EP1148298B1 - Control method of a burner - Google Patents

Control method of a burner Download PDF

Info

Publication number
EP1148298B1
EP1148298B1 EP20010401000 EP01401000A EP1148298B1 EP 1148298 B1 EP1148298 B1 EP 1148298B1 EP 20010401000 EP20010401000 EP 20010401000 EP 01401000 A EP01401000 A EP 01401000A EP 1148298 B1 EP1148298 B1 EP 1148298B1
Authority
EP
European Patent Office
Prior art keywords
burner
control method
frequency
standard
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20010401000
Other languages
German (de)
French (fr)
Other versions
EP1148298A1 (en
Inventor
Jean-Bernard Michel
Olivier Chetelat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre Suisse dElectronique et Microtechnique SA CSEM
Original Assignee
CSEMCENTRE SUISSE D'ELECTRONIQUE ET DEMICROTECHNIQUE SARECHERCHE ET DEVELOPPEMENT
Centre Suisse dElectronique et Microtechnique SA CSEM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CSEMCENTRE SUISSE D'ELECTRONIQUE ET DEMICROTECHNIQUE SARECHERCHE ET DEVELOPPEMENT, Centre Suisse dElectronique et Microtechnique SA CSEM filed Critical CSEMCENTRE SUISSE D'ELECTRONIQUE ET DEMICROTECHNIQUE SARECHERCHE ET DEVELOPPEMENT
Publication of EP1148298A1 publication Critical patent/EP1148298A1/en
Application granted granted Critical
Publication of EP1148298B1 publication Critical patent/EP1148298B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means

Definitions

  • the present invention relates to a method for controlling a burner using a fuel which by contacting with an oxidizing gas allows to maintain a flame producing thermal energy according to the preamble of claim 1.
  • a method for controlling a burner using a fuel which by contacting with an oxidizing gas allows to maintain a flame producing thermal energy according to the preamble of claim 1.
  • Such a method is known from US-A-5798946.
  • the invention relates to burners of this type, both industrial (central thermal, industrial installations etc.) than domestic (central heating, example).
  • a now essential concern of the designers of such burners consists of optimizing combustion, in particular to reduce consumption and to limit the emission of polluting substances as much as possible the atmosphere.
  • US 5,332,386 describes a method for controlling the combustion conditions a burner which consists in monitoring the flame by means of a radiation, either to observe its presence, or by examining its stability. This process is based in particular on the observation that the study of the frequency of fluctuations in the radiation produced by the flame provides information concerning the stability of the flame and the emission of pollutants.
  • the signal from the optical sensor is digitized and the Fourier transform is calculated of the result obtained.
  • the calculation of the Fourier transform is limited in frequency with a maximum of 500 Hz.
  • the object of the invention is to provide a method for controlling a burner which can be applied without distinction to a very wide variety of burners, in particular of very diverse thermal powers.
  • the subject of the invention is therefore a method for controlling a burner having the features of claim 1.
  • the method of the invention takes into account all of the frequency spectrum representative of the fluctuations of the flame radiation, it becomes possible to make it adaptable to practically all types of burners, without the need to make a choice of the frequency band to be analyzed to obtain a usable signal to act on the operation of the burner.
  • Burner B can be of any known type consuming fuel any. It is associated with an adjustment device R which makes it possible to control it. a number of parameters, such as the fuel delivery rate, the oxidant gas flow, flame dimensions etc.
  • the adjustment includes actuators A1 to An each capable of acting on one of these parameters, under the action of a control signal which is applied to the actuator respective thanks to the implementation of the method of the invention. Devices setting of this type are known per se and therefore do not require description special.
  • a probe S is also associated with burner B. It is a sensor for radiation whose sensitivity range is chosen according to the nature of the flame F. For example, for flames burning natural gas or light fuel oil (blue color), it turns out that an ultraviolet sensor is the most appropriate. GaAS or GaP type photodiodes may then be suitable. For some yellow flames (various liquid fuels or solid fuels), we prefer to use an infrared radiation sensor, such as a photodiode at silicon.
  • the S probe is preferably placed behind the burner in the gas stream oxidizer which thus maintains the temperature at an acceptable value. She is connected to an amplifier 1. The output of the latter is connected to a bandpass filter 2 with cut-off frequencies which can be located at 3Hz and 5 kHz, for example.
  • the output Va of the filter 2 is represented in FIG. 2, by a graph in function of time t for a given burner B.
  • This signal includes a component alternative with an excursion f (of +/- 5 Volts for example) on either side of a continuous component which can be zero level, for example.
  • the signal reflects the fluctuations in the radiation of flame F.
  • the output of filter 2 is connected to an analog / digital converter 3. This the latter is designed to sample the signal from filter 2 at a frequency predetermined sampling rate which is preferably twice the frequency of upper cutoff of filter 2 (here a little more than 10 kHz for example), and for thus transform each sample into a numerical value coded for example on 8 bits.
  • the digital samples are applied to a buffer circuit 4 of a storage capacity such that it keeps a sliding window of spreading samples over a predetermined time interval of 5 seconds, for example.
  • the content of buffer circuit 4 can, at a given instant, be that shown in FIG. 3, the graph shows as a function of time the numerical values Vn of the samples appearing in the sliding window.
  • the signal stored in the buffer circuit 4 is then processed in a calculator 5. This extracts the samples from buffer 4 by compound groups each of a predetermined number n of samples, each sliding window comprising k groups of n samples. In the example described, each group k contains 2048 samples taken over a total duration of 0.2 seconds.
  • the computer 5 is shown in more detail in FIG. 4. It analyzes statistically each group of samples to establish a spectral density depending on the frequency. As we will see later, this spectral density is representative of the fluctuations of the flame radiation and allows to generate, by comparison with standard spectral density signals in frequency function, two types of signals. One of these types of signals is a signal by all or nothing appearing on an output 6 (FIG. 1) of the computer 5 and applied to a warning circuit 7.
  • the signal at output 6 represents qualitatively the operating state of burner B. For example, one of its levels may indicate correct operation and the other may indicate operation degraded burner requiring the intervention of a maintenance technician.
  • the computer 5 is also capable of generating on an output 8 at least a parameter correction signal which allows via a unit 9 amplification and adaptation, to control at least one of the actuators A1 to An in order to be able to quantitatively readjust at least one operating parameter of burner B mentioned above.
  • the computer 5 (FIG. 4) comprises a converter 12 making it possible to convert each group k of n samples expressed as a function of time (x k (t)) into a group of n samples expressed as a function of the frequency (x k (f) ).
  • This conversion can be carried out by various methods known per se, the preferred method being the calculation of the Fourier transform of each group of samples.
  • the output of buffer 4 is connected to a group of n inputs 12a of the converter 12 which provides coordinates on a group of n outputs 12b Fourier transform complexes with frequency distribution.
  • the graphical representation of the module of this Fourier transform is called "periodogram” or "power spectral density” and it constitutes a unequivocal representation of the radiation characteristics of the flame of the burner B.
  • the module is obtained in a square elevation block 13 which adds up the squares of the real and imaginary parts of the function X k (f). This operation is therefore executed n times, n being 2048 in the case considered.
  • the signals from the square elevation block 13 are applied to a averaging set 14.
  • This set 14 is designed to calculate the statistical mean of the frequencies present in a predetermined number m of signal ranges from block 13.
  • the scale of these frequency ranges is preferably logarithmic in order to be able to have the same precision for high frequencies and low frequencies frequencies in the downstream statistical calculation.
  • this scale presents a dyadic progression.
  • m Frequency range Number of outputs of block 13 Block of assembly 14 1 9.8 to 19.5 32 14a 2 19.5 to 39.1 32 14b 3 39.1 to 78.1 64 14c 4 78.1 to 156.3 128 14d 5 156.3 to 312.5 256 14th 6 312.5 to 625 512 14f 7 625 to 1250 1024 14g
  • the set includes seven averaging blocks 14a to 14g whose inputs are distributed according to the table above. It turned out that such a number of beaches processed provides sufficient resolution to establish a reliable signature of burner B.
  • FIG. 5 represents, as a function of the frequency, for the practical assembly of the table above, the signals which can enter and leave the calculation blocks 14a to 14g, the curve [X k ] 2 being the envelope curve of the samples of frequency at the input and the curve Y m shown in dotted lines showing the average steps of the seven ranges of blocks 14a to 14g.
  • the curve Y m is called "online signature" of the burner B considered.
  • each averaging block 14a to 14g thus generates a average value over the frequency range considered.
  • the seven values are processed in parallel in the downstream parts of the 5 and run in parallel on multiple conductors, the diagram of the figure 4 symbolizing each time the seven conductors by a single line that we will call "channel" afterwards.
  • the mean values Y m can be transformed by their logarithm or by any other monotonic function in a logarithmic conversion block 15 which follows the averaging set 14. In the case where their logarithm is calculated, one can thus increase the sensitivity of the measurement in the high frequencies compared to the low frequencies. The operation performed by block 15 is useless when using the wavelet transform which already provides a logarithmic frequency scale.
  • the computer 5 also comprises means for, on the basis of the individual averages per section of the time window examined, successively establishing the general average over all the N sections of the time window examined and this for each channel.
  • This establishment of general average is carried out in a filtering block 16 which implements the following expression: in which ⁇ m is the general average of the channel considered, N is the number of sections, m the number of the frequency range and i the current index.
  • the computer 5 also includes means for calculating, for each channel, the standard deviation of the individual averages successively obtained from blocks 14a to 14g or from block 15 according to the following expression: in which ⁇ 2 / m expresses the variance.
  • the computer comprises a block 17 of squared for the calculation of the value Z 2 / m , the result being processed in a low-pass filter 18.
  • the output of the latter is applied, channel by channel, to adders 19 (one per channel), the other input of which receives the values squared of the general means ⁇ m from a block of elevation squared 20.
  • the process of the invention also consists in correlating the results of the statistical calculations on the signature in line of burner B with results of statistical calculations made on several burner B signatures recorded under standard test conditions.
  • This or these signatures are hereinafter called "standard signatures". They are established for different thermal loads of the burner.
  • Standard signatures can be measured in different ways depending on that burner B is a series product (central heating burners for example) with a power lower than about 300 kW, or a burner of an installation significant thermal (power plant for example) with power greater than this value.
  • burner B is a series product (central heating burners for example) with a power lower than about 300 kW, or a burner of an installation significant thermal (power plant for example) with power greater than this value.
  • the signatures can be collected in situ during the commissioning of the thermal installation. It can then be beneficial to have more standard signatures depending on the load by example on a whole range of powers from 10% to 100% with a step of 10%, or even lower.
  • Standard signatures obtained in the same way as described above with regard to online signatures are subjected to the same statistical calculations and will therefore give rise to the establishment of the characteristic table deposited in memory 11 and composed on the one hand according to of various loads, of series of seven general reference means ⁇ ref and on the other hand of series of seven values representing reference variances ⁇ 2 / ref .
  • the two sections of the characteristic table 11 are indicated by blocks 11a and 11b, respectively.
  • the comparison variance signals ⁇ 2 of the seven channels are applied to two square root extraction blocks 23 and 24 which calculate the standard deviations ⁇ in parallel for each channel.
  • the corresponding values are then multiplied, in respective multipliers 25 and 26, by a confidence factor + ⁇ respectively - ⁇ , for example equal to three, in order to establish a "confidence interval" respectively on either side of each comparison average.
  • the confidence factor is preferably chosen between 1 and 4. If it is equal to three, the degree of confidence will be equal to 99.7%.
  • the confidence interval is here equal to 2. ⁇ . ⁇ , ⁇ being the standard deviation of the range fx considered.
  • curves A, B and C should each have only seven values.
  • the values defining the confidence interval are combined not with the general average values, but with the comparison average values.
  • the outputs of the multipliers 25 and 26 are summed, channel by channel, in adders 27 and 28, to the values of comparison average ⁇ of these channels.
  • FIG. 7 illustrates by a curve drawn continuously over the whole range of frequencies concerned, the mean value of comparison as well as the interval of associated trust.
  • the sum values from the adders 27 and 28 are applied comparators 29 and 30 respectively, the comparator 29 providing a true output on the channel considered if the sum value applied to it for this channel is greater than zero.
  • Comparator 30 provides an output for each channel true, when the sum value from adder 28 is less than zero.
  • comparators 29 and 30 are logically combined in a logic block 31 which operates an AND logic operation on these outputs channel by channel.
  • the outputs of this logic block 31, one per channel, are applied to a second logic block 32 which operates an AND function on these outputs and which provides its turn the output signal 6 of the computer 5.
  • the latter is therefore true if the value of comparison mean remains within the confidence interval for all the channels of the computer 5 at a time, in other words if the difference between the signature in line and the reference signature remains within the limits defined by the interval of confidence. Otherwise, if at least one of the channels has a deviation exceeding the confidence interval, output 6 will indicate a fault in operation of burner B which should then be corrected, for example by a maintenance operation. The anomaly can be reported by the unit warning 7.
  • table 10 are stored correlation coefficients ⁇ which for each channel of the computer 5 links the average of the spectral power P of this channel noted during the determination of the standard signature, to the nature of the measured gas component present in the combustion gases.
  • Table also contains a value ⁇ which is the original coefficient of the curve correlation of the gas component concerned.
  • This expression is implemented in the computer 5 via multipliers 33, one per channel, and a single adder 34, the multipliers 33 receiving the respective outputs of the low-pass filter 16 and the respective values ⁇ written in memory 10.
  • the adder 34 is connected to the output of all the multipliers 33 and to the output corresponding to the value ⁇ from table 10.
  • the output of the adder 34 is the output 8 of the computer 5.
  • Similar correlation means can be provided for each component of the combustion gases that one wishes to regulate, the values of general average which can be multiplexed for each set of means of corresponding correlation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

