EP1148298B1 - Regelverfahren eines Brenners - Google Patents

Regelverfahren eines Brenners Download PDF

Info

Publication number
EP1148298B1
EP1148298B1 EP20010401000 EP01401000A EP1148298B1 EP 1148298 B1 EP1148298 B1 EP 1148298B1 EP 20010401000 EP20010401000 EP 20010401000 EP 01401000 A EP01401000 A EP 01401000A EP 1148298 B1 EP1148298 B1 EP 1148298B1
Authority
EP
European Patent Office
Prior art keywords
burner
control method
frequency
standard
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20010401000
Other languages
English (en)
French (fr)
Other versions
EP1148298A1 (de
Inventor
Jean-Bernard Michel
Olivier Chetelat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre Suisse dElectronique et Microtechnique SA CSEM
Original Assignee
CSEMCENTRE SUISSE D'ELECTRONIQUE ET DEMICROTECHNIQUE SARECHERCHE ET DEVELOPPEMENT
Centre Suisse dElectronique et Microtechnique SA CSEM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CSEMCENTRE SUISSE D'ELECTRONIQUE ET DEMICROTECHNIQUE SARECHERCHE ET DEVELOPPEMENT, Centre Suisse dElectronique et Microtechnique SA CSEM filed Critical CSEMCENTRE SUISSE D'ELECTRONIQUE ET DEMICROTECHNIQUE SARECHERCHE ET DEVELOPPEMENT
Publication of EP1148298A1 publication Critical patent/EP1148298A1/de
Application granted granted Critical
Publication of EP1148298B1 publication Critical patent/EP1148298B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means

