen katalysieren die Verknüpfung von DNA-Molekülen unter Verbrauch von NAD+ oder ATP durch Bildung einer Phosphodiesterbindung zwischen einer freien 5'-Phosphatgruppe und einer 3'-Hydroxylgruppe. Ein drei- bis fünffacher Überschuß an DNA-Fragment wurde mit 100-500 ng geschnittenen Plasmids und 5 Einheiten T4-DNA-Ligase sowie 10 nmol ATP über Nacht bei 12°C in Ligationspuffer inkubiert. Es wurden nur Ligationen kohäsiver Enden durchgeführt. Ligationspuffer: 40 mM Tris-HCl pH 7,8 10 mM MgCl2 10 mM DTT 0,5 mM ATP DNA ligases catalyze the linking of DNA molecules using NAD + or ATP by forming a phosphodiester bond between a free 5'-phosphate group and a 3'-hydroxyl group. A three- to five-fold excess of DNA fragment was incubated with 100-500 ng cut plasmids and 5 units of T4-DNA ligase and 10 nmol ATP overnight at 12 ° C. in ligation buffer. Only cohesive end ligations were performed. Ligation buffer: 40 mM Tris-HCl pH 7.8 10 mM MgCl2 10 mM DTT 0.5 mM ATP

    2.20 DNA-Sequenzierung2.20 DNA sequencing

    (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977) 5463-5467)
    Die Sequenzierung von DNA wurde nach der Kettenabbruchmethode durchgeführt. Als Substrat diente doppelsträngige Plasmid-DNA. Aus Einzelstrang-DNA kann ausgehend von einem Oligonukleotidprimer in Anwesenheit von dNTPs durch eine DNA-Polymerase doppelsträngige DNA synthetisiert werden. Ist im Nukleotidgemisch ein geringer Anteil Didesoxynukleotide (ddNTPs) enthalten, führt dies zu einem zufällig verteiltem Einbau des ddNTPs, da die DNA-Polymerase nicht zwischen dNTPs und ddNTPs unterscheiden kann. Der Einbau führt aufgrund der fehlenden 3'-Hydroxylgruppe der ddNTPs zu einem Abbruch der Doppelstrangsynthese und, da er statistisch verteilt erfolgt, zu unterschiedlich langen DNA-Einzelsträngen. Da der Syntheseansatz viergeteilt ist und in jeder Probe nur eines der vier ddNTPs vorhanden ist, kommt es in den jeweiligen Ansätzen zu basenspezifischen Kettenabbrüchen. Zur Markierung des synthetisierten Einzelstranges wird der Reaktion α-35S-dATP zugegeben. Nach Denaturierung und Trennung der DNA über Polyacrylamidgelelek-trophorese lassen sich die Banden autoradiographisch detektieren und die Sequenz des DNA-Stranges direkt ablesen.
    (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977) 5463-5467)
    Sequencing of DNA was carried out using the chain termination method. Double-stranded plasmid DNA served as the substrate. Double-stranded DNA can be synthesized from single-stranded DNA starting from an oligonucleotide primer in the presence of dNTPs by a DNA polymerase. If a small proportion of dideoxynucleotides (ddNTPs) is contained in the nucleotide mixture, this leads to a randomly distributed incorporation of the ddNTPs, since the DNA polymerase cannot differentiate between dNTPs and ddNTPs. Due to the missing 3'-hydroxyl group of the ddNTPs, the incorporation leads to a termination of the double-strand synthesis and, since it is statistically distributed, to DNA strands of different lengths. Since the synthesis approach is divided into four and only one of the four ddNTPs is present in each sample, base-specific chain terminations occur in the respective approaches. To label the synthesized single strand, α- 35 S-dATP is added to the reaction. After denaturation and separation of the DNA via polyacrylamide gel electrophoresis, the bands can be detected autoradiographically and the sequence of the DNA strand can be read directly.

