EP1144725B1 - Method for coating reactors for high pressure polymerisation of 1-olefins - Google Patents

Method for coating reactors for high pressure polymerisation of 1-olefins Download PDF

Info

Publication number
EP1144725B1
EP1144725B1 EP99965554A EP99965554A EP1144725B1 EP 1144725 B1 EP1144725 B1 EP 1144725B1 EP 99965554 A EP99965554 A EP 99965554A EP 99965554 A EP99965554 A EP 99965554A EP 1144725 B1 EP1144725 B1 EP 1144725B1
Authority
EP
European Patent Office
Prior art keywords
metal
layer
phosphorus
reactor
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99965554A
Other languages
German (de)
French (fr)
Other versions
EP1144725A2 (en
Inventor
Stephan Hüffer
Andreas Deckers
Wilhelm Weber
Roger Klimesch
Dieter Littmann
Jürgen STURM
Götz LERCH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1144725A2 publication Critical patent/EP1144725A2/en
Application granted granted Critical
Publication of EP1144725B1 publication Critical patent/EP1144725B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1614Process or apparatus coating on selected surface areas plating on one side
    • C23C18/1616Process or apparatus coating on selected surface areas plating on one side interior or inner surface
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the invention relates to a method for coating reactors for the high pressure polymerization of 1-olefins.
  • This invention relates to reactors and high pressure reactor plants for the polymerization or copolymerization of 1-olefins in particular Ethylene containing those coated according to the invention Reactors, and a process for the production of ethylene homound Copolymers in the reactors according to the invention.
  • the production of homopolymers and copolymers of High pressure ethylene is an industrial scale carried out process. In these procedures, pressures above 500 bar and temperatures of 150 ° C and higher used.
  • the process is generally carried out in high pressure autoclaves or carried out in tubular reactors.
  • High pressure autoclaves are in so-called compact or elongated embodiments known.
  • the well - known tubular reactors (Ullmanns Encyclopedia of technical chemistry, volume 19, p. 169 and p. 173 ff (1980), publisher Chemie Weinheim, Deerfield Beach, Basel) are characterized by simple Handling and low maintenance and are agitated against Autoclaves an advantage. The in the above equipment achievable sales are limited.
  • PTFE polytetrafluoroethylene
  • a method for coating a reactor has now been found characterized in that a metal layer or a metal-polymer dispersion layer on the inner surface of the reactor of a reactor for high pressure polymerization of ethylene without current deposit by covering the surfaces with a metal electrolyte solution contacted, in addition to the metal electrolyte, a reducing agent and optionally a halogenated to be deposited Contains polymer in dispersed form. Furthermore, were Reactors coated according to the invention for high-pressure polymerization of ethylene found. Finally, the reactors according to the invention for the high pressure polymerization of Ethylene is used and a process for high pressure polymerization of ethylene found.
  • the one with an anti-adhesive metal coating or metal-polymer dispersion layer coated reactors allow one significantly improved sales compared to non-coated Reactors.
  • This object of the invention is a method for electroless chemical deposition of metal layers or Underlying metal-polymer dispersion phases, which is known per se is (w. Riedel: Functional nickel plating, Verlag Eugen Leize, Saulgau, 1989, pages 231 to 236, ISBN 3-750480-044-x).
  • the Deposition of the metal layer or the metal-polymer dispersion phases serves to coat the inner walls of the known High-pressure reactor.
  • the according to the inventive method metal layer to be deposited comprises an alloy or an alloy-like one Mixed phase from a metal and at least one another element.
  • the metal-polymer dispersion phases according to the invention additionally comprise a polymer, in the context of Invention a halogenated polymer in the metal layer is dispersed.
  • the metal alloy is preferred a metal-boron alloy or a metal-phosphorus alloy with a boron or phosphorus content of 0.5 to 15% by weight.
  • Coatings are so-called “chemical Nickel systems” are phosphorus-containing nickel alloys a phosphorus content of 0.5 to 15% by weight; very particularly preferred are high phosphorus nickel alloys with 5 to 12 Wt .-%.
  • the electrons required for this are not through an external one Power source provided, but by chemical Reaction generated in the electrolyte itself (oxidation of a reducing agent).
  • the coating is carried out, for example, by immersion of the workpiece in a metal electrolyte solution a stabilized polymer dispersion was previously mixed.
