EP1145605A1 - Device for varying the energy of a particle beam extracted from an accelerator - Google Patents

Device for varying the energy of a particle beam extracted from an accelerator

Info

Publication number
EP1145605A1
EP1145605A1 EP99961998A EP99961998A EP1145605A1 EP 1145605 A1 EP1145605 A1 EP 1145605A1 EP 99961998 A EP99961998 A EP 99961998A EP 99961998 A EP99961998 A EP 99961998A EP 1145605 A1 EP1145605 A1 EP 1145605A1
Authority
EP
European Patent Office
Prior art keywords
energy
degrader
steps
thickness
variation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99961998A
Other languages
German (de)
French (fr)
Other versions
EP1145605B1 (en
Inventor
Yves Jongen
Vincent Poreye
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ion Beam Applications SA
Original Assignee
Ion Beam Applications SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ion Beam Applications SA filed Critical Ion Beam Applications SA
Publication of EP1145605A1 publication Critical patent/EP1145605A1/en
Application granted granted Critical
Publication of EP1145605B1 publication Critical patent/EP1145605B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/10Scattering devices; Absorbing devices; Ionising radiation filters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00

Definitions

  • the present invention relates to a device intended to allow the variation of the energy of a beam of particles extracted from a particle accelerator.
  • the present invention also relates to the use of such a device.
  • a solution consists in using an accelerator capable of producing, intrinsically, an extracted beam of particles whose energy is variable.
  • an accelerator such as a synchrotron capable of producing within this accelerator a beam of particles whose energy is variable.
  • this type of accelerator is relatively complex to produce, and therefore more expensive and less reliable than accelerators. of particles producing fixed energy beams like cyclotrons.
  • the present invention aims to propose a device which would make it possible to vary the energy of the beam extracted from a particle accelerator, in particular from a fixed energy particle accelerator, while maintaining the energy dispersion characteristics and the qualities beam optics.
  • the present invention aims more particularly to propose a device which would allow to vary the energy of a beam extracted from a particle accelerator almost continuously.
  • the present invention relates to a method and a device intended to allow the variation of the energy of a beam of particles extracted from a particle accelerator with fixed energy.
  • an energy degrader essentially consisting of a block of material whose thickness is variable in discrete steps.
  • the thickness is defined as the distance between the entry face and the exit face on the block of material.
  • the spacing in energy of the steps is variable and is determined so that the variation of the intensity of the beam reaches at the border between two consecutive steps a maximum of 15%, typically 10%, of the maximum intensity obtained at the exit. of each of the two successive steps considered. This makes it possible to obtain a continuous variation of the energy despite the fact that the thickness varies in a discrete manner. Indeed, this is due to the combination of the way of calculating the energy spacing between the steps with the association of an element of analysis.
  • this degrader is positioned at the place where the bundle envelope has a constriction ("waist'M
  • the curvature of the inlet and outlet faces of the degrader defined by the height steps or not discrete, is drawn so that the "waist" always occupies for each step or not the ideal position relative to the entry and exit faces without the need to change from one step to the other the adjustment parameters of beam transport and in particular the position of the waist.
  • the energy degrader has steps or not of variable width, the width of a step being defined as the distance between two successive steps.
  • This width must be adjusted so as to be slightly larger than the diameter of the beam at the entrance or at the exit of the degrader, which means that the width of said steps or not of great thickness will be greater than the width of said steps or no thin.
  • the material constituting the energy degrader must have a high density and a low atomic mass.
  • Examples may be diamond, agglomerated diamond powder or graphite.
  • the degrader is mounted on an automated wheel which also includes beam diagnostic elements such as beam profile monitors, beam stops, etc. Conventionally, it is also possible to associate this energy degrader with an analysis magnet.
  • Figures la and lb represent respectively a perspective view and a top view of an energy degrader used in the energy variation method of a particle beam according to the present invention, while the figure represents an enlargement of part of figure lb.
  • FIG. 2 represents the variation of the current density as a function of the energy for a beam of protons.
  • FIG. 3 represents an overall view of the device according to the present invention used in proton therapy.
  • Figures la and lb show a degrader used in the device according to the present invention, consisting essentially of a block of material whose thickness is variable in steps discreetly.
  • This energy degrader will make it possible to roughly determine the value of the desired energy.
  • an energy magnet located downstream of the latter will be added to this energy degrader in order to allow a finer adjustment of the value of the desired energy.
  • the energy degrader according to the invention has a "staircase" shape, for which each step or "step” has a different thickness corresponding to a determined energy variation, the thickness El + E2 being defined as the distance between the entry face and the exit face of the particle beam.
  • the width L of the successive steps is also variable, and is increasing as a function of the thickness of said steps.
  • the third parameter is the height H from one step or step to another.
  • This block of variable thickness is preferably presented in the form of a ring placed on a wheel. This makes it possible to get rid of the discrete character of the degrader while maintaining a parallelism of the faces input and output of said degrader, which minimizes the energy dispersion of the beam.
  • the energy dispersion which results from it is expressed, at the exit of the block of material, by an energy spectrum of Gaussian form, characterizing the variation of the density of the current ( In value represented in FIG. 2, for the "walk” n) as a function of the energy.
  • This Gaussian is centered in an energy value (value En represented in Figure 2, for the "walk” n) which corresponds to the initial energy minus the amount of energy lost in the material, such as the it can be calculated using the route tables (called “range table”).
  • the pitch of the variation in energy is determined in such a way that the decrease in intensity of the beam reaches a maximum of x% (typically 10%) at the edges of each step.
  • x% typically 10%
  • the imposition of this constraint makes it possible to calculate the upper limit in energy Es for a given step, which is also at the lower limit in energy for the following step ( Figure 2).
  • An iterative calculation thus defines the number of "steps" necessary to obtain a continuous variation of the energy between the maximum values (that of the beam extracted from the accelerator) and minimum (the lowest energy that will be used in the framework of the application in question)
  • a variation in energy is obtained continuously in having, according to a preferred embodiment of the invention, an analysis magnet downstream of the degrader, this despite the fact that the thickness of the degrader varies in discrete steps.
  • the principle is that, because of the large energy dispersion associated with the "straggling", the degrader will only define the energy in a rough way, the fine adjustment being done downstream, using the magnet analysis.
  • the degrader of variable thickness will be located exactly at the place where the envelope of the beam shows a constriction (c ' that is to say the place where the beam has the smallest spatial extension, place called the "waist").
  • the beam must therefore be focused in the degrader, and each part of variable thickness of the degrader, that is to say each "step" corresponding to a given energy decrease, is located in a place such that the distance between the entry face of the step and the place of focus of the beam (i.e. the waist) corresponds exactly to the distance which minimizes the emittance of exit of the beam as calculated by the transport equations and diffusion theory.
  • An important aspect of the present invention is therefore that the beam optics, and in particular the position of the waist, are not modified as a function of the variation in energy which it is desired to produce. Thanks to the appropriate curvature of the entry and exit faces (ie thanks to the shape of the entry and exit "stairs"), the waist remains static in space and occupies always, for each step, the ideal position relative to the entry and exit faces of the step.
  • the degrader is composed of a material of very low atomic mass and of high density to reduce the effects of multiple scattering.
  • This wheel is automated and remotely controlled so as to place, on the path of the incident beam, the part of the degrader (the "step") whose thickness corresponds to the loss of energy that one wishes to cause.
  • FIG. 3 represents a diagram of the device for its use in proton therapy. It has been dimensioned so as to allow the continuous variation, in the range 70 MeV - 230 MeV, of the energy of a beam of protons of fixed energy (approximately 230 MeV) produced by a cyclotron.
  • the device comprises the degrader 1 mounted on an automated wheel and made of graphite. It consists of 154 "steps". Also found on this wheel are elements for controlling the characteristics of the beam such as beam profile monitors 4 as well as beam stops 3.
  • the assembly also includes the frame 6, correction magnets (5, "steering ”) and power cables 2 in addition to a few connectors.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Particle Accelerators (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

