EP1147293B1 - Verfahren und vorrichtung zur entfernung von schmutzpartikeln während des maschinenbetriebs aus einem turbomaschineninnenteil - Google Patents

Verfahren und vorrichtung zur entfernung von schmutzpartikeln während des maschinenbetriebs aus einem turbomaschineninnenteil Download PDF

Info

Publication number
EP1147293B1
EP1147293B1 EP00900528A EP00900528A EP1147293B1 EP 1147293 B1 EP1147293 B1 EP 1147293B1 EP 00900528 A EP00900528 A EP 00900528A EP 00900528 A EP00900528 A EP 00900528A EP 1147293 B1 EP1147293 B1 EP 1147293B1
Authority
EP
European Patent Office
Prior art keywords
substance
impurities
process gas
turbo
machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00900528A
Other languages
English (en)
French (fr)
Other versions
EP1147293A1 (de
Inventor
Jean-Marc Pugnet
Henri Hus
Daniel Tricot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Areva NP SAS
Thermodyn SAS
Original Assignee
Thermodyn SAS
Framatome SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thermodyn SAS, Framatome SA filed Critical Thermodyn SAS
Publication of EP1147293A1 publication Critical patent/EP1147293A1/de
Application granted granted Critical
Publication of EP1147293B1 publication Critical patent/EP1147293B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/002Cleaning of turbomachines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • F04D29/705Adding liquids