  • metal electrolyte solutions commercially available or freshly prepared metal electrolyte solutions are usually used, to which the following components are added in addition to the electrolyte: a reducing agent such as a hypophosphite or boranate (for example NaBH 4 ), a buffer mixture for adjusting the pH, an alkali metal fluoride such as NaF, KF or LiF, carboxylic acids and a deposition moderator such as Pb 2+ .
  • a reducing agent such as a hypophosphite or boranate (for example NaBH 4 )
  • a buffer mixture for adjusting the pH for a buffer mixture for adjusting the pH
  • an alkali metal fluoride such as NaF, KF or LiF
  • carboxylic acids carboxylic acids
  • a deposition moderator such as Pb 2+
  • Ni 2+ , hypophosphite, carboxylic acids and fluoride and optionally deposition moderators such as Pb 2+ are particularly preferably used.
  • Such solutions are sold, for example, by Riedel, Galvano- und Filtertechnik GmbH, Halle, Westphalia and Atotech GmbH, Berlin. Solutions which have a pH around 5 and about 27 g / l NiSO 4 .6H 2 O and about 21 g / l NaH 2 PO 2 .H 2 O with a PTFE content of 1 to 25 g are particularly preferred / l included.
  • the optionally used halogenated polymer of the process according to the invention is preferably fluorinated.
  • suitable fluorinated polymers are polytetrafluoroethylene, perfluoroalkoxy polymers (PFA, for example with C 1 - to C 8 -alkoxy units), copolymers of tetrafluoroethylene and perfluoroalkyl vinyl ether, for example perfluorovinyl propyl ether.
  • PFA perfluoroalkoxy polymers
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkoxy polymers
  • PTFE dispersions Commercial polytetrafluoroethylene dispersions are preferred as the use form (PTFE dispersions) can be used.
  • the dispersions used a nonionic detergent (for example Polyglycols, alkylphenol ethoxylate or mixtures of the substances mentioned, 80 to 120 g neutral detergent per liter) or an ionic detergent (for example alkyl and haloalkyl sulfonates, Alkylbenzenesulfonates, alkylphenol ether sulfates, Tetraalkylammonium salts or optionally mixtures of the above Substances, 15 to 60 g ionic detergent per liter) for stabilization of the dispersion included.
  • a nonionic detergent for example Polyglycols, alkylphenol ethoxylate or mixtures of the substances mentioned, 80 to 120 g neutral detergent per liter
  • an ionic detergent for example alkyl and haloalkyl sulfonates, Alkylbenzenesulfonates, alkylphenol ether sulfates, Tetraalkylammonium salts or optionally mixtures of the above
  • Coating is carried out at a slightly elevated temperature, but which must not be so high that it destabilizes the dispersion comes. As temperatures have 40 to 95 ° C as proven suitable. Temperatures of 80 to 91 ° C. and 88 ° C. is particularly preferred.
  • the polymer portion of the dispersion coating is mainly by the amount of polymer dispersion added and the choice of detergents.
  • concentration of the Polymers the bigger role; high polymer concentrations of Immersion baths lead to a disproportionately high proportion of polymer in the metal-phosphor polymer dispersion layer or metal-boron polymer dispersion layer.
  • the surfaces treated according to the invention allow good heat transfer, although the coatings have a not inconsiderable thickness of 1 to 100 ⁇ m can. 3 to 20 ⁇ m, in particular 5 to 16 ⁇ m, are preferred.
  • the polymer content of the dispersion coating is 5 to 30 % By volume, preferably 15 to 25% by volume, 19 being particularly preferred up to 21 vol.%.
  • the surfaces treated according to the invention have excellent durability.
  • an annealing is preferably carried out at 200 to 400 °, especially at 315 to 380 ° C.
  • the tempering period is generally 5 minutes to 3 hours, preferably 35 to 60 minutes.
  • Another object of the present invention is a method for producing a coated reactor, which has a particularly adhesive, durable and heat-resistant coating and therefore solves the problem according to the invention in a special way.
  • This method is characterized in that before application the metal-polymer dispersion layer additionally a 1 to 15 microns, preferably 1 to 5 microns thick metal-phosphor layer is applied by electroless chemical deposition.
  • Electroless chemical application of a 1 to 15 ⁇ m thick metal-phosphor layer to improve adhesion is done by Metal electrolyte baths, but in this case none stabilized Polymer dispersion is added.
  • For tempering is preferably dispensed with at this time, since this is the Adhesion of the subsequent metal-polymer dispersion layer generally adversely affected.
  • the workpiece is placed in a second immersion bath, which in addition to the metal electrolyte also a stabilized one Includes polymer dispersion. This forms the metal-polymer dispersion layer.
  • An annealing at 100 to 450 ° C. is then preferably carried out, performed in particular at 315 to 400 ° C.
  • the annealing time is generally 5 minutes to 3 hours, preferably 35 to 45 minutes.
