EP1149123B1 - Polyorganosiloxanes (pos) peroxydes, l'un de leurs procedes de preparation et leur utilisation a titre d'agent de blanchiment dans des compositions dentaires - Google Patents

Polyorganosiloxanes (pos) peroxydes, l'un de leurs procedes de preparation et leur utilisation a titre d'agent de blanchiment dans des compositions dentaires Download PDF

Info

Publication number
EP1149123B1
EP1149123B1 EP99973300A EP99973300A EP1149123B1 EP 1149123 B1 EP1149123 B1 EP 1149123B1 EP 99973300 A EP99973300 A EP 99973300A EP 99973300 A EP99973300 A EP 99973300A EP 1149123 B1 EP1149123 B1 EP 1149123B1
Authority
EP
European Patent Office
Prior art keywords
fpo
functional groups
pos
polyorganosiloxanes
functional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99973300A
Other languages
German (de)
English (en)
Other versions
EP1149123A1 (fr
Inventor
Adrien Dromard
Gérard Mignani
Lucile Gambut
Frédéric DALLEMER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodia Chimie SAS
Original Assignee
Rhodia Chimie SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Chimie SAS filed Critical Rhodia Chimie SAS
Publication of EP1149123A1 publication Critical patent/EP1149123A1/fr
Application granted granted Critical
Publication of EP1149123B1 publication Critical patent/EP1149123B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/373Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicones
    • C11D3/3742Nitrogen containing silicones
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/373Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicones
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3788Graft polymers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3945Organic per-compounds

Definitions

  • the field of the invention is that of applicable peroxidized systems especially in money laundering.
  • the oxidizing properties of these systems are more particularly appreciated in teeth whitening applications (e.g. toothpaste).
  • peroxidized systems referred to in the context of this presentation are functionalized polymers.
  • the present invention relates to perorganized polyorganosiloxanes (POS) thus as one of their preparation processes.
  • the invention also relates to silicone precursors of these POSs. peroxides.
  • the present invention includes an application aspect which comprises the use of peroxidized POSs according to the invention as active ingredient in laundering. More specifically, the invention relates to dental compositions, for example toothpastes, including peroxidized POS as a bleaching agent.
  • H 2 O 2 hydrogen peroxide
  • persalts percarbonates, perborates, calcium peroxides
  • H 2 O 2 will designate H 2 O 2 as such and its persalts.
  • the disadvantages of hydrogen peroxide are not negligible.
  • H 2 O 2 must be used in high concentration to be effective. This point is particularly troublesome given the aggressiveness of H 2 O 2 .
  • hydrogen peroxide has the disadvantage of being unstable.
  • European patent application No. 796 874 relates to a process for the preparation of polymers comprising peroxycarboxylic groups.
  • These peroxycarboxylic polymers are more specifically copolymers of N-vinylpyrolidone / maleic anhydride.
  • the hydrogen peroxide that we react with this copolymer allows the transformation of the carboxyls derived from the anhydride into peroxycarboxylic functions.
  • the performance of these copolymers peroxycarboxylates, in terms of bleaching, are not revealed by this request patent.
  • the peroxycarboxylated copolymers lack selectivity with respect to the teeth.
  • instability problems can be feared for teeth whitening applications of these copolymers.
  • PCT patent application WO 97/02 011 discloses dental oral compositions comprising conventional ingredients such as abrasives, binders, humectants, surfactants, sources of fluorine ions or other sweeteners, as well as two other essential ingredients for namely, on the one hand, an aminoalkylsilicone such as a polydimethylsiloxane comprising aminoalkyl units of the propylaminoethylamine type in the chains and at their ends and, on the other hand, a polydimethylsiloxane comprising pendant groups of polyoxyethylene and / or polyoxypropylene type and having a surfactant action.
  • an aminoalkylsilicone such as a polydimethylsiloxane comprising aminoalkyl units of the propylaminoethylamine type in the chains and at their ends and, on the other hand, a polydimethylsiloxane comprising pendant groups of polyoxyethylene and / or polyoxypropylene type and
  • This oral composition is presented as having improved anti-plaque and anti-bacterial properties, which complement excellent cleaning performance.
  • This oral composition can also comprise bleaching agents belonging to the family of inorganic peracid salts (persulfates, perborates, percarbonates and metal peroxides). These oral compositions are not satisfactory in terms of stability, toxicity, selectivity with respect to the teeth and efficacy of bleaching by oxidation.
  • Polyorganosiloxanes comprising ester groups of peracids carboxylic acids have been described in GB 897,973 and US 3,726,943; they can be useful as vulcanizing agents, as polymerization initiator, as coupling agents ...
  • Another essential objective of the invention is to provide a system for peroxidized bleaching especially for dental bleaching applications which allows to control the reactivity of the peroxide function, so as to limit as far as possible its transformation into aggressive free radicals.
  • Another essential objective of the invention is to provide a system for peroxidized bleaching usable in particular in dental bleaching and endowed with significantly improved storage stability.
  • Another essential objective of the invention is to provide a system for peroxide bleaching applied in dental bleaching (oral composition for treatment and maintenance of the teeth), having a better selectivity with respect to teeth to whiten.
  • Another essential objective of the invention is to provide an oxidizing system peroxidized, capable of being used as a controlled release system of oxidizing peroxide functions.
  • Another essential objective of the invention is to provide a process for obtaining of the aforementioned peroxidized oxidizing system, which is simple to implement and economic.
  • Another essential objective of the invention is to prescribe the use of the system peroxidized oxidant mentioned above, as a teeth whitening agent.
  • Another essential objective of the invention is to provide a composition dental with an effective, stable and selective bleaching agent.
  • these silicones functionalized with Fpo acyl peroxide are endowed with a specific affinity for the constituent materials of teeth (in hydroxyapatite) so these are selective vectors specific to route the chemical whitening functions to the teeth. It goes without saying that optimizes the efficiency of said functions. It follows that it is possible to reduce the doses, which is entirely in line with the decrease in the aggressiveness of the agent laundering.
  • these peroxide functional silicones are hydrophobic and have so the advantage of preserving the Fpo functions of water, which is an element major instability for them.
  • the new peroxidized polyorganosiloxanes with Fpo functions can be linear and / or branched and / or crosslinked polymers according to the percentage by weight of DTQ siloxyl patterns which they include.
  • Each Fpo acyl peroxide function belongs to a peroxycarboxylic acid, halide - chloride - or salt residue.
  • peroxycarboxylic residues are linked to the silicon of the POS chain by a hydrocarbon ball joint (that is to say comprising in particular carbon and hydrogen atoms), aliphatic and / or alicyclic and / or aromatic and / or heterocyclic optionally comprising one or more heteroatoms: N, O, S ..., possibly.
  • a hydrocarbon ball joint that is to say comprising in particular carbon and hydrogen atoms
  • aliphatic and / or alicyclic and / or aromatic and / or heterocyclic optionally comprising one or more heteroatoms: N, O, S ..., possibly.
  • the advantageous stabilizing action of Fstab on Fpo is a preferred characteristic of the functionalized POSs according to the invention.
  • the Fstabs are located on the functional substituents (pendant) E and / or G. Without this being limiting, it is preferable that the Fstabs are carried at least by the or the E, so as to be close to the Fpo to be stabilized. It is not forbidden to think that the stabilizing effect of Fstab is thus improved.
  • the optional functional substituents G each include, in addition to the one or more Fstab, a ball joint which ensures the connection with the silicone chain.
  • the ball joints of the substituents G are identical or different from each other, which meet the same definition as that given above for the ball joints of substituents E.
  • peroxidized POSs obtained by hydrosilylation of olefinic precursors of substituents E and G are preferred in accordance with the invention.
  • These hydrosilylation reactions can be carried out at a temperature of the order of 15 to 200 ° C, preferably of the order of 20 to 100 ° C, in the presence of a catalyst based on a metal from the group of platinum.
  • a catalyst based on a metal from the group of platinum Mention may in particular be made of the complex platinum derivatives described in US Pat. Nos. 3,715,334, 3,775,452, 3,814,730, 3,159,601, 3,159,662.
  • the quantities of platinum catalysts used are of the order of 1 to 300 parts per million, expressed as metal relative to the reaction medium.
  • the olefinic precursors used in these hydrosilylations do not comprise the acyl peroxide functions Fpo, but their non-peroxygenated forms F'po or any intermediate forms thereof. It is preferable in accordance with the invention to provide protection for the precursor functions F'po before hydrosilylation.
  • the POS grafted by hydrosilylation and carrying the F'po precursor functions are optionally purified and then subjected to an oxidation which allows the transformation of the F'po functions into Fpo functions.
  • the functional substituents E of Peroxidized POSs each include a ball joint comprising at least one pattern bicarboxylated and / or benzoxylated and / or imide.
  • the ball joint (s) of the functional substituent (s) E comprise at least one bicarboxylic motif
  • the Fpo function is obtained from an anhydride which is transformed, on the one hand, in an acyl peroxide function Fpo and, on the other hand, in an acid function Fstab carboxylic stabilization of neighboring Fpo.
  • the peroxidized POSs according to the invention are stable and have a high power whitening.
  • the present invention relates to a process for the preparation of POSs as defined above.
  • This process is characterized in that it essentially consists in oxidizing the polysiloxane precursors of the targeted peroxidized POSs.
  • This oxidation is carried out using at least one oxidant preferably chosen from the group comprising: H 2 O 2 , O 2 , O 3 and their mixtures,
  • These peroxidized POS precursors of POS are distinguished from the targeted peroxidized POS in that they comprise one or more F'po functions, Fpo precursors and consisting of: by carboxyl residues: with X 'corresponding to the same definition as that given for X above; and / or by acid anhydride residues
  • F'po functions can be final or included in a cycle.
  • the polysiloxane precursors with functional F'po can be obtained by cohydrolysis of chlorosilanes and non-alkoxysilanes functionalized and chlorosilanes or alkoxysilanes functionalized with substituents E and G.
  • the stage which follows the cohydrolysis can be a polycondensation and polymerization of hydrolysis products in the presence of diorganosiloxanes cyclic or a redistribution step in the presence of polydiorganosiloxanes.
  • the starting materials used can be hydrogenated polyorganosiloxanes which can be functionalized by reacting them according to a hydrosilylation reaction (addition with olefinic precursors of substituents E and G.). See above for more details on this hydrosilylation.
  • the polyorganosiloxane precursors carry functions F'po succinic anhydride linked to the silicon atoms by a ball joint - (CH 2 ) 3 -.
  • the precursors - POS present before the oxidation step to transform the F'po en Fpo, a molar purity ⁇ 90%, preferably ⁇ 95%.
  • this purification step is carried out by any known and appropriate method such as, for example, devolatilization or fractional precipitation in an organic solvent such as methanol.
  • the oxidizing agents could be hydrogen peroxide, oxygen, ozone and their mixtures.
  • the catalyst used can be a strong base, for example, a mineral base such as KOH or NaOH or even a strong acid, for example, a mineral acid such as H 2 SO 4 or organic such as MeSO 3 H.
  • the solvents used in these cases are, for example, ethyl acetate or Me SO 3 H.
  • the oxidizing agent is oxygen, it is possible to use a catalyst comprising Co 2+ .
  • this oxidation step can take place at temperature and pressure room.
  • the peroxidized POSs according to the invention are particularly suitable as bleaching agent and more particularly as a bleaching agent teeth, taking into account their properties of selectivity with respect to non-toxicity teeth, of controlled reactivity of the Fpo peroxide functions (limitation of the production of free radicals), non-toxicity and high efficiency at low doses.
  • the present invention also relates to a dental composition (for example an oral composition) - in particular toothpaste - characterized in that it comprises peroxygenated POSs as defined above at as a bleaching agent.
  • a dental composition for example an oral composition
  • toothpaste - characterized in that it comprises peroxygenated POSs as defined above at as a bleaching agent.
  • Example 1 preparation of a precursor - POS (B) of a peroxide POS according to the invention, this precursor being a polydimethylsiloxane with ends trimethylsilyles and carrying functional substituents of the -propyl-oxy-benzoic type
  • reaction medium After returning to ambient temperature, the reaction medium is neutralized by gradual addition over 1 h 30 min of 1 l of 36% hydrochloric acid (11 moles). The reaction medium becomes milky and it is filtered on a No. 4 frit under vacuum. A white filter cake is obtained which is washed with water (250 ml). To carry out the purification of the allyloxybenzoic acid present in the filter cake, one proceeds by recrystallization.
  • the filter cake 5 l of absolute ethanol and 750 ml of distilled water are charged into the 10 l reactor.
  • the reaction mass is brought to reflux (80 ° C.) and distilled water is gradually added until a single clear phase is obtained, namely 1.75 l of distilled water.
  • reaction mass is then transferred to a 10 l container which is cooled by ice.
  • the medium is left to recrystallize for 16 h and then filtered through a No. 4 frit under vacuum.
  • the cake is washed with distilled water (2 l used three times). Crystals are obtained which are dried under vacuum of 200 mmHg and at 70 ° C. The yield is 35%.
  • the protected product can be purified by vacuum distillation.
  • reaction medium After returning to ambient temperature, the reaction medium is filtered on a cardboard filter under pressure and then the reaction mass is returned to a single-color flask fitted with a magnetic bar.
  • the product is isolated by devolatilization at 120 ° C under vacuum of 1 mmHg.
  • the product thus isolated is deprotected by hydrolysis with distilled water (200 ml) which is poured onto the product to be deprotected in 1 hour 15 minutes and heating to 90 ° C. for 16 hours.
  • the medium becomes whitish.
  • the water is removed at 110 ° C. under a vacuum of 2 mmHg for 4 h 15 min. 58.40 g of hydrosilylated oil of structure B are then obtained.
  • the method used here is fractional precipitation. It is dissolve the grafted oil obtained in 1.3 in a hot alcohol. This alcohol can be more particularly methanol. Then the polymer is precipitated by addition water of basic pH. The operation is repeated another time. The third operation consists in hot solubilizing the silicone polymer in methanol and then adding water at acidic pH. The polymer thus purified is heated to 115 ° C. under a vacuum of 20 mmHg to remove residual water or alcohol. The product is finally placed in the oven at 100 ° C. under atmospheric pressure. A polymer of purity greater than 95% is obtained in weight.
  • Example 2 preparation of a precursor - POS (C) of a peroxide POS according to the invention, this precursor being a polydimethylsiloxane with ends trimethylsilyl and carrying functional substituents of the -propylanhydride type succinic
  • the polymer After placing the middle reaction in a single-color flask fitted with a magnetic bar, the polymer is isolated silicone grafted by devolatilizing the excess oligomer by heating to 180 ° C. under vacuum 2 mmHg. A silicone oil of structure C and of purity equal to 94% is obtained in weight.
  • Example 3 preparation of a precursor - POS (E) of a peroxide POS according to the invention, this precursor being a polydimethylsiloxane with ends trimethylsilyl and carrying functional substituents of the -propyl-succinimide type benzoic
  • EXAMPLE 5 OBTAINING A PEROXIDE POS IN WHICH THE FPO FUNCTIONS (-OO-) OF THE SUBSTITUTES E ARE INCLUDED IN PERACID CARBOXYL REMAINS FROM THE PRECURSOR POS AS EXAMPLE 2 (REMAINING ANHYDRIDES REMAINING)
  • EXAMPLE 6 OBTAINING A PEROXIDE POS IN WHICH THE FPO FUNCTIONS (-OO-) OF THE SUBSTITUTES ARE INCLUDED IN PERACID CARBOXYLIC RESIDUES FROM THE PRECURSOR POS AS EXAMPLE 2 (REMAINING ANHYDRIDES REMAINING)
  • EXAMPLE 8 OBTAINING A PEROXIDE POS IN WHICH THE FPO FUNCTIONS (-OO-) OF THE SUBSTITUTES ARE INCLUDED IN PERACID CARBOXYLIC RESIDUES FROM THE PRECURSOR POS AS EXAMPLE 2 (REMAINING ANHYDRIDES REMAINING)
  • Example 5 is reproduced with the difference that no KOH is used.
  • EXAMPLE 9 OBTAINING A PEROXIDE POS IN WHICH THE FPO FUNCTIONS (-OO-) OF THE SUBSTITUTES E ARE INCLUDED IN PERACID CARBOXYL REMAINS FROM THE PRECURSOR POS AS EXAMPLE 2 (REMAINING ANHYDRIDES REMAINING)
  • Example 6 is reproduced with the difference that the drop of KOH is replaced by a drop of H 3 PO 4 (85% in water).
  • EXAMPLE 10 OBTAINING A PEROXIDE POS IN WHICH THE FPO FUNCTIONS (-OO-) OF THE SUBSTITUTES E ARE INCLUDED IN PERACID CARBOXYLIC RESIDUES FROM THE POS PRECURSOR AS IN EXAMPLE 1 (PENDANT BENZOIC REMAINS)
  • EXAMPLE 11 EVALUATION OF THE WHITENING POWER OF THE POS PEROXIDE OF EXAMPLE 6