    Durchgeführt wurden die Sequenzierungen mit dem T7-Sequenzier-Kit (Pharmacia) nach der Anleitung des Herstellers. Als Oligonukleotidprimer wurde dabei entweder der M13-Universal-Primer (Pharmacia) oder Primer M13r verwendet. 32 µl (ca. 2 µg) gereinigter doppelsträngiger Plasmid-DNA wurden mit 8 µl 2 M NaOH für 10 min bei RT denaturiert. Nach Zugabe von 7 µl 3 M Natriumacetat pH 4,8, 4 µl H20 und 120 µl -20°C Ethanol wurde die DNA 20 min bei -70°C gefällt. Durch Zentrifugieren (15 min, 4°C) wurde die DNA isoliert, zweimal mit -20°C kaltem 70% Ethanol gewaschen und in einer Vakuumzentrifuge getrocknet. Das DNA-Sediment wurde anschließend in 10 µl H2O resuspendiert und nach Zugabe von 2 µl Annealing-Puffer und 2 µl Primerlösung (10 pmol in Wasser) bei 65°C für 5 min, 37°C für 10 min und 5min bei RT mit dem Oligonukleotidprimer hybridisiert. Direkt darauf wurden zwecks Primerelongation und radioaktiver Markierung 3 µl Labelling-Mix, 1 µl α-35S-dATP (1000 Ci/mmol, 10 µCi/µl) und 2 µl T7-Polymeraselösung (mit Enzyme Dilution Puffer 1:5 verdünnt) zugegeben und 5 min bei RT inkubiert. Jeweils 4,5 µl dieses Ansatzes wurden auf eine, auf 37°C vorgewärmte MicroSample Plate (Greiner) gegeben, in der je 2,5 µl der vier verschiedenen dNTP/ddNTP-Mixe vorlagen. Nach fünfminütiger Inkubation bei 37°C, die der weiteren Elongation und basenspezifischen Termination diente, wurden die Reaktionen durch Zugabe von 5 µl Stoplösung beendet. Vor dem Auftrag auf das Polyacrylamidgel wurden die Proben für 2 min bei 80°C denaturiert. Gelagert wurden die Proben bei -20°C. Annealing-Puffer: 1 M Tris-HCl pH 7,6 100 mM MgCl2 160 mM DTT Labelling-Mix: 1,375 µM dCTP 1,375 µM dGTP 1,375 µM dTTP 333,5 mM NaCl Enzyme Dilution Puffer: 20 mM Tris-HCl pH 7,5 5 mM DTT 100 µg/ml BSA 5% Glycerin Stoplösung: 10 mM EDTA 97,5% Formamid 0,3% Bromphenolblau 0,3% Xylencyanol A-Mix 840 µM dCTP C-Mix 840 µM dATP 840 µM dGTP 840 µM dGTP 840 µM dTTP 840 µM dTTP 93,5 µM dATP 93,5 µM dCTP 14 µM ddATP 14 µM ddCTP 40 mM Tris-HCl pH 7,6 40 mM Tris-HCl pH 7,6 50 mM NaCl 50 mM NaCl G-Mix 840 µM dATP T-Mix 840 µM dATP 840 µM dCTP 840 µM dCTP 840 µM dTTP 840 µM dGTP 93,5 µM dGTP 93,5 µM dTTP 14 µM ddGTP 14 µM ddTTP 40 mM Tris-HCl pH 7,6 40 mM Tris-HCl pH 7,6 50 mM NaCl 50 mM NaCl The sequencing was carried out using the T7 sequencing kit (Pharmacia) according to the manufacturer's instructions. Either the M13 universal primer (Pharmacia) or primer M13r was used as the oligonucleotide primer. 32 µl (approx. 2 µg) of purified double-stranded plasmid DNA were denatured with 8 µl 2 M NaOH for 10 min at RT. After adding 7 µl 3 M sodium acetate pH 4.8, 4 µl H20 and 120 µl -20 ° C ethanol, the DNA was precipitated at -70 ° C for 20 min. The DNA was isolated by centrifugation (15 min, 4 ° C.), washed twice with cold 70% ethanol at −20 ° C. and dried in a vacuum centrifuge. The DNA sediment was then resuspended in 10 ul H 2 O and after adding 2 ul annealing buffer and 2 ul primer solution (10 pmol in water) at 65 ° C for 5 min, 37 ° C for 10 min and 5 min at RT hybridized with the oligonucleotide primer. Immediately afterwards, 3 µl labeling mix, 1 µl α- 35 S-dATP (1000 Ci / mmol, 10 µCi / µl) and 2 µl T7 polymerase solution (diluted 1: 5 with enzyme dilution buffer) were added for primer elongation and radioactive labeling and incubated for 5 min at RT. In each case 4.5 µl of this batch were placed on a MicroSample Plate (Greiner) preheated to 37 ° C, in which 2.5 µl of the four different dNTP / ddNTP mixes were present. After five minutes of incubation at 37 ° C, which was used for further elongation and base-specific termination, the reactions were stopped by adding 5 µl stop solution. Before application to the polyacrylamide gel, the samples were denatured for 2 min at 80 ° C. The samples were stored at -20 ° C. Annealing buffer: 1 st Tris-HCl pH 7.6 100 mM MgCl 2 160 mM DTT Labeling mix: 1.375 µM dCTP 1.375 µM dGTP 1.375 µM dTTP 333.5 mM NaCl Enzyme Dilution Buffer: 20 mM Tris-HCl pH 7.5 5 mM DTT 100 µg / ml BSA 5% glycerin Stop Solution: 10 mM EDTA 97.5% formamide 0.3% bromophenol 0.3% xylenecyanol A mix 840 µM dCTP C-Mix 840 µM dATP 840 µM dGTP 840 µM dGTP 840 µM dTTP 840 µM dTTP 93.5 µM dATP 93.5 µM dCTP 14 µM ddATP 14 µM ddCTP 40 mM Tris-HCl pH 7.6 40 mM Tris-HCl pH 7.6 50 mM NaCl 50 mM NaCl G-Mix 840 µM dATP T-Mix 840 µM dATP 840 µM dCTP 840 µM dCTP 840 µM dTTP 840 µM dGTP 93.5 µM dGTP 93.5 µM dTTP 14 µM ddGTP 14 µM ddTTP 40 mM Tris-HCl pH 7.6 40 mM Tris-HCl pH 7.6 50 mM NaCl 50 mM NaCl

    2.21 Herstellung doppelsträngiger DNA mit Hilfe von Oligonukleotiden2.21 Production of double-stranded DNA using oligonucleotides

    Für die Herstellung des DNA-Gemisches wurde die Oligonukleotide bei 60°C hybridisiert. Je Oligonukleotid wurden 100 pmol eingesetzt. Von der hybridisierten Probe wurden 1 pmol für die PCR oder 100 pmol für die Klenow-Reaktion eingesetzt. The oligonucleotides were used to prepare the DNA mixture hybridized at 60 ° C. 100 pmol were used per oligonucleotide. 1 pmol of the hybridized sample was used for the PCR or 100 pmol used for the Klenow reaction.

    Für die PCR wurden folgende Zyklen durchgeführt: Am Anfang 10 min 94°C 30 Zyklen 1 min 94°C 1 min 45°C 1 min 72°C Am Schluß 10 min 72°C The following cycles were carried out for the PCR: At the beginning 10 min 94 ° C 30 cycles 1 min 94 ° C 1 min 45 ° C 1 min 72 ° C At the end 10 min 72 ° C

    Als DNA-template für die PCR wurden 1 pmol hybridisierte Oligonukleotide eingesetzt. PCR-Primer wurden bei allen durchgeführten PCR-Reaktionen in einer Endkonzentration von 0,1 pmol/µl eingesetzt. Von der Taq-Polymerase wurden 1 Unit pro 50 µl des Reaktionsansatzes benutzt. Die Konzentration der dNTPs im PCR-Ansatz wurde auf 0,1 mM eingestellt.1 pmol of hybridized oligonucleotides were used as the DNA template for the PCR. PCR primers were used in all PCR reactions carried out in a final concentration of 0.1 pmol / µl. 1 unit of the Taq polymerase was used per 50 μl of the reaction mixture. The concentration of the dNTPs in the PCR mixture was set to 0.1 mM.