Definitions

  • the present invention relates to a method for controlling a burner using a fuel which by contacting with an oxidizing gas allows to maintain a flame producing thermal energy according to the preamble of claim 1.
  • a method for controlling a burner using a fuel which by contacting with an oxidizing gas allows to maintain a flame producing thermal energy according to the preamble of claim 1.
  • Such a method is known from US-A-5798946.
  • the invention relates to burners of this type, both industrial (central thermal, industrial installations etc.) than domestic (central heating, example).
  • a now essential concern of the designers of such burners consists of optimizing combustion, in particular to reduce consumption and to limit the emission of polluting substances as much as possible the atmosphere.
  • US 5,332,386 describes a method for controlling the combustion conditions a burner which consists in monitoring the flame by means of a radiation, either to observe its presence, or by examining its stability. This process is based in particular on the observation that the study of the frequency of fluctuations in the radiation produced by the flame provides information concerning the stability of the flame and the emission of pollutants.
  • the signal from the optical sensor is digitized and the Fourier transform is calculated of the result obtained.
  • the calculation of the Fourier transform is limited in frequency with a maximum of 500 Hz.
  • the object of the invention is to provide a method for controlling a burner which can be applied without distinction to a very wide variety of burners, in particular of very diverse thermal powers.
  • the subject of the invention is therefore a method for controlling a burner having the features of claim 1.
  • the method of the invention takes into account all of the frequency spectrum representative of the fluctuations of the flame radiation, it becomes possible to make it adaptable to practically all types of burners, without the need to make a choice of the frequency band to be analyzed to obtain a usable signal to act on the operation of the burner.
  • Burner B can be of any known type consuming fuel any. It is associated with an adjustment device R which makes it possible to control it. a number of parameters, such as the fuel delivery rate, the oxidant gas flow, flame dimensions etc.
  • the adjustment includes actuators A1 to An each capable of acting on one of these parameters, under the action of a control signal which is applied to the actuator respective thanks to the implementation of the method of the invention. Devices setting of this type are known per se and therefore do not require description special.
  • a probe S is also associated with burner B. It is a sensor for radiation whose sensitivity range is chosen according to the nature of the flame F. For example, for flames burning natural gas or light fuel oil (blue color), it turns out that an ultraviolet sensor is the most appropriate. GaAS or GaP type photodiodes may then be suitable. For some yellow flames (various liquid fuels or solid fuels), we prefer to use an infrared radiation sensor, such as a photodiode at silicon.
  • the S probe is preferably placed behind the burner in the gas stream oxidizer which thus maintains the temperature at an acceptable value. She is connected to an amplifier 1. The output of the latter is connected to a bandpass filter 2 with cut-off frequencies which can be located at 3Hz and 5 kHz, for example.
  • the output Va of the filter 2 is represented in FIG. 2, by a graph in function of time t for a given burner B.
  • This signal includes a component alternative with an excursion f (of +/- 5 Volts for example) on either side of a continuous component which can be zero level, for example.
  • the signal reflects the fluctuations in the radiation of flame F.
  • the output of filter 2 is connected to an analog / digital converter 3. This the latter is designed to sample the signal from filter 2 at a frequency predetermined sampling rate which is preferably twice the frequency of upper cutoff of filter 2 (here a little more than 10 kHz for example), and for thus transform each sample into a numerical value coded for example on 8 bits.
  • the digital samples are applied to a buffer circuit 4 of a storage capacity such that it keeps a sliding window of spreading samples over a predetermined time interval of 5 seconds, for example.
  • the content of buffer circuit 4 can, at a given instant, be that shown in FIG. 3, the graph shows as a function of time the numerical values Vn of the samples appearing in the sliding window.
  • the signal stored in the buffer circuit 4 is then processed in a calculator 5. This extracts the samples from buffer 4 by compound groups each of a predetermined number n of samples, each sliding window comprising k groups of n samples. In the example described, each group k contains 2048 samples taken over a total duration of 0.2 seconds.
  • the computer 5 is shown in more detail in FIG. 4. It analyzes statistically each group of samples to establish a spectral density depending on the frequency. As we will see later, this spectral density is representative of the fluctuations of the flame radiation and allows to generate, by comparison with standard spectral density signals in frequency function, two types of signals. One of these types of signals is a signal by all or nothing appearing on an output 6 (FIG. 1) of the computer 5 and applied to a warning circuit 7.