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Polymers (AREA)
  • Cosmetics (AREA)

Description

Le domaine de l'invention est celui des systèmes peroxydés applicables notamment dans le blanchiment. Les propriétés oxydantes de ces systèmes sont plus particulièrement appréciées dans les applications de blanchiment dentaire (e.g. dentifrices).
Les systèmes peroxydés visés dans le cadre du présent exposé sont des polymères fonctionnalisés.
La présente invention concerne des polyorganosiloxanes (POS) peroxydés ainsi que l'un de leurs procédés de préparation.
L'invention se rapporte également à des précurseurs silicones de ces POS peroxydés.
Enfin, la présente invention comporte un aspect application qui comprend l'utilisation des POS peroxydés selon l'invention comme ingrédient actif en blanchiment. Plus précisément, l'invention vise des compositions dentaires, par exemple dentifrices, comprenant les POS peroxydés comme agent de blanchiment.
Il est connu dans le domaine du blanchiment, en particulier du blanchiment dentaire, d'utiliser le peroxyde d'hydrogène H2O2 ou ses persels (percarbonates, perborates, peroxydes de calcium). Dans la suite du présent exposé, H2O2 désignera l'H2O2 en tant que telle et ses persels. Les inconvénients de l'eau oxygénée ne sont pas négligeables. En premier lieu, H2O2 doit être employée en forte concentration pour être efficace. Ce point est particulièrement gênant compte tenu de l'agressivité de l'H2O2. En second lieu, on sait que l'action de blanchiment est liée à l'effet donneur d'oxygène. Or cet effet n'est pas l'effet prépondérant que l'on peut obtenir avec l'eau oxygénée. Cette dernière se comporte essentiellement comme un promoteur de radicaux libres délétères, qui ne participent pas à la fonction blanchiment et qui auraient même plutôt tendance à la contrarier. En troisième lieu, l'eau oxygénée a pour inconvénient d'être instable.
Il existe donc un besoin clairement identifié pour un substitut du peroxyde d'hydrogène pour ces applications dans le domaine du blanchiment et en particulier du blanchiment dentaire (dentifrices).
Pour tenter de résoudre la problématique sus-visée, il a été proposé dans le brevet US N° 5 698 326 des composés peracides constitués par un support inorganique formé par de la silice et porteur de fonctionnalités peracides. Ces composés peuvent être obtenus en faisant réagir de la silice substituée par un reste siloxylalkylaminé avec un anhydride triméllitique dont on oxyde ensuite la fonction carboxylique du noyau benzyle, pour la transformer en fonction peracide. Cela correspond à la formule suivante :
Figure 00020001
Selon ce brevet, le greffage de la fonction peracide sur le support inorganique en silice, est sensé permettre une stabilisation de la fonction peracide. En réalité, il s'avère que cette stabilité pourrait encore être améliorée. En outre, il est à craindre que ces silices peroxydées soient difficilement dispersibles dans des compositions relativement visqueuses telles que les dentifrices.
La demande de brevet européen N° 796 874 concerne un procédé pour la préparation de polymères comprenant des groupes peroxycarboxyliques. Ces polymères peroxycarboxyliques sont plus précisément des copolymères de N-vinylpyrolidone / anhydride maléique. Le peroxyde d'hydrogène que l'on fait réagir avec ce copolymère permet la transformation des carboxyles issus de l'anhydride en fonctions peroxycarboxyliques. Les performances de ces copolymères peroxycarboxylés, en terme de blanchiment, ne sont pas révélées par cette demande de brevet. Par ailleurs, il semble que dans l'application blanchiment dentaire, les copolymères peroxycarboxylés manquent de sélectivité vis-à-vis des dents. En outre, on peut craindre des problèmes d'instabilité pour des applications blanchiment dentaire de ces copolymères.
La demande de brevet PCT WO 97/02 011 divulgue des compositions orales dentaires comprenant des ingrédients classiques tels que des abrasifs, des liants, des humectants, des surfactants, des sources d'ions fluor ou autres édulcorants, ainsi que deux autres ingrédients essentiels à savoir, d'une part, un aminoalkylsilicone tel qu'un polydiméthylsiloxane comprenant des motifs aminoalkyles du type propylaminoéthylamine dans les chaínes et à leurs extrémités et, d'autre part, un polydiméthylsiloxane comportant des groupements pendants de type polyoxyéthylène et/ou polyoxypropylène et ayant une action de surfactant.
Il n'est nullement question dans ce document de polyorganosiloxanes fonctionnalisés par des motifs peroxydes. Cette composition orale est présentée comme ayant des propriétés anti-plaque et anti-bactérienne améliorée, qui complètent d'excellentes performances de nettoyage. Cette composition orale peut également comprendre des agents de blanchiment appartenant à la famille des sels inorganiques de peracides (persulfates, perborates, percarbonates et peroxydes métalliques).
Ces compositions orales ne donnent pas satisfaction en matière de stabilité, de toxicité, de sélectivité vis-à-vis des dents et d'efficacité de blanchiment par oxydation.
Des polyorganosiloxanes comprenant des groupes esters de peracides carboxyliques ont été décrits dans GB 897,973 et US 3,726,943 ; ils peuvent être utiles comme agents de vulcanisation, comme amorceur de polymérisation, comme agents de couplage...
Dans un tel état de la technique, l'un des objectifs essentiels des inventeurs fut de mettre au point un nouveau système oxydant utilisable notamment dans le blanchiment, ce système oxydant de type peroxydé se devant d'être plus stable et plus efficace que les systèmes connus de l'art antérieur.
Un autre objectif essentiel de l'invention est de fournir un système de blanchiment peroxydé notamment pour les applications de blanchiment dentaire qui permette de contrôler la réactivité de la fonction peroxyde, de manière à limiter autant que faire se peut sa transformation en radicaux libres agressifs.
Un autre objectif essentiel de l'invention est de fournir un système de blanchiment peroxydé utilisable notamment en blanchiment dentaire et doué d'une stabilité au stockage significativement améliorée.
Un autre objectif essentiel de l'invention est de fournir un système de blanchiment peroxydé appliqué dans le blanchiment dentaire (composition orale pour le traitement et l'entretien des dents), ayant une meilleure sélectivité vis-à-vis des dents à blanchir.
Un autre objectif essentiel de l'invention est de fournir un système oxydant peroxydé, susceptible d'être utilisé comme un système à libération contrôlée de fonctions peroxyde oxydantes.
Un autre objectif essentiel de l'invention est de fournir un procédé d'obtention du système oxydant peroxydé sus-évoqué, qui soit simple à mettre en oeuvre et économique.
Un autre objectif essentiel de l'invention est de prescrire l'utilisation du système oxydant peroxydé sus-visé, à titre d'agent de blanchiment des dents.,
Un autre objectif essentiel de l'invention est de fournir une composition dentaire dotée d'un agent de blanchiment efficace, stable et sélectif.
Ces objectifs, parmi d'autres, sont atteints par la présente invention qui concerne de nouveaux polyorganosiloxanes (POS) comprenant des motifs siloxaniques de formule (I) suivante : RaEbGcSiO 4 - (a+b+c)2
  • dans laquelle :
  • a+b+c=0 à 3
  • a, b, c = 0 à 3
  • R correspond à un ou plusieurs radicaux identiques ou différents, R étant choisi parmi les groupements monovalents hydrocarbonés, de préférence parmi les alkyles linéaires, ramifiés et/ou cycliques et/ou les aryles, et plus préférentiellement encore parmi les alkyles linéaires ou ramifiés en C1-C4 et les groupes phényle, xylyle et tolyle ;
  • E correspond à un ou plusieurs substituants fonctionnels identiques ou différents entre eux, monovalents, choisis parmi les groupements hydrocarbonés (cyclo)aliphatiques et/ou aromatiques et/ou hétérocycliques et porteurs d'une ou plusieurs fonctions peroxyde d'acyle Fpo de formule
    Figure 00040001
    avec X correspondant à H, à un halogène de préférence le chlore ou à un cation permettant de former un sel avec l'anion peroxyde d'acyle et choisi de préférence parmi les éléments des colonnes Ia et IIA de la classification périodique, et comportant éventuellement chacun une ou plusieurs fonctions Fstab stabilisantes de Fpo, identiques ou différentes entre elles et choisies parmi les fonctions susceptibles de se lier par l'intermédiaire de liaisons faibles avec les fonctions Fpo ;
  • G correspond à un ou plusieurs substituants fonctionnels identiques ou différents entre eux et comportant chacun une ou plusieurs fonctions Fstab stabilisantes de Fpo, identiques ou différentes entre elles et choisies parmi les fonctions susceptibles de se lier par l'intermédiaire de liaisons faibles avec les fonctions Fpo ;
  • avec les conditions selon lesquelles :
    • (i) . la concentration en fonctions [Fpo] exprimée par le ratio nombreFpo nombre total d'atomes de silicium dans le POS est définie comme suit :
    • Δ   0 < [Fpo]
    • Δ de préférence   0,01 ≤ [Fpo] ≤ 1,0
    • Δ et plus préférentiellement encore   0,1 ≤ [Fpo] ≤ 0,6.
    • (ii) . la concentration en % molaire en motifs siloxaniques T (a + b + c = 1) et/ou Q (a + b + c = 0) est définie comme suit :
    • Δ   0 ≤ [T et/ou Q] ≤ 20
    • Δ de préférence   0 ≤ [T et/ou Q] ≤10
    • Δ et plus préférentiellement encore,   0≤ [T et/ou Q] ≤ 8.
Ces nouveaux POS peroxydés permettent de stabiliser la fonction peroxyde d'acyle et de contrôler son activité oxydante en réfrénant son activité de production de radicaux libres. En outre, leurs propriétés de blanchiment et de sélectivité vis-à-vis des dents font d'eux des systèmes de blanchiment particulièrement appropriés et efficaces pour des compositions orales dentaires telles que des dentifrices.