A device for varying the energy of a particle beam extracted from a fixed-energy particle accelerator includes a block of energy degrading material positioned in the path of the particle beam. The block of energy degrading material is preferably in the form of a ring arranged on a wheel. The ring is of a staircase configuration, having discrete steps defining a thickness between parallel entry and exit faces. According to one aspect of the invention, the block is configured so that the particle beam energy variation reaches a maximum at the edges of each step. This upper limit is also the lower limit of the next step. Thus, continuous energy variation is possible despite the fact that the thickness of the block varies in discrete steps.

Description

DISPOSITIF DE VARIATION DE L'ENERGIE D'UN FAISCEAU DE PARTICULES EXTRAITES D'UN ACCELERATEUR DEVICE FOR VARIING THE ENERGY OF A BEAM OF PARTICLES EXTRACTED FROM AN ACCELERATOR
Objet de l'inventionSubject of the invention
La présente invention se rapporte à un dispositif destiné à permettre la variation de l'énergie d'un faisceau de particules extraites d'un accélérateur de particules .The present invention relates to a device intended to allow the variation of the energy of a beam of particles extracted from a particle accelerator.
La présente invention se rapporte également à l'utilisation d'un tel dispositif.The present invention also relates to the use of such a device.
Etat de la techniqueState of the art
Certaines applications impliquant l'utilisation de faisceaux de particules chargées nécessitent en outre de faire varier rapidement l'énergie de ces particules. Pour ce faire, une solution consiste à utiliser un accélérateur capable de produire, de manière intrinsèque, un faisceau de particules extrait dont l'énergie est variable. A cet égard, on peut proposer d'utiliser un accélérateur tel qu'un synchrotron capable de produire au sein même de cet accélérateur un faisceau de particules dont l'énergie est variable. Néanmoins, ce type d'accélérateur est relativement complexe à réaliser, et de ce fait plus coûteux et moins fiable que des accélérateurs de particules produisant des faisceaux d'énergie fixe comme les cyclotrons.Certain applications involving the use of charged particle beams also require the energy of these particles to be varied rapidly. To do this, a solution consists in using an accelerator capable of producing, intrinsically, an extracted beam of particles whose energy is variable. In this regard, one can propose using an accelerator such as a synchrotron capable of producing within this accelerator a beam of particles whose energy is variable. However, this type of accelerator is relatively complex to produce, and therefore more expensive and less reliable than accelerators. of particles producing fixed energy beams like cyclotrons.
De ce fait, on a proposé d'équiper de tels accélérateurs à énergie fixe d'un dispositif ayant pour but de modifier les caractéristiques en énergie du faisceau, et ceci sur la trajectoire dudit faisceau extrait de l'accélérateur. Ces dispositifs se basent sur le principe bien connu selon lequel toute particule traversant un bloc de matière voit son énergie diminuer d'une quantité qui est, pour un type de particules donné, fonction des caractéristiques propres du matériau traversé et de son épaisseur .Therefore, it has been proposed to equip such fixed energy accelerators with a device intended to modify the energy characteristics of the beam, and this on the path of said beam extracted from the accelerator. These devices are based on the well-known principle according to which any particle passing through a block of material sees its energy decrease by an amount which is, for a given type of particles, a function of the specific characteristics of the material crossed and its thickness.
Néanmoins, l'inconvénient principal de tels dispositifs, appelés également dégradeurs d'énergie, réside dans le fait que le bloc de matière détériore la résolution en énergie du faisceau dégradé. Ceci est dû à un phénomène appelé également phénomène de "straggling" , qui génère une variation statique de plus ou moins 1,5% en énergie. En proposant une face d'entrée et une face de sortie parallèles au sein du degradeur d'énergie, on a tendance à réduire ce phénomène.However, the main drawback of such devices, also called energy degraders, lies in the fact that the block of material deteriorates the energy resolution of the degraded beam. This is due to a phenomenon also called "straggling" phenomenon, which generates a static variation of plus or minus 1.5% in energy. By proposing an inlet face and an outlet face parallel within the energy degrader, there is a tendency to reduce this phenomenon.
En outre, on observe que les caractéristiques optiques du faisceau traversant le degradeur d'énergie sont également altérées. En particulier, un faisceau incident parallèle devient divergent à la sortie du degradeur du fait de la diffusion multiple au sein du degradeur. Ces inconvénients (augmentation de la divergence et de la dispersion en énergie) peuvent amener à une situation où l'émittance du faisceau est trop élevée pour rencontrer les contraintes d'émittance à l'entrée imposées par les éléments optiques du faisceau qui sont situés en aval le long de la ligne de transport du faisceau.In addition, it is observed that the optical characteristics of the beam passing through the energy degrader are also altered. In particular, a parallel incident beam becomes divergent at the output of the degrader due to the multiple scattering within the degrader. These drawbacks (increased divergence and energy dispersion) can lead to a situation where the beam emittance is too high to meet the input emittance constraints imposed by the optical elements of the beam which are located in downstream along the beam transport line.
Afin de résoudre ces problèmes, on a également proposé d'utiliser un aimant d'analyse disposé après le dispositif degradeur, visant à n'accepter que l'énergie voulue pour une résolution prédéfinie, ceci à l'aide de fentes et de collimateurs prévus pour améliorer les caractéristiques optiques du faisceau dégradé. Néanmoins, par l'utilisation de tels éléments, on observe que l'intensité du faisceau est encore réduite, provoquant également une activation importante des différents éléments .In order to solve these problems, it has also been proposed to use an analysis magnet arranged after the degrading device, aiming to accept only the energy desired for a predefined resolution, this using slots and collimators provided to improve the optical characteristics of the degraded beam. However, by the use of such elements, it is observed that the intensity of the beam is further reduced, also causing significant activation of the various elements.
Le document "Three-dimensional Beam Scanning for Proton Therapy" de Kanai et al. publié dans Nuclear Instruments and Methods in Physic Research (1er septembre 1983), The Netherlands, Vol. 214, No. 23, pp. 491-496 décrit l'utilisation d'un synchrotron produisant un faisceau de protons contrôlé par des aimants de balayage, qui est ensuite dirigé vers un degradeur d'énergie qui a pour but de modifier les caractéristiques en énergie du faisceau de protons. Ce degradeur est essentiellement constitué par un bloc de matière dont l'épaisseur est variable de manière discrète. Néanmoins, cette application ne propose pas de réaliser une variation continue de l'énergie du faisceau extrait d'un accélérateur de particules, et en particulier un accélérateur de particules à énergie fixe.The document "Three-dimensional Beam Scanning for Proton Therapy" by Kanai et al. published in Nuclear Instruments and Methods in Physic Research (1 September 1983), The Netherlands, Vol. 214, No. 23, pp. 491-496 describes the use of a synchrotron producing a proton beam controlled by scanning magnets, which is then directed towards an energy degrader which aims to modify the energy characteristics of the proton beam. This degrader is essentially constituted by a block of material whose thickness is variable in a discreet manner. However, this application does not propose to carry out a continuous variation of the energy of the beam extracted from a particle accelerator, and in particular a particle accelerator with fixed energy.
Buts de l'inventionAims of the invention
La présente invention vise à proposer un dispositif qui permettrait de faire varier l'énergie du faisceau extrait d'un accélérateur de particules, en particulier d'un accélérateur de particules à énergie fixe, tout en maintenant les caractéristiques de dispersion en énergie et les qualités optiques du faisceau.The present invention aims to propose a device which would make it possible to vary the energy of the beam extracted from a particle accelerator, in particular from a fixed energy particle accelerator, while maintaining the energy dispersion characteristics and the qualities beam optics.
La présente invention vise plus particulièrement à proposer un dispositif qui permettrait de faire varier l'énergie d'un faisceau extrait d'un accélérateur de particules de manière quasi continue.The present invention aims more particularly to propose a device which would allow to vary the energy of a beam extracted from a particle accelerator almost continuously.