  • tubular Reactors can be particularly well by a preferred Coating variant of the method according to the invention by the metal electrolyte solution or the metal electrolyte polymer dispersion mixture pumps through the reactor to be coated.
  • the tubular reactors served, the coated tubes of the invention without problems in polymerization plants for high pressure polymerization install, replacing uncoated pipes.
  • the ethylene polymerization in the plants according to the invention, the pipes according to the invention usually take place at Temperatures from 400 to 6000 bar, preferably from 500 to 5000 bar and particularly preferably 1000 to 3500 bar.
  • the reaction temperature is 150 to 450 ° C, 160 are preferred up to 250 ° C.
  • the molecular weight regulators are hydrogen, aliphatic aldehydes, Ketones, CH-acidic compounds such as mercaptans or alcohols, Suitable for olefins and alkanes.
  • the polymerization can be carried out with oxygen-containing gases such as for example air can be started, but also with organic Peroxo compounds or with organic azo compounds such as for example AIBN (Azobisisobutyronitrile).
  • oxygen-containing gases such as for example air can be started
  • organic Peroxo compounds or with organic azo compounds such as for example AIBN (Azobisisobutyronitrile).
  • AIBN Azobisisobutyronitrile
  • benzoyl peroxide and di-tert.butyl peroxide are particularly preferred.
  • the polymers of ethylene produced by the process according to the invention can have very different molar masses depending on the reaction conditions.
  • Preferred molar masses M w are between 500 and 600,000 g.
  • Ethylene polymers are their small number of specks is usually specified in the form of a speck note, a low speck grade is usually a low one Number of specks corresponds.
  • the polymers produced according to the invention are particularly suitable for the production of moldings and sheets, such as foils or bags.
  • the removed reactor tube (length 150 m, diameter 15 mm) was contacted at a temperature of 88 ° C. with an aqueous nickel salt solution, the solution having the following composition: 27 g / l NiSO 4 .6 H 2 O, 21 g / l NaH 2 PO 2 .2 H 2 O, lactic acid CH 3 CHOHCO 2 H 20 g / l, propionic acid C 2 H 5 CO 2 H 3 g / l, Na citrate 5 g / l, NaF 1 g / l (note: Chemically electroless nickel electrolyte solutions of this and other concentrations are commercially available, for example from Riedel Galvano- und Filtertechnik GmbH, Halle, Westphalia; or from Atotech Kunststoff GmbH, Berlin)).
  • the pH was 4.8. To achieve uniform layer thicknesses, the solution was pumped through the pipe at a flow rate of 0.1 m / s. At a deposition rate of 12 ⁇ m / h, the process is finished after 75 min. The layer thickness achieved was 16 ⁇ m. The coated tube was then rinsed with water, dried and annealed at 400 ° C. for one hour.
  • the removed reactor tube (length 150 m, diameter 15 mm) was contacted at a temperature of 88 ° C. with an aqueous nickel salt solution, the solution having the following composition: 27 g / l NiSO 4 .6H 2 O, 21 g / l NaH 2 PO 2 .2H 2 O, 20 g / l lactic acid CH 3 CHOHCO 2 H, 3 g / l propionic acid C 2 H 5 CO 2 H, 5 g / l Na -Citrate, 1 g / l NaF.
  • the pH was 4.8.
  • the solution was pumped through the pipe at a flow rate of 0.1 m / s. At a deposition rate of 12 ⁇ m / h, 25 min. worked to get the achieved layer thickness of 5 microns.
  • the nickel salt solution was also added 1% by volume of a PTFE dispersion with a density of 1.5 g / ml added.
  • This PTFE dispersion contained 50% by weight solids.
  • the process was at a deposition speed of 8 ⁇ m / h finished in two hours (layer thickness 16 ⁇ m). That coated The tube was rinsed with water, dried and at 350 ° C annealed for an hour.
  • the polymerization was carried out in a total reactor 400 m. A detailed description of the reactor and the Polymerization conditions can be found in DE-A 40 10 271. The reactor was divided into 3 zones; at the beginning of each zone was initiated with peroxide solution. The dimensions of the zones are shown in Table 1.
  • the speck mark was determined by means of an automatic in-line measuring device (Brabender, Duisburg, "Autograder”). For this purpose, a small part of the polymer melt was shaped into a film using an approx. 10 cm wide slot die at 200 ° C., the thickness of which was approx. 0.5 mm. The number of specks was determined using a video camera and an automatic counting device. The number was then classified in the speck grade. Dimensions of the reaction zones of the experimental reactor Zone no. 1 2 3 Length [m] 150 150 100 diameter [Mm] 15 25 25
  • zone number 1 was coated according to the invention and the corresponding experiments were carried out. The results are shown in Table 2. It is expected that coating the other zones will further increase sales.
  • Example No. 1 2 3 (comparative example) Coating zone 1 nickel Nickel-PTFE no T max 1 [° C] 280 280 280 T min 1 [° C] 223 219 235 T max 2 [° C] 280 280 T max 3 [° C] 280 278 279