En effet, ces silicones fonctionnalisés par des Fpo peroxyde d'acyle sont doués d'une affinité spécifique vis-à-vis des matériaux constitutifs des dents (en particulier de l'hydroxyapatite) de sorte que ce sont des vecteurs sélectifs propres à acheminer les fonctions de blanchiment chimique sur les dents. Il va de soi que cela optimise l'efficacité desdites fonctions. Il s'ensuit qu'il est possible de réduire les doses, ce qui va tout à fait dans le sens de la diminution de l'agressivité de l'agent de blanchiment.
De surcroít, ces silicones fonctionnalisés peroxydes sont hydrophobes et ont donc pour avantage de préserver les fonctions Fpo de l'eau, qui est un élément d'instabilité majeur pour celles-ci.
Les nouveaux polyorganosiloxanes peroxydés à fonctions Fpo peuvent être des polymères linéaires et/ou ramifiés et/ou réticulés selon le pourcentage en poids de motifs siloxyles DTQ qu'ils comprennent. De préférence, les POS peroxydés selon l'invention comprennent majoritairement des motifs D (a + b + c = 2) et plus préférentiellement encore sont linéaires.
Chaque fonction peroxyde d'acyle Fpo appartient à un reste peroxycarboxylique acide, halogénure - chlorure - ou sels.
A titre d'exemples de groupements X = cations, ont peut citer : Na+, K+, Ca++, Mg++...
Ces restes peroxycarboxyliques sont reliés au silicium de la chaíne du POS par une rotule hydrocarbonée (c'est-à-dire comprenant notamment des atomes de carbone et d'hydrogène), aliphatique et/ou alicyclique et/ou aromatique et/ou héterocyclique comportant éventuellement un ou plusieurs hétéroatomes : N, O, S..., éventuellement.
L'ensemble comprenant :
  • d'une part, le reste peroxycarboxylique,
  • et d'autre part, la rotule,
forme le substituant fonctionnel E.
En pratique, la rotule est, par exemple, du type -alkyl-O-aryle (benzyle), -alkyl anhydride, -alkylimide-aryle (benzyle), entre autres.
L'action stabilisante avantageuse des Fstab sur les Fpo est une caractéristique préférée des POS fonctionnalisés selon l'invention. Conformément à cette dernière, les Fstab sont localisées sur les substituants fonctionnels (pendants) E et/ou G. Sans que cela ne soit limitatif, il est préférable que les Fstab soient portées au moins par le
   ou les E, de façon à être proches des Fpo à stabiliser. Il n'est pas interdit de penser que l'effet stabilisant des Fstab est ainsi amélioré.
Suivant une caractéristique préférée de l'invention, les éventuelles fonctions de stabilisation Fstab des susbstituants E et/ou G de la formule (I) correspondent à des fonctions pouvant générer des liaisons faibles (liaisons hydrogène, e.g.) avec Fpo, et sélectionnées dans le groupe comprenant :
  • les motifs fonctionnels comportant de l'azote et/ou de l'oxygène et/ou du fluor, et/ou du soufre et/ou du phosphore ; les motifs carboxyliques, carboxylates, amides, imides, sulfonamides, hydroxyles, alcoxyles, amines ou organo-fluorés, étant préférés ;
  • les motifs cationiques, de préférence ceux comprenant un ou plusieurs ammoniums quaternaires ;
  • les motifs chélatants comportant une ou plusieurs fonctions éther et/ou une ou plusieurs fonctions amines, et/ou les motifs chélatants phosphonates et/ou sulfonates.
Les éventuels substituants fonctionnels G comprennent chacun, outre la ou les Fstab, une rotule qui assure la liaison avec la chaíne silicone. Les rotules des substituants G sont identiques ou différentes entre elles, qui répondent à la même définition que celle donnée supra pour les rotules des substituants E.
Les POS peroxydés faisant l'objet de l'invention peuvent être obtenus :
  • soit à partir de chlorosilanes ou d'alcoxysilanes portant les substituants E , de chlorosilanes ou d'alcoxysilanes portant des substituants G et de chlorosilanes ou d'alcoxysilanes portant les substituants R et/ou l'hydrogène, par cohydrolyse, polycondensation et polymérisation des produits hydrolysés en présence de diorganosiloxanes cycliques ou redistribution en présence de polydiorganosiloxanes...
  • soit à partir de polydiorganosiloxanes fonctionnalisés par hydrosilylation de polydiorganosiloxanes hydrogénés à l'aide de précurseurs oléfiniques intégraux ou partiels des substituants fonctionnels E et G.
    Au sens du présent exposé, les termes "précurseurs oléfiniques intégraux ou partiels" correspondent respectivement :
    • au cas où le précurseur oléfinique est sous forme finale et n'a pas à subir d'autres greffages pour conduire à l'intégralité du substituant qui sera transformé en E ou G après peroxydation (rotule intégrale),
    • et au cas où la rotule des substituants E ou G est formée par plusieurs chaínons mis bout à bout et correspondant à des formes intermédiaires de synthèse, le précurseur oléfinique constituant le premier chaínon qui est lié, d'une part, à la chaíne silicone et, d'autre part, au chaínon suivant de la rotule.
Sans que cela ne soit limitatif, on préfère conformément à l'invention les POS peroxydés obtenus par hydrosilylation de précurseurs oléfiniques de substituants E et G.
Ces réactions d'hydrosilylation peuvent être réalisées à une température de l'ordre de 15 à 200° C, de préférence de l'ordre de 20 à 100° C, en présence d'un catalyseur à base d'un métal du groupe du platine. On peut citer en particulier les dérivés complexes du platine décrits dans les brevets US N° 3 715 334, 3 775 452, 3 814 730, 3 159 601, 3 159 662.
Les quantités de catalyseurs platiniques mises en oeuvre sont de l'ordre de 1 à 300 parties par million, exprimées en métal par rapport au milieu réactionnel.
Les précurseurs oléfiniques mis en oeuvre dans ces hydrosilylations ne comportent pas les fonctions peroxyde d'acyle Fpo, mais leurs formes non péroxygénées F'po ou toutes formes intermédiaires de celles-ci. Il est préférable conformément à l'invention de prévoir une protection des fonctions précurseurs F'po avant l'hydrosilylation.
Les POS greffés par hydrosilylation et porteurs des fonctions précurseurs F'po, sont éventuellement purifiés puis soumis à une oxydation qui permet la transformation des fonctions F'po en fonctions Fpo.
Selon une forme préférée de réalisation de l'invention, les POS peroxydés répondent à la formule (II) donnée ci-après :
Figure 00090001
   dans laquelle :
  • R1 R3 représentant indépendamment un hydrogène, un hydroxyle ou un reste monovalent répondant à la même définition que celle donnée pour R supra ;
  • R2 représentent indépendamment l'hydrogène, un hydroxyle ou un reste monovalent répondant à la même définition que celle donnée pour R supra ;
  •    2 ≤ m + n + o ≤ 300
    de préférence   3 ≤ m + n + o ≤ 50
    et plus préférentiellement encore   5 ≤ m + n + o ≤ 20
  •    0 ≤ m ≤ 200
    de préférence   1≤ m ≤ 100
    et plus préférentiellement encore   1 ≤ m ≤ 10
  •    0 ≤ n ≤ 50
    de préférence   1 ≤ n ≤ 10
    et plus préférentiellement encore   2 ≤ n ≤ 4
  •    0 ≤ o ≤ 50
    de préférence   1 ≤ o ≤ 10
    et plus préférentiellement encore   2 ≤ o ≤ 4.
De manière plus préférée encore, les polyorganosiloxanes sont caractérisés en ce que :
  • Δ R1 R3 = alkyle en C1-C3, de préférence - CH3
  • Δ R2 = alkyle en C1-C3, de préférence - CH3
  • Δ le ou les substituants fonctionnels E, comprennent à la fois des fonctions Fpo et Fstab.
  • En pratique, sans que cela ne soit limitatif, les substituants fonctionnels E des POS peroxydés comprennent chacun une rotule comprenant au moins un motif bicarboxylé et/ou benzoxylé et/ou imide.
    Le cas où la ou les rotules du ou des substituants fonctionnels E comprennent au moins un motif bicarboxylique, correspond à une forme préférée de l'invention dans laquelle la fonction Fpo est obtenue à partir d'un anhydride qui se transforme, d'une part, en une fonction peroxyde d'acyle Fpo et, d'autre part, en fonction acide carboxylique Fstab de stabilisation de la Fpo voisine.
    Les POS peroxydés selon l'invention sont stables et présentent un fort pouvoir blanchissant.
    Selon un autre de ses aspects, la présente invention concerne un procédé de préparation des POS tels que définis ci-dessus. Ce procédé est caractérisé en ce qu'il consiste essentiellement à oxyder les précurseurs polysiloxaniques des POS peroxydés visés. Cette oxydation est effectuée à l'aide d'au moins un oxydant de préférence choisi dans le groupe comprenant : H2O2, O2, O3 et leurs mélanges, Ces précurseurs POS de POS peroxydés se distinguent des POS peroxydés visés en ce qu'ils comportent une ou plusieurs fonctions F'po, précurseurs de Fpo et constituées :
    par des restes carboxyles :
    Figure 00100001
    avec X' répondant à la même définition que celle donnée pour X supra ;
    et/ou par des restes anhydrides d'acide
    Figure 00100002
    Ces fonctions F'po peuvent être terminales ou incluses dans un cycle.
    Comme cela est indiqué ci-avant, les précurseurs polysiloxaniques à fonctions F'po peuvent être obtenus par cohydrolyse de chlorosilanes et d'alcoxysilanes non fonctionnalisés et de chlorosilanes ou d'alcoxysilanes fonctionnalisés par des substituants E et G. L'étape qui suit la cohydrolyse peut être une polycondensation et une polymérisation des produits hydrolyse, en présence des diorganosiloxanes cycliques ou une étape de redistribution en présence de polydiorganosiloxanes. Ces synthèses classiques de POS par cohydrolyse / polycondensation / polymérisation ou par cohydrolyse / redistribution sont décrites notamment dans "W. NELL chemistry and technology of silicones. Edition Academic Press .1968."