La présente invention est relative à un procédé de commande d'un brûleur utilisant un combustible qui par mise en contact avec un gaz comburant permet d'entretenir une flamme produisant de l'énergie thermique selon le préambule de la revendication 1. Un tel procédé est connu du US-A- 5798946.The present invention relates to a method for controlling a burner using a fuel which by contacting with an oxidizing gas allows to maintain a flame producing thermal energy according to the preamble of claim 1. Such a method is known from US-A-5798946.

L'invention concerne des brûleurs de ce type tant industriels (centrales thermiques, installations industrielles etc.) que domestiques (chauffage central, par exemple).The invention relates to burners of this type, both industrial (central thermal, industrial installations etc.) than domestic (central heating, example).

Une préoccupation désormais essentielle des concepteurs de tels brûleurs consiste à rendre optimale la combustion, notamment pour réduire la consommation et pour limiter autant que possible l'émission des substances polluantes dans l'atmosphère. Ainsi, on tente de faire fonctionner le brûleur avec un faible excès d'oxygène pour réduire le taux de CO dans les gaz de fumée. On tente également de réduire les émissions de NOx et d'hydrocarbures imbrûlés.A now essential concern of the designers of such burners consists of optimizing combustion, in particular to reduce consumption and to limit the emission of polluting substances as much as possible the atmosphere. Thus, we try to operate the burner with a small excess oxygen to reduce the CO level in the flue gases. We are also trying to reduce NOx and unburnt hydrocarbon emissions.

Pour remplir ces objectifs, il est connu d'analyser les gaz de fumée et d'utiliser le résultat de cette analyse pour agir sur les caractéristiques de fonctionnement du brûleur afin de corriger la teneur des composantes des fumées responsables de la pollution ou d'un moindre rendement. Cependant, cette méthode a ses limites qui sont un obstacle au réglage en boucle fermée, ces limites étant notamment les suivantes:

  • -1. l'analyse peut ne pas traduire les conditions exactes de fonctionnement du brûleur, les prélèvements des gaz de fumée étant faits en général loin de ce dernier;
  • -2. si l'installation thermique comporte plusieurs brûleurs, il n'est pas possible par cette méthode d'assurer un réglage individuel de chaque brûleur, car l'analyse des gaz de fumée est effectuée collectivement;
  • -3. cette méthode ne permet pas de régler le brûleur en temps réel compte tenu du temps de réaction relativement long du réglage ce qui empêche l'obtention de conditions optimales de fonctionnement quant au rendement et aux émissions nocives;
  • -4. le coût de mise en oeuvre d'une telle méthode est élevé de sorte que l'on ne peut guère l'envisager pour des petites installations thermiques, notamment pour le chauffage central des habitations.
  • To fulfill these objectives, it is known to analyze the smoke gases and to use the result of this analysis to act on the operating characteristics of the burner in order to correct the content of the components of the smoke responsible for pollution or a lower yield. However, this method has its limits which are an obstacle to the closed loop adjustment, these limits being notably the following:
  • -1. the analysis may not reflect the exact operating conditions of the burner, the smoke gases being taken generally far from the latter;
  • -2. if the thermal installation comprises several burners, it is not possible by this method to ensure an individual adjustment of each burner, since the analysis of the flue gases is carried out collectively;
  • -3. this method does not make it possible to adjust the burner in real time, taking into account the relatively long reaction time of the adjustment, which prevents optimum operating conditions being obtained as regards efficiency and harmful emissions;
  • -4. the cost of implementing such a method is high so that it can hardly be envisaged for small thermal installations, in particular for central heating of dwellings.
  • US 5 332 386 décrit un procédé de commande des conditions de combustion d'un brûleur qui consiste à en surveiller la flamme au moyen d'un capteur de rayonnement, soit pour en constater la présence, soit en examinant sa stabilité. Ce procédé est basé notamment sur la constatation que l'étude de la fréquence des fluctuations du rayonnement produit par la flamme permet d'obtenir des informations concernant la stabilité de la flamme et l'émission des polluants. US 5,332,386 describes a method for controlling the combustion conditions a burner which consists in monitoring the flame by means of a radiation, either to observe its presence, or by examining its stability. This process is based in particular on the observation that the study of the frequency of fluctuations in the radiation produced by the flame provides information concerning the stability of the flame and the emission of pollutants.

    Le signal du capteur optique est numérisé et on calcule la transformée de Fourier du résultat obtenu. On examine alors une bande de fréquences de la transformée de Fourier en calculant sa puissance, valeur qui est ensuite utilisée pour commander un paramètre de fonctionnement du brûleur, typiquement l'air admis. Le calcul de la transformée de Fourier est limité en fréquence avec un maximum à 500 Hz.The signal from the optical sensor is digitized and the Fourier transform is calculated of the result obtained. We then examine a frequency band of the transform of Fourier by calculating its power, a value which is then used to command a burner operating parameter, typically the intake air. The calculation of the Fourier transform is limited in frequency with a maximum of 500 Hz.