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemically Coating (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Polymerisation Methods In General (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Paints Or Removers (AREA)
  • Pretreatment Of Seeds And Plants (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a process for coating apparatuses and apparatus parts for chemical plant construction-which are taken to mean, for example, apparatus, tank and reactor walls, discharge devices, valves, pumps, filters, compressors, centrifuges, columns, dryers, comminution machines, internals, packing elements and mixing elements-wherein a metal layer or a metal/polymer dispersion layer is deposited in an electroless manner on the apparatus(es) or apparatus part(s) to be coated by bringing the parts into contact with a metal electrolyte solution which, in addition to the metal electrolyte, comprises a reducing agent and optionally the polymer or polymer mixture to be deposited in dispersed form, where at least one polymer is halogenated.

Description

Die Erfindung betrifft ein Verfahren zur Beschichtung von Reaktoren für die Hochdruckpolymerisation von 1-Olefinen. Weiterhin betrifft diese Erfindung Reaktoren und Hochdruckreaktoranlagen zur Polymerisation oder Copolymerisation von 1-Olefinen insbesondere Ethylen, enthaltend die erfindungsgemäß beschichteten Reaktoren, sowie ein Verfahren zur Herstellung von Ethylen-Homound Copolymerisaten in den erfindungsgemäßen Reaktoren.The invention relates to a method for coating reactors for the high pressure polymerization of 1-olefins. Farther This invention relates to reactors and high pressure reactor plants for the polymerization or copolymerization of 1-olefins in particular Ethylene containing those coated according to the invention Reactors, and a process for the production of ethylene homound Copolymers in the reactors according to the invention.

Die Herstellung von Homopolymerisaten und Copolymerisaten des Ethylens im Hochdruckverfahren ist ein industriell in großem Maßstab durchgeführter Prozess. In diesen Verfahren werden Drücke oberhalb von 500 bar und Temperaturen von 150°C und höher verwendet. Das Verfahren wird generell in Hochdruckautoklaven oder in Rohrreaktoren durchgeführt. Hochdruckautoklaven sind in sogenannten gedrungenen oder langgestreckten Ausführungsformen bekannt. Die bekannten Rohrreaktoren (Ullmanns Encyclopädie der technischen Chemie, Band 19, S. 169 und S. 173 ff (1980), Verlag Chemie Weinheim, Deerfield Beach, Basel) zeichnen sich durch einfache Handhabung und geringe Wartung aus und sind gegenüber gerührten Autoklaven von Vorteil. Die in den oben genannten Apparaturen erreichbaren Umsätze sind begrenzt.The production of homopolymers and copolymers of High pressure ethylene is an industrial scale carried out process. In these procedures, pressures above 500 bar and temperatures of 150 ° C and higher used. The process is generally carried out in high pressure autoclaves or carried out in tubular reactors. High pressure autoclaves are in so-called compact or elongated embodiments known. The well - known tubular reactors (Ullmanns Encyclopedia of technical chemistry, volume 19, p. 169 and p. 173 ff (1980), publisher Chemie Weinheim, Deerfield Beach, Basel) are characterized by simple Handling and low maintenance and are agitated against Autoclaves an advantage. The in the above equipment achievable sales are limited.

Um die Kapazität der vorhandenen Apparaturen zu erhöhen, ist man bestrebt, möglichst hohe Umsätze zu verwirklichen. Limitierend sind jedoch Polymerisationstemperatur und Polymerisationsdruck, die je nach Produkttyp eine spezifische Obergrenze haben. Für niederdichte LDPE-Wachse und LDPE-Polymere beträgt diese Obergrenze ca. 330°C; oberhalb davon kann es zu spontanen Ethylen-Zersetzungen kommen. Unterhalb einer Temperatur von 150°C kann es zu Wärmeabfuhrproblemen kommen. Weiterhin ist der auftretende Druckverlust limitierend; dieser Druckverlust nimmt mit sinkender Temperatur zu.In order to increase the capacity of the existing equipment, one is strives to achieve the highest possible sales. limiting but are polymerization temperature and polymerization pressure, which have a specific upper limit depending on the product type. For low density LDPE waxes and LDPE polymers have this upper limit approx. 330 ° C; Above that, spontaneous ethylene decomposition can occur come. Below a temperature of 150 ° C it can be too Heat dissipation problems come up. Furthermore, the pressure loss that occurs limiting; this pressure loss increases with decreasing Temperature too.

Entscheidend für den Betrieb eines Rohrreaktors zur Ethylenpolymerisation ist eine gute Wärmeabfuhr. Diese Wärmeabfuhr erfolgt vorzugsweise durch Mantelkühlung. Dabei wird ein Kühlmedium, im Allgemeinen Wasser, durch den sogenannten Kühlkreis geführt. Die Temperatur des Kühlmediums ist von großer Bedeutung. Bei Kühlmediumstemperaturen unter 150°C kann sich eine laminare Schicht aus Polyethylen bilden, die als Isolator wirken und die Wärmeabfuhr drastisch senken kann. Ist die Temperatur des Kühlmediums zu hoch gewählt, so ist die Temperaturdifferenz zwischen Reaktionsmedium und Kühlmedium zu gering, was ebenfalls zu unbefriedigenden Wärmedurchgangszahlen führt (vgl. beispielsweise E. Fitzer, W. Fritz, Chemische Reaktionstechnik, 2. Auflage, Seite 152 ff., Springer Verlag Heidelberg, 1982).Crucial for the operation of a tubular reactor for ethylene polymerization is good heat dissipation. This heat dissipation takes place preferably by jacket cooling. Here, a cooling medium in General water, led through the so-called cooling circuit. The The temperature of the cooling medium is very important. At coolant temperatures A laminar layer can develop below 150 ° C Form polyethylene, which act as an insulator and heat dissipation can drastically lower. The temperature of the cooling medium is too high selected, so is the temperature difference between the reaction medium and cooling medium too low, which is also unsatisfactory Heat transfer numbers (see e.g. E. Fitzer, W. Fritz, Chemical Reaction Engineering, 2nd edition, page 152 ff., Springer Verlag Heidelberg, 1982).