Definitions

  • the invention relates to a method and a device for removing dirt deposited in an internal part of a turbomachine and in particular of a centrifugal compressor without stopping the production of the compressor.
  • Clogging of the internal parts of turbomachinery, and in particular centrifugal compressors, is a phenomenon that the user can hardly master or prevent.
  • the conduct of the process implemented in the turbomachine can be changed significantly.
  • pressure and temperature levels or flow rates circulation in the compressor can be changed due to the formation deposits in aerodynamic channels such as blades or compressor diffusers.
  • the mechanical elements of the turbomachine can be subjected to stresses causing their deterioration. So it is necessary to protect these mechanical elements.
  • the unbalanced or the thrust variations caused by deposits on the dynamic parts of the turbomachine and the fouling of the internal linings can induce vibrations which are detrimental to the proper functioning of the turbomachine.
  • the deposition and agglomeration of dirt on the internal parts of turbomachinery and in particular centrifugal compressors are due to two main causes.
  • the filters and separators arranged upstream of the turbomachines cannot stop particles having a size of a few micrometers.
  • the pressure and temperature levels reached in the compressor, as well as the nature of the gases performs compression promote polymerization type reactions on deposited materials or corrosion of internal parts of the compressor under the effect of the materials deposited.
  • fouling of the internal parts of turbomachinery and in particular centrifugal compressors is a phenomenon general which occurs in all cases during normal operation of the turbomachine. This fouling can reach a level such that it becomes necessary to stop the turbomachine and therefore the production cycle or in progress. It is therefore entirely desirable to have means for removing dirt from the dirty internal part of a turbomachine or to limit the deposition of dirt in this part internal.
  • each of the methods is adapted to a particular case and there is no known method that is of general application.
  • carbon dioxide can be used in replacement of organic solvents.
  • Carbon dioxide CO 2 has a critical point at a pressure of 73 bars (7.3 MPa) and at a temperature of 31 ° C.
  • These cleaning processes use carbon dioxide at a pressure higher than the critical pressure and at a temperature which can be below the critical temperature, the carbon dioxide then being liquid, or even at a temperature above the critical temperature, the dioxide of carbon then being in a supercritical state intermediate between the liquid and gaseous states.
  • turbochargers which have an inlet in which introduces a gas involved in a process in which the gas undergoes a physical or chemical transformation
  • a fluid is recovered consisting of process gas and supercritical substance containing soiling in the dissolved state.
  • Process gas must then be separated and of the fluid constituted by the substance containing the soiling in the state dissolves.
  • the regeneration of the substance can only be carried out by lowering the pressure of the substance below the critical pressure, so as to obtain the substance in the gaseous state, and by effecting the separation of the impurities from the substance in the gaseous state.
  • the object of the invention is therefore to propose a removal process soiling in an internal part of a turbomachine during operation of the turbomachine which has an inlet and an outlet for a process gas, into which, at the inlet of the turbomachine, is introduced, in the process gas, a substance in the dense state, in particular supercritical, recovering, at the outlet of the turbomachine, a fluid constituted by the process gas and the substance containing impurities consisting of dirt in the dissolved state, continuous separation is carried out on the fluid to obtain a stream of process gas and a stream of the substance containing the impurities and the substance is recycled in the dense state to the inlet of the turbomachine, this process being able to be implemented in such a way industrial, under economic conditions.
  • Figure 1 is a schematic view of the cleaning and recycling the turbocharger.
  • Figure 2 is a temperature-entropy diagram showing the variations of temperature and entropy of fluids in the circuits shown in figure 1.
  • Figure 3 is a pressure-temperature diagram showing variations of pressure and temperature of the fluids in the circuits of the installation shown in Figure 1.
  • turbocharger 1 used to set up pressure a process gas which can be a gas produced or used in a industrial plant, such as a chemical or petrochemical plant.
  • the compressor 1 has a low pressure input 11 connected to a process gas inlet pipe 2 and a high pressure outlet 12 connected to a use line 3 via a heat exchanger heat 5 and a separator 6.
  • the separator 6 has an inlet pipe 13 receiving the gas coming from output 12 of the compressor via the exchanger heat 5, a first outlet constituted by the use line 3 and a second outlet constituted by a conduit 7 connected via an adjustment valve 8, an intermediate pipe 14, an exchanger 9, a recycling line 7 'and a non-return valve 10 at the line 2 for inlet of the process gas to the inlet 11 of the turbocharger.