    L'inconvénient principal de ce procédé connu réside dans le fait que la bande de fréquences examinée à partir de la transformée de Fourier, peut ne pas être la même pour tous les types de brûleurs. Ce procédé n'est donc pas directement applicable à tous les cas.The main drawback of this known method lies in the fact that the strip of frequencies examined from the Fourier transform, may not be the same for all types of burners. This process is therefore not directly applicable to all cases.

    Le document US A 5 798 946 décrit un procédé d'analyse de la flamme d'un brûleur. Il y est procédé à la détermination d'une fonction d'extremum d'amplitude pour délimiter la plage de fréquence dans laquelle s'effectue l'analyse, cette fonction étant définie par le biais de paramètres (k, m, n) qui sont prédéterminés préalablement à la phase d'analyse en fonction du type de combustible, du type de brûleur et des conditions opératoires. Pour pouvoir fournir ces paramètres au dispositif qui va effectuer l'analyse, il est donc nécessaire à l'opérateur de connaítre le type de brûleur, le type de combustible et les conditions opératoires. Ainsi ce procédé ne peut être utilisé directement avec une grande variété de brûleurs, sans connaissance a priori du type de brûleur chaque fois concemé.The document US Pat. No. 5,798,946 describes a method for analyzing the flame of a burner. There is a determination of an extremum amplitude function for delimit the frequency range in which the analysis is carried out, this function being defined by parameters (k, m, n) which are predetermined prior to the analysis phase according to the type of fuel, the type of burner and the operating conditions. To be able to supply these parameters to the device that will perform analysis, it is therefore necessary for the operator to know the type of burner, the type of fuel and operating conditions. So this process cannot be used directly with a wide variety of burners, without a priori knowledge of the type of burner each time concerned.

    L'invention a pour but de fournir un procédé de commande d'un brûleur qui puisse être appliqué sans distinction à une très grande variété de brûleurs, notamment de puissances thermiques très diverses.The object of the invention is to provide a method for controlling a burner which can be applied without distinction to a very wide variety of burners, in particular of very diverse thermal powers.

    L'invention a donc pour objet un procédé de commande d'un brûleur présentant les caractéristiques de la revendication 1.The subject of the invention is therefore a method for controlling a burner having the features of claim 1.

    En raison du fait que le procédé de l'invention prend en compte l'ensemble du spectre de fréquences représentatif des fluctuations du rayonnement de la flamme, il devient possible de le rendre adaptable à pratiquement tous les types de brûleurs, sans qu'il soit nécessaire d'opérer un choix de la bande de fréquences à analyser pour obtenir un signal utilisable pour agir sur le fonctionnement du brûleur.Due to the fact that the method of the invention takes into account all of the frequency spectrum representative of the fluctuations of the flame radiation, it becomes possible to make it adaptable to practically all types of burners, without the need to make a choice of the frequency band to be analyzed to obtain a usable signal to act on the operation of the burner.

    Selon d'autres caractéristiques avantageuses de l'invention:

    • le procédé est mis en oeuvre une première fois dans des conditions de mesure standard sur au moins un brûleur d'un type donné pour relever une répartition standard de fréquences caractéristique de ce type de brûleur, puis au cours de l'utilisation de ce brûleur ou d'un autre brûleur de même type, on effectue une comparaison entre la répartition standard et la répartition relevée en ligne et on utilise le résultat de cette comparaison pour agir sur le fonctionnement du brûleur utilisé;
    • ladite fenêtre glissante est divisée en des sections temporelles d'égale durée et l'étude statistique de répartition est effectuée successivement sur chacune desdites sections temporelles;
    • l'échelle desdites plages de fréquences est logarithmique, de préférence à progression dyadique;
    • ladite étude statistique consiste à calculer la moyenne générale des moyennes établies à partir des bandes de fréquence de ladite fenêtre temporelle et à déterminer l'écart-type de toutes ces moyennes sur ladite fenêtre temporelle;
    • ledit spectre de fréquences est établi en calculant la transformée de Fourier dudit signal de rayonnement;
    • en variante, ledit spectre de fréquence est établi en calculant la transformée d'ondelettes dudit signal de rayonnement;
    • les moyennes générales et les écarts-type calculés pour chacune desdites bandes de fréquences de la répartition standard et les moyennes générales et les écarts-type calculés en ligne sont comparés distinctement pour chacune desdites bandes de fréquence et un signal d'avertissement est engendré si au moins l'une des comparaisons établit une inégalité entre les valeurs comparées;
    • un intervalle de confiance est établi de part et d'autre des moyennes générales de ladite répartition standard et ledit signal d'avertissement n'est engendré que si le résultat d'au moins une desdites comparaisons des moyennes tombe en dehors dudit intervalle de confiance;
    • ledit intervalle de confiance est égal à 1 à 4 fois l'écart-type de part et d'autre des valeurs des moyennes générales;
    • plusieurs valeurs dudit intervalle de confiance sont établies et lesdites comparaisons sont effectuées pour chacune desdites valeurs pour engendrer des signaux d'avertissement liées à un degré de qualité de fonctionnement dudit brûleur.
    • il consiste, à partir de ladite répartition standard, à déterminer des coefficients de corrélation des moyennes calculées avec le taux de présence dans les produits de combustion du brûleur d'une composante gazeuse prédéterminée, à combiner lesdits coefficients de corrélation avec les moyennes calculées de la répartition relevée en ligne et à engendrer un signal représentatif de ladite composante gazeuse pour ajuster cette composante dans les produits de combustion du brûleur concerné.
    According to other advantageous features of the invention:
    • the method is implemented for the first time under standard measurement conditions on at least one burner of a given type to record a standard distribution of frequencies characteristic of this type of burner, then during the use of this burner or of another burner of the same type, a comparison is made between the standard distribution and the distribution noted online and the result of this comparison is used to act on the operation of the burner used;
    • said sliding window is divided into time sections of equal duration and the statistical study of distribution is carried out successively on each of said time sections;
    • the scale of said frequency ranges is logarithmic, preferably with dyadic progression;
    • said statistical study consists in calculating the general average of the means established from the frequency bands of said time window and in determining the standard deviation of all these means over said time window;
    • said frequency spectrum is established by calculating the Fourier transform of said radiation signal;
    • alternatively, said frequency spectrum is established by calculating the wavelet transform of said radiation signal;
    • the general means and the standard deviations calculated for each of said frequency bands of the standard distribution and the general means and standard deviations calculated online are compared separately for each of said frequency bands and a warning signal is generated if at minus one of the comparisons establishes an inequality between the values compared;
    • a confidence interval is established on either side of the general means of said standard distribution and said warning signal is only generated if the result of at least one of said comparisons of the means falls outside of said confidence interval;
    • said confidence interval is equal to 1 to 4 times the standard deviation on either side of the values of the general means;
    • several values of said confidence interval are established and said comparisons are carried out for each of said values to generate warning signals linked to a degree of performance of said burner.
    • it consists, from said standard distribution, in determining the correlation coefficients of the averages calculated with the rate of presence in the combustion products of the burner of a predetermined gaseous component, in combining said correlation coefficients with the calculated averages of the distribution read online and generate a signal representative of said gaseous component to adjust this component in the combustion products of the burner concerned.

    D'autres caractéristiques et avantages de la présente invention apparaítront au cours de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés sur lesquels:

    • la figure 1 représente un schéma-bloc d'une installation de régulation d'un brûleur utilisant le mode de mise en oeuvre préféré du procédé de l'invention;
    • la figure 2 est un graphe de la puissance thermique en fonction du temps illustrant un exemple de signal de rayonnement pouvant être relevé sur un brûleur;
    • la figure 3 représente une représentation numérique du signal illustré par le graphe de la figure 2;
    • la figure 4 est un schéma-blocs d'un calculateur pouvant être utilisé pour la mise en oeuvre du procédé de commande de l'invention; et
    • les figures 6 et 7 sont des graphes en fonction de la fréquence montrant respectivement l'évolution de deux types de valeurs de moyenne déterminés par le calculateur de la figure 4.
    Other characteristics and advantages of the present invention will become apparent during the description which follows, given solely by way of example and made with reference to the appended drawings in which:
    • FIG. 1 represents a block diagram of an installation for regulating a burner using the preferred embodiment of the method of the invention;
    • FIG. 2 is a graph of the thermal power as a function of time, illustrating an example of a radiation signal which can be detected on a burner;
    • FIG. 3 represents a digital representation of the signal illustrated by the graph in FIG. 2;
    • FIG. 4 is a block diagram of a computer which can be used for implementing the control method of the invention; and
    • FIGS. 6 and 7 are graphs as a function of frequency, respectively showing the evolution of two types of average values determined by the computer of FIG. 4.

    En se reportant au schéma-bloc de la figure 1, on voit qu'une installation de commande selon l'invention agit sur le fonctionnement d'un brûleur B produisant une flamme F. Le brûleur B peut être de tout type connu consommant un carburant quelconque. Il est associé à un dispositif de réglage R qui permet d'en commander un certain nombre de paramètres, tels que le débit d'alimentation en carburant, le débit de gaz comburant, les dimensions de la flamme etc. A cet effet, le dispositif de réglage comporte des actuateurs A1 à An capables chacun d'agir sur l'un de ces paramètres, sous l'action d'un signal de commande qui est appliqué à l'actionneur respectif grâce à la mise en oeuvre du procédé de l'invention. Des dispositifs de réglage de ce type sont connus en soi et ne nécessitent donc pas de description particulière. Referring to the block diagram of FIG. 1, it can be seen that an installation of control according to the invention acts on the operation of a burner B producing a flame F. Burner B can be of any known type consuming fuel any. It is associated with an adjustment device R which makes it possible to control it. a number of parameters, such as the fuel delivery rate, the oxidant gas flow, flame dimensions etc. To this end, the adjustment includes actuators A1 to An each capable of acting on one of these parameters, under the action of a control signal which is applied to the actuator respective thanks to the implementation of the method of the invention. Devices setting of this type are known per se and therefore do not require description special.