In der Praxis wird jedoch auch bei Temperaturen über 150°C eine langsam strömende Schicht aus Polyethylen beobachtet, die zu einer Verminderung der Wärmeabfuhr führt. Eine Methode, das Entstehen dieser Schicht zu behindern, besteht im sogenannten "Reizen". (EP-B 0 567 818, S. 3 , Zeile 6 ff.) Durch periodische Druckabsenkung wird die Strömungsgeschwindigkeit drastisch erhöht und die laminaren Schichten kurzzeitig beseitigt. Durch die periodische Druckabsenkung wird jedoch der mittlere Druck während des Betriebs gesenkt, was die Dichte des Ethylens absenkt und somit Umsatz und Molekulargewicht der Produkts verringert. Außerdem verursacht die periodische Druckabsenkung eine erhebliche mechanische Belastung in der Apparatur, was zu erhöhten Reparaturkosten führt und somit wirtschaftliche Nachteile bringt.In practice, however, even at temperatures above 150 ° C slow flowing layer of polyethylene observed that too leads to a reduction in heat dissipation. A method of emergence To hinder this layer consists in the so-called "stimulation". (EP-B 0 567 818, p. 3, line 6 ff.) By periodic Lowering pressure drastically increases the flow rate and temporarily removes the laminar layers. By periodic However, lowering the pressure becomes the mean pressure operation, which lowers the density of ethylene and thus Sales and molecular weight of the product decreased. Moreover the periodic drop in pressure causes a significant mechanical Stress in the equipment, resulting in increased repair costs leads and thus brings economic disadvantages.

Die Ausbildung von laminaren Grenzschichten in Rohrreaktoren oder auch gerührten Autoklaven zur Ethylenpolymerisation hat auch nachteilige Folgen für die Qualität der Ethylenpolymerisate. Dasjenige Material mit einer deutlich längeren Verweilzeit in den Reaktoren ist meistens hochmolekular, was sich makroskopisch in der Bildung sogenannter Stippen bemerkbar macht. Stippenhaltiges Material hat aber weniger gute mechanische Eigenschaften, da es im Material Sollrissstellen bildet, an denen ein Materialversagen stattfindet, und ist auch vom optischen Eindruck nachteilig.The formation of laminar boundary layers in tubular reactors or also has stirred autoclaves for ethylene polymerization adverse consequences for the quality of the ethylene polymers. the one Material with a significantly longer dwell time in the Reactors is mostly high molecular weight, which is macroscopic in the formation of so-called specks. Stipp containing However, material has less good mechanical properties because of it forms predetermined crack locations in the material where a material failure takes place, and is also disadvantageous from the visual impression.

Versuche, die Rohre mit PTFE (Polytetrafluorethylen) zu beschichten, führten nicht zum Erfolg. Zwar bietet sich PTFE als hitzebeständiges, mit Polyethylen unverträgliches Material an, jedoch wirkt es auch in dünnen Schichten als Isolator und verschlechtert den Wärmeübergang. Ähnliche Probleme werden auch bei Verfahren beobachtet, die die Aufbringung von Monolayer-Silanschichten auf die zu schützende Oberfläche umfassen (Polymer Mater. Sci. and Engineering, Proceedings of the ACS Division of Polymeric Materials Science and Engineering (1990), Band 62, Seiten 259. bis 263). Attempts to coat the pipes with PTFE (polytetrafluoroethylene) did not lead to success. PTFE is a heat-resistant, material incompatible with polyethylene, however it acts as an insulator and deteriorates even in thin layers the heat transfer. Similar problems also arise with procedures observed the application of monolayer silane layers include the surface to be protected (Polymer Mater. Sci. and Engineering, Proceedings of the ACS Division of Polymeric Materials Science and Engineering (1990), volume 62, pages 259. bis 263).

Es bestand also die Aufgabe,

  • ein Verfahren bereitzustellen, durch das der Umsatz in Reaktoren insbesondere zur Hochdruckpolymerisation von Ethylen verbessert werden konnte, wobei dieses Verfahren auf der Beschichtung der Reaktoren beruhen sollte;
  • entsprechend behandelte Reaktoren bereitzustellen,
  • diese Reaktoren zum Bau von Hochdruckreaktoren zu nutzen sowie
  • in den erfindungsgemäßen Reaktoren Polymerisate von 1-Olefinen herzustellen.
So the task was
  • to provide a process by which the conversion in reactors, in particular for the high-pressure polymerization of ethylene, could be improved, this process being based on the coating of the reactors;
  • to provide appropriately treated reactors,
  • to use these reactors to build high pressure reactors as well
  • to produce polymers of 1-olefins in the reactors according to the invention.