Principaux éléments caractéristiques de l'invention La présente invention se rapporte à un procédé et un dispositif destinés à permettre la variation de l'énergie d'un faisceau de particules extraites d'un accélérateur de particules à énergie fixe. Dans ce but, on interpose, sur le chemin du faisceau de particules extraites de l'accélérateur, un degradeur d'énergie constitué essentiellement d'un bloc de matière dont l'épaisseur est variable de manière discrète par pas. L'épaisseur est définie comme la distance entre la face d'entrée et la face de sortie sur le bloc de matière. L'espacement en énergie des pas est variable et est déterminé de manière que la variation de 1 ' intensité du faisceau atteigne à la frontière entre deux pas consécutifs un maximum de 15%, typiquement 10%, de 1 ' intensité maximale obtenue à la sortie de chacun des deux pas successifs considérés. Ceci permet d'obtenir une variation continue de l'énergie malgré le fait que l'épaisseur varie de manière discrète. En effet, ceci est dû a la combinaison de la manière de calculer l'espacement en énergie entre les pas avec l'association d'un élément d'analyse.Main characteristic elements of the invention The present invention relates to a method and a device intended to allow the variation of the energy of a beam of particles extracted from a particle accelerator with fixed energy. For this purpose, there is interposed, on the path of the beam of particles extracted from the accelerator, an energy degrader essentially consisting of a block of material whose thickness is variable in discrete steps. The thickness is defined as the distance between the entry face and the exit face on the block of material. The spacing in energy of the steps is variable and is determined so that the variation of the intensity of the beam reaches at the border between two consecutive steps a maximum of 15%, typically 10%, of the maximum intensity obtained at the exit. of each of the two successive steps considered. This makes it possible to obtain a continuous variation of the energy despite the fact that the thickness varies in a discrete manner. Indeed, this is due to the combination of the way of calculating the energy spacing between the steps with the association of an element of analysis.
Selon une forme d'exécution préférée, ce degradeur est positionné à l'endroit où l'enveloppe du faisceau présente un étranglement ("waist'M En outre, la courbure des faces d'entrée et de sortie du degradeur, définie par la hauteur des marches ou pas discrets, est dessinée de manière que le "waist" occupe toujours pour chaque marche ou pas la position idéale par rapport aux faces d'entrée et de sortie sans qu'il soit nécessaire de modifier d'un pas à l'autre les paramètres de réglage de transport du faisceau et en particulier la position du "waist" .According to a preferred embodiment, this degrader is positioned at the place where the bundle envelope has a constriction ("waist'M In addition, the curvature of the inlet and outlet faces of the degrader, defined by the height steps or not discrete, is drawn so that the "waist" always occupies for each step or not the ideal position relative to the entry and exit faces without the need to change from one step to the other the adjustment parameters of beam transport and in particular the position of the waist.
De préférence, le degradeur d'énergie présente des marches ou pas de largeur variable, la largeur d'une marche étant définie comme la distance entre deux marches successives. Cette largeur doit être ajustée de manière à être légèrement plus grande que le diamètre du faisceau à l'entrée ou à la sortie du degradeur, ce qui signifie que la largeur desdites marches ou pas de grande épaisseur sera plus importante que la largeur desdites marches ou pas de faible épaisseur.Preferably, the energy degrader has steps or not of variable width, the width of a step being defined as the distance between two successive steps. This width must be adjusted so as to be slightly larger than the diameter of the beam at the entrance or at the exit of the degrader, which means that the width of said steps or not of great thickness will be greater than the width of said steps or no thin.
Le matériau constituant le degradeur d'énergie doit présenter une forte densité et une faible masse atomique. Des exemples peuvent être le diamant, la poudre de diamant agglomérée ou le graphite.The material constituting the energy degrader must have a high density and a low atomic mass. Examples may be diamond, agglomerated diamond powder or graphite.
De préférence, le degradeur est monté sur une roue automatisée qui comprend également des éléments de diagnostic du faisceau tels que des moniteurs du profil du faisceau, des arrêts du faisceau, etc. De manière classique, on pourra également associer à ce degradeur d'énergie un aimant d'analyse.Preferably, the degrader is mounted on an automated wheel which also includes beam diagnostic elements such as beam profile monitors, beam stops, etc. Conventionally, it is also possible to associate this energy degrader with an analysis magnet.
Brève description des figuresBrief description of the figures
Les figures la et lb représentent respectivement une vue en perspective et une vue par le dessus d'un degradeur d'énergie utilisé dans le procédé de variation d'énergie d'un faisceau de particules selon la présente invention, tandis que la figure le représente un agrandissement d'une partie de la figure lb.Figures la and lb represent respectively a perspective view and a top view of an energy degrader used in the energy variation method of a particle beam according to the present invention, while the figure represents an enlargement of part of figure lb.
La figure 2 représente la variation de la densité du courant en fonction de l'énergie pour un faisceau de protons. La figure 3 représente une vue globale du dispositif selon la présente invention utilisé en protonthérapie .FIG. 2 represents the variation of the current density as a function of the energy for a beam of protons. FIG. 3 represents an overall view of the device according to the present invention used in proton therapy.
Description détaillée d'une forme d'exécution préférée de 1 ' inventionDetailed description of a preferred embodiment of the invention
La présente invention sera décrite plus en détails en référence aux figures qui représentent une forme d'exécution particulièrement préférée de la présente invention.The present invention will be described in more detail with reference to the figures which show a particularly preferred embodiment of the present invention.
Les figures la et lb représentent un degradeur utilisé dans le dispositif selon la présente invention, constitué essentiellement d'un bloc de matière dont l'épaisseur est variable par pas de manière discrète. Ce degradeur d'énergie permettra de déterminer de manière grossière la valeur de l'énergie souhaitée. Habituellement, on adjoindra à ce degradeur d'énergie un aimant d'analyse situé en aval de ce dernier afin de permettre un réglage plus fin de la valeur de l'énergie désirée. Ainsi que représenté à la figure le, le degradeur d'énergie selon l'invention a une forme en "escalier", pour lequel chaque pas ou "marche" présente une épaisseur différente correspondant à une variation d'énergie déterminée, l'épaisseur El + E2 étant définie comme la distance entre la face d'entrée et la face de sortie du faisceau de particules. La largeur L des marches successives est en outre variable, et est croissante en fonction de l'épaisseur desdits pas. Le troisième paramètre est la hauteur H d'un pas ou marche à l'autre. Ce bloc d'épaisseur variable est de préférence présenté sous forme d'un anneau disposé sur une roue. Ceci permet de s'affranchir du caractère discret du degradeur tout en maintenant un parallélisme des faces d'entrée et de sortie dudit degradeur, ce qui permet de minimiser la dispersion en énergie du faisceau.Figures la and lb show a degrader used in the device according to the present invention, consisting essentially of a block of material whose thickness is variable in steps discreetly. This energy degrader will make it possible to roughly determine the value of the desired energy. Usually, an energy magnet located downstream of the latter will be added to this energy degrader in order to allow a finer adjustment of the value of the desired energy. As shown in FIG. 1 a, the energy degrader according to the invention has a "staircase" shape, for which each step or "step" has a different thickness corresponding to a determined energy variation, the thickness El + E2 being defined as the distance between the entry face and the exit face of the particle beam. The width L of the successive steps is also variable, and is increasing as a function of the thickness of said steps. The third parameter is the height H from one step or step to another. This block of variable thickness is preferably presented in the form of a ring placed on a wheel. This makes it possible to get rid of the discrete character of the degrader while maintaining a parallelism of the faces input and output of said degrader, which minimizes the energy dispersion of the beam.