    Selon une alternative préférée, les produits de départ utilisés peuvent être des polyorganosiloxanes hydrogénés qui peuvent être fonctionnalisés en les faisant réagir selon une réaction d'hydrosilylation (addition avec des précurseurs oléfiniques des substituants E et G.). On se reportera supra pour plus de détail sur cette hydrosilylation.
    Suivant une caractéristique préférée de l'invention, les précurseurs de POS peroxydés que l'on soumet à une oxydation pour obtenir des POS peroxydés visés sont sélectionnés parmi les précurseurs polyorganosiloxaniques
    • porteurs de fonctions F'po anhydrides, l'oxydation étant effectuée à l'aide d'H2O2 en présence d'un catalyseur de type base forte, de préférence la potasse ;
    • et/ou porteurs de fonctions F'po carboxyliques - de préférence benzoyles-, l'oxydation étant effectuée à l'aide d'H2O2 en présence d'un catalyseur de type acide fort.
    D'une manière plus préférée encore, les précurseurs polyorganosiloxaniques sont porteurs de fonctions F'po anhydride succinique reliées aux atomes de silicium par une rotule -(CH2)3-.
    Conformément à l'invention, il est apparu particulièrement avantageux que les précurseurs - POS présentent avant l'étape d'oxydation permettant de transformer les F'po en Fpo, une pureté molaire ≥ 90 %, de préférence ≥ 95 %.
    En pratique, cette étape de purification est effectuée par toute méthode connue et appropriée comme par exemple la dévolatilisation ou la précipitation fractionnée dans un solvant organique tel que le méthanol.
    S'agissant plus précisément de l'étape d'oxydation, on a vu que les agents oxydants pouvaient être l'eau oxygénée, l'oxygène, l'ozone et leurs mélanges.
    Dans le cas où l'agent oxydant est constitué par le peroxyde d'hydrogène, le catalyseur employé peut être une base forte, par exemple, une base minérale telle que KOH ou NaOH ou bien encore un acide fort, par exemple, un acide minéral tel que H2SO4 ou organique tel que MeSO3H. Les solvants mis en oeuvre dans ces cas de figure sont, par exemple, l'acétate d'éthyle ou Me SO3H.
    Dès lors que l'agent oxydant est l'oxygène, il est envisageable d'employer un catalyseur comprenant du Co2+.
    En pratique, cette étape d'oxydation peut se dérouler à température et à pression ambiante.
    Les POS peroxydés selon l'invention sont particulièrement adaptés comme agent de blanchiment et plus particulièrement encore comme agent de blanchiment des dents, compte tenu de leurs propriétés de sélectivité vis-à-vis des dents de non-toxicité, de réactivité contrôlée des fonctions peroxydes Fpo (limitation de la production de radicaux libres), de non-toxicité et de haute efficacité à faible dose.
    D'où il s'ensuit que la présente invention a également pour objet une composition dentaire (par exemple une composition orale) - en particulier dentifrice - caractérisée en ce qu'elle comprend des POS peroxygénés tels que définis ci-dessus à titre d'agent de blanchiment.
    Sans que cela ne soit limitatif, on peut donner quelques détails qui définissent qualitativement et quantitativement la composition dentaire selon l'invention en indiquant que celle-ci contient :
    • des POS peroxygénés
      à raison de 0,1 à 40 % en poids,
      de préférence de 0,1 à 10 % en poids,
      et plus préférentiellement encore de l'ordre de 1 à 5 % en poids ;
    • des abrasifs polissants à raison de 5 à 40 % en poids,
      de préférence de 5 à 35 % en poids, ces abrasifs pouvant être notamment la silice, le carbonate de calcium précipité, le carbonate de magnésium, les phosphates de calcium, les oxydes de titane de zinc ou d'étain, le talc, le kaolin, des particules abrasives comprenant un coeur de matériau calcique, de préférence en carbonate de calcium et une écorce de produit idrophobe, de préférence un sel d'acide gras et plus préférentiellement encore un stéarate de Na ;
    • un ou plusieurs composés fluorés correspondant à une concentration de l'ordre de 0,005 à 2 %, de préférence de 0,1 à 1 % en poids de fluor dans ladite composition, ces composés fluorés pouvant être en particulier les sels de l'acide monofluorophosphorique notamment ceux de sodium potassium, lithium, calcium, aluminium, et ammonium ou les fluorures de métaux alcalins, de sodium notamment ;
    • éventuellement des agents tensio-actifs anioniques, non-ioniques, amphotères ou zwitterioniques, à raison d'environ 0,1 à 10 %, de préférence d'environ 1 à 5 % du poids de ladite composition ; on peut citer, à titre d'exemple :
      • des tensio-actifs anioniques comme les sels de sodium, de magnésium, d'ammonium, d'éthanolamine, des
        • alkyl sulfates en C8-C18 pouvant éventuellement contenir jusqu'à 10 motifs oxyéthylène et ou oxypropylène (laurylsulfate de sodium notamment)
        • alkyl sulfoacétates en C8-C18 (laurylsulfoacétate de sodium notamment)
        • alkyl sulfoacétates en C8-C18 (dioctylsulfosuccinate de sodium notamment)
        • alkyl sarcosinates en C8-C18 (laurylsarcosinate de sodium notamment)
        • alkyl phosphates en C8-C18 pouvant éventuellement contenir jusqu'à 10 motifs oxyéthylène et ou oxypropylène
        • alkyl éther carboxylates en C8-C18 contenant jusqu'à 10 motifs oxyéthylène et ou oxypropylène
        • les monoglycérides sulfatés...
      • des agents tensio-actifs non-ioniques comme les esters gras de sorbitan éventuellement polyéthoxylés, les acides gras éthoxylés, les esters de polyéthylèneglycol, ou encore les alcools gras polyéther,
      • agents tensio-actifs amphotères comme les bétaines, sulfobétaines
    • éventuellement de l'eau à raison d'environ 0,1 à 50 %, de préférence environ 0,5 à 40 % du poids de ladite composition
    • éventuellement des agents humectants, à raison d'environ 10 à 85 %, de préférence de 10 à 70 % du poids de ladite composition, humectants comme le glycérol, le sorbitol, les polyéthylèneglycols, le lactilol, le xylitol ...
    • éventuellement des agents épaississants comme certaines silice utilisées à cet effet (TIXOSIL 43® commercialisée par RHONE-POULENC...) à raison de 5 à 15 % en poids et/ou des polymères utilisés seuls ou en association comme la gomme Xanthane, la gomme guar, les dérivés de la cellulose (Carboxyméthylcellulose, hydroxyéthylcellulose, hydroxypropylcellulose, hydroxypropylméthylcellulose....), des polyacrylates réticulés comme les CARBOPOL® distribués par GOODRICH, les alginates ou des carraghénannes, de la VISCARIN®, à raison de 0,1 à 5 % en poids.
    • éventuellement des agents thérapeutiques bactéricides, anti-microbiens, anti-plaque, comme le citrate de zinc, les polyphosphates, les guanidines, les bis-biguanides ou autre composé organique thérapeutique cationique,
    • éventuellement des agents arômatisants, (essence d'anis, de badiane, de menthe, de genièvre, cannelle, girofle, rose, ), des édulcorants, des colorants (chlorophylle), des conservateurs...
    La composition dentifrice faisant l'objet de l'invention, peut se présenter :
  • Figure 00140001
    sous différentes formes (pâtes, gels, crèmes), préparées à l'aide des procédés conventionnels,
  • et sous divers conditionnements (e.g. mono ou bicompartiment).
  • La présente invention sera mieux comprise à l'aide des exemples non-limitatifs qui suivent et qui font également ressortir certains des avantages et les variantes d'exécution de l'invention. On présente dans ces exemples la préparation des POS précurseurs des POS peroxydés selon l'invention, la transformation par oxydation de ces précurseurs en POS peroxydés, et l'évaluation de ces derniers en terme de stabilité au stockage et de pouvoir blanchissant.
    EXEMPLES Exemple 1 : préparation d'un précurseur - POS (B) d'un POS peroxyde selon l'invention, ce précurseur étant un polydiméthylsiloxane à extrémités trimethylsilyles et porteur de substituants fonctionnels de type -propyl-oxy-benzoïque
    Figure 00150001
    1.1. Synthèse de l'acide allyloxybenzoïque
    Dans un réacteur de 10 l muni d'un réfrigérant, d'une ampoule de coulée, d'une agitation mécanique, d'une sonde thermomètre et sous ciel d'argon, on charge 500 ml d'eau distillée, 51 d'éthanol absolu et progressivement 450,9 g de potasse (8,02 moles) sous forte agitation (240t/min). Une fois la potasse dissoute, on charge 558,3 g d'acide 4-hydroxy benzoïque (4,04 moles). La masse réactionnelle se trouble puis devient limpide. Le bromure d'allyle (489,0 g soit 4,04 moles) est alors coulé en 2h à température ambiante. Après la coulée, le milieu réactionnel est porté à 80°C pendant 17 heures.
    Après retour à la température ambiante, le milieu réactionnel est neutralisé par addition progressive en 1h30 de 1 l d'acide chlorhydrique à 36% (11 moles). Le milieu réactionnel devient laiteux et il est filtré sur fritte n°4 sous vide. On obtient un gâteau de filtration blanc qui est lavé à l'eau (250 ml).
    Pour effectuer la purification de l'acide allyloxybenzoïque se trouvant dans le gâteau de filtration, on procède par recristallisation. Dans le réacteur de 10 l, on charge le gâteau de filtration, 5 l d'éthanol absolu et 750 ml d'eau distillée. La masse réactionnelle est portée à reflux (80°C) et on ajoute progressivement de l'eau distillée jusqu'à obtenir une seule phase limpide soit 1,75 l d'eau distillée. La masse réactionnelle est alors transvasée dans un récipient de 10 l qui est refroidi par de la glace. On laisse le milieu se recristalliser pendant 16 h puis on filtre sur fritté n°4 sous vide. Le gâteau est lavé à l'eau distillée (2 l utilisé en trois fois). On obtient des cristaux qui sont séchés sous vide de 200 mmHg et à 70°C.
    Le rendement est de 35%.