    Für die Herstellung des DNA-Gemisches mit Hilfe der Klenow-Reaktion wurden 100 pmol der hybridisierten Oligonukleotide in Klenow-Puffer (50 mM Tris-HCl, pH 8,0; 50 mM MgCl2, 10 mM DTT, 0,05 mM dNTP) gelöst. Die Reaktion wurde durch Zugabe von 5 Units DNA-Polymerase I (Klenow-Fragment) gestartet. Nach 30 min bei 37°C wurde die Reaktion durch Erhitzen auf 75°C (10 min) gestoppt.For the preparation of the DNA mixture using the Klenow reaction, 100 pmol of the hybridized oligonucleotides were placed in Klenow buffer (50 mM Tris-HCl, pH 8.0; 50 mM MgCl 2 , 10 mM DTT, 0.05 mM dNTP) solved. The reaction was started by adding 5 units of DNA polymerase I (Klenow fragment). After 30 min at 37 ° C the reaction was stopped by heating to 75 ° C (10 min).

    2.22 Transfektion von COS-Zellen und CHO-Zellen2.22 Transfection of COS cells and CHO cells

    5-10 µg linearisierte Plasmid-DNA werden in 150 µl Zellkulturmedium (ohne FKS und Antibiotika) gelöst. Der Lösung werden 30 µl des Transfektionsmittels zugegeben (SuperFect, Qiagen, Hilden). Die Mischung wird 10 min bei RT inkubiert und nach Zugabe von 1 ml Medium auf die Zellen gegeben. Die COS-Zellen (80% konfluent gewachsen) wurden in 60 mm-Platten gezüchtet und kurz vor der Transfektion mit PBS gewaschen. Nach einer Inkubation von 3 h bei 37°C und 5% CO2 wurde das Transfektionsmedium entfernt. Anschließend wurden die Zellen 4x mit PBS gewaschen und in Selektionsmedium (DMEM, 5% FKS, 600µg/ml Geneticin) aufgenommen. 5-10 µg linearized plasmid DNA are dissolved in 150 µl cell culture medium (without FCS and antibiotics). 30 μl of the transfection agent are added to the solution (SuperFect, Qiagen, Hilden). The mixture is incubated at RT for 10 min and added to the cells after the addition of 1 ml of medium. The COS cells (grown 80% confluent) were grown in 60 mm plates and washed with PBS just before transfection. After an incubation of 3 h at 37 ° C and 5% CO 2 , the transfection medium was removed. The cells were then washed 4x with PBS and taken up in selection medium (DMEM, 5% FCS, 600µg / ml Geneticin).

    2.23 Chromatographische Reinigung der GP120-Mischung2.23 Chromatographic purification of the GP120 mixture

    Die chromatographische Reinigung erfolgt nach Standardmethoden (Techniques in HIV Research, Aldovini & Walker, Stockton Press, 1990; S.W. Pyle et al. Purification of 120,00 dalton envelope glycoprotein from culture fluids of human immunodeficiency virus (HIV)-infected H9 cells. AIDS Res Hum Retroviruses 1987, 3:387-400). Zellextrakte und Zellkulturüberstände von GP120-exprimierenden COS-Zellen werden für die Isolierung der GP120-Mischung eingesetzt. Nach Zentrifugation (25 000 g) wird das Lysat wie folgt aufgereinigt:

  • 1. Gelfiltration (Sephadex G-20)
  • 2. Immunoaffinitätschromatographie
    (anti-GP120-Antikörper gebunden an CH-Sepharose 4B)
  • 3. Anreicherung durch Proteinfällung
  • 4. Anreicherung durch Dialyse
  • The chromatographic purification is carried out according to standard methods (Techniques in HIV Research, Aldovini & Walker, Stockton Press, 1990; SW Pyle et al. Purification of 120.00 dalton envelope glycoprotein from culture fluids of human immunodeficiency virus (HIV) -infected H9 cells. AIDS Res Hum Retroviruses 1987, 3: 387-400). Cell extracts and cell culture supernatants from GP120-expressing COS cells are used for the isolation of the GP120 mixture. After centrifugation (25,000 g), the lysate is purified as follows:
  • 1. Gel filtration (Sephadex G-20)
  • 2. Immunoaffinity chromatography
    (anti-GP120 antibody bound to CH-Sepharose 4B)
  • 3. Enrichment through protein precipitation
  • 4. Enrichment through dialysis
  • 2.24 Herstellung der DNA-Vakzine2.24 Preparation of the DNA vaccine

    Ausgangsmaterial für die Herstellung der DNA-Vakzine ist die Mischung der BstEII-BamHI DNA-Fragmente des env-Gens, die für die Herstellung der GP120-Protein Mischung verwendet wurden. Ein eukaryotischer Expressionsvektor für das HIV-1 GP120 der für DNA-Vakzinierungen zugelassen ist (vgl. z.B. J.D. Boyer et al. , J Infect Dis 1997, 176:1501-1509; J.D. Boyer et al., Nat Med 1997, 3:526-532; M.L. Bagarazzi et al., J Med Primatol 1997, 26:27-33) wird so verändert, daß sich im env-Gen die Schnittstellen für BstEII und BamHI an identischen Stellen des gp120-Leserasters befinden. In einen solchen Vektor werden die mutierten, variablen env-Genfragmente (BstEII-BamHI) kloniert. Die Veränderung der env-Gene im V2-Loop- und V3-Loop-Bereich und deren Klonierung in den DNA-Vakzine-Vektor erfolgt analog der Klonierungsschritte die für die Herstellung der gp120-Mischung durchgeführt werden.