De cette manière, il est possible de construire un degradeur en double "escalier" dont l'épaisseur varie de façon discrète, ce qui rend possible le parallélisme des faces d'entrée et de sortie de manière à minimiser la dispersion en énergie.In this way, it is possible to build a double "staircase" degrader whose thickness varies discreetly, which makes possible the parallelism of the input and output faces so as to minimize the energy dispersion.
Lorsqu'un faisceau monoénergétique de protons traverse une épaisseur fixée de matière, la dispersion en énergie qui en résulte se traduit, à la sortie du bloc de matière, par un spectre en énergie de forme gaussienne, caractérisant la variation de la densité du courant (valeur In représentée à la figure 2, pour la "marche" n) en fonction de l'énergie. Cette gaussienne est centrée en une valeur de l'énergie (valeur En représentée à la figure 2, pour la "marche" n) qui correspond à l'énergie initiale diminuée de la quantité d'énergie perdue dans le matériau, telle que l'on peut la calculer à l'aide des tables de parcours (dites "table de range") . Selon une forme d'exécution, le pas de la variation de l'énergie est déterminé de manière telle que la diminution de 1 ' intensité du faisceau atteint un maximum de x% (typiquement 10%) aux bords de chaque marche. L'imposition de cette contrainte permet de calculer la limite supérieure en énergie Es pour une marche donnée, qui est également à la limite inférieure en énergie pour la marche suivante (figure 2) . Un calcul itératif définit ainsi le nombre de "marches" nécessaires pour obtenir une variation continue de l'énergie entre les valeurs maximale (celle du faisceau extrait de l'accélérateur) et minimale (l'énergie la plus faible que l'on utilisera dans le cadre de l'application en question)When a monoenergetic beam of protons crosses a fixed thickness of material, the energy dispersion which results from it is expressed, at the exit of the block of material, by an energy spectrum of Gaussian form, characterizing the variation of the density of the current ( In value represented in FIG. 2, for the "walk" n) as a function of the energy. This Gaussian is centered in an energy value (value En represented in Figure 2, for the "walk" n) which corresponds to the initial energy minus the amount of energy lost in the material, such as the it can be calculated using the route tables (called "range table"). According to one embodiment, the pitch of the variation in energy is determined in such a way that the decrease in intensity of the beam reaches a maximum of x% (typically 10%) at the edges of each step. The imposition of this constraint makes it possible to calculate the upper limit in energy Es for a given step, which is also at the lower limit in energy for the following step (Figure 2). An iterative calculation thus defines the number of "steps" necessary to obtain a continuous variation of the energy between the maximum values (that of the beam extracted from the accelerator) and minimum (the lowest energy that will be used in the framework of the application in question)
Avantageusement, on obtient selon la présente invention une variation en énergie de manière continue en disposant, selon une forme d'exécution préférée de l'invention, un aimant d'analyse en aval du degradeur, ceci malgré le fait que l'épaisseur du degradeur varie par pas discrets. Le principe est que, à cause de l'importante dispersion en énergie associée au "straggling" , le degradeur ne définira l'énergie que d'une manière grossière, le réglage fin se faisant en aval, à l'aide de l'aimant d'analyse.Advantageously, according to the present invention, a variation in energy is obtained continuously in having, according to a preferred embodiment of the invention, an analysis magnet downstream of the degrader, this despite the fact that the thickness of the degrader varies in discrete steps. The principle is that, because of the large energy dispersion associated with the "straggling", the degrader will only define the energy in a rough way, the fine adjustment being done downstream, using the magnet analysis.
La localisation du degradeur sur le chemin du faisceau a également une grande importance à cet égard. Dans ce but, pour minimiser la contribution de la divergence induite par le degradeur sur l'émittance du faisceau à la sortie, le degradeur d'épaisseur variable sera localisé exactement à l'endroit où l'enveloppe du faisceau montre un étranglement (c'est-à-dire l'endroit où le faisceau présente l'extension spatiale la plus petite, endroit appelé le "waist") . Le faisceau doit donc être focalisé dans le degradeur, et chaque partie d'épaisseur variable du degradeur, c'est-à-dire chaque "marche" correspondant à une diminution d'énergie donnée, est localisée en un endroit tel que la distance entre la face d'entrée de la marche et l'endroit de la focalisation du faisceau (c'est-à-dire le waist) correspond exactement à la distance qui minimise l'émittance de sortie du faisceau telle que calculée par les équations de transport et la théorie de la diffusion.The location of the degrader on the beam path is also of great importance in this regard. For this purpose, to minimize the contribution of the divergence induced by the degrader on the emittance of the beam at the exit, the degrader of variable thickness will be located exactly at the place where the envelope of the beam shows a constriction (c ' that is to say the place where the beam has the smallest spatial extension, place called the "waist"). The beam must therefore be focused in the degrader, and each part of variable thickness of the degrader, that is to say each "step" corresponding to a given energy decrease, is located in a place such that the distance between the entry face of the step and the place of focus of the beam (i.e. the waist) corresponds exactly to the distance which minimizes the emittance of exit of the beam as calculated by the transport equations and diffusion theory.
Un aspect important de la présente invention est donc que l'on ne modifie pas l'optique du faisceau, et en particulier la position du waist, en fonction de la variation d'énergie que l'on veut produire. Grâce à la courbure appropriée des faces d'entrée et de sortie (c'est- à-dire grâce à la forme des "escaliers" d'entrée et de sortie) , le waist reste statique dans l'espace et occupe toujours, pour chaque marche, la position idéale par rapport aux faces d'entrée et de sortie de la marche.An important aspect of the present invention is therefore that the beam optics, and in particular the position of the waist, are not modified as a function of the variation in energy which it is desired to produce. Thanks to the appropriate curvature of the entry and exit faces (ie thanks to the shape of the entry and exit "stairs"), the waist remains static in space and occupies always, for each step, the ideal position relative to the entry and exit faces of the step.
On observe donc que El n'est pas nécessairement égal à E2 comme représenté à la figure le. Avantageusement, le degradeur est composé d'un matériau de masse atomique très faible et de densité élevée pour diminuer les effets de la diffusion multiple.We therefore observe that El is not necessarily equal to E2 as represented in FIG. Advantageously, the degrader is composed of a material of very low atomic mass and of high density to reduce the effects of multiple scattering.
Cette roue est automatisée et contrôlée à distance de manière à placer, sur le chemin du faisceau incident, la partie du degradeur (la "marche") dont l'épaisseur correspond à la perte d'énergie que l'on souhaite provoquer.This wheel is automated and remotely controlled so as to place, on the path of the incident beam, the part of the degrader (the "step") whose thickness corresponds to the loss of energy that one wishes to cause.
La figure 3 représente un schéma du dispositif en vue de son utilisation en protonthérapie . Il a été dimensionne de manière à permettre la variation continue, dans la gamme 70 MeV - 230 MeV, de l'énergie d'un faisceau de protons d'énergie fixe (environ 230 MeV) produit par un cyclotron.FIG. 3 represents a diagram of the device for its use in proton therapy. It has been dimensioned so as to allow the continuous variation, in the range 70 MeV - 230 MeV, of the energy of a beam of protons of fixed energy (approximately 230 MeV) produced by a cyclotron.
Le dispositif comprend le degradeur 1 monté sur une roue automatisée et constitué de graphite. Il se compose de 154 "marches" . On trouvera également sur cette roue des éléments de contrôle des caractéristiques du faisceau tels que des moniteurs du profil du faisceau 4 ainsi que des arrêts de faisceau 3. L'ensemble comprend en outre le bâti 6, des aimants de correction (5, "steering") et des câbles d'alimentation 2 en plus de quelques connecteurs . The device comprises the degrader 1 mounted on an automated wheel and made of graphite. It consists of 154 "steps". Also found on this wheel are elements for controlling the characteristics of the beam such as beam profile monitors 4 as well as beam stops 3. The assembly also includes the frame 6, correction magnets (5, "steering ") and power cables 2 in addition to a few connectors.