    Une sonde S est également associée au brûleur B. Il s'agit d'un capteur de rayonnement dont la gamme de sensibilité est choisie en fonction de la nature de la flamme F. Par exemple, pour des flammes brûlant du gaz naturel ou du fioul léger (couleur bleue), il s'est avéré qu'un capteur de rayonnement ultraviolet est le plus approprié. Des photodiodes de type GaAS ou GaP peuvent alors convenir. Pour des flammes de couleur jaune (carburants liquides divers ou carburants solides), on préfère utiliser un capteur de rayonnement infrarouge, comme une photodiode au silicium.A probe S is also associated with burner B. It is a sensor for radiation whose sensitivity range is chosen according to the nature of the flame F. For example, for flames burning natural gas or light fuel oil (blue color), it turns out that an ultraviolet sensor is the most appropriate. GaAS or GaP type photodiodes may then be suitable. For some yellow flames (various liquid fuels or solid fuels), we prefer to use an infrared radiation sensor, such as a photodiode at silicon.

    La sonde S est de préférence placée derrière le brûleur dans le courant de gaz comburant qui en maintient ainsi la température à une valeur acceptable. Elle est connectée à un amplificateur 1. La sortie de ce dernier est reliée à un filtre passe-bande 2 avec des fréquences de coupure qui peuvent être situées à 3Hz et à 5 kHz, par exemple.The S probe is preferably placed behind the burner in the gas stream oxidizer which thus maintains the temperature at an acceptable value. She is connected to an amplifier 1. The output of the latter is connected to a bandpass filter 2 with cut-off frequencies which can be located at 3Hz and 5 kHz, for example.

    La sortie Va du filtre 2 est représentée sur la figure 2, par un graphe en fonction du temps t pour un brûleur B donné. Ce signal comprend une composante alternative avec une excursion f (de +/- 5 Volts par exemple) de part et d'autre d'une composante continue qui peut être le niveau zéro, par exemple. Le signal reflète les fluctuations du rayonnement de la flamme F.The output Va of the filter 2 is represented in FIG. 2, by a graph in function of time t for a given burner B. This signal includes a component alternative with an excursion f (of +/- 5 Volts for example) on either side of a continuous component which can be zero level, for example. The signal reflects the fluctuations in the radiation of flame F.

    La sortie du filtre 2 est reliée à un convertisseur analogique/numérique 3. Ce dernier est conçu pour échantillonner le signal issu du filtre 2 à une fréquence d'échantillonnage prédéterminé qui est de préférence le double de la fréquence de coupure supérieure du filtre 2 (ici un peu supérieure à 10 kHz par exemple), et pour transformer ainsi chaque échantillon en une valeur numérique codée par exemple sur 8 bits.The output of filter 2 is connected to an analog / digital converter 3. This the latter is designed to sample the signal from filter 2 at a frequency predetermined sampling rate which is preferably twice the frequency of upper cutoff of filter 2 (here a little more than 10 kHz for example), and for thus transform each sample into a numerical value coded for example on 8 bits.

    Les échantillons numériques sont appliqués à un circuit tampon 4 d'une capacité de stockage telle qu'il conserve une fenêtre glissante d'échantillons s'étalant sur un intervalle de temps prédéterminé de 5 secondes, par exemple. Le contenu du circuit tampon 4 peut, à un instant donné, être celui représenté sur la figure 3 dont le graphe montre en fonction du temps les valeurs numériques Vn des échantillons apparaissant dans la fenêtre glissante.The digital samples are applied to a buffer circuit 4 of a storage capacity such that it keeps a sliding window of spreading samples over a predetermined time interval of 5 seconds, for example. The content of buffer circuit 4 can, at a given instant, be that shown in FIG. 3, the graph shows as a function of time the numerical values Vn of the samples appearing in the sliding window.

    Le signal emmagasiné dans le circuit tampon 4 est ensuite traité dans un calculateur 5. Celui-ci extrait les échantillons du tampon 4 par groupes composés chacun d'un nombre prédéterminé n d'échantillons, chaque fenêtre glissante comportant k groupes de n échantillons. Dans l'exemple décrit, chaque groupe k comporte 2048 échantillons pris sur une durée totale de 0,2 seconde. The signal stored in the buffer circuit 4 is then processed in a calculator 5. This extracts the samples from buffer 4 by compound groups each of a predetermined number n of samples, each sliding window comprising k groups of n samples. In the example described, each group k contains 2048 samples taken over a total duration of 0.2 seconds.

    Le calculateur 5 est représenté plus en détail sur la figure 4. Il analyse statistiquement chaque groupe d'échantillons pour en établir une densité spectrale en fonction de la fréquence. Comme on le verra par la suite, cette densité spectrale est représentative des fluctuations du rayonnement de la flamme et permet d'engendrer, par comparaison avec des signaux standard de densité spectrale en fonction de la fréquence, deux types de signaux. L'un de ces types de signaux est un signal par tout ou rien apparaissant sur une sortie 6 (figure 1) du calculateur 5 et appliqué à un circuit d'avertissement 7. Le signal de la sortie 6 représente qualitativement l'état de fonctionnement du brûleur B. Par exemple, l'un de ses niveaux peut indiquer un fonctionnement correct et l'autre un fonctionnement dégradé du brûleur nécessitant l'intervention d'un technicien d'entretien.The computer 5 is shown in more detail in FIG. 4. It analyzes statistically each group of samples to establish a spectral density depending on the frequency. As we will see later, this spectral density is representative of the fluctuations of the flame radiation and allows to generate, by comparison with standard spectral density signals in frequency function, two types of signals. One of these types of signals is a signal by all or nothing appearing on an output 6 (FIG. 1) of the computer 5 and applied to a warning circuit 7. The signal at output 6 represents qualitatively the operating state of burner B. For example, one of its levels may indicate correct operation and the other may indicate operation degraded burner requiring the intervention of a maintenance technician.

    Le calculateur 5 est également capable d'engendrer sur une sortie 8 au moins un signal de correction de paramètre qui permet par l'intermédiaire d'une unité 9 d'amplification et d'adaptation, de commander au moins l'un des actionneurs A1 à An afin de pouvoir réajuster quantitativement au moins un paramètre de fonctionnement du brûleur B mentionné ci-dessus.The computer 5 is also capable of generating on an output 8 at least a parameter correction signal which allows via a unit 9 amplification and adaptation, to control at least one of the actuators A1 to An in order to be able to quantitatively readjust at least one operating parameter of burner B mentioned above.

    On voit également sur la figure 1 que le calculateur 5 est connecté à deux tables 10 et 11 dans lesquelles sont mémorisés, en fonction d'une valeur représentant la charge du brûleur B, des jeux de valeurs à décrire par la suite, à l'aide desquels le calculateur 5 peut effectuer les calculs nécessaires pour l'élaboration des signaux de sortie 6 et 8.We also see in Figure 1 that the computer 5 is connected to two tables 10 and 11 in which are stored, according to a value representing the load of burner B, sets of values to be described later, at using which the computer 5 can carry out the calculations necessary for development of output signals 6 and 8.

    Le calculateur 5 (figure 4) comprend un convertisseur 12 permettant de convertir chaque groupe k de n échantillons exprimé en fonction du temps (xk(t)) en un groupe de n échantillons exprimé en fonction de la fréquence (xk(f)). Cette conversion peut être réalisée par divers procédés connus en soi, le procédé préféré étant le calcul de la transformée de Fourier de chaque groupe d'échantillons. En variante, on peut également soumettre les groupes d'échantillons à un calcul de transformée d'ondelettes.The computer 5 (FIG. 4) comprises a converter 12 making it possible to convert each group k of n samples expressed as a function of time (x k (t)) into a group of n samples expressed as a function of the frequency (x k (f) ). This conversion can be carried out by various methods known per se, the preferred method being the calculation of the Fourier transform of each group of samples. As a variant, it is also possible to subject the groups of samples to a wavelet transform calculation.

    La sortie du tampon 4 est reliée à un groupe de n entrées 12a du convertisseur 12 qui fournit sur un groupe de n sorties 12b des coordonnées complexes de la transformée de Fourier avec une répartition fréquentielle. La représentation graphique du module de cette transformée de Fourier est appelée "périodogramme" ou "densité spectrale de puissance" et elle constitue une représentation univoque des caractéristiques de rayonnement de la flamme du brûleur B. The output of buffer 4 is connected to a group of n inputs 12a of the converter 12 which provides coordinates on a group of n outputs 12b Fourier transform complexes with frequency distribution. The graphical representation of the module of this Fourier transform is called "periodogram" or "power spectral density" and it constitutes a unequivocal representation of the radiation characteristics of the flame of the burner B.

    Le module est obtenu dans un bloc d'élevation au carré 13 qui fait la somme des carrés des parties réelles et imaginaires de la fonction Xk(f). Cette opération est donc exécutée n fois, n étant 2048 dans le cas considéré.The module is obtained in a square elevation block 13 which adds up the squares of the real and imaginary parts of the function X k (f). This operation is therefore executed n times, n being 2048 in the case considered.