Es wurde nun ein Verfahren zur Beschichtung eines Reaktors gefunden, dadurch gekennzeichnet, dass man eine Metallschicht oder eine Metall-Polymer-Dispersionsschicht auf der Reaktorinnenfläche eines Reaktors für die Hochdruckpolymerisation von Ethylen stromlos abscheidet, indem man die Flächen mit einer Metall-Elektrolytlösung kontaktiert, die neben dem Metall-Elektrolyten ein Reduktionsmittel sowie optional ein abzuscheidendes halogeniertes Polymer in dispergierter Form enthält. Weiterhin wurden erfindungsgemäß beschichtete Reaktoren für die Hochdruckpolymerisation von Ethylen gefunden. Schließlich wurden die erfindungsgemäßen Reaktoren für die Hochdruckpolymerisation von Ethylen verwendet und ein Verfahren zur Hochdruckpolymerisation von Ethylen gefunden.A method for coating a reactor has now been found characterized in that a metal layer or a metal-polymer dispersion layer on the inner surface of the reactor of a reactor for high pressure polymerization of ethylene without current deposit by covering the surfaces with a metal electrolyte solution contacted, in addition to the metal electrolyte, a reducing agent and optionally a halogenated to be deposited Contains polymer in dispersed form. Furthermore, were Reactors coated according to the invention for high-pressure polymerization of ethylene found. Finally, the reactors according to the invention for the high pressure polymerization of Ethylene is used and a process for high pressure polymerization of ethylene found.

Die mit einer antiadhäsiven Metall-Beschichtung oder Metall-Polymer-Dispersionsschicht beschichteten Reaktoren ermöglichen einen deutlich verbesserten Umsatz im Vergleich zu nicht beschichteten Reaktoren.The one with an anti-adhesive metal coating or metal-polymer dispersion layer coated reactors allow one significantly improved sales compared to non-coated Reactors.

Dieser erfindungsgemäßen Lösung der Aufgabe liegt ein Verfahren zur stromlosen chemischen Abscheidung von Metallschichten oder Metall-Polymer-Dispersionsphasen zugrunde, das an sich bekannt ist (w. Riedel: Funktionelle Vernickelung, Verlag Eugen Leize, Saulgau, 1989, Seite 231 bis 236, ISBN 3-750480-044-x). Die Abscheidung der Metallschicht oder der Metall-Polymer-Dispersionsphasen dient zur Beschichtung der Innenwände des an sich bekannten Hochdruckreaktors. Die nach dem erfindungsgemäßen Verfahren abzuscheidende Metallschicht umfasst eine Legierung oder legierungsähnliche Mischphase aus einem Metall und mindestens einem weiteren Element. Die erfindungsgemäßen Metall-Polymer-Dispersionsphasen umfassen zusätzlich ein Polymer, im Rahmen der Erfindung ein halogeniertes Polymer, das in der Metall-Schicht dispergiert ist. Bei der Metall-Legierung handelt es sich bevorzugt um eine Metall-Bor-Legierung oder um eine Metall-Phosphor-Legierung mit einem Bor- bzw. Phosphor-Gehalt von 0,5 bis 15 Gew.-%.This object of the invention is a method for electroless chemical deposition of metal layers or Underlying metal-polymer dispersion phases, which is known per se is (w. Riedel: Functional nickel plating, Verlag Eugen Leize, Saulgau, 1989, pages 231 to 236, ISBN 3-750480-044-x). The Deposition of the metal layer or the metal-polymer dispersion phases serves to coat the inner walls of the known High-pressure reactor. The according to the inventive method metal layer to be deposited comprises an alloy or an alloy-like one Mixed phase from a metal and at least one another element. The metal-polymer dispersion phases according to the invention additionally comprise a polymer, in the context of Invention a halogenated polymer in the metal layer is dispersed. The metal alloy is preferred a metal-boron alloy or a metal-phosphorus alloy with a boron or phosphorus content of 0.5 to 15% by weight.

Bei einer besonders bevorzugten Ausführungsform der erfindungsgemäßen Beschichtungen handelt es sich um sogenannte "Chemisch Nickel-Systeme", das sind phosphorhaltige Nickellegierungen mit einem Phosphorgehalt von 0,5 bis 15 Gew.-%; ganz besonders bevorzugt sind hoch phosphorhaltige Nickellegierungen mit 5 bis 12 Gew.-%.In a particularly preferred embodiment of the invention Coatings are so-called "chemical Nickel systems "are phosphorus-containing nickel alloys a phosphorus content of 0.5 to 15% by weight; very particularly preferred are high phosphorus nickel alloys with 5 to 12 Wt .-%.