    Figure 00530001
    Figure 00540001
    The starting material for the production of the DNA vaccine is the mixture of the BstEII-BamHI DNA fragments of the env gene, which were used for the production of the GP120-protein mixture. A eukaryotic expression vector for the HIV-1 GP120 which is approved for DNA vaccinations (see, for example, JD Boyer et al., J Infect Dis 1997, 176: 1501-1509; JD Boyer et al., Nat Med 1997, 3: 526 -532; ML Bagarazzi et al., J Med Primatol 1997, 26: 27-33) is changed so that the interfaces for BstEII and BamHI are located at identical positions on the gp120 reading grid in the env gene. The mutated, variable env gene fragments (BstEII-BamHI) are cloned into such a vector. The change of the env genes in the V2 loop and V3 loop area and their cloning in the DNA vaccine vector is carried out analogously to the cloning steps which are carried out for the preparation of the gp120 mixture.
    Figure 00530001
    Figure 00540001

    SEQUENZPROTOKOLLSEQUENCE LISTING

  • <110> Strathmann AG & Co.<110> Strathmann AG & Co.
  • <120> Virus-Vakzine<120> Virus vaccine
  • <130> P052348<130> P052348
  • <140>
    <141>
    <140>
    <141>
  • <150> 199 07 485.2
    <151> 1999-02-12
    <150> 199 07 485.2
    <151> 1999-02-12
  • <160> 12<160> 12
  • <170> PatentIn Ver. 2.1<170> PatentIn Ver. 2.1
  • <210> 1
    <211> 9709
    <212> DNA
    <213> Human immunodeficiency virus
    <210> 1
    <211> 9709
    <212> DNA
    <213> Human immunodeficiency virus
  • <400> 1
    Figure 00550001
    Figure 00560001
    Figure 00570001
    <400> 1
    Figure 00550001
    Figure 00560001
    Figure 00570001
  • <210> 2
    <211> 854
    <212> PRT
    <213> Human immunodeficiency virus
    <210> 2
    <211> 854
    <212> PRT
    <213> Human immunodeficiency virus
  • <220>
    <223> Envelope Polyprotein
    <220>
    <223> Envelope polyprotein
  • <400> 2
    Figure 00580001
    Figure 00590001
    Figure 00600001
    <400> 2
    Figure 00580001
    Figure 00590001
    Figure 00600001
  • <210> 3
    <211> 107
    <212> DNA
    <213> Kuenstliche Sequenz
    <210> 3
    <211> 107
    <212> DNA
    <213> Artificial sequence
  • <220>
    <223> Beschreibung der kuenstlichen Sequenz: Oligonukleotid fuer Klonierung
    <220>
    <223> Description of the artificial sequence: oligonucleotide for cloning
  • <400> 3
    Figure 00600002
    <400> 3
    Figure 00600002
  • <210> 4
    <211> 120
    <212> DNA
    <213> Kuenstliche Sequenz
    <210> 4
    <211> 120
    <212> DNA
    <213> Artificial sequence
  • <220>
    <223> Beschreibung der kuenstlichen Sequenz: Oligonukleotid fuer Klonierung
    <220>
    <223> Description of the artificial sequence: oligonucleotide for cloning
  • <220>
    <221> misc_feature
    <222> (97)..(99)
    <223> Sequenz an dieser Position: (GA)(AT)(GATC), d.h. Base an Position 97 kann G oder A sein, Base an Position 98 kann A oder T sein, und Base an Position 99 kann G, A, T oder C sein.
    <220>
    <221> misc_feature
    <222> (97) .. (99)
    <223> Sequence at this position: (GA) (AT) (GATC), ie base at position 97 can be G or A, base at position 98 can be A or T, and base at position 99 can be G, A, T or be C.
  • <400> 4
    Figure 00610001
    <400> 4
    Figure 00610001
  • <210> 5
    <211> 17
    <212> DNA
    <213> Kuenstliche Sequenz
    <210> 5
    <211> 17
    <212> DNA
    <213> Artificial sequence
  • <220>
    <223> Beschreibung der kuenstlichen Sequenz: Sequenzierungsprimer
    <220>
    <223> Description of the artificial sequence: sequencing primer
  • <400> 5
    Figure 00610002
    <400> 5
    Figure 00610002
  • <210> 6
    <211> 17
    <212> DNA
    <213> Kuenstliche Sequenz
    <210> 6
    <211> 17
    <212> DNA
    <213> Artificial sequence
  • <220>
    <223> Beschreibung der kuenstlichen Sequenz: Sequenzierungsprimer
    <220>
    <223> Description of the artificial sequence: sequencing primer
  • <400> 6
    Figure 00610003
    <400> 6
    Figure 00610003
  • <210> 7
    <211> 17
    <212> DNA
    <213> Kuenstliche Sequenz
    <210> 7
    <211> 17
    <212> DNA
    <213> Artificial sequence
  • <220>
    <223> Beschreibung der kuenstlichen Sequenz: Sequenzierungsprimer
    <220>
    <223> Description of the artificial sequence: sequencing primer
  • <400> 7
    Figure 00610004
    <400> 7
    Figure 00610004
  • <210> 8
    <211> 17
    <212> DNA
    <213> Kuenstliche Sequenz
    <210> 8
    <211> 17
    <212> DNA
    <213> Artificial sequence
  • <220>
    <223> Beschreibung der kuenstlichen Sequenz: Sequenzierungsprimer
    <220>
    <223> Description of the artificial sequence: sequencing primer
  • <400> 8
    Figure 00620001
    <400> 8
    Figure 00620001
  • <210> 9
    <211> 2148
    <212> DNA
    <213> Kuenstliche Sequenz
    <210> 9
    <211> 2148
    <212> DNA
    <213> Artificial sequence
  • <220>
    <223> Beschreibung der kuenstlichen Sequenz: Synthetische DNA
    <220>
    <223> Description of the artificial sequence: synthetic DNA
  • <220>
    <221> misc_feature
    <222> (3)..(9)
    <223> BstEII-Schnittstelle
    <220>
    <221> misc_feature
    <222> (3) .. (9)
    <223> BstEII interface
  • <220>
    <221> misc_feature
    <222> (2143)..(2148)
    <223> BamHI-Schnittstelle
    <220>
    <221> misc_feature
    <222> (2143) .. (2148)
    <223> BamHI interface
  • <400> 9
    Figure 00620002
    Figure 00630001
    <400> 9
    Figure 00620002
    Figure 00630001
  • <210> 10
    <211> 6229
    <212> DNA
    <213> Kuenstliche Sequenz
    <210> 10
    <211> 6229
    <212> DNA
    <213> Artificial sequence
  • <220>
    <223> Beschreibung der kuenstlichen Sequenz: Synthetische DNA
    <220>
    <223> Description of the artificial sequence: synthetic DNA
  • <220>
    <221> sig_peptide
    <222> (1293)..(1295)
    <223> env ATG
    <220>
    <221> sig_peptide
    <222> (1293) .. (1295)
    <223> env ATG
  • <220>
    <221> misc_feature
    <222> (1377)..(1379)
    <223> env AGT, gp120 Anfang
    <220>
    <221> misc_feature
    <222> (1377) .. (1379)
    <223> env AGT, gp120 beginning
  • <220>
    <221> misc_feature
    <222> (1397)..(1403)
    <223> BstEII-Schnittstelle
    <220>
    <221> misc_feature
    <222> (1397) .. (1403)
    <223> BstEII interface
  • <220>
    <221> misc_feature
    <222> (3537)..(3542)
    <223> BamHI-Schnittstelle
    <220>
    <221> misc_feature
    <222> (3537) .. (3542)
    <223> BamHI interface
  • <220>
    <221> misc_feature
    <222> (3855)..(3857)
    <223> env TAA, Stop
    <220>
    <221> misc_feature
    <222> (3855) .. (3857)
    <223> env TAA, stop
  • <400> 10
    Figure 00630002
    Figure 00640001
    Figure 00650001
    <400> 10
    Figure 00630002
    Figure 00640001
    Figure 00650001
  • <210> 11
    <211> 860
    <212> DNA
    <213> Human immunodeficiency virus
    <210> 11
    <211> 860
    <212> DNA
    <213> Human immunodeficiency virus
  • <220>
    <221> misc_feature
    <222> (1)..(860)
    <223> PI-932 Originalsequenz V1-V2-V3-Loop
    <220>
    <221> misc_feature
    <222> (1) .. (860)
    <223> PI-932 original sequence V1-V2-V3-Loop
  • <400> 11
    Figure 00650002
    <400> 11
    Figure 00650002
  • <210> 12
    <211> 870
    <212> DNA
    <213> Kuenstliche Sequenz
    <210> 12
    <211> 870
    <212> DNA
    <213> Artificial sequence
  • <220>
    <223> Beschreibung der kuenstlichen Sequenz: PI-932 Genkassette, beinhaltet die Schnittstellen fuer die Restriktionsenzyme BspT1, PstI, BclI, EcoRI, BglII, PvuII, XbaI, NheI
    <220>
    <223> Description of the artificial sequence: PI-932 gene cassette, contains the interfaces for the restriction enzymes BspT1, PstI, BclI, EcoRI, BglII, PvuII, XbaI, NheI
  • <400> 12
    Figure 00650003
    Figure 00660001
    <400> 12
    Figure 00650003
    Figure 00660001
  • Claims (50)