    Les signaux issus du bloc d'élévation au carré 13 sont appliqués à un ensemble 14 de calcul de moyenne. Cet ensemble 14 est conçu pour calculer la moyenne statistique des fréquences présentes dans un nombre prédéterminé m de plages de signaux issus du bloc 13.The signals from the square elevation block 13 are applied to a averaging set 14. This set 14 is designed to calculate the statistical mean of the frequencies present in a predetermined number m of signal ranges from block 13.

    L'échelle de ces plages de fréquences est de préférence logarithmique afin de pouvoir disposer de la même précision pour les hautes fréquences et les basses fréquences dans le calcul statistique qui en est fait en aval. De préférence, cette échelle présente une progression dyadique.The scale of these frequency ranges is preferably logarithmic in order to be able to have the same precision for high frequencies and low frequencies frequencies in the downstream statistical calculation. Preferably, this scale presents a dyadic progression.

    Dans un exemple de réalisation, où on considère une gamme de fréquences dont la fréquence maximale est de 1250 Hz, les plages de fréquences sont déterminées en fonction de m selon la table suivante: m Plage de fréquences (Hz) Nombre de sorties du bloc 13 Bloc de l'ensemble 14 1 9,8 à 19,5 32 14a 2 19,5 à 39,1 32 14b 3 39,1 à 78,1 64 14c 4 78,1 à 156,3 128 14d 5 156,3 à 312,5 256 14e 6 312,5 à 625 512 14f 7 625 à 1250 1024 14g In an exemplary embodiment, where a frequency range is considered whose maximum frequency is 1250 Hz, the frequency ranges are determined as a function of m according to the following table: m Frequency range (Hz) Number of outputs of block 13 Block of assembly 14 1 9.8 to 19.5 32 14a 2 19.5 to 39.1 32 14b 3 39.1 to 78.1 64 14c 4 78.1 to 156.3 128 14d 5 156.3 to 312.5 256 14th 6 312.5 to 625 512 14f 7 625 to 1250 1024 14g

    Dans ce cas, une fréquence d'échantillonnage d'au moins 2500 Hz est nécessaire. Mais pour augmenter le rapport signal/bruit, il est préférable d'utiliser une fréquence d'échantillonnage supérieure, une valeur de 10 kHz étant appropriée. Avec une telle fréquence d'échantillonnage, la fréquence minimale de la transformée de Fourier serait de 10 000/2(N-1) = 2,44 Hz.In this case, a sampling frequency of at least 2500 Hz is necessary. But to increase the signal / noise ratio, it is better to use a higher sampling frequency, a value of 10 kHz being appropriate. With such a sampling frequency, the minimum frequency of the transform of Fourier would be 10 000/2 (N-1) = 2.44 Hz.

    Pour pouvoir établir la moyenne sur chacune des m plages de fréquences, l'ensemble comprend sept blocs de calcul de moyenne 14a à 14g dont les entrées sont réparties selon la table ci-dessus. Il s'est avéré qu'un tel nombre de plages traitées offre une résolution suffisante pour établir une signature fiable du brûleur B.To be able to establish the average over each of the m frequency ranges, the set includes seven averaging blocks 14a to 14g whose inputs are distributed according to the table above. It turned out that such a number of beaches processed provides sufficient resolution to establish a reliable signature of burner B.

    La figure 5 représente en fonction de la fréquence, pour l'ensemble pratique de la table ci-dessus, les signaux pouvant entrer et sortir des blocs de calcul 14a à 14g, la courbe [Xk]2 étant la courbe enveloppe des échantillons de fréquence à l'entrée et la courbe Ym représentée en pointillés montrant les paliers de moyenne des sept plages des blocs 14a à 14g. La courbe Ym est appelée "signature en ligne" du brûleur B considéré.FIG. 5 represents, as a function of the frequency, for the practical assembly of the table above, the signals which can enter and leave the calculation blocks 14a to 14g, the curve [X k ] 2 being the envelope curve of the samples of frequency at the input and the curve Y m shown in dotted lines showing the average steps of the seven ranges of blocks 14a to 14g. The curve Y m is called "online signature" of the burner B considered.

    On voit que chaque bloc de calcul de moyenne 14a à 14g engendre ainsi une valeur moyenne sur la gamme de fréquences considérée. Les sept valeurs (constituant la signature en ligne) sont traitées parallèlement dans les parties aval du calculateur 5 et circulent en parallèle sur des conducteurs multiples, le schéma de la figure 4 symbolisant chaque fois les sept conducteurs par une seule ligne que l'on appellera "canal" par la suite.We see that each averaging block 14a to 14g thus generates a average value over the frequency range considered. The seven values (constituting the online signature) are processed in parallel in the downstream parts of the 5 and run in parallel on multiple conductors, the diagram of the figure 4 symbolizing each time the seven conductors by a single line that we will call "channel" afterwards.

    Les valeurs de moyenne Ym peuvent être transformées par leur logarithme ou par toute autre fonction monotone dans un bloc de conversion logarithmique 15 qui fait suite à l'ensemble de calcul de moyenne 14. Dans le cas où on calcule leur logarithme, on peut ainsi augmenter la sensibilité de la mesure dans les hautes fréquences par rapport aux basses fréquences. L'opération exécutée par le bloc 15 est inutile lorsqu'on utilise la transformée d'ondelettes qui confère déjà une échelle de fréquences logarithmique.The mean values Y m can be transformed by their logarithm or by any other monotonic function in a logarithmic conversion block 15 which follows the averaging set 14. In the case where their logarithm is calculated, one can thus increase the sensitivity of the measurement in the high frequencies compared to the low frequencies. The operation performed by block 15 is useless when using the wavelet transform which already provides a logarithmic frequency scale.

    Le calculateur 5 comprend également des moyens pour, à partir des moyennes, individuelles par section de la fenêtre temporelle examinée, établir successivement la moyenne générale sur toutes les N sections de la fenêtre temporelle examinée et ce pour chaque canal. Cet établissement de moyenne générale est réalisé dans un bloc de filtrage 16 qui met en oeuvre l'expression suivante:

    Figure 00080001
    dans laquelle µm est la moyenne générale du canal considéré, N est le nombre de sections, m le numéro de la plage fréquentielle et i l'indice courant.The computer 5 also comprises means for, on the basis of the individual averages per section of the time window examined, successively establishing the general average over all the N sections of the time window examined and this for each channel. This establishment of general average is carried out in a filtering block 16 which implements the following expression:
    Figure 00080001
    in which µ m is the general average of the channel considered, N is the number of sections, m the number of the frequency range and i the current index.

    Le calculateur 5 comprend également des moyens pour calculer, pour chaque canal, l'écart type des moyennes individuelles issues successivement des blocs 14a à 14g ou du bloc 15 selon l'expression suivante:

    Figure 00080002
    dans laquelle σ 2 / mexprime la variance.The computer 5 also includes means for calculating, for each channel, the standard deviation of the individual averages successively obtained from blocks 14a to 14g or from block 15 according to the following expression:
    Figure 00080002
    in which σ 2 / m expresses the variance.

    A cet effet, le calculateur comprend un bloc 17 d'élevation au carré pour le calcul de la valeur Z 2 / m, le résultat étant traité dans un filtre passe-bas 18. La sortie de ce dernier est appliquée, canal par canal, à des additionneurs 19 (un par canal) dont l'autre entrée reçoit les valeurs élevées au carré des moyennes générales µm issues d'un bloc d'élévation au carré 20.For this purpose, the computer comprises a block 17 of squared for the calculation of the value Z 2 / m , the result being processed in a low-pass filter 18. The output of the latter is applied, channel by channel, to adders 19 (one per channel), the other input of which receives the values squared of the general means µ m from a block of elevation squared 20.

    Comme on la déjà brièvement indiqué ci-dessus, le procédé de l'invention consiste également à corréler les résultats des calculs statistiques sur la signature en ligne du brûleur B avec des résultats de calculs statistiques faits sur plusieurs signatures du brûleur B relevées dans des conditions standard d'essai. Cette ou ces signatures sont appelées ci-après "signatures standard". Elles sont établies pour différentes charges thermiques du brûleur.As already briefly indicated above, the process of the invention also consists in correlating the results of the statistical calculations on the signature in line of burner B with results of statistical calculations made on several burner B signatures recorded under standard test conditions. This or these signatures are hereinafter called "standard signatures". They are established for different thermal loads of the burner.

    Les signatures standard peuvent être mesurées, de différentes façons selon que le brûleur B est un produit de série (brûleurs de chauffage central par exemple) avec une puissance inférieure à environ 300 kW, ou un brûleur d'une installation thermique importante (centrale électrique par exemple) avec une puissance supérieure à cette valeur. Dans le premier cas, on peut relever les signatures en usine sur un exemplaire de la série et les appliquer à tous les autres brûleurs de celle-ci. En général, pour ce genre de brûleurs, il n'est pas nécessaire de disposer d'une série de signatures en fonction de la charge, un relevé à des charges à 100% et à 50% s'avérant en général suffisant.Standard signatures can be measured in different ways depending on that burner B is a series product (central heating burners for example) with a power lower than about 300 kW, or a burner of an installation significant thermal (power plant for example) with power greater than this value. In the first case, we can note the signatures in the factory on a copy of the series and apply them to all the other burners of this one. In general, for this kind of burners, it is not necessary to have a series of signatures depending on the load, a statement at 100% and 50% charges generally found to be sufficient.