  • the signal at output 6 represents qualitatively the operating state of burner B. For example, one of its levels may indicate correct operation and the other may indicate operation degraded burner requiring the intervention of a maintenance technician.
  • the computer 5 is also capable of generating on an output 8 at least a parameter correction signal which allows via a unit 9 amplification and adaptation, to control at least one of the actuators A1 to An in order to be able to quantitatively readjust at least one operating parameter of burner B mentioned above.
  • the computer 5 (FIG. 4) comprises a converter 12 making it possible to convert each group k of n samples expressed as a function of time (x k (t)) into a group of n samples expressed as a function of the frequency (x k (f) ).
  • This conversion can be carried out by various methods known per se, the preferred method being the calculation of the Fourier transform of each group of samples.
  • the output of buffer 4 is connected to a group of n inputs 12a of the converter 12 which provides coordinates on a group of n outputs 12b Fourier transform complexes with frequency distribution.
  • the graphical representation of the module of this Fourier transform is called "periodogram” or "power spectral density” and it constitutes a unequivocal representation of the radiation characteristics of the flame of the burner B.
  • the module is obtained in a square elevation block 13 which adds up the squares of the real and imaginary parts of the function X k (f). This operation is therefore executed n times, n being 2048 in the case considered.
  • the signals from the square elevation block 13 are applied to a averaging set 14.
  • This set 14 is designed to calculate the statistical mean of the frequencies present in a predetermined number m of signal ranges from block 13.
  • the scale of these frequency ranges is preferably logarithmic in order to be able to have the same precision for high frequencies and low frequencies frequencies in the downstream statistical calculation.
  • this scale presents a dyadic progression.
  • m Frequency range Number of outputs of block 13 Block of assembly 14 1 9.8 to 19.5 32 14a 2 19.5 to 39.1 32 14b 3 39.1 to 78.1 64 14c 4 78.1 to 156.3 128 14d 5 156.3 to 312.5 256 14th 6 312.5 to 625 512 14f 7 625 to 1250 1024 14g
  • the set includes seven averaging blocks 14a to 14g whose inputs are distributed according to the table above. It turned out that such a number of beaches processed provides sufficient resolution to establish a reliable signature of burner B.
  • FIG. 5 represents, as a function of the frequency, for the practical assembly of the table above, the signals which can enter and leave the calculation blocks 14a to 14g, the curve [X k ] 2 being the envelope curve of the samples of frequency at the input and the curve Y m shown in dotted lines showing the average steps of the seven ranges of blocks 14a to 14g.
  • the curve Y m is called "online signature" of the burner B considered.
  • each averaging block 14a to 14g thus generates a average value over the frequency range considered.
  • the seven values are processed in parallel in the downstream parts of the 5 and run in parallel on multiple conductors, the diagram of the figure 4 symbolizing each time the seven conductors by a single line that we will call "channel" afterwards.
  • the mean values Y m can be transformed by their logarithm or by any other monotonic function in a logarithmic conversion block 15 which follows the averaging set 14. In the case where their logarithm is calculated, one can thus increase the sensitivity of the measurement in the high frequencies compared to the low frequencies. The operation performed by block 15 is useless when using the wavelet transform which already provides a logarithmic frequency scale.
  • the computer 5 also comprises means for, on the basis of the individual averages per section of the time window examined, successively establishing the general average over all the N sections of the time window examined and this for each channel.
  • This establishment of general average is carried out in a filtering block 16 which implements the following expression: in which ⁇ m is the general average of the channel considered, N is the number of sections, m the number of the frequency range and i the current index.
  • the computer 5 also includes means for calculating, for each channel, the standard deviation of the individual averages successively obtained from blocks 14a to 14g or from block 15 according to the following expression: in which ⁇ 2 / m expresses the variance.
  • the computer comprises a block 17 of squared for the calculation of the value Z 2 / m , the result being processed in a low-pass filter 18.
  • the output of the latter is applied, channel by channel, to adders 19 (one per channel), the other input of which receives the values squared of the general means ⁇ m from a block of elevation squared 20.