    1. 2. Protection de l'acide allyloxybenzoïque par un groupement triméthylsilyle:
    Dans un tricol de 250 ml muni d'un réfrigérant, d'une agitation mécanique, d'une sonde thermomètre et sous ciel d'argon, on introduit 53,62 g d'acide allyloxybenzoïque préparé en 1.1. (0,3 mole) et on coule en 1 heure 120,58 g d'hexaméthyldisilazane (0,75 mole). Le milieu réactionnel est laissé en contact à 130°C pendant 24 heures. On obtient après retour à température ambiante une solution d'acide allyloxybenzoïque protégé en solution dans l'hexaméthyldisilazane.
    Il est possible de purifier le produit protégé par distillation sous vide.
    1.3. Hydrosilylation de l'acide allyloxybenzoïque protégé:
    Dans un tricol de 250 ml muni d'un réfrigérant, d'une ampoule de coulée, d'une agitation mécanique, d'une sonde thermomètre et sous ciel d'argon, on introduit 87,01 g de la solution d'acide protégé obtenue en 1.2 (0,15 mole d'acide protégé) et 31,0 mg de catalyseur platinique. Le milieu réactionnel est porté à 80°C et mis sous agitation. Puis, on coule en 45 minutes sur le milieu réactionnel 35,03 g d'huile de structure A (0,13 mole de fonction SiH). Le milieu réactionnel est ensuite laissé en contact 16 heures. Au cours de ce temps de contact on rajoute 7,5 mg de PtCl2(PhCN)2.
    A 85°C, on ajoute 2% massique de noir de carbone que l'on laisse en contact pendant 16 heures. Après retour à la température ambiante, on filtre le milieu réactionnel sur filtre carton sous pression puis on remet la masse réactionnelle dans un ballon monocol muni d'un barreau aimanté. On isole le produit par dévolatilisation à 120°C sous vide de 1 mmHg.
    Le produit ainsi isolé est déprotégé par hydrolyse à l'eau distillée (200 ml) que l'on coule sur le produit à déprotéger en 1h15 et chauffage à 90°C 16 heures. Le milieu devient blanchâtre. On élimine l'eau à 110°C sous vide de 2 mmHg pendant 4h15. On obtient alors 58,40 g d'huile hydrosilylée de structure B.
    1.4. Purification d'une huile silicone B à fonctions acide benzoïque:
    On part d'une huile pure à 92% massique avec 8% massique constitué d'oligomères non greffés provenant de l'acide allyloxybenzoïque non greffé ou d'isomères de l'acide allyloxybenzoïque. Parmi les différentes techniques de purification plusieurs sont possibles. La méthode mise en oeuvre ici est la précipitation fractionnée. Il s'agit de solubiliser l'huile greffée obtenue en 1.3 dans un alcool à chaud. Cet alcool peut être plus particulièrement du méthanol. Puis on fait précipiter le polymère par addition d'eau de pH basique. L'opération est répétée une autre fois. La troisième opération consiste à solubiliser à chaud le polymère silicone dans le méthanol puis à ajouter de l'eau à pH acide. Le polymère ainsi purifié est chauffé à 115°C sous vide de 20 mmHg afin d'éliminer l'eau ou l'alcool résiduel. Le produit est enfin mis à l'étuve à 100°C sous pression atmosphérique. On obtient un polymère de pureté supérieure à 95% en poids.
    Exemple 2 : préparation d'un précurseur - POS (C) d'un POS peroxyde selon l'invention, ce précurseur étant un polydiméthylsiloxane à extrémités triméthylsilyles et porteur de substituants fonctionnels de type -propylanhydride succinique
    Figure 00180001
    Synthèse de l'huile de silicone C à motifs anhydride succinique :
    Dans un tricol de 500 ml muni d'une agitation mécanique, d'un réfrigérant, d'une ampoule de coulée, d'une sonde de température et sous balayage d'argon, on introduit 119,53 g d'allylanhydride succinique pur à plus de 99% molaire (0,85 mole) et 44,2 mg de platine de Karstedt à 10% en masse de platine. Le milieu réactionnel est porté à 90°C sous agitation puis on coule 175,53 g, d'huile de structure A (0,66 mole de fonction SiH) en 1h25. Le milieu réactionnel est laissé en contact à 90°C sous agitation pendant 4 heures. On traite ensuite le milieu réactionnel par 2% en poids de noir de carbone à 70°C pendant 4 heures. Après retour à température ambiante, on filtre sur carton sous pression d'azote le milieu réactionnel. Après avoir placé le milieu réactionnel dans un ballon monocol muni d'un barreau aimanté, on isole le polymère silicone greffé en dévolatilisant l'oligomère en excès par chauffage à 180°C sous vide de 2 mmHg. On obtient une huile silicone de structure C et de pureté égale à 94% en poids.
    Pour purifier ce produit jusqu'à plus de 99% en poids de pureté, on a dévolatilisé le produit à l'aide d'une pompe à diffusion sous vide de 10-3 mmHg en chauffant le polymère de 120 à 160°C pendant 6 heures. On obtient alors un polymère silicone greffé propylanhydride succinique de pureté supérieure à 99% en poids. L'analyse infrarouge montre que l'anhydride n'est pas ouvert lors des traitements décrits dans les exemples.
    Exemple 3 : préparation d'un précurseur - POS (E) d'un POS peroxyde selon l'invention, ce précurseur étant un polydiméthylsiloxane à extrémités triméthylsilyles et porteur de substituants fonctionnels de type -propyl-succinimide- benzoïque
    Figure 00190001
    3.1. Préparation de silicone à fonction amine par coéquilibration :
    Dans un tricol muni d'un système de dévolatilisation, d'une agitation mécanique, d'une ampoule de coulée, d'une sonde de température et sous ciel d'argon, on introduit 50 g d'aminopropyldiméthoxyméthylsilane (0,3 mole) et on additionne en 1 heure une quantité de 27,6 g d'eau (1,5 mole). On porte à 110°C et on dévolatilise sous 11 mmHg afin de recueillir la quantité de méthanol de 19,2 g.
    Après retour à la température et en ayant remplacé le système de distillation par un réfrigérant, on introduit en plus de 35,1 g de silane hydrolysé précédemment obtenu, 30,5 g d'octaméthyltétrasiloxane (0,1 mole soit 10% en excès), 34,3 g d'une huile silicone courte avec 6 siliciums de formule M2D4 et 5,3 g de siliconate de potassium à 15% en poids de potasse (80 ppm). Après chauffage à 130°C pendant 6 heures sous stripping d'azote, on neutralise le mélange réactionnel par addition de 12,3 g d'une solution d'ester silicié d'acide phosphorique à 9 % massique d'acide phosphorique. Suite à la neutralisation, on laisse le milieu en contact pendant 30 minutes à 80°C puis on dévolatilise sous 2 mmHg à 170°C. On obtient 113,5 g d'huile silicone de structure D.
    3.2. Formation d'un silicone E à fonctions acide et imide
    Dans un ballon tricol muni d'un réfrigérant, d'une agitation mécanique, d'une ampoule de coulée, d'une sonde thermomètre, d'un système Dien Stark et sous ciel d'argon, on charge 28,8 g d'anhydride triméllique (0,15 mole), et 75 g de toluène et on coule en 1 heure 50,0 g d'huile silicone à fonction amine de structure D (0,15 mole de fonction amine). Le mélange réactionnel est laissé en contact à température ambiante pendant 1 heure puis le mélange réactionnel est porté à reflux pendant 5 heures au cours du temps on suit l'élimination de l'eau. Après retour à la température ambiante, on filtre sur carton et sous pression le mélange réactionnel. Après avoir placé ce dernier dans un ballon monocol muni d'un barreau aimanté, on dévolatilise le solvant en chauffant à 110°C sous vide de 10 mmHg. On obtient un polymère de structure E pur à 95% en poids.
    EXEMPLE 5 : OBTENTION D'UN POS PEROXYDE DANS LEQUEL LES FONCTIONS FPO (-O-O-) DES SUBSTITUANTS E SONT COMPRISES DANS DES RESTES PERACIDES CARBOXYLIQUES
    Figure 00210001
    A PARTIR DU PRECURSEUR POS SELON L'EXEMPLE 2 (RESTES ANHYDRIDES PENDANTS)
    5.1. Essai
    Dans un tube pèse-matière:
    • peser 250 mg d'huile silicone C de l'exemple 2 soit 0,615 mmole de fonctions anhydrides (4 fonctions par polymère)
    • ajouter 0,5 ml d'acétate d'éthyle (AcOEt),
    • peser 45 mg d'eau oxygénée à 70 % soit 0,926 mmole (excès 1,5 équivalent par rapport à la stochiométrie qui est de 1 H2O2 par anhydride).
    • introduire 1 goutte de KOH (1N)
    • ajouter un petit barreau magnétique
    • agiter à température ambiante pendant 1 heure.
    5.2. Traitement
    • ajouter 3 ml AcOET
    • transférer dans une petite ampoule à décanter de 50 ml
    • ajouter 3 ml d'eau permutée à 100 g/l de sulfate d'ammonium
    • agiter, laisser décanter, éliminer la phase aqueuse inférieure
    • recommencer l'opération encore 2 fois
    • récupérer la phase organique dans un bécher de 50 ml,
    • ajouter 1 g de MgSO4 anhydre
    • transférer dans un ballon taré de 50 ml, rincer 2 fois l'ampoule et MgSO4 par 1 ml d'ACOEt
    • tirer à sec au Rotavapor, bain à 35° maxi
    • tirer quelques minutes sous vide pompe, à froid (température ambiante)
    • peser le produit obtenu
    5.3. Dosage peroxydes dans l'huile silicone peroxydée
    Appareil : METROHM Dosimat 665
  • 5.3.1. Mode opératoire
    En erlen de 50 ml :
    • peser environ 250 mg d'huile peroxydée
    • ajouter :
      • 20 ml de mélange ACIDE ACETIQUE / H2O 80/20 et dissoudre
      • ou mieux 20 ml d'acide acétique pur, dissoudre, puis ajouter un peu d'eau
    • ajouter 1 spatule (1g) de NaHCO3 (inertage par CO2)
    • ajouter 1 spatule (1g) d'iodure de potassium
    • boucher et mettre à l'obscurité 20 minutes minimum.
    Transférer dans un bécher de 150 ml (forme haute) :
    • rincer avec 50 ml d'eau distillée
    • ajouter de l'acétone (maintient de la solubilité et antimousse)
    • ajouter un barreau magnétique et mettre en place, dosage de l'iode libérée par une solution de THIOSULFATE DE SODIUM 0,1 N
  • 5.3.2. Calculs
    Nbre mmoles H2O2 = Vml x CO3 x CO2 / COO x CO1
    % poids H2O2 = Nbre millimoles dosées x 34 / 1000
    1 équivalent H2O2 = 1 équivalent R-CO-O-OH
  • 5.3.3. Expression des résultats : % poids en équivalent H2O2