    Dans le second cas, les signatures peuvent être relevées in situ pendant les travaux de mise en service de l'installation thermique. Il peut alors être avantageux de disposer de davantage de signatures standard en fonction de la charge par exemple sur toute une gamme de puissances de 10% à 100% avec un pas de 10%, voire inférieur.In the second case, the signatures can be collected in situ during the commissioning of the thermal installation. It can then be beneficial to have more standard signatures depending on the load by example on a whole range of powers from 10% to 100% with a step of 10%, or even lower.

    Pendant ces relevés, et dans les deux cas, il peut être établi également une corrélation des signatures standard avec les concentrations des diverses composantes gazeuses des produits de combustion telles que O2, CO et NOx par exemple, par variation des réglages du brûleur agissant sur la quantité d'air primaire ou secondaire, la quantité de combustible fournie, etc.During these surveys, and in both cases, it may also be established correlation of standard signatures with concentrations of various gaseous components of combustion products such as O2, CO and NOx by example, by varying the burner settings acting on the quantity of primary air or secondary, the quantity of fuel supplied, etc.

    Les signatures standard obtenues de la même façon que décrit ci-dessus à propos des signatures en ligne sont soumises aux mêmes calculs statistiques et donneront ainsi lieu à l'établissement de la table caractéristique déposée dans la mémoire 11 et composée d'une part en fonction des diverses charges, de séries de sept moyennes générales de référence µref et d'autre part de séries de sept valeurs représentant des variances de référence σ 2 / ref. Sur la figure 4 les deux sections de la table caractéristique 11 sont indiquées par les blocs 11a et 11b, respectivement.Standard signatures obtained in the same way as described above with regard to online signatures are subjected to the same statistical calculations and will therefore give rise to the establishment of the characteristic table deposited in memory 11 and composed on the one hand according to of various loads, of series of seven general reference means µ ref and on the other hand of series of seven values representing reference variances σ 2 / ref . In Figure 4 the two sections of the characteristic table 11 are indicated by blocks 11a and 11b, respectively.

    Les valeurs relevantes de la section de table 11a inscrites avec le signe "moins" sont additionnées canal par canal, dans des additionneurs 21 à des moyennes générales µm de la signature relevée en ligne pour former des moyennes de comparaison µ avec µ=µmref.The relevant values of table section 11a written with the sign "minus" are added channel by channel, in adders 21 to general averages µ m of the signature read online to form comparison means µ with µ = µ mref .

    D'une manière analogue, les valeurs de variance σ 2 / m sont sommées, canal par canal, dans des additionneurs 22 aux variances de référence σ 2 / refpour former une variance de comparaison σ2, avec σ2=σ 2 / m+ σ 2 / ref.Similarly, the variance values σ 2 / m are summed, channel by channel, in adders 22 to the reference variances σ 2 / ref to form a comparison variance σ 2 , with σ 2 = σ 2 / m + σ 2 / ref .

    Les signaux de variance de comparaison σ2 des sept canaux sont appliqués à deux blocs d'extraction de racine carrée 23 et 24 qui calculent les écarts type σ parallèlement pour chaque canal. Les valeurs correspondantes sont ensuite multipliées, dans des multiplicateurs respectifs 25 et 26, par un facteur de confiance +α respectivement -α, par exemple égal à trois, afin d'établir un "intervalle de confiance" respectivement de part et d'autre de chaque moyenne de comparaison. Le facteur de confiance est choisi de préférence entre 1 et 4. S'il est égal à trois, le degré de confiance sera égal à 99,7%.The comparison variance signals σ 2 of the seven channels are applied to two square root extraction blocks 23 and 24 which calculate the standard deviations σ in parallel for each channel. The corresponding values are then multiplied, in respective multipliers 25 and 26, by a confidence factor + α respectively -α, for example equal to three, in order to establish a "confidence interval" respectively on either side of each comparison average. The confidence factor is preferably chosen between 1 and 4. If it is equal to three, the degree of confidence will be equal to 99.7%.

    Pour illustrer la notion d'"intervalle de confiance", la figure 6 représente un exemple de courbe (ici tracée en continue) représentant la moyenne générale µm en fonction de la fréquence (tracé A), courbe de part et d'autre de laquelle on a tracé l'évolution de deux courbes limites B et C de la valeur µm=± α.σ également en fonction de la fréquence. Par exemple, pour une plage donnée de fréquences fx, l'intervalle de confiance est ici égal à 2.α.σ, σ étant l'écart-type de la plage fx considérée. Bien entendu, dans l'exemple décrit ici, les courbes A, B et C devraient chacune ne comporter que sept valeurs. Par ailleurs, dans le calculateur 5 tel que décrit, les valeurs définissant l'intervalle de confiance sont combinées non pas aux valeurs de moyenne générale, mais aux valeurs de moyenne de comparaison.To illustrate the concept of "confidence interval", FIG. 6 represents an example of a curve (here plotted continuously) representing the general average μ m as a function of frequency (plot A), curve on either side of which we have plotted the evolution of two limit curves B and C of the value µ m = ± α.σ also as a function of frequency. For example, for a given range of frequencies fx, the confidence interval is here equal to 2.α.σ, σ being the standard deviation of the range fx considered. Of course, in the example described here, curves A, B and C should each have only seven values. Furthermore, in the computer 5 as described, the values defining the confidence interval are combined not with the general average values, but with the comparison average values.

    En effet, comme on le voit sur la figure 4, les sorties des multiplicateurs 25 et 26 sont sommées, canal par canal, dans des additionneurs 27 et 28, aux valeurs de moyenne de comparaison µ de ces canaux.Indeed, as can be seen in FIG. 4, the outputs of the multipliers 25 and 26 are summed, channel by channel, in adders 27 and 28, to the values of comparison average µ of these channels.

    La figure 7 illustre par une courbe tracée en continu sur toute la gamme de fréquences concernée, la valeur de moyenne de comparaison ainsi que l'intervalle de confiance associé.FIG. 7 illustrates by a curve drawn continuously over the whole range of frequencies concerned, the mean value of comparison as well as the interval of associated trust.

    Les valeurs de somme issues des additionneurs 27 et 28 sont appliquées respectivement à des comparateurs 29 et 30, le comparateur 29 fournissant une sortie vraie sur le canal considéré si la valeur de somme qui lui est appliquée pour ce canal est supérieure à zéro. Le comparateur 30 fournit pour chaque canal une sortie vraie, lorsque la valeur de somme provenant de l'additionneur 28 est inférieure à zéro.The sum values from the adders 27 and 28 are applied comparators 29 and 30 respectively, the comparator 29 providing a true output on the channel considered if the sum value applied to it for this channel is greater than zero. Comparator 30 provides an output for each channel true, when the sum value from adder 28 is less than zero.

    Les sorties des comparateurs 29 et 30 sont combinées logiquement dans un bloc logique 31 qui opère canal par canal une opération logique ET sur ces sorties. Les sorties de ce bloc logique 31, à raison d'une par canal, sont appliquées à un second bloc logique 32 qui opère une fonction ET sur ces sorties et qui fournit à son tour le signal de sortie 6 du calculateur 5. Ce dernier est donc vrai si la valeur de moyenne de comparaison reste dans les limites de l'intervalle de confiance pour tous les canaux du calculateur 5 à la fois, autrement dit si l'écart entre la signature en ligne et la signature de référence reste à l'intérieur des limites définies par l'intervalle de confiance. Dans le cas contraire, si au moins un des canaux présente un écart dépassant l'intervalle de confiance, la sortie 6 indiquera une anomalie de fonctionnement du brûleur B qu'il conviendra alors de faire corriger par exemple par une opération de maintenance. L'anomalie pourra être signalée par l'unité d'avertissement 7.The outputs of comparators 29 and 30 are logically combined in a logic block 31 which operates an AND logic operation on these outputs channel by channel. The outputs of this logic block 31, one per channel, are applied to a second logic block 32 which operates an AND function on these outputs and which provides its turn the output signal 6 of the computer 5. The latter is therefore true if the value of comparison mean remains within the confidence interval for all the channels of the computer 5 at a time, in other words if the difference between the signature in line and the reference signature remains within the limits defined by the interval of confidence. Otherwise, if at least one of the channels has a deviation exceeding the confidence interval, output 6 will indicate a fault in operation of burner B which should then be corrected, for example by a maintenance operation. The anomaly can be reported by the unit warning 7.

    Selon une variante d'analyse du signal provenant des additionneurs 27 et 28, variante qui n'est pas illustrée sur le dessin, on peut discriminer entre plusieurs état de du brûleur correspondant à un degré de fiabilité de son fonctionnement.According to a variant of analysis of the signal from the adders 27 and 28, variant which is not illustrated in the drawing, one can discriminate between several states of the burner corresponding to a degree of reliability of its operation.