Im Gegensatz zur galvanischen Abscheidung werden bei der chemischen oder autokatalytischen Abscheidung des Metall-Phosphors oder Metall-Bors die dazu nötigen Elektronen nicht durch eine äußere Stromquelle zur Verfügung gestellt, sondern durch chemische Umsetzung im Elektrolyten selbst erzeugt (Oxidation eines Reduktionsmittels). Die Beschichtung erfolgt beispielsweise durch Eintauchen des Werkstückes in eine Metall-Elektrolytlösung, die mit einer stabilisierten Polymerdispersion zuvor gemischt wurde.In contrast to galvanic deposition, chemical or autocatalytic deposition of the metal phosphorus or metal boron the electrons required for this are not through an external one Power source provided, but by chemical Reaction generated in the electrolyte itself (oxidation of a reducing agent). The coating is carried out, for example, by immersion of the workpiece in a metal electrolyte solution a stabilized polymer dispersion was previously mixed.

Als Metall-Elektrolytlösungen werden gewöhnlich handelsübliche oder frisch zubereitete Metall-Elektrolytlösungen verwendet, denen neben dem Elektrolyten noch die folgenden Komponenten zugesetzt werden: ein Reduktionsmittel wie ein Hypophosphit oder Boranat (beispielsweise NaBH4), eine Puffermischung zur Einstellung des pH-Werts, ein Alkalimetallfluorid wie beispielsweise NaF, KF oder LiF, Carbonsäuren sowie einen Abscheidungsmoderator wie beispielsweise Pb2+. Dabei wird das Reduktionsmittel so gewählt, dass das entsprechende einzubauende Element im Reduktionsmittel bereits vorhanden ist.As metal electrolyte solutions, commercially available or freshly prepared metal electrolyte solutions are usually used, to which the following components are added in addition to the electrolyte: a reducing agent such as a hypophosphite or boranate (for example NaBH 4 ), a buffer mixture for adjusting the pH, an alkali metal fluoride such as NaF, KF or LiF, carboxylic acids and a deposition moderator such as Pb 2+ . The reducing agent is selected so that the corresponding element to be installed is already present in the reducing agent.

Besonders bevorzugt werden handelsübliche Nickelelektrolytlösungen eingesetzt, die Ni2+, Hypophosphit, Carbonsäuren und Fluorid und ggf. Abscheidungsmoderatoren wie Pb2+ enthalten. Solche Lösungen werden zum Beispiel von der Riedel, Galvano- und Filtertechnik GmbH, Halle, Westfalen und der Atotech Deutschland GmbH, Berlin vertrieben. Besonders bevorzugt sind Lösungen, die einen pH-Wert um 5 aufweisen und etwa 27 g/l NiSO4·6 H2O und etwa 21 g/l NaH2PO2·H2O bei einem PTFE-Gehalt von 1 bis 25 g/l enthalten.Commercial nickel electrolyte solutions which contain Ni 2+ , hypophosphite, carboxylic acids and fluoride and optionally deposition moderators such as Pb 2+ are particularly preferably used. Such solutions are sold, for example, by Riedel, Galvano- und Filtertechnik GmbH, Halle, Westphalia and Atotech Deutschland GmbH, Berlin. Solutions which have a pH around 5 and about 27 g / l NiSO 4 .6H 2 O and about 21 g / l NaH 2 PO 2 .H 2 O with a PTFE content of 1 to 25 g are particularly preferred / l included.

Das optional zu verwendende halogenierte Polymer des erfindungsgemäßen Verfahrens ist bevorzugt fluoriert. Beispiele für geeignete fluorierte Polymere sind Polytetrafluorethylen, Perfluor-Alkoxy-Polymere (PFA, z.B. mit C1- bis C8-Alkoxyeinheiten), Copolymerisate von Tetrafluorethylen und Perfluoralkylvinylether z.B. Perfluorvinylpropylether. Besonders bevorzugt sind Polytetrafluorethylen (PTFE) und Perfluor-Alkoxy-Polymere (PFA, nach DIN 7728, Teil 1, Jan. 1988).The optionally used halogenated polymer of the process according to the invention is preferably fluorinated. Examples of suitable fluorinated polymers are polytetrafluoroethylene, perfluoroalkoxy polymers (PFA, for example with C 1 - to C 8 -alkoxy units), copolymers of tetrafluoroethylene and perfluoroalkyl vinyl ether, for example perfluorovinyl propyl ether. Polytetrafluoroethylene (PTFE) and perfluoroalkoxy polymers (PFA, according to DIN 7728, Part 1, Jan. 1988) are particularly preferred.