  • the fluid introduced into the pipe 2 downstream of the non-return valve 10 is a fluid in a dense state, such as a fluid in the supercritical state and preferably carbon dioxide CO 2 in the supercritical state.
  • the impurities dissolved in CO 2 in the supercritical state which are generally in the liquid state, constitute, with the CO 2 in the supercritical state and the process gas at high pressure, a mixture of fluids whose temperature is adjusted in the heat exchanger 5 according to the use of the process gas and to liquefy the CO 2 containing the impurities.
  • the fluid mixture, adjusted in temperature is sent via line 13 inside the separator 6 which separates the process gas which is evacuated via line 3 and the liquid CO 2 containing the dissolved impurities which is evacuated by line 7, at a flow rate Q.
  • a second circuit 17 is used to reduce the content of dissolved impurities in the dissolving substance, that is to say the CO 2 separated from the process gas in the separator 6.
  • the second circuit, or impurity separation circuit, 17 comprises a pressure relief valve 18, a gas and liquid separator 19 and a compressor 20 placed in series with each other and in bypass on line 7, on either side of the adjustment valve 8.
  • the adjustment of the valve 8 makes it possible to pass a predetermined fraction q of the flow rate Q of liquid CO 2 flowing in the pipe 7, in the dirt separation circuit 17, the residual current Qq being received in the part 14 of the pipe 7, downstream of the adjustment valve 8.
  • the CO 2 of the flow fraction q sampled in the circuit 17 is therefore in the gaseous state in the part 15 of the circuit 17, upstream of the valve 18.
  • the mixture of gases and impurities constituted by the soiling the liquid state enters the separator 19 which separates the gaseous CO 2 and the soils in the liquid state which are removed from the separator 19, as shown by the arrow 21.
  • the purified CO 2 gas is compressed by the compressor 20, which can be constituted by a rotary volumetric type compressor or by a high pressure pump, so that its pressure becomes higher than the critical pressure of CO 2 , i.e. 7.3 MPa.
  • the purified supercritical CO 2 is reintroduced into the intermediate line 14, in the residual current Qq consisting of CO 2 containing liquid impurities.
  • the turbocharger can operate continuously with the removal of dirt depositing in its internal part, if the flow q taken from line 7 is sufficient to maintain a state of unsaturation in impurities of the supercritical CO 2 introduced into the inlet of the turbocharger.
  • the advantage of the process of the invention is to limit the size and the power of the compressor or pump 20. It is therefore necessary to choose a compromise allowing continuous operation of the turbocharger without fouling excessive with a moderate cost of installation and operation of the dirt separation circuit.
  • FIG. 2 representing a temperature diagram T-entropy S relating to the circuit represented in FIG. 1, the curve of change of state 22 of carbon dioxide and corresponding isobars 23 and 24 at the suction pressure and the discharge pressure of the turbocharger 1, respectively.
  • the top of curve 22 corresponds to the critical point of carbon dioxide, the left part of curve 22 starting from the critical point corresponding to the boiling curve of CO 2 and the part located to the right of the critical point of curve 22 corresponding to the dew curve.
  • the part of the diagram situated on the right of curve 22 corresponds to the gaseous state and the part situated on the left in the liquid state of CO 2 .
  • thermodynamic evolution of the main fluid current since the inlet of the separator 6 to the inlet of the turbocharger 11, is reflected by segment 13, 14 between curves 24 and 23 and segment 14, 11 on the curve 23 corresponding to the suction pressure.
  • the portion of flow q sampled by the dirt separation circuit 17 goes from the liquid state to the gaseous state by expansion, then from the gaseous state to the supercritical state by compression.
  • thermodynamic cycle corresponding to the circuit of figure 1 a also shown in the pressure-temperature diagram of the figure 3.
  • the CO 2 used in the turbocharger (segment 11, 12) is in the supercritical state and that it passes to the liquid state by cooling in the exchanger 5 (segment 12, 13).
  • the residual flow Qq of CO 2 containing impurities passes from the liquid state to the supercritical state by reheating in the exchanger 9 (segment 14,11).
  • the fraction of flow sampled q goes from the liquid state to the gaseous state, as represented by the segment 13.15, the point 15 being in the domain 31 below the curve 25, corresponding to the gaseous CO 2 .
  • the CO 2 gas is then compressed to pass to the supercritical state before being reintroduced into the residual flow Qq (segment 15,16).
  • the process according to the invention makes it possible to carry out the removal of impurities in the turbocharger, continuously, during the operation of the turbocharger, insofar as the flow rate q is sufficient to avoid saturation of the CO 2 by impurities from dirt dissolved in the internal part of the turbocharger.
  • substances other than CO 2 in the dense state in particular supercritical.
  • substances may for example be water (H 2 O) in certain cases, if it does not contain acid compounds, or light alkanes such as propane (C 3 H 8 ) or pentane (C 5 H 12 ) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Extraction Or Liquid Replacement (AREA)