Claims

REVENDICATIONS
1. Dispositif destiné à permettre la variation de l'énergie d'un faisceau de particules extraites d'un accélérateur de particules, caractérisé en ce qu'il comprend un degradeur d'énergie constitué essentiellement d'un bloc de matière dont l'épaisseur (El + E2) est variable de manière discrète par pas, l'espacement en énergie des pas étant variable et déterminé de manière que la variation de l'intensité du faisceau atteigne, à la frontière entre deux pas consécutifs, un maximum de 15%, et de préférence un maximum de 10%, de l'intensité maximale obtenue à la sortie de chacun des deux pas adjacents considérés .1. Device intended to allow the variation of the energy of a beam of particles extracted from a particle accelerator, characterized in that it comprises an energy degrader essentially consisting of a block of material whose thickness (El + E2) is discretely variable in steps, the energy spacing of the steps being variable and determined so that the variation in the intensity of the beam reaches, at the border between two consecutive steps, a maximum of 15% , and preferably a maximum of 10%, of the maximum intensity obtained at the output of each of the two adjacent steps considered.
2. Dispositif selon la revendication 1, caractérisé en ce que les faces d'entrée et de sortie au niveau de chaque pas discret du degradeur d'énergie sont parallèles .2. Device according to claim 1, characterized in that the input and output faces at each discrete step of the energy degrader are parallel.
3. Dispositif selon la revendication 1 ou 2 , caractérisé en ce que le degradeur est positionné à l'endroit où l'enveloppe du faisceau présente un étranglement .3. Device according to claim 1 or 2, characterized in that the degrader is positioned at the place where the envelope of the beam has a constriction.
4. Dispositif selon la revendication 3, caractérisé en ce que la courbure des faces qui constituent la hauteur (H) des pas discrets du degradeur pour l'entrée et la sortie du degradeur est dessinée de manière que l'endroit où l'enveloppe du faisceau présente un étranglement se positionne pour chaque pas de manière idéale par rapport aux faces d'entrée et de sortie.4. Device according to claim 3, characterized in that the curvature of the faces which constitute the height (H) of the discrete steps of the degrader for the entry and exit of the degrader is drawn so that the place where the envelope of the beam has a throttle position for each step ideally relative to the input and output faces.
5. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le degradeur présente des pas de largeur (L) variable, la largeur de chaque pas étant déterminée de manière à être légèrement plus grande que le diamètre du faisceau à l'entrée ou à la sortie du degradeur. 5. Device according to any one of the preceding claims, characterized in that the degrader has steps of variable width (L), the width of each step being determined so as to be slightly larger than the diameter of the beam at entering or leaving the degrader.
6 . Dispositif selon la revendication 5, caractérisé en ce que la largeur (L) des pas est croissante en fonction de l'épaisseur desdits pas.6. Device according to claim 5, characterized in that the width (L) of the steps is increasing as a function of the thickness of said steps.
7. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le degradeur est réalisé en une matière de forte densité et de faible masse atomique telle que le diamant, la poudre de diamant agglomérée, le graphite, ...7. Device according to any one of the preceding claims, characterized in that the degrader is made of a material of high density and low atomic mass such as diamond, agglomerated diamond powder, graphite, ...
8. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le degradeur est monté sur une roue automatisée.8. Device according to any one of the preceding claims, characterized in that the degrader is mounted on an automated wheel.
9. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la roue sur laquelle est monté le degradeur présente des éléments de diagnostic du faisceau tels que des moniteurs du profil du faisceau et/ou des arrêts du faisceau.9. Device according to any one of the preceding claims, characterized in that the wheel on which the degrader is mounted has beam diagnostic elements such as beam profile monitors and / or beam stops.
10. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on associe un dispositif d'analyse du faisceau tel qu'un aimant d'analyse au degradeur d'énergie.10. Device according to any one of the preceding claims, characterized in that a beam analysis device such as an analysis magnet is associated with the energy degrader.
11. Utilisation du dispositif selon l'une quelconque des revendications précédentes pour faire varier l'énergie de manière quasi continue à la sortie d'un accélérateur de particules, et en particulier d'un accélérateur de particules à énergie fixe tel qu'un cyclotron. 11. Use of the device according to any one of the preceding claims for varying the energy almost continuously at the outlet of a particle accelerator, and in particular of a fixed energy particle accelerator such as a cyclotron. .
EP99961998A 1998-12-21 1999-12-20 Device for varying the energy of a particle beam extracted from an accelerator Expired - Lifetime EP1145605B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
BE9800913A BE1012358A5 (en) 1998-12-21 1998-12-21 Process of changes of energy of particle beam extracted of an accelerator and device for this purpose.
BE9800913 1998-12-21
PCT/BE1999/000166 WO2000038486A1 (en) 1998-12-21 1999-12-20 Device for varying the energy of a particle beam extracted from an accelerator