    Etant donné que le précurseur -POS (huile - C -) préparé dans l'exemple 2 comprend les substituants E porteurs chacun d'un anhydride, et que l'on suppose que la réaction est totale (rendement d'oxydation = 100 %), alors pour une mole d'huile (- C -), on fait réagir 4 moles d'H2O2, soit en % en poids : 1 mole huile (- C -) = 1628 g, pour 4 moles H2O2 = 136 g, soit 8,35 % poids d'H2O2.
  • 5.3.4. Résultat La teneur en peracide de l'huile C oxydée est de 6,2 %, soit une oxydation de 6,2 / 8,35 x 100 = 74 %.
  • EXEMPLE 6 OBTENTION D'UN POS PEROXYDE DANS LEQUEL LES FONCTIONS FPO (-O-O-) DES SUBSTITUANTS E SONT COMPRISES DANS DES RESTES PERACIDES CARBOXYLIQUES
    Figure 00220001
    A PARTIR DU PRECURSEUR POS SELON L'EXEMPLE 2 (RESTES ANHYDRIDES PENDANTS)
    En ballon de 100 ml, charger :
    • 15 g d'huile C de l'exemple 2 (36,9 mmoles anhydride)
    • 30 g d'acétate d'éthyle
    • 2,7 g d'eau oxygénée 0 70 % (55,6 mmoles (x 1,5))
    • 0,6 ml de KOH N (0,6 mmole)
    Mettre un barreau magnétique et agiter. L'exothermie est immédiate, la température atteint 31°C.
    Placer un cristallisoir d'eau froide pour ramener à température ambiante
    Maintenir 1 heure
    Transvaser en ampoule à décanter de 100 ml, rincer 2 fois le ballon par 10 ml d'AcOEt
    Procéder à 8 lavages par 20 ml d'eau permutée à 100 g/l de sulfate d'ammo : la disparition de l'eau oxygénée dans les phases aqueuses est suivie par papier indicateur des peroxydes.
    Sécher sur MgSO4 anhydre
    Filtrer sur verre fritté
    Transvaser dans un ballon de 100 ml, rincer l'ampoule et le fritté
    Tirer à sec au rotovapor, bain à 35° maxi.
    Sécher sous vide pompe pendant 3 heures à température ambiante.
    Poids obtenu : 15,4 g
    Teneur en peracides : 5,46 % (exprimé en H2O2)
    Oxydation : 65 % EXEMPLE 7 : ETUDE DE LA STABILITE AU STOCKAGE DE POS PEROXYDES SELON L'INVENTION
    Le POS utilisé est préparé selon la méthodologie donné à l'exemple 6.
    Le produit est stocké seché à 5° C et 25° C.
    On prélève des échantillons au cours du temps et en dose les peroxydes comme décrit supra en 5.3.
  • 7.1. Stockage à 5° C de 0 à 30 jours
    Les résultats sont donnés par le tableau 1 ci-dessous.
    Durée (j) % Peracides % oxydation
    0 5,72 100,0
    2 5,48 95,8
    6 5,08 88,8
    13 3,82 66,8
    22 2,90 50,7
    30 1,70 30,0
  • 7.2. Stockage à 5 °C, 0, 11 et 22 jours
    Les résultats sont donnés par le tableau 2 ci-dessous
    Durée jours % peracides 5° C % oxydation 5°C
    0 5,46 100,0
    11 4,24 74,1
    22 2,85 49,8
  • EXEMPLE 8 : OBTENTION D'UN POS PEROXYDE DANS LEQUEL LES FONCTIONS FPO (-O-O-) DES SUBSTITUANTS E SONT COMPRISES DANS DES RESTES PERACIDES CARBOXYLIQUES
    Figure 00240001
    A PARTIR DU PRECURSEUR POS SELON L'EXEMPLE 2 (RESTES ANHYDRIDES PENDANTS)
    On reproduit l'exemple 5 à la différence près que l'on n'utilise pas de KOH.
    Résultats :
    • Teneur en équivalent H2O2 = 0,59 %
    • oxydation : 7 %
    EXEMPLE 9 OBTENTION D'UN POS PEROXYDE DANS LEQUEL LES FONCTIONS FPO (-O-O-) DES SUBSTITUANTS E SONT COMPRISES DANS DES RESTES PERACIDES CARBOXYLIQUES
    Figure 00240002
    A PARTIR DU PRECURSEUR POS SELON L'EXEMPLE 2 (RESTES ANHYDRIDES PENDANTS)
    On reproduit l'exemple 6 à la différence près que l'on remplace la goutte de KOH par une goutte d'H3PO4 (85 % dans l'eau).
    Résultats :
    • Teneur en équivalent H2O2 = 1,03 %
    • oxydation : 12 %
    EXEMPLE 10 : OBTENTION D'UN POS PEROXYDE DANS LEQUEL LES FONCTIONS FPO (-O-O-) DES SUBSTITUANTS E SONT COMPRISES DANS DES RESTES PERACIDES CARBOXYLIQUES
    Figure 00250001
    A PARTIR DU PRECURSEUR POS SELON L'EXEMPLE 1 (RESTES BENZOÏQUES PENDANTS)
  • 10.1 Essai En tube pèse-matière :
    • peser 250 mg d'huile silicone B de l'exemple 1, soit 0,578 mmoles de fonctions acides (4 fonctions par polymère)
    • ajouter 0,5 ml d'acétate d'éthyle (AcOEt),
    • peser 84 mg d'eau oxygénée à 70 % soit 1,729 mmoles (excès 3 équivalents par rapport à la stochiométrie qui est de 1 H2O2 par acide).
    • 1 goutte H2SO4 (95 % dans l'eau)
    • ajouter un petit barreau magnétique
    • agiter à température ambiante pendant 2 heures, en présence d'un excès MgSO4 anhydre (> 100 mg).
  • 10.2. Traitement
    • ajouter 3 ml AcOET
    • transférer dans une petite ampoule à décanter de 50 ml
    • ajouter 3 ml d'eau permutée à 100 g/l de sulfate d'ammonium
    • agiter, laisser décanter, éliminer la phase aqueuse inférieure
    • recommencer l'opération encore 2 fois
    • récupérer la phase organique dans un bêcher de 50 ml,
    • ajouter 1 g de MgSO4 anhydre
    • transférer dans un ballon taré de 50 ml, rincer 2 fois l'ampoule et MgSO4 par 1 ml d'ACOEt
    • tirer à sec au Rotavapor, bain à 35° maxi
    • tirer quelques minutes sous vide pompe, à froid (température ambiante)
    • peser le produit obtenu
  • 10.3 Résultat
    • Teneur en peracide : 0,66 %
    • oxydation : 9 %
  • EXEMPLE 11 : EVALUATION DU POUVOIR BLANCHISSANT DU POS PEROXYDE DE L'EXEMPLE 6 11. 1 Méthode en développement de détermination du pouvoir blanchissant sur de la poudre d'hydroxyapatite HAP
  • 11. 1. 1. Principe
    • Mesure du pouvoir blanchissant de composés oxydants, sur une poudre d'hydroxyapatite HAP, préalablement encrassée par une solution chaude de thé.
    • Pouvoir blanchissant quantifié par mesures colorimétriques effectuées sur l'appareil Minolta CR-241.
  • 11.1.2.Appareillage
  • A - Petits ustensiles
    • Papier filtre, « filtration rapide » n°41 de Whatman pour la filtration de la solution de thé et pour la récupération de la poudre encrassée
    • Papier filtre.GF/C diamètre de 47 mm de Whatman utilisé pour la récupération de la poudre blanchie
    • Büchner (diamètre de 100 ou 160 mm), fiole à vide de 2 L, pompe à vide ou trompe à eau avec manomètre différentiel, joints en caoutchouc
    • Pots en polystyrène cristal (transparent), capacité de - 40 ml
  • B - Appareils
    • Colorimètre Minolta CR-241
    • Agitateur va-et-vient Promax 2020
    • Etuve (50 à 100 ° C)
  • C - Produits
    • Eau désionisée
    • Thé Lipton Yellow, qualité n°1
    • Poudre d'hydroxyapatite HAP BIO-RAD
    • Solution ou oxydante
  • 11.1.3. Mode opératoire
  • A - Encrassement de la poudre HAP
  • a - Mesure de la blancheur initiale de la poudre
    Une mesure de la blancheur initiale de la poudre HAP est effectuée. Elle s'effectue sur l'appareil Minolta CR-241. Trois mesures sont faites pour obtenir une valeur moyenne de Lo, ao, bo.
  • b -Décoction du thé, filtration
    Dans un bêcher de 1 000 ml, 500 ml d'eau désionisée et 10 sachets de thé découpés sont introduits (C= ∼ 40g/l) et portés à ∼ 80°C sous agitation mécanique (200 tr/min) pendant 90 minutes.
    L'agitation et la puissance de chauffe sont arrêtés. Une fois le milieu refroidi à ∼ 40°C (durée nécessaire = ∼ 90 min), il est filtré sous vide.
    Le filtrat (= solution encrassante de thé) est récupéré. Son volume est réajusté à 500 ml avec de l'eau désionisée.
  • c - L'encrassement
    7,5 g de poudre HAP sont introduits dans la solution de thé.
    L'ensemble est à nouveau porté à ∼ 80°C, sous agitation pendant 45 minutes.
    Le chauffage et l'agitation sont arrêtés, le milieu refroidit à l'air ambiant (jusqu'à ~ 40°C) avant d'être filtré sous vide.
    La poudre est lavée avec trois fois 20 ml d'eau désionisée chaude jusqu'à ce que le filtrat soit incolore.
    Le filtre et la poudre sont placés à l'étuve [T= 50-100°C] jusqu'à évaporation complète de l'eau.
    La poudre récupérée sous forme d'agglomérats est broyée à l'aide d'un mortier et d'un pilon.
    Sa nouvelle blancheur est mesurée (Ls, as, bs) au Minolta CR-241.
  • B - Blanchiment de la poudre HA P encrassée
    6.5 g de solution oxydante (contenant l'équivalent de 0.3 % en H2O2) et 50 mg de poudre HAP encrassée sont transvasés dans un flacon en polystyrène cristal de contenance - 40 ml.
    Le tout est placé sur l'agitateur va-et-vient PROMAX 2020 pendant le temps souhaité (15 min, 30 min, 1h, 2h, ...) à raison de 250 allers-retours.
    Le milieu est ensuite dilué par addition de 20 ml d'éthanol avant d'être filtré.
    La poudre est lavée avec trois fois 30 ml d'éthanol.
    L'ensemble filtre + poudre blanchie est séché à l'air libre sous hotte.
    La nouvelle blancheur de la poudre blanchie peut être mesurée (Lc), et le pouvoir blanchissant de la solution oxydante peut être calculé.
  • 11.1.4 Calculs
    Le calcul du pouvoir blanchissant du composé oxydant s'effectue à partir de la valeur L donnée par le colorimètre, et obtenue après les différents traitements de la poudre HAP.
    L* représente la clarté de l'échantillon, ses valeurs s'étendent entre 0 et 100.
    On définit ainsi les différentes valeurs :
    • Lo, clarté initiale avant encrassement.
    • Ls, clarté après encrassement.
    • Lc, clarté après blanchiment.
    Le pouvoir blanchissant est calculé comme suit :
  • ¤ Pouvoir blanchissant : Pb = Lc - Ls Lo - Ls x 100
  • 11.2 Mesure de la blancheur Lc obtenue dans le test décrit en 11.1 supra, avec le POS peroxydé de l'exemple 6
  • 11.2.1. Le blanchiment de la poudre HAP selon le point 11.1.3 B supra est effectué comme suit :
    6,5 g de préparation oxydante contenant 300 mg de POS peroxydé selon l'exemple 6 dispersés dans 6,2 g d'eau inversée par agitation manuelle.
    et 50 mg de poudre HAP encrassée sont transvasés dans un flacon en polystyrène cristal de contenance 40 mg.
    On procède ensuite comme indiqué au point 11.1.3. B.
  • 11.2.2 Résultats
    Temps (min) Lc avec témoin eau Pb Lc avec POS peroxydé Pb
    0 50 0 50 0
    15 49 0 69 45
    60 49 0 69 45
    120 49 0 70 48
  • Claims (12)