  • the process of the invention also consists in correlating the results of the statistical calculations on the signature in line of burner B with results of statistical calculations made on several burner B signatures recorded under standard test conditions.
  • This or these signatures are hereinafter called "standard signatures". They are established for different thermal loads of the burner.
  • Standard signatures can be measured in different ways depending on that burner B is a series product (central heating burners for example) with a power lower than about 300 kW, or a burner of an installation significant thermal (power plant for example) with power greater than this value.
  • burner B is a series product (central heating burners for example) with a power lower than about 300 kW, or a burner of an installation significant thermal (power plant for example) with power greater than this value.
  • the signatures can be collected in situ during the commissioning of the thermal installation. It can then be beneficial to have more standard signatures depending on the load by example on a whole range of powers from 10% to 100% with a step of 10%, or even lower.
  • Standard signatures obtained in the same way as described above with regard to online signatures are subjected to the same statistical calculations and will therefore give rise to the establishment of the characteristic table deposited in memory 11 and composed on the one hand according to of various loads, of series of seven general reference means ⁇ ref and on the other hand of series of seven values representing reference variances ⁇ 2 / ref .
  • the two sections of the characteristic table 11 are indicated by blocks 11a and 11b, respectively.
  • the comparison variance signals ⁇ 2 of the seven channels are applied to two square root extraction blocks 23 and 24 which calculate the standard deviations ⁇ in parallel for each channel.
  • the corresponding values are then multiplied, in respective multipliers 25 and 26, by a confidence factor + ⁇ respectively - ⁇ , for example equal to three, in order to establish a "confidence interval" respectively on either side of each comparison average.
  • the confidence factor is preferably chosen between 1 and 4. If it is equal to three, the degree of confidence will be equal to 99.7%.
  • the confidence interval is here equal to 2. ⁇ . ⁇ , ⁇ being the standard deviation of the range fx considered.
  • curves A, B and C should each have only seven values.
  • the values defining the confidence interval are combined not with the general average values, but with the comparison average values.
  • the outputs of the multipliers 25 and 26 are summed, channel by channel, in adders 27 and 28, to the values of comparison average ⁇ of these channels.
  • FIG. 7 illustrates by a curve drawn continuously over the whole range of frequencies concerned, the mean value of comparison as well as the interval of associated trust.
  • the sum values from the adders 27 and 28 are applied comparators 29 and 30 respectively, the comparator 29 providing a true output on the channel considered if the sum value applied to it for this channel is greater than zero.
  • Comparator 30 provides an output for each channel true, when the sum value from adder 28 is less than zero.
  • comparators 29 and 30 are logically combined in a logic block 31 which operates an AND logic operation on these outputs channel by channel.
  • the outputs of this logic block 31, one per channel, are applied to a second logic block 32 which operates an AND function on these outputs and which provides its turn the output signal 6 of the computer 5.
  • the latter is therefore true if the value of comparison mean remains within the confidence interval for all the channels of the computer 5 at a time, in other words if the difference between the signature in line and the reference signature remains within the limits defined by the interval of confidence. Otherwise, if at least one of the channels has a deviation exceeding the confidence interval, output 6 will indicate a fault in operation of burner B which should then be corrected, for example by a maintenance operation. The anomaly can be reported by the unit warning 7.
  • table 10 are stored correlation coefficients ⁇ which for each channel of the computer 5 links the average of the spectral power P of this channel noted during the determination of the standard signature, to the nature of the measured gas component present in the combustion gases.
  • Table also contains a value ⁇ which is the original coefficient of the curve correlation of the gas component concerned.
  • This expression is implemented in the computer 5 via multipliers 33, one per channel, and a single adder 34, the multipliers 33 receiving the respective outputs of the low-pass filter 16 and the respective values ⁇ written in memory 10.
  • the adder 34 is connected to the output of all the multipliers 33 and to the output corresponding to the value ⁇ from table 10.
  • the output of the adder 34 is the output 8 of the computer 5.
  • Similar correlation means can be provided for each component of the combustion gases that one wishes to regulate, the values of general average which can be multiplexed for each set of means of corresponding correlation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Claims (12)