Publications (2)

Publication Number Publication Date
EP1145605A1 true EP1145605A1 (en) 2001-10-17
EP1145605B1 EP1145605B1 (en) 2005-05-04

Family

ID=3891579

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99961998A Expired - Lifetime EP1145605B1 (en) 1998-12-21 1999-12-20 Device for varying the energy of a particle beam extracted from an accelerator

Country Status (10)

Country Link
US (1) US6433336B1 (en)
EP (1) EP1145605B1 (en)
JP (1) JP2002533888A (en)
CN (1) CN1203730C (en)
AT (1) ATE295062T1 (en)
AU (1) AU1850700A (en)
BE (1) BE1012358A5 (en)
CA (1) CA2354071C (en)
DE (1) DE69925165T2 (en)
WO (1) WO2000038486A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048088A1 (en) 2009-10-23 2011-04-28 Ion Beam Applications Gantry comprising beam analyser for use in particle therapy
EP3178522A1 (en) 2015-12-11 2017-06-14 Ion Beam Applications S.A. Particle therapy system and method with parallel control of energy variation and beam position variation

Families Citing this family (140)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3469213B2 (en) * 2001-03-29 2003-11-25 株式会社日立製作所 Magnetic field applied sample observation system
US7282721B2 (en) * 2001-08-30 2007-10-16 Varian Semiconductor Equipment Associates, Inc. Method and apparatus for tuning ion implanters
US20040162457A1 (en) 2001-08-30 2004-08-19 Carl Maggiore Antiproton production and delivery for imaging and termination of undersirable cells
US7317192B2 (en) * 2003-06-02 2008-01-08 Fox Chase Cancer Center High energy polyenergetic ion selection systems, ion beam therapy systems, and ion beam treatment centers
US6838676B1 (en) * 2003-07-21 2005-01-04 Hbar Technologies, Llc Particle beam processing system
US7183758B2 (en) * 2003-12-12 2007-02-27 International Business Machines Corporation Automatic exchange of degraders in accelerated testing of computer chips
EP3557956A1 (en) 2004-07-21 2019-10-23 Mevion Medical Systems, Inc. A programmable radio frequency waveform generator for a synchrocyclotron
US9077022B2 (en) * 2004-10-29 2015-07-07 Medtronic, Inc. Lithium-ion battery
ES2594619T3 (en) 2005-11-18 2016-12-21 Mevion Medical Systems, Inc. Radiation therapy with charged particles
EP1977631B1 (en) * 2006-01-19 2010-03-03 Massachusetts Institute of Technology Magnet structure for particle acceleration
US7656258B1 (en) 2006-01-19 2010-02-02 Massachusetts Institute Of Technology Magnet structure for particle acceleration
DE102007032025A1 (en) 2007-07-10 2008-12-18 Siemens Ag Particle therapy installation for treating patients with cancer comprises a cylindrical gantry rotating about a rotary axis with a rotating beam generator and a beam channel for guiding the particle beam produced
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US9737272B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle cancer therapy beam state determination apparatus and method of use thereof
US10143854B2 (en) 2008-05-22 2018-12-04 Susan L. Michaud Dual rotation charged particle imaging / treatment apparatus and method of use thereof
US8710462B2 (en) 2008-05-22 2014-04-29 Vladimir Balakin Charged particle cancer therapy beam path control method and apparatus
US9737734B2 (en) 2008-05-22 2017-08-22 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US8374314B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system
US8188688B2 (en) 2008-05-22 2012-05-29 Vladimir Balakin Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system
US9579525B2 (en) 2008-05-22 2017-02-28 Vladimir Balakin Multi-axis charged particle cancer therapy method and apparatus
US10029122B2 (en) 2008-05-22 2018-07-24 Susan L. Michaud Charged particle—patient motion control system apparatus and method of use thereof
WO2009142547A2 (en) 2008-05-22 2009-11-26 Vladimir Yegorovich Balakin Charged particle beam acceleration method and apparatus as part of a charged particle cancer therapy system
US9616252B2 (en) 2008-05-22 2017-04-11 Vladimir Balakin Multi-field cancer therapy apparatus and method of use thereof
US9095040B2 (en) 2008-05-22 2015-07-28 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8901509B2 (en) 2008-05-22 2014-12-02 Vladimir Yegorovich Balakin Multi-axis charged particle cancer therapy method and apparatus
US10684380B2 (en) 2008-05-22 2020-06-16 W. Davis Lee Multiple scintillation detector array imaging apparatus and method of use thereof
US9737733B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle state determination apparatus and method of use thereof
US9168392B1 (en) 2008-05-22 2015-10-27 Vladimir Balakin Charged particle cancer therapy system X-ray apparatus and method of use thereof
EP2283709B1 (en) 2008-05-22 2018-07-11 Vladimir Yegorovich Balakin Charged particle cancer therapy patient positioning apparatus
US8975600B2 (en) 2008-05-22 2015-03-10 Vladimir Balakin Treatment delivery control system and method of operation thereof
US8129699B2 (en) 2008-05-22 2012-03-06 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration
US8569717B2 (en) 2008-05-22 2013-10-29 Vladimir Balakin Intensity modulated three-dimensional radiation scanning method and apparatus
US8093564B2 (en) 2008-05-22 2012-01-10 Vladimir Balakin Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system
US8378321B2 (en) 2008-05-22 2013-02-19 Vladimir Balakin Charged particle cancer therapy and patient positioning method and apparatus
US8089054B2 (en) 2008-05-22 2012-01-03 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US9682254B2 (en) 2008-05-22 2017-06-20 Vladimir Balakin Cancer surface searing apparatus and method of use thereof
US9937362B2 (en) 2008-05-22 2018-04-10 W. Davis Lee Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof
US8436327B2 (en) 2008-05-22 2013-05-07 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus
EP2283705B1 (en) 2008-05-22 2017-12-13 Vladimir Yegorovich Balakin Charged particle beam extraction apparatus used in conjunction with a charged particle cancer therapy system
US8373143B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy
US9044600B2 (en) 2008-05-22 2015-06-02 Vladimir Balakin Proton tomography apparatus and method of operation therefor
US8309941B2 (en) 2008-05-22 2012-11-13 Vladimir Balakin Charged particle cancer therapy and patient breath monitoring method and apparatus
US8144832B2 (en) 2008-05-22 2012-03-27 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US8969834B2 (en) 2008-05-22 2015-03-03 Vladimir Balakin Charged particle therapy patient constraint apparatus and method of use thereof
US9744380B2 (en) 2008-05-22 2017-08-29 Susan L. Michaud Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof
US8718231B2 (en) 2008-05-22 2014-05-06 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US8288742B2 (en) 2008-05-22 2012-10-16 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
US10070831B2 (en) 2008-05-22 2018-09-11 James P. Bennett Integrated cancer therapy—imaging apparatus and method of use thereof
US8519365B2 (en) 2008-05-22 2013-08-27 Vladimir Balakin Charged particle cancer therapy imaging method and apparatus
US9056199B2 (en) 2008-05-22 2015-06-16 Vladimir Balakin Charged particle treatment, rapid patient positioning apparatus and method of use thereof
US8378311B2 (en) 2008-05-22 2013-02-19 Vladimir Balakin Synchrotron power cycling apparatus and method of use thereof
US8624528B2 (en) 2008-05-22 2014-01-07 Vladimir Balakin Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods
CN102172106B (en) 2008-05-22 2015-09-02 弗拉迪米尔·叶戈罗维奇·巴拉金 charged particle cancer therapy beam path control method and device
US10092776B2 (en) 2008-05-22 2018-10-09 Susan L. Michaud Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof
US8178859B2 (en) * 2008-05-22 2012-05-15 Vladimir Balakin Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system
MX2010012716A (en) 2008-05-22 2011-07-01 Vladimir Yegorovich Balakin X-ray method and apparatus used in conjunction with a charged particle cancer therapy system.
US9981147B2 (en) 2008-05-22 2018-05-29 W. Davis Lee Ion beam extraction apparatus and method of use thereof
US7939809B2 (en) 2008-05-22 2011-05-10 Vladimir Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8642978B2 (en) 2008-05-22 2014-02-04 Vladimir Balakin Charged particle cancer therapy dose distribution method and apparatus
US8907309B2 (en) 2009-04-17 2014-12-09 Stephen L. Spotts Treatment delivery control system and method of operation thereof
US8399866B2 (en) 2008-05-22 2013-03-19 Vladimir Balakin Charged particle extraction apparatus and method of use thereof