    1. Polyorganosiloxanes (POS) comprenant des motifs siloxaniques de formule (I) suivante : RaEbGcSiO 4 - (a+b+c)2
      dans laquelle :
      a+b+c=0à3
      a, b, c = 0 à 3
      R correspond à un ou plusieurs radicaux identiques ou différents, R étant choisi parmi les groupements monovalents hydrocarbonés, de préférence parmi les alkyles linéaires, ramifiés et/ou cycliques et/ou les aryles, et plus préférentiellement encore parmi les alkyles linéaires ou ramifiés en C1-C4 et les groupes phényle, xylyle et tolyle ;
      E correspond à un ou plusieurs substituants fonctionnels identiques ou différents entre eux, monovalents, choisis parmi les groupements hydrocarbonés (cyclo)aliphatiques et/ou aromatiques et/ou hétérocycliques et porteurs d'une ou plusieurs fonctions peroxyde d'acyle Fpo de formule
      Figure 00290001
      avec X correspondant à H, à un halogène de préférence le chlore ou à un cation permettant de former un sel avec l'anion peroxyde d'acyle et choisi de préférence parmi les éléments des colonnes Ia et IIA de la classification périodique, et comportant éventuellement chacun une ou plusieurs fonctions Fstab stabilisantes de Fpo, identiques ou différentes entre elles et choisies parmi les fonctions susceptibles de se lier par l'intermédiaire de liaisons faibles avec les fonctions Fpo ;
      G correspond à un ou plusieurs substituants fonctionnels identiques ou différents entre eux et comportant chacun une ou plusieurs fonctions Fstab stabilisantes de Fpo, identiques ou différentes entre elles et choisies parmi les fonctions susceptibles de se lier par l'intermédiaire de liaisons faibles avec les fonctions Fpo ;
      avec les conditions selon lesquelles :
      . (i) . la concentration en fonctions [Fpo] exprimée par le ratio nombre Fpo nombre total d'atomes de silicium dans le POS est définie comme suit : Δ 0 < [Fpo] Δ de préférence 0,01 ≤ [Fpo] ≤ 1,0 Δ et plus préférentiellement encore 0,1 ≤ [Fpo] ≤ 0,6.
      . (ii). la concentration en % molaire en motifs siloxaniques T (a + b + c = 1) et/ou Q (a + b + c = 0) est définie comme suit : Δ 0 ≤ [T et/ou Q] ≤ 20 Δ de préférence 0 ≤ [T et/ou Q] ≤ 10 Δ et plus préférentiellement encore, 0 ≤ [T et/ou Q] ≤ 8.
    2. Polyorganosiloxanes selon la revendication 1 caractérises en ce que, dans le ou les substituants G de la formule (I) les Fstab correspondent à des fonctions pouvant générer des liaisons faibles (liaisons hydrogène) avec Fpo, et sélectionnées dans le groupe comprenant :
      les motifs fonctionnels comportant de l'azote et/ou de l'oxygène et/ou du fluor, et/ou du soufre et/ou du phosphore ; les motifs carboxyliques, carboxylates, amides, imides, sulfonamides, hydroxyles, alcoxyles, amines ou organo-fluorés, étant préférés ;
      les motifs cationiques, de préférence ceux comprenant un ou plusieurs ammoniums quaternaires ;
      les motifs chélatants comportant une ou plusieurs fonctions éther et/ou une ou plusieurs fonctions amines, et/ou les motifs chélatants phosphonates et/ou sulfonates.
    3. Polyorganosiloxanes selon l'une quelconque des revendications 1 à 2, caractérisés en ce qu'ils répondent à la formule (II) donnée ci-après :
      Figure 00310001
      dans laquelle :
      R1, R3 représentant indépendamment un hydrogène, un hydroxyle
      ou un reste monovalent répondant à la même définition que celle donnée pour R supra ;
      R2 représentent indépendamment l'hydrogène, un hydroxyle ou un reste monovalent répondant à la même définition que celle donnée pour R supra ;
         2 ≤ m + n + o ≤ 300
      de préférence   3 ≤ m + n + o ≤ 50
      et plus préférentiellement encore   5 ≤ m + n + o ≤ 20
      0   ≤ m ≤ 200
      de préférence   1 ≤ m ≤ 100
      et plus préférentiellement encore   1 ≤ m ≤ 10
         0 ≤ n ≤ 50
      de préférence   1 ≤ n ≤ 10
      et plus préférentiellement encore   2 ≤ n ≤ 4
         0 ≤ o ≤ 50
      de préférence   1 ≤ o ≤ 10
      et plus préférentiellement encore   2 ≤ o ≤ 4.
    4. Polyorganosiloxanes selon la revendication, 3, caractérisés en ce que :
      Δ R1, R3 = alkyle en C1-C3, de préférence - CH3
      Δ R2 = alkyle en C1-C3, de préférence - CH3
      Δ le ou les substituants fonctionnels E, comprennent à la fois des fonctions Fpo et Fstab.
    5. Polyorganosiloxanes selon l'une quelconque des revendications précédentes caractérisés en ce que E comprend une fonction peracide carboxylique Fpo et une fonction acide carboxylique Fstab.
    6. Procédé de préparation des POS selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il consiste essentiellement à oxyder des précurseurs polysiloxaniques desdits POS, à l'aide d'au moins un oxydant de préférence choisi dans le groupe comprenant :
         H2O2, O2, O3 et leurs mélanges,
         ces précurseurs polysiloxaniques se distingant des polyorganosiloxanes (POS) en ce qu'ils comportent une ou plusieurs fonctions F'po précurseurs de Fpo et constituées :
      par des restes carboxyles :
      Figure 00320001
      avec X' répondant à la même définition que celle donnée pour X dans la revendication 1 ;
      et/ou par des restes anhydrides d'acide
      Figure 00330001
    7. Procédé selon la revendication 6, caractérisé en ce que les précurseurs polyorganosiloxaniques sélectionnés sont :
      porteurs de fonctions F'po anhydrides, l'oxydation étant effectuée à l'aide d'H2O2 en présence d'un catalyseur de type base forte, de préférence la potasse ;
      et/ou porteurs de fonctions F'po carboxyliques - de préférence benzoyles-, l'oxydation étant effectuée à l'aide d'H2O2 en présence d'un catalyseur de type acide fort.
    8. Procédé selon la revendication 17, caractérisé en ce que les précurseurs polyorganosiloxaniques sont porteurs de fonctions F'po anhydride succinique reliées aux atomes de silicium par une rotule -(CH2)3-.
    9. Procédé selon l'une quelconque des revendications 6 à 8, caractérisé en ce que l'on met en oeuvre des précurseurs - POS de pureté molaire ≥ 90 %, de préférence ≥ 95 %.
    10. Utilisation des polyorganosiloxanes (POS) faisant l'objet de l'une quelconque des revendications 1 à 8, ou obtenus selon le procédé faisant l'objet de l'une quelconqus des revendications 9 à 12, dans une composition dentaire, comme agent pour le blanchiment des dents.
    11. Composition dentaire - en particulier dentifrice - caractérisée en ce qu'elle comprend au moins un polyorganosiloxane (POS) faisant l'objet de l'une quelconque des revendications 1 à 5, ou obtenu selon le procédé faisant l'objet de l'une quelconque des revendications 6 à 9, à titre d'agent de blanchiment.
    12. Composition dentaire selon la revendication 11, caractérisée en ce qu'elle comprend :
      de 0,1 à 40 % en poids d'au moins un polyorganosiloxane (POS)
      de 5 à 40% en poids d'au moins un agent polissant
      et de 0,005 à 2% en poids d'au moins un composé fluoré.
    EP99973300A 1998-12-09 1999-12-01 Polyorganosiloxanes (pos) peroxydes, l'un de leurs procedes de preparation et leur utilisation a titre d'agent de blanchiment dans des compositions dentaires Expired - Lifetime EP1149123B1 (fr)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    FR9815715A FR2787114B1 (fr) 1998-12-09 1998-12-09 Polyorganosiloxanes (pos) peroxydes, l'un de leurs procedes de preparation et leurs utilisations notamment a titre d'agent de blanchiment dans des compositions dentaires
    FR9815715 1998-12-09
    PCT/FR1999/002984 WO2000034360A1 (fr) 1998-12-09 1999-12-01 Polyorganosiloxanes (pos) peroxydes, l'un de leurs procedes de preparation et leurs utilisations notamment a titre d'agent de blanchiment dans des compositions dentaires