    1. Protein vaccine which comprises a mixture of viral protein molecules, characterized in that the molecules are sequence variants of a single viral protein or of part of same, the mixture containing ≥ 102 sequence variants and being obtainable by expression of a plasmid-DNA mixture which comprises randomly distributed sequence combinations owing to variation in nucleotide positions.
    2. Protein vaccine according to Claim 1, characterized in that the mixture contains ≥ 103 and preferably ≥ 104 sequence variants.
    3. Protein vaccine according to Claim 1 or 2, characterized in that it comprises a mixture of GP120 proteins of HIV, which in each case differ from each other in their amino acid sequence in the region of the V2 loop and/or of the V3 loop.
    4. DNA vaccine which codes for a mixture of structurally different virus proteins, characterized in that the vaccine contains a mixture of sequence variants of a viral DNA molecule or of part of same, the mixture containing ≥ 102 DNA molecules which differ from each other in their nucleic acid sequence, the mixture comprising randomly distributed sequence combinations owing to variation in nucleotide positions.
    5. DNA vaccine according to Claim 4, characterized in that it contains a mixture of DNA molecules which code for sequence variants of a viral protein or of part.
    6. DNA vaccine according to Claim 4 or 5, characterized in that the mixture contains ≥ 103 and preferably ≥ 104 DNA molecules which differ from each other in their nucleic acid sequence.
    7. DNA vaccine according to one of Claims 4 to 6, characterized in that it codes for a mixture of structurally different GP120 proteins of HIV, in which the vaccine contains a mixture of DNA molecules, the nucleic acid sequences of which differ from each other in the region coding for the V2 loop and/or in the region coding for the V3 loop.
    8. DNA vaccine according to Claim 7, characterized in that it contains a mixture of DNA molecules which differ from each other in their nucleic acid sequence such that they code for a mixture of GP120 proteins which contain amino acid sequences which differ from each other in the V2 loop and/or in the V3 loop.
    9. Nucleic acid sequence which is derived from the env sequence represented in SEQ ID NO: 1 or from a fragment of same, characterized in that it is modified such that it contains ten monovalent restriction sites at intervals of about 150 base pairs.
    10. Nucleic acid sequence according to Claim 9 which is derived from the env sequence represented in SEQ ID NO: 1 or from a fragment thereof, characterized in that it is modified such that it contains monovalent restriction sites which enable the specific exchange of the V2 and B3 regions.
    11. Nucleic acid sequence according to Claim 9 or 10, characterized in that the sequence is modified by the introduction of silent mutations.
    12. Nucleic acid sequence according to Claims 9 to 11, characterized in that it contains the sequence given in SEQ ID NO: 9.
    13. Nucleic acid sequence, characterized in that it contains the sequence given in SEQ ID NO: 11.
    14. Nucleic acid sequence, characterized in that it contains the sequence given in SEQ ID NO: 12.
    15. Single-stranded nucleic acid sequence, which contains the region coding for the V3 loop and/or for the V2 loop of GP120, characterized in that
      a) in the V3 loop a 247 bp-long BglII-XbaI fragment or a 283 bp-long BglII-NheI fragment is exchanged for a modified fragment which, compared with the original fragment, comprises in either case inosine, a nucleic acid exchange or a mutation at 6 or more positions, and/or
      b) in the V2 loop a 139 bp-long PstI-BclI fragment or a 339 bp-long PstI-EcoRI fragment is exchanged for a modified fragment which, compared with the original fragment, comprises in either case inosine, a nucleic acid exchange or a mutation at 6 or more positions.
    16. Nucleic acid sequence, characterized in that it is complementary to the sequence given in SEQ ID NO: 12.
    17. Nucleic acid sequence according to Claim 15 or 16, characterized in that each or every fragment comprises inosine, a nucleic acid exchange or a mutation at 9 to 20 positions.
    18. Double-stranded DNA which comprises hybrids of the single-stranded nucleic acid sequence according to Claim 15 or 17 with the single-stranded nucleic acid sequence according to Claim 16 or 17.
    19. Nucleic acid mixture which comprises double-stranded DNAs, the nucleic acid sequences of which are derived from the env sequence in SEQ ID NO: 1 or SEQ ID NO: 11 or a fragment of same, characterized in that the nucleic acid sequences in each case differ from each other in the region coding for the V2 loop and/or in the region coding for the V3 loop, the mixture comprising randomly-distributed sequence combinations owing to variation in nucleotide positions and the nucleic acid sequences coding for a protein mixture which contains ≥ 102 sequence variants.
    20. Nucleic acid mixture according to Claim 19, characterized in that the mixture contains ≥ 103 and preferably ≥ 104 sequence variants.
    21. Protein mixture which comprises sequence variants of the GP120 protein, characterized in that it is a mixture of proteins which contain amino acid sequences which in each case differ from each other in the V2 loop and/or in the V3 loop, the mixture containing ≥ 102 sequence variants and being obtainable by expression of a plasmid-DNA mixture which comprises randomly distributed sequence combinations owing to variation in nucleotide positions.
    22. Protein mixture according to Claim 21, characterized in that the mixture contains ≥ 103 and preferably ≥ 104 sequence variants.
    23. Plasmid which contains an inserted double-stranded DNA according to Claim 18.
    24. Expression vector, characterized in that it contains an inserted nucleic acid sequence according to Claims 9 to 14.
    25. Expression vector according to Claim 24, characterized in that it contains the sequence given in SEQ ID NO: 10.
    26. Expression vector, characterized in that it corresponds to DSM 12612.