Claims (8)

  1. Verfahren zur Entfernung von Schmutzpartikeln in einem Innenteil einer Turbomaschine (1) während des Betriebes der Turbomaschine, welche einen Eintritt (11) und einen Austritt (12) für ein Verfahrensgas umfaßt, bei welchem man am Eintritt (11) der Turbomaschine (1) in das Verfahrensgas eine Substanz im dichten Zustand, insbesondere im superkritischen Zustand, einführt, man am Austritt (12) der Turbomaschine ein Fluid, das durch das Verfahrensgas und die Substanz, welche durch die Schmutzteilchen im aufgelösten Zustand gebildet wird, gewinnt, man ein kontinuierliche Trennung an dem Fluid vornimmt, um eine Strömung von Verfahrensgas und eine Strömung von der Substanz, welche die Verunreinigungen einschließt, zu erhalten,, und daß man die Substanz in dichtem Zustand zum Eintritt der Turbomaschine (1) rückführt, dadurch gekennzeichnet, daß man kontinuierlich eine Fraktion der Strömung, welche die aus dem Verfahrensgas abgetrennten Verunreinigungen einschließt, entnimmt, und man die Restströmung in das Verfahrensgas am Eintritt der Turbomaschine (1) wieder einführt, daß man den Druck der Substanz in der Fraktion der Strömung absenkt und daß man auf diese Weise die Substanz aus dem Teil der entnommenen Strömung verdampft, man die Verunreinigungen der Substanz im gasförmigen Zustand in der Fraktion der entnommenen Strömung abtrennt, man den Druck der von den Verunreinigungen abgetrennten Substanz der Fraktion der entnommenen Strömung erhöht, und man die Substanz der Fraktion der entnommenen Strömung im superkritischen Zustand in die Restströmung der Substanz, welche die Verunreinigungen einschließt, vor ihrer Einführung in das Verfahrensgas am Eintritt (11) der Turbomaschine (1) wieder einführt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Substanz, welche die Verunreinigungen auflöst, im superkritischen Zustand ist und durch Kohlendioxid, CO2, gebildet wird.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Substanz, welche die Schmutzteilchen auflöst, im superkritischen Zustand ist und durch wenigstens eine der folgenden Substanzen gebildet wird: Wasser (H2O), Propan (C3H8), Pentan (C5H12).
  4. Verfahren nach irgendeinem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß man die Temperatur des Fluids, das durch die Mischung des Verfahrensgases und die Substanz, welche die Verunreinigungen einschließt, strömungsabwärts von dem Austritt (12) der Turbomaschine absenkt, um die Substanz, welche die Ver-unreinigungen einschließt, in den flüssigen. Zustand vor der Durchführung der Trennung des Verfahrensgases und der Strö-mung der Substanz, welche die Verunreinigungen einschließt, zu bringen.
  5. Vorrichtung zur kontinuierlichen Entfernung von Schmutzpartikeln in einem Innenteil einer Turbomaschine (1), welche einen Eintritt (11) und einen Austritt(12) für ein Verfahrensgas umfaßt, dadurch gekennzeichnet, daß sie umfaßt: einen ersten Kreislauf (11, 12, 13, 7, 14, 7'), der es erlaubt, im Inneren der Turbomaschine (1) ein Fluid in Zirkulation zu versetzen, das durch das Verfahrensgas gebildet wird, welches eine Substanz einschließt, die zum Auflösen der Schmutzpartikel im dichten Zustand in der Lage ist, und einen Separator (6) für das Verfahrensgas und die Substanz, welche die durch die aufgelösten Schmutzpartikel gebildeten Verunreinigungen einschließt, und einen zweiten Kreislauf (17, 15, 16) zur Trennung der Verunreinigungen auf eine Fraktion (q) eines Gesamtfluiddurchsatzes, der in dem ersten Kreislauf (11, 12, 13, 7, 14, 7') zirkuliert.
  6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet daß der erste Kreislauf (11, 12, 13, 7, 14, 7') ein Regelventil (8) der Fraktion des durch den Kreislauf (17) entnommenen Durchsatzes (q) umfaßt.
  7. Vorrichtung nach irgendeinem der Ansprüche 5 und 6, dadurch gekennzeichnet, daß der zweite Kreislauf zur Trennung von Verunreinigungen (15, 16, 17) ein Entspannungsventil (18), einen Separator für Gas und Flüssigkeit (19) und einen Kompressor oder eine Hochdruckpumpe (20) in Serie umfaßt.
  8. Vorrichtung nach irgendeinem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß der erste Kreislauf (11, 12, 13, 14) weiter zwischen der Turbomaschine (1) und dem Separator (6) einen ersten Wärmetauscher (5) zum Absenken der Temperatur eines durch das Verfahrensgas und die die Verunreinigungen einschließende Substanz gebildeten Fluids, und zwischen dem Reinigungskreislauf (17) und dem Eintritt (11) der Turbomaschine einen zweiten Wärmetauscher (9) zum Erhöhen der Temperatur der Substanz vor ihrer Einführung in das Verfahrensgas umfasst.
EP00900528A 1999-01-29 2000-01-05 Verfahren und vorrichtung zur entfernung von schmutzpartikeln während des maschinenbetriebs aus einem turbomaschineninnenteil Expired - Lifetime EP1147293B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9901046 1999-01-29
FR9901046A FR2789127B1 (fr) 1999-01-29 1999-01-29 Procede et dispositif d'enlevement de salissures dans une partie interne d'une turbomachine, pendant le fonctionnement de la turbomachine
PCT/FR2000/000012 WO2000045033A1 (fr) 1999-01-29 2000-01-05 Procede et dispositif d'enlevement de salissures dans une partie interne d'une turbomachine, pendant le fonctionnement de la turbomachine

Publications (2)

Publication Number Publication Date
EP1147293A1 EP1147293A1 (de) 2001-10-24
EP1147293B1 true EP1147293B1 (de) 2004-04-21

Family

ID=9541397

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00900528A Expired - Lifetime EP1147293B1 (de) 1999-01-29 2000-01-05 Verfahren und vorrichtung zur entfernung von schmutzpartikeln während des maschinenbetriebs aus einem turbomaschineninnenteil

Country Status (5)

Country Link
EP (1) EP1147293B1 (de)
DE (1) DE60010042T2 (de)
FR (1) FR2789127B1 (de)
NO (1) NO20012639D0 (de)
WO (1) WO2000045033A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8133309B2 (en) * 2008-07-16 2012-03-13 General Electric Company Turbomachine filter system having a drain with one-way valve
US8858720B2 (en) 2008-12-09 2014-10-14 Chevron Belgium Nv Method for cleaning deposits from turbocharger and supercharger compressors
RU2513525C2 (ru) * 2012-08-24 2014-04-20 Геннадий Петрович Губин Способ сухой очистки поверхностей лопаток компрессора
DE102015006082B4 (de) * 2015-05-09 2019-05-29 Man Energy Solutions Se Verfahren zum Reinigen eines Kompressors
CN107150047B (zh) * 2017-03-29 2020-06-09 中交烟台环保疏浚有限公司 一种使用柴油机清洗系统进行的柴油机中冷器清洗方法
CN110374748A (zh) * 2019-06-24 2019-10-25 清华大学 一种燃气涡轮发动机循环系统及循环方法
CN111365130B (zh) * 2020-02-25 2021-06-04 山东大学 一种利用lng冷能的燃气轮机余热利用系统及其方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5885371A (ja) * 1981-11-13 1983-05-21 Mitsubishi Heavy Ind Ltd タ−ビン翼へのスケ−ル付着防止法
JPS5960036A (ja) * 1982-09-29 1984-04-05 Hitachi Ltd ガスタ−ビンの主軸流圧縮機及びタ−ビンの水洗浄系統
JPS5977010A (ja) * 1982-10-25 1984-05-02 Fuji Electric Co Ltd 地熱タービンの洗浄方法
FR2616883B1 (fr) * 1987-06-18 1990-03-30 Framatome Sa Bac d'epuration d'eau de generateur de vapeur