    Publications (2)

    Publication Number Publication Date
    EP1149123A1 EP1149123A1 (fr) 2001-10-31
    EP1149123B1 true EP1149123B1 (fr) 2004-06-09

    Family

    ID=9533907

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99973300A Expired - Lifetime EP1149123B1 (fr) 1998-12-09 1999-12-01 Polyorganosiloxanes (pos) peroxydes, l'un de leurs procedes de preparation et leur utilisation a titre d'agent de blanchiment dans des compositions dentaires

    Country Status (8)

    Country Link
    US (2) US6841645B1 (fr)
    EP (1) EP1149123B1 (fr)
    AT (1) ATE268793T1 (fr)
    AU (1) AU1393300A (fr)
    DE (1) DE69917942T2 (fr)
    ES (1) ES2223196T3 (fr)
    FR (1) FR2787114B1 (fr)
    WO (1) WO2000034360A1 (fr)

    Families Citing this family (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2787114B1 (fr) * 1998-12-09 2001-02-16 Rhodia Chimie Sa Polyorganosiloxanes (pos) peroxydes, l'un de leurs procedes de preparation et leurs utilisations notamment a titre d'agent de blanchiment dans des compositions dentaires
    DE19860364C2 (de) * 1998-12-24 2001-12-13 3M Espe Ag Polymerisierbare Dentalmassen auf der Basis von zur Aushärtung befähigten Siloxanverbindungen, deren Verwendung und Herstellung
    US11054418B2 (en) * 2016-08-22 2021-07-06 Suzhou Sj Biomaterials, Ltd. Co. Solid-phase carrier capable of improving detection sensitivity, and detection component

    Family Cites Families (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2963501A (en) * 1959-04-06 1960-12-06 Dow Corning Organosilyl peroxides
    US3726943A (en) * 1971-08-12 1973-04-10 Union Carbide Corp Ethylenically unsaturated monomer polymerization with silyl acyl peroxides and acyl peroxy polysiloxanes
    JPH0617479B2 (ja) * 1986-08-28 1994-03-09 日本油脂株式会社 ジメチルシロキサン系ブロツク共重合体の製造方法
    FR2787114B1 (fr) * 1998-12-09 2001-02-16 Rhodia Chimie Sa Polyorganosiloxanes (pos) peroxydes, l'un de leurs procedes de preparation et leurs utilisations notamment a titre d'agent de blanchiment dans des compositions dentaires

    Also Published As

    Publication number Publication date
    EP1149123A1 (fr) 2001-10-31
    AU1393300A (en) 2000-06-26
    WO2000034360A1 (fr) 2000-06-15
    FR2787114A1 (fr) 2000-06-16
    ATE268793T1 (de) 2004-06-15
    DE69917942T2 (de) 2005-06-30
    DE69917942D1 (de) 2004-07-15
    US20050003995A1 (en) 2005-01-06
    FR2787114B1 (fr) 2001-02-16
    US6841645B1 (en) 2005-01-11
    ES2223196T3 (es) 2005-02-16

    Similar Documents

    Publication Publication Date Title
    EP0768997B1 (fr) Derives terpeniques polyalcoxyles et compositions en contenant
    WO1993001791A1 (fr) Melange azeotrope de thioglycolate d&#39;hydroxy-2 propyle et de thioglycolate d&#39;hydroxy-2 methyl-1 ethyle, son procede d&#39;obtention et son utilisation dans un procede de deformation permanente des cheveux
    FR2459043A1 (fr) Composition a base d&#39;un polycarboxylate complexe de magnesium pour combattre le tartre dentaire
    CZ345097A3 (cs) Prostředky na čištění zubů
    AU2018384632B2 (en) Oral care compositions comprising phosphonate and anionic group containing polymers
    EP0396460B1 (fr) Silice pour compositions dentifrices compatible, notamment avec les cations métalliques
    FR2830442A1 (fr) Utilisation d&#39;un compose de polyguanidine pour le traitement ou la mise en forme des cheveux, notamment le defrisage ou la permanente
    FR2700118A1 (fr) Composition à usage buccal contre la plaque dentaire et son procédé d&#39;utilisation.
    FR2515513A1 (fr) Dentifrice
    EP1149123B1 (fr) Polyorganosiloxanes (pos) peroxydes, l&#39;un de leurs procedes de preparation et leur utilisation a titre d&#39;agent de blanchiment dans des compositions dentaires
    CZ190997A3 (en) Preparations based on dimethicone derivatives providing aroma and acting as cooling or antimicrobial preparation
    FR2497207A1 (fr) Composition antigingivite, son procede de preparation et son application
    CA3186302C (fr) Complexe de gadolinium et d&#39;un ligand chelateur derive de pcta diastereoisomeriquement enrichi et procede de synthese
    JPH10511093A (ja) シリコーン組成物
    JP3956238B2 (ja) N―分枝鎖アルキル置換メルカプトアセトアミドに基づく毛髪のパーマネント加工剤及び加工法、並びに、その製造方法
    FR2578420A1 (fr) Composition buccale antitartre a base d&#39;acide phosphonoformique, procede pour sa preparation et son utilisation
    CA2251640A1 (fr) Composition dentifrice comprenant un abrasif ou additif a base de silice et de carbonate de calcium, compatible avec le fluor
    CA1155607A (fr) Compositions contenant un mono- ou polyalkylarylsulfonate de metal alcalin et l&#39;hydroperoxyde correspondant,procede pour leur preparation et compositions detergentes les contenant
    EP1559401A1 (fr) Utilisation d&#39;une composition cosmétique obtenue par percolation de vapeur d&#39;eau au travers d&#39;agents réducteurs et/ou oxydants pour le traitement des cheveux
    FR2646601A1 (fr) Dentifrice et compositions orales utiles pour inhiber les calculs dentaires
    FR2889447A1 (fr) Utilisation d&#39;un materiau mixte mineral/organique comme agent de protection contre les radiations ultraviolettes
    JP5235050B2 (ja) 毛髪改質剤
    EP0396459B1 (fr) Silice pour compositions dentifrices compatible notamment avec les composés organiques aminés
    BE893649A (fr) Dentifrice
    CA2096909A1 (fr) Utilisation de silico-aluminate amorphe en tant que capteurs de precipites calciques

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20010516

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17Q First examination report despatched

    Effective date: 20011112

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    RTI1 Title (correction)

    Free format text: PEROXIDISED POLYORGANOSILOXANES (POS), ONE OF THE METHODS FOR PREPARING THEM AND THEIR USE AS BLEACHING AGENT IN DENTAL C

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040609

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040609

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040609

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040609

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 69917942

    Country of ref document: DE

    Date of ref document: 20040715

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: FRENCH

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040909

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040909

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040909

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040915

    LTIE Lt: invalidation of european patent or patent extension

    Effective date: 20040609

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041201

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041231

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041231

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041231

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041231

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2223196

    Country of ref document: ES

    Kind code of ref document: T3

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20050310

    BERE Be: lapsed

    Owner name: *RHODIA CHIMIE

    Effective date: 20041231

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    BERE Be: lapsed

    Owner name: *RHODIA CHIMIE

    Effective date: 20041231

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041109

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20081218

    Year of fee payment: 10

    Ref country code: AT

    Payment date: 20081211

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20081224

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20081212

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20081127

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20081126

    Year of fee payment: 10

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20091201

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091201

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20100831

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091231

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100701

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091201

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091201

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20110411

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110329

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091202