  1. Verfahren zum Steuern eines Brenners (B), der einen Brennstoff verwendet, welcher durch Kontakt mit einem Brenngas eine thermische Energie erzeugende Flamme (F) aufrecht zu erhalten erlaubt, wobei dieses Verfahren die folgenden Schritte aufweist:
    a) man erzeugt ein Strahlungssignal (Va), das die Leistung der von der Flamme abgegebenen Strahlung darstellt;
    b) man wandelt das Strahlungssignal in der Weise um, dass hieraus das Frequenzspektrum (Xk(f)) gebildet wird;
    c) man bildet eine Korrelation zwischen mindestens einem Betriebsparameter des Brenners und mindestens einem für das Frequenzspektrum (Xk(f)) charakteristischen Parameter;
    d) man wirkt auf den Betrieb des Brenners (B) in Abhängigkeit von dem Ergebnis der Korrelation ein, wobei dieses Verfahren dadurch gekennzeichnet ist, dass
    e) das Frequenzsspektrum (Xk(f)) für ein in Abhängigkeit von der Zeit (t) gleitendes Fenster gebildet wird;
    f) man eine Anzahl von Frequenzbereichen ausgehend von einem vorgegebenen Maßstab von m Frequenzen bestimmt, die niedriger als die maximale Frequenz des Frequenzspektrums sind;
    g) man einzeln für jeden Frequenzbereich das Frequenzspektrum (Xk(f)) einer statistischen Untersuchung der Frequenzverteilung (Ym) unterzieht, und
    h) man auf den Betrieb des Brenners (B) in Abhängigkeit von der statistischen Verteilung (Ym), die für die Anzahl der Frequenzbereiche erhalten wurde, einwirkt.
  2. Regelverfahren nach Anspruch 1, dadurch gekennzeichnet, dass es ein erstes Mal unter Standardmessbedingungen an mindestens einem Brenner (B) eines be-stimmten Typs durchgeführt wird, um eine Standardfrequenzverteilung zu erhalten, die für diesen Brennertyp charakteristisch ist, dass man dann im Verlauf des Ge-brauchs dieses Brenners oder eines anderen Brenners des gleichen Typs einen Vergleich zwischen der Standardverteilung und der on-line erhaltenen Verteilung durchführt, und dass man das Ergebnis dieses Vergleichs verwendet, um auf den Betrieb des benutzten Brenners (B) einzuwirken.
  3. Regelverfahren nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass das gleitende Fenster in Zeitabschnitte (k) gleicher Dauer unterteilt wird und die statistische Untersuchung der Verteilung nacheinander über jedem der Zeitabschnitte (k) durchgeführt wird.
  4. Regelverfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Maßstab der Frequenzbereiche (m) logarithmisch, vorzugsweise mit dyadischer Progression, ist.
  5. Regelverfahren nach einem der Ansprüche 3 und 4, dadurch gekennzeichnet, dass die statistische Untersuchung darin besteht, den allgemeinen Mittelwert (µ) der Mittelwerte (µm), die ausgehend von den Frequenzbändern des besagten Zeitfensters gebildet wurden, zu berechnen und die Standardabweichung (σ) sämtlicher Mittelwerte über dem Zeitfenster zu bestimmen.
  6. Regelverfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Frequenzspektrum (Xk(f)) gebildet wird, indem die FourierTransformation des Strahlungssignals (Va) berechnet wird.
  7. Regelverfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Frequenzspektrum gebildet wird, indem die Wellentransformierte des Strahlungssignals berechnet wird.
  8. Regelverfahren nach einem der Ansprüche 4 bis 7 in Abhängigkeit von Anspruch 2, dadurch gekennzeichnet, dass die allgemeinen Mittelwerte (µ) und die Standardabweichungen (σ), die für jedes der Frequenzbänder (m) der Standardverteilung berechnet wurden, und die allgemeinen Mittelwerte (µ) und die Standardabweichungen (σ), die on-line berechnet wurden, für jedes der Frequenzbänder getrennt verglichen werden, und dass ein Warnsignal (6) erzeugt wird, wenn mindestens einer der Vergleiche eine Abweichung zwischen den verglichenen Werten ergibt.
  9. Regelverfahren nach Anspruch 8, dadurch gekennzeichnet, dass ein Vertrauensintervall beidseitig zu den allgemeinen Mittelwerten (µ) der Standardverteilung gebildet wird und das Warnsignal (6) nur erzeugt wird, wenn das Ergebnis mindestens eines der Vergleiche aus dem Vertrauensintervall herausfällt.
  10. Regelverfahren nach Anspruch 9, dadurch gekennzeichnet, dass das Vertrauensintervall gleich dem 1- bis 4-fachen der Standardabweichung beidseitig zu den allgemeinen Mittelwerten (µ) ist.
  11. Regelverfahren nach Anspruch 10, dadurch gekennzeichnet, dass mehrere Werte des Vertrauensintervalls gebildet werden und die Vergleiche für jeden dieser Werte durchgeführt werden, um Warnsignale zu erzeugen, die mit einem Vertrauenskriterium für den Betrieb des Brenners (B) verknüpft sind.
  12. Regelverfahren nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass es darin besteht, ausgehend von der Standardverteilung Korrelationskoeffizienten (λi) einer Korrelation zwischen den berechneten allgemeinen Mittelwerten und dem Anteil einer in den Verbrennungsprodukten des Brenners (B) vorhandenen vorgegebenen Gaskomponente zu bestimmen und diese Korrelationskoeffizienten mit den berechneten allgemeinen Mittelwerten der on-line gebildeten Verteilung zu verknüpfen und ein die Gaskomponente darstellendes Signal (8) zu erzeugen, um diese Gaskomponente in den Verbrennungsprodukten des betreffenden Brenners einzustellen.
EP20010401000 2000-04-21 2001-04-19 Regelverfahren eines Brenners Expired - Lifetime EP1148298B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0005188A FR2808076B1 (fr) 2000-04-21 2000-04-21 Procede de commande d'un bruleur
FR0005188 2000-04-21