Also Published As

Publication number Publication date
FR2789127A1 (fr) 2000-08-04
DE60010042D1 (de) 2004-05-27
NO20012639D0 (no) 2001-05-29
EP1147293A1 (de) 2001-10-24
DE60010042T2 (de) 2005-03-24
WO2000045033A1 (fr) 2000-08-03
FR2789127B1 (fr) 2001-04-20

Similar Documents

Publication Publication Date Title
EP1147293B1 (de) Verfahren und vorrichtung zur entfernung von schmutzpartikeln während des maschinenbetriebs aus einem turbomaschineninnenteil
EP1846721B1 (de) Glasschmelzofen
EP2252550B1 (de) Verfahren zum recycling von silan (sih4)
WO2010070226A1 (fr) Procédé de capture de c02 par cryo-condensation solide dans une turbine
FR2820056A1 (fr) Appareil de filtrage, procede associe de contre-lavage, dispositif de filtrage et centrale electrique
BE898227A (fr) Dispositif de filtrage d'hydrogène pour machine dynamo-électrique.
EP1219336A1 (de) Verfahren und Vorrichtung zur Entfernung von schädlichen flüchtigen Verbindungen, insbesondere Sulfaten und/oder Chloriden, aus einem Rauchgasstrom
EP1147294B1 (de) Verfahren und vorrichtung zum betrieb einer turbomaschine und zur vermeidung der verunreinigung von deren innenteilen durch schmutzpartikel aus dem betriebsgas
EP3152166B1 (de) Hydrothermaler karbonisierungsreaktor mit optimierter schlamm- und dampfmischung
FR2583988A1 (fr) Procede de distillation avec recuperation d'energie par recompression de vapeur a l'aide d'un ejecteur
EP0526372A1 (de) Verfahren und Vorrichtung zur Reinigung von Filtermembranen
FR2918167A1 (fr) Procede de nettoyage interne d'un echangeur de chaleur.
FR2598717A1 (fr) Procede de desasphaltage d'une huile d'hydrocarbure renfermant de l'asphalte
FR3041546B1 (fr) Procede et systeme de nettoyage d'un filtre a particules
WO2023144491A1 (fr) Procédé et système de capture de dioxyde de carbone
CN102371254B (zh) 清洗系统
FR2867092A1 (fr) Procede de decarbonatation de fumees avec des particules refroidies
KR102474093B1 (ko) 염 제거용 후처리장치
EP3080415A1 (de) Gaskompressionsverfahren mit zuführung von überschüssigem kältemittel an einem kompressoreinlass
FR2645874A1 (fr) Procede de decokage d'une installation de vapocraquage d'hydrocarbures
FR2790544A1 (fr) Dispositif pour l'extraction de chaleur a partir de gaz et four equipe du dispositif
FR2490103A1 (fr) Utilisation d'evaporateur a film tombant en multiple effet pour la recuperation d'un compose organique leger a partir d'un melange dudit compose avec un compose organique lourd
CN115715228A (zh) 减少低密度聚乙烯生产中子系统的停工时间的方法
EP1505250A1 (de) Anwendung einer Zweiphasenturbine in einem Hydrobehandelungsverfahren
LU82410A1 (fr) Installation pour la purification de produits petroliers et derives souilles par des liquides etrangers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010529

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 60010042

Country of ref document: DE

Date of ref document: 20040527

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MICHELI & CIE INGENIEURS-CONSEILS

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040621

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050121

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050125

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050126

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20050131

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050324

Year of fee payment: 6

26N No opposition filed

Effective date: 20050124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060131

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060801

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060801

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060105

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20060801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070105