    27. Vector mixture which contains a mixture of plasmids according to Claim 23, characterized in that the nucleic acid sequences of the plasmids differ in each case from each other in the region coding for the V2 loop and/or in the region coding for the V3 loop, the plasmid mixture containing ≥ 102 plasmids and comprises randomly distributed sequence combinations owing to variation in nucleotide positions.
    28. Vector mixture according to Claim 27, characterized in that the mixture contains ≥ 103 and preferably ≥ 104 plasmids which differ from each other in their nucleic acid sequence.
    29. Vector mixture according to Claim 27 or 28, characterized in that the plasmids can be expressed in E. coli as host cell.
    30. Vector mixture according to Claim 27 or 28, characterized in that the plasmids can be expressed in eukaryotic cells, preferably in Cos, CHO or BHK cells, as host cells.
    31. E. coli host cells which are transfected with a vector mixture according to Claim 29.
    32. Eukaryotic host cells which are transfected with a vector mixture according to Claim 30.
    33. Eukaryotic host cells according to Claim 32, characterized in that they are host cells from the group consisting of Cos, BHK or CHO cells.
    34. Process for the preparation of the nucleic acid sequence according to Claim 10, characterized in that so many silent mutations are introduced into a nucleic acid sequence coding for a viral protein that the nucleic acid sequence obtained as a result contains monovalent restriction sites which enable exchange of the V2 and V3 regions.
    35. Process for the preparation of the nucleic acid sequence according to Claim 10, characterized in that so many silent mutations are introduced into a nucleic acid sequence coding for a viral protein that the nucleic acid sequence obtained as a result contains ten monovalent restriction sites at intervals of about 150 base pairs.
    36. Process according to Claim 34 or 35, characterized in that the nucleic acid sequence coding for a viral protein is the sequence as per SEQ ID NO: 1 or SEQ ID NO: 11 or a fragment thereof.
    37. Process for the preparation of the vector mixture according to Claims 29 and 30, characterized in that plasmids, the nucleic acid sequences of which in each case differ from each other in the region coding for the V2 loop and/or in the region coding for the V3 loop through random distribution of the bases at the varied nucleotide positions, are ligated into a vector which can be expressed in host cells.
    38. Process according to Claim 37, characterized in that the host cells are E. coli, Cos, CHO or BHK cells.
    39. Process for the preparation of the host cells according to Claim 31 or 32, characterized in that the host cells are transformed with a vector mixture according to Claim 27 or 28.
    40. Process for the preparation of a protein vaccine according to one of Claims 1 to 13, characterized in that the host cells are cultivated according to one of Claims 31 to 33 under conditions which allow the expression of the mixture of viral protein sequence variants.
    41. Process for the preparation of a DNA vaccine according to one of Claims 4 to 8, characterized in that the process is carried out according to Claim 37 or 38, the plasmids according to the invention being ligated into a vector which can be expressed in host cells of the organism to be vaccinated.
    42. Use of a mixture of structurally different viral proteins which are sequence variants of a viral protein or of part of same, the mixture containing ≥ 102 sequence variants and being obtainable by expression of a plasmid-DNA mixture which comprises randomly distributed sequence combinations owing to variation in nucleotide positions, for the preparation of a vaccine for the prevention and/or therapy of a virus infection in humans.
    43. Use of a protein mixture according to Claim 21 or 22 for the preparation of a vaccine for the prevention and/or therapy of an HIV infection in humans.
    44. Use of a mixture of DNA molecules which code for ≥ 102 sequence variants of a viral protein or of part of same, the mixture comprising randomly distributed sequence combinations owing to variation in nucleotide positions, for the preparation of a vaccine for the prevention and/or therapy of a virus infection in humans.
    45. Use of a nucleic acid mixture according to Claim 19 or 20 for the preparation of a vaccine for the prevention and/or therapy of a virus infection in humans.
    46. Use of the nucleic acid mixture according to Claim 19 or 20 for the preparation of a vector mixture according to Claim 27 or 28 which can be expressed in host cells, the host cells being selected from the group consisting of E. coli, Cos, CHO and BHK cells.
    47. Use of the vector mixture according to Claim 27 or 28 for the expression of a protein mixture according to Claim 21 or 22.
    48. Use of the host cell according to one of Claims 31 to 33 for the preparation of a protein mixture according to Claim 21 or 22.
    49. Pharmaceutical composition for the prevention and/or therapy of a virus infection, characterized in that it comprises a protein mixture and a nucleic acid mixture, the protein mixture comprising ≥ 102 sequence variants of a viral protein or of part of same and being obtainable by expression of a plasmid-DNA mixture which comprises randomly distributed sequence combinations owing to variation in nucleotide positions, and the nucleic acid mixture comprising ≥ 102 DNA molecules which code for sequence variants of a viral protein or of part of same, the nucleic acid mixture comprising randomly distributed sequence combinations owing to variation in nucleotide positions.
    50. Pharmaceutical composition according to Claim 49, characterized in that it comprises a protein mixture according to Claim 21 or 22 and a nucleic acid mixture according to Claim 19 or 20.
    EP99963478A 1999-02-12 1999-12-03 Viral vaccine Expired - Lifetime EP1149167B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19907485A DE19907485B4 (en) 1999-02-12 1999-02-12 Virus vaccine
    DE19907485 1999-02-12
    PCT/EP1999/009759 WO2000047223A2 (en) 1999-02-12 1999-12-03 Viral vaccine