Publications (2)

Publication Number Publication Date
EP1148298A1 EP1148298A1 (de) 2001-10-24
EP1148298B1 true EP1148298B1 (de) 2004-10-20

Family

ID=8849517

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20010401000 Expired - Lifetime EP1148298B1 (de) 2000-04-21 2001-04-19 Regelverfahren eines Brenners

Country Status (3)

Country Link
EP (1) EP1148298B1 (de)
DE (1) DE60106509T2 (de)
FR (1) FR2808076B1 (de)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8085521B2 (en) 2007-07-03 2011-12-27 Honeywell International Inc. Flame rod drive signal generator and system
US8300381B2 (en) 2007-07-03 2012-10-30 Honeywell International Inc. Low cost high speed spark voltage and flame drive signal generator
US8310801B2 (en) 2005-05-12 2012-11-13 Honeywell International, Inc. Flame sensing voltage dependent on application
US8659437B2 (en) 2005-05-12 2014-02-25 Honeywell International Inc. Leakage detection and compensation system
US8875557B2 (en) 2006-02-15 2014-11-04 Honeywell International Inc. Circuit diagnostics from flame sensing AC component
US9494320B2 (en) 2013-01-11 2016-11-15 Honeywell International Inc. Method and system for starting an intermittent flame-powered pilot combustion system
US9799201B2 (en) 2015-03-05 2017-10-24 Honeywell International Inc. Water heater leak detection system
US9920930B2 (en) 2015-04-17 2018-03-20 Honeywell International Inc. Thermopile assembly with heat sink
US10088852B2 (en) 2013-01-23 2018-10-02 Honeywell International Inc. Multi-tank water heater systems
US10119726B2 (en) 2016-10-06 2018-11-06 Honeywell International Inc. Water heater status monitoring system
US10132510B2 (en) 2015-12-09 2018-11-20 Honeywell International Inc. System and approach for water heater comfort and efficiency improvement
US10473329B2 (en) 2017-12-22 2019-11-12 Honeywell International Inc. Flame sense circuit with variable bias
US10670302B2 (en) 2014-03-25 2020-06-02 Ademco Inc. Pilot light control for an appliance
US10935237B2 (en) 2018-12-28 2021-03-02 Honeywell International Inc. Leakage detection in a flame sense circuit
US10969143B2 (en) 2019-06-06 2021-04-06 Ademco Inc. Method for detecting a non-closing water heater main gas valve
US11592852B2 (en) 2014-03-25 2023-02-28 Ademco Inc. System for communication, optimization and demand control for an appliance