US8637833B2 (en) 2008-05-22 2014-01-28 Vladimir Balakin Synchrotron power supply apparatus and method of use thereof
US9974978B2 (en) 2008-05-22 2018-05-22 W. Davis Lee Scintillation array apparatus and method of use thereof
US9855444B2 (en) 2008-05-22 2018-01-02 Scott Penfold X-ray detector for proton transit detection apparatus and method of use thereof
US9498649B2 (en) 2008-05-22 2016-11-22 Vladimir Balakin Charged particle cancer therapy patient constraint apparatus and method of use thereof
US9782140B2 (en) 2008-05-22 2017-10-10 Susan L. Michaud Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof
US8373146B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin RF accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US8129694B2 (en) 2008-05-22 2012-03-06 Vladimir Balakin Negative ion beam source vacuum method and apparatus used in conjunction with a charged particle cancer therapy system
US10548551B2 (en) 2008-05-22 2020-02-04 W. Davis Lee Depth resolved scintillation detector array imaging apparatus and method of use thereof
US8198607B2 (en) 2008-05-22 2012-06-12 Vladimir Balakin Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US9155911B1 (en) 2008-05-22 2015-10-13 Vladimir Balakin Ion source method and apparatus used in conjunction with a charged particle cancer therapy system
US8373145B2 (en) * 2008-05-22 2013-02-12 Vladimir Balakin Charged particle cancer therapy system magnet control method and apparatus
US9177751B2 (en) 2008-05-22 2015-11-03 Vladimir Balakin Carbon ion beam injector apparatus and method of use thereof
AU2009249863B2 (en) 2008-05-22 2013-12-12 Vladimir Yegorovich Balakin Multi-field charged particle cancer therapy method and apparatus
US8598543B2 (en) 2008-05-22 2013-12-03 Vladimir Balakin Multi-axis/multi-field charged particle cancer therapy method and apparatus
US8368038B2 (en) 2008-05-22 2013-02-05 Vladimir Balakin Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron
WO2010101489A1 (en) 2009-03-04 2010-09-10 Zakrytoe Aktsionernoe Obshchestvo Protom Multi-field charged particle cancer therapy method and apparatus
US8896239B2 (en) 2008-05-22 2014-11-25 Vladimir Yegorovich Balakin Charged particle beam injection method and apparatus used in conjunction with a charged particle cancer therapy system
US9910166B2 (en) 2008-05-22 2018-03-06 Stephen L. Spotts Redundant charged particle state determination apparatus and method of use thereof
US8627822B2 (en) 2008-07-14 2014-01-14 Vladimir Balakin Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system
US8229072B2 (en) * 2008-07-14 2012-07-24 Vladimir Balakin Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
US8625739B2 (en) 2008-07-14 2014-01-07 Vladimir Balakin Charged particle cancer therapy x-ray method and apparatus
KR100946270B1 (en) * 2008-08-12 2010-03-09 주식회사 메가젠임플란트 Dental instrument for cutting soft tissue
US10518109B2 (en) 2010-04-16 2019-12-31 Jillian Reno Transformable charged particle beam path cancer therapy apparatus and method of use thereof
US10349906B2 (en) 2010-04-16 2019-07-16 James P. Bennett Multiplexed proton tomography imaging apparatus and method of use thereof
US10556126B2 (en) 2010-04-16 2020-02-11 Mark R. Amato Automated radiation treatment plan development apparatus and method of use thereof
US10751551B2 (en) 2010-04-16 2020-08-25 James P. Bennett Integrated imaging-cancer treatment apparatus and method of use thereof
US10638988B2 (en) 2010-04-16 2020-05-05 Scott Penfold Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof
US11648420B2 (en) 2010-04-16 2023-05-16 Vladimir Balakin Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof
US9737731B2 (en) 2010-04-16 2017-08-22 Vladimir Balakin Synchrotron energy control apparatus and method of use thereof
US10376717B2 (en) 2010-04-16 2019-08-13 James P. Bennett Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof
US10555710B2 (en) 2010-04-16 2020-02-11 James P. Bennett Simultaneous multi-axes imaging apparatus and method of use thereof
US10589128B2 (en) 2010-04-16 2020-03-17 Susan L. Michaud Treatment beam path verification in a cancer therapy apparatus and method of use thereof
US10086214B2 (en) 2010-04-16 2018-10-02 Vladimir Balakin Integrated tomography—cancer treatment apparatus and method of use thereof
US10625097B2 (en) 2010-04-16 2020-04-21 Jillian Reno Semi-automated cancer therapy treatment apparatus and method of use thereof
US10179250B2 (en) 2010-04-16 2019-01-15 Nick Ruebel Auto-updated and implemented radiation treatment plan apparatus and method of use thereof
US10188877B2 (en) 2010-04-16 2019-01-29 W. Davis Lee Fiducial marker/cancer imaging and treatment apparatus and method of use thereof
US9336916B2 (en) 2010-05-14 2016-05-10 Tcnet, Llc Tc-99m produced by proton irradiation of a fluid target system
WO2011148486A1 (en) * 2010-05-27 2011-12-01 三菱電機株式会社 Particle beam irradiation system and control method for particle beam irradiation system
JP5726541B2 (en) * 2011-01-18 2015-06-03 住友重機械工業株式会社 Energy degrader and charged particle irradiation system including the same
US8963112B1 (en) 2011-05-25 2015-02-24 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
US9269467B2 (en) 2011-06-02 2016-02-23 Nigel Raymond Stevenson General radioisotope production method employing PET-style target systems
JP5726644B2 (en) * 2011-06-06 2015-06-03 住友重機械工業株式会社 Energy degrader and charged particle beam irradiation system including the same
JP5917322B2 (en) * 2012-07-12 2016-05-11 住友重機械工業株式会社 Charged particle beam irradiation equipment
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
WO2014052718A2 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Focusing a particle beam
EP2900326B1 (en) 2012-09-28 2019-05-01 Mevion Medical Systems, Inc. Controlling particle therapy
WO2014052721A1 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Control system for a particle accelerator
TW201434508A (en) 2012-09-28 2014-09-16 Mevion Medical Systems Inc Adjusting energy of a particle beam
JP6254600B2 (en) 2012-09-28 2017-12-27 メビオン・メディカル・システムズ・インコーポレーテッド Particle accelerator
TW201424466A (en) 2012-09-28 2014-06-16 Mevion Medical Systems Inc Magnetic field regenerator
JP6523957B2 (en) 2012-09-28 2019-06-05 メビオン・メディカル・システムズ・インコーポレーテッド Magnetic shim for changing the magnetic field
EP2901823B1 (en) 2012-09-28 2021-12-08 Mevion Medical Systems, Inc. Controlling intensity of a particle beam
US8933651B2 (en) 2012-11-16 2015-01-13 Vladimir Balakin Charged particle accelerator magnet apparatus and method of use thereof
US9728280B2 (en) 2013-05-17 2017-08-08 Martin A. Stuart Dielectric wall accelerator utilizing diamond or diamond like carbon
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) * 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
EP3049151B1 (en) 2013-09-27 2019-12-25 Mevion Medical Systems, Inc. Particle beam scanning
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9962560B2 (en) * 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
ES2620670T3 (en) 2014-12-16 2017-06-29 Ion Beam Applications S.A. Energy degrader
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
EP3203815A1 (en) 2016-02-04 2017-08-09 Ion Beam Applications Rotating energy degrader
US9907981B2 (en) 2016-03-07 2018-03-06 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
RU2617689C1 (en) * 2016-04-19 2017-04-26 Иван Васильевич Трифанов Energy recovery of positively charged ions
US10037863B2 (en) 2016-05-27 2018-07-31 Mark R. Amato Continuous ion beam kinetic energy dissipater apparatus and method of use thereof
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning
CN106267584B (en) * 2016-07-29 2018-12-28 中国原子能科学研究院 A kind of Double-disk rotation type compact degrader and its application method
CN106304606A (en) * 2016-07-29 2017-01-04 中国原子能科学研究院 A kind of double in line plug-in type degrader and using method thereof
CN106406216B (en) * 2016-10-24 2018-02-16 合肥中科离子医学技术装备有限公司 A kind of control device and its control method for particle beam degrader
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
CN107737411B (en) * 2017-10-13 2018-11-02 华中科技大学 A kind of more wedge-shaped mixing material degraders of varied angle
CN108449859B (en) * 2018-03-08 2019-12-06 西北核技术研究所 energy reducing device and method for wheel axle type particle accelerator in vacuum
US11311746B2 (en) 2019-03-08 2022-04-26 Mevion Medical Systems, Inc. Collimator and energy degrader for a particle therapy system
CN112911783A (en) * 2021-03-25 2021-06-04 四川大学 Film energy degrader suitable for high-power beam