    Publications (2)

    Publication Number Publication Date
    EP1149167A2 EP1149167A2 (en) 2001-10-31
    EP1149167B1 true EP1149167B1 (en) 2004-03-03

    Family

    ID=7898389

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99963478A Expired - Lifetime EP1149167B1 (en) 1999-02-12 1999-12-03 Viral vaccine

    Country Status (12)

    Country Link
    US (1) US20060222665A1 (en)
    EP (1) EP1149167B1 (en)
    JP (1) JP2002536418A (en)
    CN (1) CN1268748C (en)
    AT (1) ATE260978T1 (en)
    AU (1) AU1976100A (en)
    DE (2) DE19907485B4 (en)
    DK (1) DK1149167T3 (en)
    ES (1) ES2216619T3 (en)
    PT (1) PT1149167E (en)
    WO (1) WO2000047223A2 (en)
    ZA (1) ZA200106155B (en)

    Families Citing this family (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US7118874B2 (en) * 1998-10-09 2006-10-10 Variation Biotechnologies Inc. Immunogenic formulation and process for preparation thereof
    WO2002011748A1 (en) * 2000-08-07 2002-02-14 Sloan-Kettering Institute For Cancer Research Method and composition for immunization using mixed pools of mutated nucleic acids or peptides
    DE10218129A1 (en) * 2002-04-23 2003-11-20 Univ Ruprecht Karls Heidelberg Genetic vaccine against RNA virus infections
    BRPI0504117A (en) 2005-09-05 2007-05-22 Fundacao De Amparo A Pesquisa epitopes, combination of epitopes, uses of epitopes or their combination, composition, uses of composition, anti-HIV-1 prophylactic vaccines, therapeutic vaccines, method for identifying epitopes and methods for treatment or prevention.
    ES2725450T3 (en) 2007-07-02 2019-09-24 Etubics Corp Methods and compositions for the production of an adenoviral vector for use in multiple vaccinations
    CN101591379B (en) * 2008-05-27 2017-01-18 中国疾病预防控制中心性病艾滋病预防控制中心 Constructed anti-HIV vaccine based on amino acid mutation of EIAV attenuated live vaccine
    CN103865945A (en) * 2010-02-10 2014-06-18 中国人民解放军军事医学科学院放射与辐射医学研究所 Application of TAT core peptide fragment in preparing efficiently and solubly expressed exogenous protein
    US9605276B2 (en) 2012-08-24 2017-03-28 Etubics Corporation Replication defective adenovirus vector in vaccination
    US10245313B2 (en) * 2014-10-24 2019-04-02 Versitech Limited DNA motif compounds and methods for inducing specific antibodies and cellular immunity
    WO2016187151A1 (en) * 2015-05-18 2016-11-24 Calimmune, Inc. Methods of discriminating between hiv-1 and lentiviral vectors

    Family Cites Families (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    IL89118A0 (en) * 1988-02-03 1989-08-15 Microgenesys Inc Vaccine containing polypeptides derived from the envelope gene of human immunodeficiency virus type 1
    US5851813A (en) * 1990-07-12 1998-12-22 President And Fellows Of Harvard College Primate lentivirus antigenic compositions
    FR2677363A1 (en) * 1991-06-07 1992-12-11 Pasteur Institut Compositions based on multiepitope peptides, process for producing them and their applications, especially as vaccines
    WO1994022917A1 (en) * 1993-04-05 1994-10-13 University Of Massachusetts Medical Center Cross-reactive influenza a immunization
    WO1995004147A1 (en) * 1993-08-02 1995-02-09 Chiron Corp Recombinant constructs using replacement sequences in hypervariable regions
    US5741492A (en) * 1996-01-23 1998-04-21 St. Jude Children's Research Hospital Preparation and use of viral vectors for mixed envelope protein vaccines against human immunodeficiency viruses