    A cet effet, on peut utiliser différentes valeurs du facteur α permettant de calculer si la différence Δ issue de l'additionneur 21 satisfait par exemple l'un des critères de fiabilité de fonctionnement suivants, moyennant quoi un signalisation correspondante peut être fournie à l'opérateur:

  • m | < 2σ   fonctionnement "OK"
  • 2σ <|Δ m |< 3σ   mise en garde
  • m | > 3σ   alarme
  • For this purpose, it is possible to use different values of the factor α making it possible to calculate whether the difference Δ coming from the adder 21 satisfies for example one of the following criteria of operating reliability, whereby a corresponding signaling can be provided to the operator:
  • | Δ m | <2σ "OK" operation
  • 2σ <| Δ m | <3σ warning
  • | Δ m | > 3σ alarm
  • Dans la table 10 sont mémorisés des coefficients de corrélation λ qui pour chaque canal du calculateur 5 lient la moyenne de la puissance spectrale P de ce canal relevée pendant la détermination de la signature standard, à la nature de la composante gazeuse mesurée présente dans les gaz de combustion. La table contient également une valeur γ qui est le coefficient d'origine de la courbe de corrélation de la composante gazeuse concernée.In table 10 are stored correlation coefficients λ which for each channel of the computer 5 links the average of the spectral power P of this channel noted during the determination of the standard signature, to the nature of the measured gas component present in the combustion gases. Table also contains a value γ which is the original coefficient of the curve correlation of the gas component concerned.

    A l'aide des valeurs mémorisées dans la table 10 et avec les moyennes générales de chaque canal calculées en ligne, il est ainsi possible de déterminer la teneur T de la composante gazeuse dans les gaz de combustion à l'aide de l'expression suivante, les plages de fréquence des canaux étant supposées être celles de la table ci-dessus: T=λ1P1 + λ2λP2 + λ3P3 + λ4P4 + λ5P5 + λ6P6 + λ7P7 + γ Using the values stored in table 10 and with the general averages of each channel calculated online, it is thus possible to determine the content T of the gaseous component in the combustion gases using the following expression , the frequency ranges of the channels being assumed to be those of the table above: T = λ 1 P 1 + λ 2 λP 2 + λ 3 P 3 + λ 4 P 4 + λ 5 P 5 + λ 6 P 6 + λ 7 P 7 + γ

    Cette expression est mise en oeuvre dans le calculateur 5 par l'intermédiaire de multiplicateurs 33, à raison d'un par canal, et d'un additionneur 34 unique, les multiplicateurs 33 recevant les sorties respectives du filtre passe-bas 16 et les valeurs respectives λ inscrites dans la mémoire 10. L'additionneur 34 est connecté à la sortie de tous les multiplicateurs 33 et à la sortie correspondant à la valeur γ de la table 10. La sortie de l'additionneur 34 est la sortie 8 du calculateur 5.This expression is implemented in the computer 5 via multipliers 33, one per channel, and a single adder 34, the multipliers 33 receiving the respective outputs of the low-pass filter 16 and the respective values λ written in memory 10. The adder 34 is connected to the output of all the multipliers 33 and to the output corresponding to the value γ from table 10. The output of the adder 34 is the output 8 of the computer 5.

    Des moyens de corrélation semblables peuvent être prévus pour chaque composante des gaz de combustion que l'on souhaite réguler, les valeurs de moyenne générale pouvant être multiplexées pour chaque ensemble de moyens de corrélation correspondant.Similar correlation means can be provided for each component of the combustion gases that one wishes to regulate, the values of general average which can be multiplexed for each set of means of corresponding correlation.

    Il est à noter que les fonctions assurées par le calculateur 5 peuvent être mises en oeuvre également par un logiciel exécuté dans un microprocesseur.It should be noted that the functions performed by the computer 5 can be also implemented by software executed in a microprocessor.

    Claims (12)

    1. Method of controlling a burner (B) using a fuel which by contact with a combustion-supporting gas maintains a flame (F) producing thermal energy, this method comprising the following operations:
      a) generating a radiation signal (Va) representative of the power of the radiation emanating from said flame;
      b) converting said radiation signal to establish its frequency spectrum (Xk(f));
      c) establishing a correlation between at least one operating parameter of the burner and at least one characteristic parameter of said frequency spectrum (Xk(f)); and
      d) acting on the operation of the burner (B) as a function of the result of the correlation, this method being characterized in that:
      e) said frequency spectrum (Xk(f)) is established for a window sliding as a function of time (t);
      f) a plurality of frequency ranges is determined from a predetermined scale of m frequencies lower than the maximum frequency of said frequency spectrum,
      g) the frequency spectrum (Xk(f)) for each frequency range is individually subjected to a study of the statistical distribution (Ym) of the frequencies, and
      h) the action on the operation of the burner (B) is done as a function of the statistical distribution (Ym) obtained for said plurality of frequency ranges.
    2. Control method according to claim 1, characterized in that it is executed a first time under standard measuring conditions on at least one burner (B) of a given type to measure a standard distribution of frequencies characteristic of that burner type and then during use of said burner, or another burner of the same type, the standard distribution is compared with the distribution measured on line and the result of this comparison is used to act on the operation of the burner (B) used.
    3. Control method according to either claim 1 or claim 2, characterized in that said sliding window is divided into time sections (k) of equal duration and the statistical distribution study is effected on each of said time sections (k) in succession.
    4. Control method according to any of claims 1 to 3, characterized in that the scale of said frequency ranges (m) is logarithmic and preferably of dyadic progression.
    5. Control method according to either claim 3 or claim 4, characterized in that said statistical study consists in calculating the general mean (µ) of the means (µm) established from the frequency bands of said time window and determining the standard deviation (σ) of all the means over said time window.
    6. Control method according to any of claims 1 to 5, characterized in that said frequency spectrum (Xk(f)) is established by calculating the Fourier transform of said radiation signal (Va).
    7. Control method according to any of claims 1 to 5, characterized in that said frequency spectrum is established by calculating the wavelet transform of said radiation signal.
    8. Control method according to any of claims 4 to 7 when dependent on claim 2, characterized in that the general means (µ) and the standard deviations (σ) calculated for each of said frequency bands (m) of the standard distribution and the general means (µ) and the standard deviations (σ) calculated on line are compared separately for each of said frequency bands and a warning signal (6) is generated if at least one of the comparisons establishes an inequality between the values compared.
    9. Control method according to claim 8, characterized in that a confidence range is established on either side of the general means (µ) of said standard distribution and said warning signal (6) is generated only if the result of at least one of said comparisons falls outside said confidence range.
    10. Control method according to claim 9, characterized in that said confidence range is equal to one to four times the standard deviation on either side of the values of the general means (µ).
    11. Control method according to claim 10, characterized in that a plurality of values of said confidence range are established and said comparisons are effected for each of said values to generate warning signals related to a criterion of reliability of operation of said burner (B).
    12. Control method according to any of claims 8 to 11, characterized in that it consists in determining, on the basis of said standard distribution, correlation coefficients (λi) of the general means calculated with the content of a predetermined gaseous component in the combustion products of the burner (B), combining said correlation coefficients with the calculated general means of the distribution measured on line, and generating a signal (8) representative of said gaseous component for adjusting this component in the combustion products of the burner concerned.
    EP20010401000 2000-04-21 2001-04-19 Control method of a burner Expired - Lifetime EP1148298B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR0005188 2000-04-21
    FR0005188A FR2808076B1 (en) 2000-04-21 2000-04-21 METHOD FOR CONTROLLING A BURNER

    Publications (2)

    Publication Number Publication Date
    EP1148298A1 EP1148298A1 (en) 2001-10-24
    EP1148298B1 true EP1148298B1 (en) 2004-10-20

    Family

    ID=8849517

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP20010401000 Expired - Lifetime EP1148298B1 (en) 2000-04-21 2001-04-19 Control method of a burner

    Country Status (3)

    Country Link
    EP (1) EP1148298B1 (en)
    DE (1) DE60106509T2 (en)
    FR (1) FR2808076B1 (en)

    Cited By (16)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US8085521B2 (en) 2007-07-03 2011-12-27 Honeywell International Inc. Flame rod drive signal generator and system
    US8300381B2 (en) 2007-07-03 2012-10-30 Honeywell International Inc. Low cost high speed spark voltage and flame drive signal generator
    US8310801B2 (en) 2005-05-12 2012-11-13 Honeywell International, Inc. Flame sensing voltage dependent on application
    US8659437B2 (en) 2005-05-12 2014-02-25 Honeywell International Inc. Leakage detection and compensation system
    US8875557B2 (en) 2006-02-15 2014-11-04 Honeywell International Inc. Circuit diagnostics from flame sensing AC component
    US9494320B2 (en) 2013-01-11 2016-11-15 Honeywell International Inc. Method and system for starting an intermittent flame-powered pilot combustion system
    US9799201B2 (en) 2015-03-05 2017-10-24 Honeywell International Inc. Water heater leak detection system
    US9920930B2 (en) 2015-04-17 2018-03-20 Honeywell International Inc. Thermopile assembly with heat sink
    US10088852B2 (en) 2013-01-23 2018-10-02 Honeywell International Inc. Multi-tank water heater systems
    US10119726B2 (en) 2016-10-06 2018-11-06 Honeywell International Inc. Water heater status monitoring system
    US10132510B2 (en) 2015-12-09 2018-11-20 Honeywell International Inc. System and approach for water heater comfort and efficiency improvement
    US10473329B2 (en) 2017-12-22 2019-11-12 Honeywell International Inc. Flame sense circuit with variable bias
    US10670302B2 (en) 2014-03-25 2020-06-02 Ademco Inc. Pilot light control for an appliance
    US10935237B2 (en) 2018-12-28 2021-03-02 Honeywell International Inc. Leakage detection in a flame sense circuit
    US10969143B2 (en) 2019-06-06 2021-04-06 Ademco Inc. Method for detecting a non-closing water heater main gas valve
    US11592852B2 (en) 2014-03-25 2023-02-28 Ademco Inc. System for communication, optimization and demand control for an appliance