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7255285B2 (en) 2003-10-31 2007-08-14 Honeywell International Inc. Blocked flue detection methods and systems
US7764182B2 (en) 2005-05-12 2010-07-27 Honeywell International Inc. Flame sensing system
US8066508B2 (en) 2005-05-12 2011-11-29 Honeywell International Inc. Adaptive spark ignition and flame sensing signal generation system
US7800508B2 (en) 2005-05-12 2010-09-21 Honeywell International Inc. Dynamic DC biasing and leakage compensation
US7806682B2 (en) 2006-02-20 2010-10-05 Honeywell International Inc. Low contamination rate flame detection arrangement
US7728736B2 (en) 2007-04-27 2010-06-01 Honeywell International Inc. Combustion instability detection
US10208954B2 (en) 2013-01-11 2019-02-19 Ademco Inc. Method and system for controlling an ignition sequence for an intermittent flame-powered pilot combustion system
US10288286B2 (en) 2014-09-30 2019-05-14 Honeywell International Inc. Modular flame amplifier system with remote sensing
US10402358B2 (en) 2014-09-30 2019-09-03 Honeywell International Inc. Module auto addressing in platform bus
US10678204B2 (en) 2014-09-30 2020-06-09 Honeywell International Inc. Universal analog cell for connecting the inputs and outputs of devices
US10042375B2 (en) 2014-09-30 2018-08-07 Honeywell International Inc. Universal opto-coupled voltage system
US11236930B2 (en) 2018-05-01 2022-02-01 Ademco Inc. Method and system for controlling an intermittent pilot water heater system
US11739982B2 (en) 2019-08-14 2023-08-29 Ademco Inc. Control system for an intermittent pilot water heater
US11656000B2 (en) 2019-08-14 2023-05-23 Ademco Inc. Burner control system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4866420A (en) * 1988-04-26 1989-09-12 Systron Donner Corp. Method of detecting a fire of open uncontrolled flames
US5332386A (en) 1992-07-01 1994-07-26 Toyota Jidosha Kabushiki Kaisha Combustion control method
US5625342A (en) * 1995-11-06 1997-04-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Plural-wavelength flame detector that discriminates between direct and reflected radiation
US5798946A (en) * 1995-12-27 1998-08-25 Forney Corporation Signal processing system for combustion diagnostics

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8310801B2 (en) 2005-05-12 2012-11-13 Honeywell International, Inc. Flame sensing voltage dependent on application
US8659437B2 (en) 2005-05-12 2014-02-25 Honeywell International Inc. Leakage detection and compensation system
US8875557B2 (en) 2006-02-15 2014-11-04 Honeywell International Inc. Circuit diagnostics from flame sensing AC component
US8300381B2 (en) 2007-07-03 2012-10-30 Honeywell International Inc. Low cost high speed spark voltage and flame drive signal generator
US8085521B2 (en) 2007-07-03 2011-12-27 Honeywell International Inc. Flame rod drive signal generator and system
US9494320B2 (en) 2013-01-11 2016-11-15 Honeywell International Inc. Method and system for starting an intermittent flame-powered pilot combustion system
US10088852B2 (en) 2013-01-23 2018-10-02 Honeywell International Inc. Multi-tank water heater systems
US10670302B2 (en) 2014-03-25 2020-06-02 Ademco Inc. Pilot light control for an appliance
US11592852B2 (en) 2014-03-25 2023-02-28 Ademco Inc. System for communication, optimization and demand control for an appliance
US9799201B2 (en) 2015-03-05 2017-10-24 Honeywell International Inc. Water heater leak detection system
US10049555B2 (en) 2015-03-05 2018-08-14 Honeywell International Inc. Water heater leak detection system
US10692351B2 (en) 2015-03-05 2020-06-23 Ademco Inc. Water heater leak detection system
US10738998B2 (en) 2015-04-17 2020-08-11 Ademco Inc. Thermophile assembly with heat sink
US9920930B2 (en) 2015-04-17 2018-03-20 Honeywell International Inc. Thermopile assembly with heat sink
US10132510B2 (en) 2015-12-09 2018-11-20 Honeywell International Inc. System and approach for water heater comfort and efficiency improvement
US10989421B2 (en) 2015-12-09 2021-04-27 Ademco Inc. System and approach for water heater comfort and efficiency improvement
US10119726B2 (en) 2016-10-06 2018-11-06 Honeywell International Inc. Water heater status monitoring system
US10473329B2 (en) 2017-12-22 2019-11-12 Honeywell International Inc. Flame sense circuit with variable bias
US10935237B2 (en) 2018-12-28 2021-03-02 Honeywell International Inc. Leakage detection in a flame sense circuit
US10969143B2 (en) 2019-06-06 2021-04-06 Ademco Inc. Method for detecting a non-closing water heater main gas valve

Also Published As

Publication number Publication date
EP1148298A1 (de) 2001-10-24
DE60106509T2 (de) 2005-10-20
FR2808076B1 (fr) 2002-07-12
DE60106509D1 (de) 2004-11-25
FR2808076A1 (fr) 2001-10-26