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3577201B2 (en) * 1997-10-20 2004-10-13 三菱電機株式会社 Charged particle beam irradiation device, charged particle beam rotation irradiation device, and charged particle beam irradiation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0038486A1 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048088A1 (en) 2009-10-23 2011-04-28 Ion Beam Applications Gantry comprising beam analyser for use in particle therapy
US10052498B2 (en) 2009-10-23 2018-08-21 Ion Beam Applications S.A. Gantry comprising beam analyser for use in particle therapy
US10799714B2 (en) 2009-10-23 2020-10-13 Ion Beam Applications, S.A. Gantry comprising beam analyser for use in particle therapy
EP3178522A1 (en) 2015-12-11 2017-06-14 Ion Beam Applications S.A. Particle therapy system and method with parallel control of energy variation and beam position variation

Also Published As

Publication number Publication date
CA2354071A1 (en) 2000-06-29
ATE295062T1 (en) 2005-05-15
DE69925165T2 (en) 2006-01-12
DE69925165D1 (en) 2005-06-09
CA2354071C (en) 2008-02-19
CN1331903A (en) 2002-01-16
JP2002533888A (en) 2002-10-08
EP1145605B1 (en) 2005-05-04
AU1850700A (en) 2000-07-12
BE1012358A5 (en) 2000-10-03
US6433336B1 (en) 2002-08-13
CN1203730C (en) 2005-05-25
WO2000038486A1 (en) 2000-06-29

Similar Documents

Publication Publication Date Title
BE1012358A5 (en) Process of changes of energy of particle beam extracted of an accelerator and device for this purpose.
FR2471617A1 (en) NON-LINEAR COMPOSITE WAVE-GUIDED OPTICAL DEVICE AND RADIATION SOURCE USING SUCH A DEVICE
EP0995145B1 (en) Diffractive optics with synthetic aperture and variable focal length and laser cutting device incorporating such an optics
EP0526306A1 (en) Magnetically coupled travelling wave proton accelerator
EP3216324B1 (en) Laser plasma lens
EP2356890B1 (en) Method and system for increasing the lifespan of a plasma
FR2504308A1 (en) INSTRUMENT AND METHOD FOR FOCUSING X-RAYS, GAMMA RAYS AND NEUTRONS
EP3427285B1 (en) Device for modulating the intensity of a charged particle beam, method for deviating a charged particle beam from the axis of emission with said device and system including this device.
EP0669461A1 (en) Three grid ion-optical device
EP0298817A1 (en) Process and device for the production of electrons using a field coupling and the photoelectric effect
EP1517727B1 (en) Device for irradiating a target with a hadron-charged beam, use in hadrontherapy
WO2022008358A1 (en) Method for manufacturing a head for irradiating a target with a beam of charged particles
FR3027740A1 (en) METHOD AND SYSTEM FOR GENERATING HIGH LASER POWER
EP0155890B1 (en) Slit-scanning image converter tube
WO2020243374A1 (en) Optical etendue matching methods for extreme ultraviolet metrology
EP1077019A1 (en) X-ray source and use in radiography
FR2676593A1 (en) ION SOURCE WITH ELECTRONIC CYCLOTRONIC RESONANCE.
WO2023198653A1 (en) Method and system for accelerating electrons using laser-plasma interaction
EP3406006A1 (en) Device for generating a polychromatic photon beam having substantially constant energy
WO2017093630A1 (en) Ion-generating device
FR2727210A1 (en) ELECTROMAGNETIC PULSE SIMULATOR
EP2909841B1 (en) Method and device for generating a focused strong-current charged-particle beam
WO2021018661A1 (en) Laser treatment system and method
FR3042641A1 (en) GENERATION OF AN ULTRACOURT ION BEAM
FR2527892A1 (en) Electron irradiation field dose equaliser for radiotherapy - has absorbing screen in electron beam path between radiation source and treatment field

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010629

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050504

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050504

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050504

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050504

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 69925165

Country of ref document: DE

Date of ref document: 20050609

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050804

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050804

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050815

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050902

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051220

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060207

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051004

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20091209

Year of fee payment: 11

Ref country code: GB

Payment date: 20091125

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100115

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20091204

Year of fee payment: 11

Ref country code: BE

Payment date: 20091126

Year of fee payment: 11

BERE Be: lapsed

Owner name: *ION BEAM APPLICATIONS

Effective date: 20101231

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101220

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69925165

Country of ref document: DE

Effective date: 20110701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101220