    Families Citing this family (14)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US7255285B2 (en) 2003-10-31 2007-08-14 Honeywell International Inc. Blocked flue detection methods and systems
    US7764182B2 (en) 2005-05-12 2010-07-27 Honeywell International Inc. Flame sensing system
    US8066508B2 (en) 2005-05-12 2011-11-29 Honeywell International Inc. Adaptive spark ignition and flame sensing signal generation system
    US7800508B2 (en) 2005-05-12 2010-09-21 Honeywell International Inc. Dynamic DC biasing and leakage compensation
    US7806682B2 (en) 2006-02-20 2010-10-05 Honeywell International Inc. Low contamination rate flame detection arrangement
    US7728736B2 (en) 2007-04-27 2010-06-01 Honeywell International Inc. Combustion instability detection
    US10208954B2 (en) 2013-01-11 2019-02-19 Ademco Inc. Method and system for controlling an ignition sequence for an intermittent flame-powered pilot combustion system
    US10042375B2 (en) 2014-09-30 2018-08-07 Honeywell International Inc. Universal opto-coupled voltage system
    US10288286B2 (en) 2014-09-30 2019-05-14 Honeywell International Inc. Modular flame amplifier system with remote sensing
    US10402358B2 (en) 2014-09-30 2019-09-03 Honeywell International Inc. Module auto addressing in platform bus
    US10678204B2 (en) 2014-09-30 2020-06-09 Honeywell International Inc. Universal analog cell for connecting the inputs and outputs of devices
    US11236930B2 (en) 2018-05-01 2022-02-01 Ademco Inc. Method and system for controlling an intermittent pilot water heater system
    US11656000B2 (en) 2019-08-14 2023-05-23 Ademco Inc. Burner control system
    US11739982B2 (en) 2019-08-14 2023-08-29 Ademco Inc. Control system for an intermittent pilot water heater

    Family Cites Families (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4866420A (en) * 1988-04-26 1989-09-12 Systron Donner Corp. Method of detecting a fire of open uncontrolled flames
    EP0581451B1 (en) * 1992-07-01 1996-10-30 Toyota Jidosha Kabushiki Kaisha Combustion control method
    US5625342A (en) * 1995-11-06 1997-04-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Plural-wavelength flame detector that discriminates between direct and reflected radiation
    US5798946A (en) * 1995-12-27 1998-08-25 Forney Corporation Signal processing system for combustion diagnostics

    Cited By (20)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US8310801B2 (en) 2005-05-12 2012-11-13 Honeywell International, Inc. Flame sensing voltage dependent on application
    US8659437B2 (en) 2005-05-12 2014-02-25 Honeywell International Inc. Leakage detection and compensation system
    US8875557B2 (en) 2006-02-15 2014-11-04 Honeywell International Inc. Circuit diagnostics from flame sensing AC component
    US8300381B2 (en) 2007-07-03 2012-10-30 Honeywell International Inc. Low cost high speed spark voltage and flame drive signal generator
    US8085521B2 (en) 2007-07-03 2011-12-27 Honeywell International Inc. Flame rod drive signal generator and system
    US9494320B2 (en) 2013-01-11 2016-11-15 Honeywell International Inc. Method and system for starting an intermittent flame-powered pilot combustion system
    US10088852B2 (en) 2013-01-23 2018-10-02 Honeywell International Inc. Multi-tank water heater systems
    US10670302B2 (en) 2014-03-25 2020-06-02 Ademco Inc. Pilot light control for an appliance
    US11592852B2 (en) 2014-03-25 2023-02-28 Ademco Inc. System for communication, optimization and demand control for an appliance
    US9799201B2 (en) 2015-03-05 2017-10-24 Honeywell International Inc. Water heater leak detection system
    US10049555B2 (en) 2015-03-05 2018-08-14 Honeywell International Inc. Water heater leak detection system
    US10692351B2 (en) 2015-03-05 2020-06-23 Ademco Inc. Water heater leak detection system
    US10738998B2 (en) 2015-04-17 2020-08-11 Ademco Inc. Thermophile assembly with heat sink
    US9920930B2 (en) 2015-04-17 2018-03-20 Honeywell International Inc. Thermopile assembly with heat sink
    US10132510B2 (en) 2015-12-09 2018-11-20 Honeywell International Inc. System and approach for water heater comfort and efficiency improvement
    US10989421B2 (en) 2015-12-09 2021-04-27 Ademco Inc. System and approach for water heater comfort and efficiency improvement
    US10119726B2 (en) 2016-10-06 2018-11-06 Honeywell International Inc. Water heater status monitoring system
    US10473329B2 (en) 2017-12-22 2019-11-12 Honeywell International Inc. Flame sense circuit with variable bias
    US10935237B2 (en) 2018-12-28 2021-03-02 Honeywell International Inc. Leakage detection in a flame sense circuit
    US10969143B2 (en) 2019-06-06 2021-04-06 Ademco Inc. Method for detecting a non-closing water heater main gas valve

    Also Published As

    Publication number Publication date
    DE60106509D1 (en) 2004-11-25
    FR2808076A1 (en) 2001-10-26
    FR2808076B1 (en) 2002-07-12
    EP1148298A1 (en) 2001-10-24
    DE60106509T2 (en) 2005-10-20

    Similar Documents

    Publication Publication Date Title
    EP1148298B1 (en) Control method of a burner
    FR2764380A1 (en) METHOD AND DEVICE FOR DETERMINING IN REAL TIME THE CALORIFIC POWER OF A NATURAL GAS OPTICALLY
    FR2930035B1 (en) DETECTION SYSTEM WITH FIBER GAS SENSOR
    EP3371554B1 (en) Optoelectronic device for distributed measurement by means of brillouin scattering
    KR101734876B1 (en) Quantum efficiency measurement system and method of use
    FR3066280B1 (en) OPTOELECTRONIC MEASURING DEVICE DISTRIBUTED BY OPTICAL FIBER
    EP0544962A1 (en) Method and apparatus for the remote optical detection of a gas in an observed region of space
    CA2349772A1 (en) Process and device for detecting gas leaks
    EP0708317B2 (en) Rapid fiberoptic bichromatic pyrometer
    CH618265A5 (en)
    CH668127A5 (en) OPTICAL DENSITY MEASUREMENT / PERCENTAGE OF POINTS.
    EP2149912A1 (en) Manufacturing method for an optical analyser comprising a quantum cascade laser and a quantum-well detector
    FR2811836A1 (en) OPTICAL CHARACTERISTIC MEASURING APPARATUS, PROCESS AND COMPUTER IMPLEMENTATION PROGRAM
    FR2738693A1 (en) SYSTEM FOR PROCESSING PULSES FROM THE INTERACTION OF A GAMMA PARTICLE WITH A CDTE RADIATION DETECTOR
    FR2738928A1 (en) Optical amplifier using stimulated emission with feedback loop
    EP1568987B1 (en) Detection of special minority gases with optical emission spectroscopy
    EP0201415B1 (en) Logarithmic converters and their use in the measurement of transmitted light
    FR2977320A1 (en) SPECTROSCOPY IMPULSE MANAGEMENT DEVICE PROBE-PUMP.
    EP1102975B1 (en) Method for measuring spectral absorption in a body and device therefor
    EP0661499A1 (en) Real time control of a burner for gases with differing characteristices, especially for a metallurgical furnace for reheating
    FR2735236A1 (en) Laser diode optical device for measuring gas calorific power
    EP3767282A1 (en) Device and method for in-situ measuring the lifetime of minority carriers in a semiconductor material
    JP4006733B2 (en) Method and apparatus for measuring mass concentration of soot aggregate in combustion exhaust
    FR2974176A1 (en) SPATIAL LASER BEAM ANALYZER WITH AUTOMATIC ADJUSTMENT
    FR3104254A1 (en) Optical spectrometer and associated source characterization method

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE LI

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    RIN1 Information on inventor provided before grant (corrected)

    Inventor name: CHETELAT, OLIVIER

    Inventor name: MICHEL, JEAN-BERNARD

    17P Request for examination filed

    Effective date: 20020408

    AKX Designation fees paid

    Free format text: AT BE CH CY DE LI

    RBV Designated contracting states (corrected)

    Designated state(s): CH DE FR IT LI NL

    17Q First examination report despatched

    Effective date: 20031126

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): CH DE FR IT LI NL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20041020

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041020

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: CSEMCENTRE SUISSE D'ELECTRONIQUE ET DEMICROTECHNIQ

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 60106509

    Country of ref document: DE

    Date of ref document: 20041125

    Kind code of ref document: P

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20050721

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: MOINAS & SAVOYE SA

    Ref country code: CH

    Ref legal event code: PUE

    Owner name: CUENOD S.A.S.

    Free format text: CSEM CENTRE SUISSE D'ELECTRONIQUE ET DE MICROTECHNIQUE SA RECHERCHE ET DEVELOPPEMENT#RUE JAQUET-DROZ 1#2007 NEUCHATEL (CH) -TRANSFER TO- CUENOD S.A.S.#18, RUE DES B?CHILLONS#74106 VILLE-LA-GRAND (FR)

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20110510

    Year of fee payment: 11

    Ref country code: CH

    Payment date: 20110427

    Year of fee payment: 11

    Ref country code: DE

    Payment date: 20110428

    Year of fee payment: 11

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20121228

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120430

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120430

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 60106509

    Country of ref document: DE

    Effective date: 20121101

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121101