Similar Documents

Publication Publication Date Title
EP1148298B1 (de) Regelverfahren eines Brenners
FR2764380A1 (fr) Procede et dispositif de determination en temps reel du pouvoir calorifique d'un gaz naturel par voie optique
FR2930035B1 (fr) Systeme de detection a capteur de gaz a fibre
KR101734876B1 (ko) 양자 효율 측정 시스템 및 사용 방법
EP0544962A1 (de) Verfahren und Vorrichtung zur optischen Ferndetektion eines sich in einem beobachteten Raumgebiet befindenden Gases
CA2349772A1 (fr) Procede et dispositif de detection de fuites de gaz
FR3066280B1 (fr) Dispositif optoelectronique de mesure repartie par fibre optique
EP0708317B2 (de) Schnelles bichromatisches fiberoptisches Pyrometer
CH618265A5 (de)
CH668127A5 (fr) Dispositiv de mesure de densite optique/pourcentage de points.
EP2149912A1 (de) Herstellungsmethode für einen optischen Analysator mit einem Quantenkaskadenlaser und einem Quantentrog-Detektor
FR2811836A1 (fr) Appareil de mesure d'une caracteristique optique, procede et programme informatique de mise en oeuvre
FR2738693A1 (fr) Systeme de traitement d'impulsions provenant de l'interaction d'une particule gamma avec un detecteur de rayonnement cdte
FR2738928A1 (fr) Amplificateur optique
EP1568987B1 (de) Detektion spezieller Minoritätsgase mit optischer Emissionsspektroskopie
FR2524635A1 (fr) Procede et appareil d'analyse quantitative conformement au principe dit de " spectroscopie raman anti-stokes coherente "
EP0201415B1 (de) Logarithmische Wandler und ihre Anwendung zur übertragenen Lichtmessung
FR2977320A1 (fr) Dispositif de gestion d'impulsions en spectroscopie pompe-sonde.
FR2735236A1 (fr) Procede et dispositif de determination du pouvoir calorifique d'un gaz par voie optique
EP3767282A1 (de) Vorrichtung und methode zur in-situ-messung der lebensdauer von minoritätsträgern in einem halbleitermaterial
FR2782163A1 (fr) Procede de mesure de l'absorption spectrale d'un corps et dispositif pour la mise en oeuvre du procede
JP4006733B2 (ja) 燃焼排気中のすす凝集体の質量濃度測定方法及び装置
FR3104254A1 (fr) Spectromètre optique et procédé de caractérisation d’une source associé
FR3135141A1 (fr) Appareil et procédé de spectrométrie de décharge luminescente à haute résolution spectrale et temporelle
FR2726084A1 (fr) Detecteur de gaz a absorption de la lumiere utilisant une source large bande spectrale

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE LI

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CHETELAT, OLIVIER

Inventor name: MICHEL, JEAN-BERNARD

17P Request for examination filed

Effective date: 20020408

AKX Designation fees paid

Free format text: AT BE CH CY DE LI

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR IT LI NL

17Q First examination report despatched

Effective date: 20031126

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20041020

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041020

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CSEMCENTRE SUISSE D'ELECTRONIQUE ET DEMICROTECHNIQ

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60106509

Country of ref document: DE

Date of ref document: 20041125

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050721

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MOINAS & SAVOYE SA

Ref country code: CH

Ref legal event code: PUE

Owner name: CUENOD S.A.S.

Free format text: CSEM CENTRE SUISSE D'ELECTRONIQUE ET DE MICROTECHNIQUE SA RECHERCHE ET DEVELOPPEMENT#RUE JAQUET-DROZ 1#2007 NEUCHATEL (CH) -TRANSFER TO- CUENOD S.A.S.#18, RUE DES B?CHILLONS#74106 VILLE-LA-GRAND (FR)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110510

Year of fee payment: 11

Ref country code: CH

Payment date: 20110427

Year of fee payment: 11

Ref country code: DE

Payment date: 20110428

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60106509

Country of ref document: DE

Effective date: 20121101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121101