    Also Published As

    Publication number Publication date
    ZA200106155B (en) 2002-08-05
    CN1348496A (en) 2002-05-08
    WO2000047223A2 (en) 2000-08-17
    US20060222665A1 (en) 2006-10-05
    DE59908783D1 (en) 2004-04-08
    PT1149167E (en) 2004-07-30
    ES2216619T3 (en) 2004-10-16
    WO2000047223A3 (en) 2000-11-16
    DK1149167T3 (en) 2004-07-12
    AU1976100A (en) 2000-08-29
    DE19907485B4 (en) 2008-01-17
    EP1149167A2 (en) 2001-10-31
    DE19907485A1 (en) 2000-09-28
    ATE260978T1 (en) 2004-03-15
    CN1268748C (en) 2006-08-09
    JP2002536418A (en) 2002-10-29

    Similar Documents

    Publication Publication Date Title
    DE3588239T3 (en) A method for obtaining DNA, RNA, peptides, polypeptides or proteins by DMS recombinant methods
    US20060222665A1 (en) Virus vaccine
    DE69731075T2 (en) MIXTURE OF RECOMBINANT VACCINIA VECTORS AS A POLYGEURIC VACCINE AGAINST HIV
    DE69021575T4 (en) EXPRESSION SYSTEMS FOR RECOMBINANT NEGATIVE RADIATION RNA VIRUSES AND VACCINES
    EP1240186B1 (en) Improvements in or relating to immune responses to hiv
    DE69628011T2 (en) RECOMBINANT MVA VIRUS AND ITS USE
    US5683695A (en) Production of recombinant proteins containing multiple antigenic determinants linked by flexible hinge domains
    DD284692A5 (en) PROCESS FOR PRODUCING PROCESSIVE DNA POLYMERASE
    DE3125706A1 (en) INTERFERON AND THEIR PRODUCTION
    DD301731A9 (en) T7 DNA POLYMERASE
    DE69936337T2 (en) METHOD FOR DEVELOPING AN HIV VACCINE
    Cheynier et al. Antigenic stimulation by BCG vaccine as an in vivo driving force for SIV replication and dissemination
    HOWELL et al. In vivo sequence variation of the human immunodeficiency virus type 1 env gene: evidence for recombination among variants found in a single individual
    DE69626681T2 (en) CONDITIONAL REPLICATIVE VIRAL VECTORS AND THEIR USE.
    DE60210936T2 (en) POLYPEPTIDE THAT INDUCES NEUTRALIZING ANTIBODIES TO HIV
    DE60125927T2 (en) VACCINES AGAINST HIV
    EP1432805B1 (en) Dna-expression construct for treatment of infections with leishmaniasis
    CN115845042B (en) Recombinant novel coronavirus S protein trimer vaccine composition and application thereof
    EP0817853B1 (en) Infectious dna clone of the tick-borne encephalitis (tbe) virus; recombinant vaccine derived from the said clone and production of the said vaccine; and a pharmaceutical product containing a replicable nucleic acid
    WO1994005327A1 (en) New hiv-1 isolates of a subtype and its differential diagnosis, vaccine against hiv-1 infection of this subtype and process for preparing and using the hiv-1 isolate
    WO1995004546A1 (en) Novel mutated human and simian immunodeficiency viruses and vaccines containing said viruses
    Johnson The Construction and Characterization of Vaccines Expressing the Pre-membrane and Glycoprotein E antigens of the West Nile Virus
    DE3925748A1 (en) New recombinant deoxyribonucleic acid - from foot=and=mouth disease virus, for prodn. of attenuated virus particles, useful in vaccines
    WO2023022954A1 (en) Undirected mutated mrna vaccine
    Bowers DNA and other technologies for HIV vaccines

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20010903

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17Q First examination report despatched

    Effective date: 20020207

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: E. BLUM & CO. PATENTANWAELTE

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 59908783

    Country of ref document: DE

    Date of ref document: 20040408

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: GR

    Ref legal event code: EP

    Ref document number: 20040401658

    Country of ref document: GR

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040621

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 20040528

    LTIE Lt: invalidation of european patent or patent extension

    Effective date: 20040303

    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2216619

    Country of ref document: ES

    Kind code of ref document: T3

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20041206

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PFA

    Owner name: STRATHMANN AG & CO.

    Free format text: STRATHMANN AG & CO.#SELLHOPSWEG 1#22459 HAMBURG (DE) -TRANSFER TO- STRATHMANN AG & CO.#SELLHOPSWEG 1#22459 HAMBURG (DE)

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20071203

    Year of fee payment: 9

    Ref country code: MC

    Payment date: 20071212

    Year of fee payment: 9

    Ref country code: LU

    Payment date: 20071211

    Year of fee payment: 9

    Ref country code: DK

    Payment date: 20071215

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20071213

    Year of fee payment: 9

    Ref country code: FI

    Payment date: 20071213

    Year of fee payment: 9

    Ref country code: AT

    Payment date: 20071212

    Year of fee payment: 9

    Ref country code: IT

    Payment date: 20071221

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20071205

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20071205

    Year of fee payment: 9

    Ref country code: FR

    Payment date: 20071210

    Year of fee payment: 9

    Ref country code: ES

    Payment date: 20080118

    Year of fee payment: 9

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: PT

    Payment date: 20071203

    Year of fee payment: 9

    Ref country code: GR

    Payment date: 20071213

    Year of fee payment: 9

    Ref country code: DE

    Payment date: 20071206

    Year of fee payment: 9

    Ref country code: CY

    Payment date: 20071130

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20080214

    Year of fee payment: 9

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: MM4A

    Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

    Effective date: 20090603

    BERE Be: lapsed

    Owner name: *STRATHMANN A.G. & CO.

    Effective date: 20081231

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081231

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081203

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    EUG Se: european patent has lapsed
    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20081203

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090603

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081203

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IE

    Payment date: 20071212

    Year of fee payment: 9

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20090701

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: MM4A

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081231

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20090831

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081231

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081203

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090701

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081203

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081231

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090701

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081203

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090105

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090703

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20081204

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081231

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081204

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081204

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081203

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081203