Als Einsatzform können bevorzugt handelsübliche Polytetrafluorethylen-Dispersionen (PTFE-Dispersionen) verwandt werden. Bevorzugt werden PTFE-Dispersionen mit einem Feststoffanteil von 35 bis 60 Gew.-% und einem mittleren Partikeldurchmesser von 0,05 bis 1,2 µm, insbesondere 0,1 bis 0,3 µm, eingesetzt. Bevorzugt werden sphärische Partikel eingesetzt, weil die Verwendung sphärischer Partikel zu sehr homogenen Komposit-Schichten führt. Vorteilhaft an der Verwendung sphärischer Partikel ist ein schnelleres Schichtwachstum und bessere, insbesondere längere Thermostabilität der Bäder, was beides wirtschaftliche Vorteile bietet. Dies zeigt sich besonders deutlich im Vergleich zu Systemen unter Verwendung von irregulären Polymerpartikeln, welche durch Mahlung des entsprechenden Polymers erhalten werden. Außerdem können die verwendeten Dispersionen ein nichtionisches Detergenz (zum Beispiel Polyglykole, Alkylphenolethoxylat oder ggf. Gemische aus den genannten Stoffen, 80 bis 120 g neutrales Detergenz pro Liter) oder ein ionisches Detergenz (zum Beispiel Alkyl- und Haloalkylsulfonate, Alkylbenzolsulfonate, Alkylphenolethersulfate, Tetraalkylammoniumsalze oder optional Gemische aus den genannten Stoffen, 15 bis 60 g ionisches Detergenz pro Liter) zur Stabilisierung der Dispersion enthalten.Commercial polytetrafluoroethylene dispersions are preferred as the use form (PTFE dispersions) can be used. Prefers PTFE dispersions with a solids content of 35 up to 60% by weight and an average particle diameter of 0.05 up to 1.2 µm, in particular 0.1 to 0.3 µm, used. Prefers spherical particles are used because the use of spherical Particle leads to very homogeneous composite layers. Advantageous using spherical particles is faster Layer growth and better, especially longer, thermal stability of the bathrooms, both of which offer economic advantages. This is particularly evident when compared to systems below Use of irregular polymer particles, which by grinding of the corresponding polymer can be obtained. In addition, the dispersions used a nonionic detergent (for example Polyglycols, alkylphenol ethoxylate or mixtures of the substances mentioned, 80 to 120 g neutral detergent per liter) or an ionic detergent (for example alkyl and haloalkyl sulfonates, Alkylbenzenesulfonates, alkylphenol ether sulfates, Tetraalkylammonium salts or optionally mixtures of the above Substances, 15 to 60 g ionic detergent per liter) for stabilization of the dispersion included.

Zur Beschichtung wird bei leicht erhöhter Temperatur gearbeitet, die aber nicht so hoch sein darf, dass es zur Destabilisierung der Dispersion kommt. Als Temperaturen haben sich 40 bis 95°C als geeignet erwiesen. Bevorzugt sind Temperaturen von 80 bis 91°C und besonders bevorzugt ist 88°C.Coating is carried out at a slightly elevated temperature, but which must not be so high that it destabilizes the dispersion comes. As temperatures have 40 to 95 ° C as proven suitable. Temperatures of 80 to 91 ° C. and 88 ° C. is particularly preferred.

Als Abscheidegeschwindigkeiten haben sich 1 bis 15 µm/h als nützlich erwiesen. Dabei lässt sich die Abscheidegeschwindigkeit wie folgt durch die Zusammensetzung der Tauchbäder beeinflussen:

  • Durch höhere Temperaturen wird die Abscheidegeschwindigkeit erhöht, wobei es eine Maximaltemperatur gibt, die beispielsweise durch die Stabilität der optional zugegebenen Polymer-Dispersion begrenzt ist. Durch niedrigere Temperaturen wird die Abscheidegeschwindigkeit gesenkt.
  • Durch höhere Elektrolytkonzentrationen wird die Abscheidegeschwindigkeit erhöht, durch niedrigere gesenkt; wobei Konzentrationen von 1 g/l bis 20 g/l Ni2+ sinnvoll sind, bevorzugt sind Konzentrationen von 4 g/l bis 10 g/l; für Cu2+ sind 1 g/l bis 50 g/l sinnvoll.
  • Durch hohere Konzentrationen an Reduktionsmittel lässt sich die Abscheidegeschwindigkeit ebenfalls erhöhen;
  • Durch Erhöhung des pH-Wertes lässt sich die Abscheidegeschwindigkeit erhöhen. Bevorzugt stellt man einen pH-Wert zwischen 3 und 6, besonders bevorzugt zwischen 4 und 5,5 ein.
  • Zugabe von Aktivatoren wie beispielsweise Alkalifluoriden, beispielsweise NaF oder KF, erhöht die Abscheidegeschwindigkeit.
Deposition rates of 1 to 15 µm / h have been found to be useful. The deposition speed can be influenced as follows by the composition of the immersion baths:
  • The deposition rate is increased by higher temperatures, there being a maximum temperature which is limited, for example, by the stability of the optionally added polymer dispersion. The separation speed is reduced by lower temperatures.
  • The deposition rate is increased by higher electrolyte concentrations and reduced by lower ones; where concentrations of 1 g / l to 20 g / l Ni 2+ are useful, concentrations of 4 g / l to 10 g / l are preferred; for Cu 2+ 1 g / l to 50 g / l are advisable.
  • The deposition rate can also be increased by higher concentrations of reducing agent;
  • The deposition rate can be increased by increasing the pH. It is preferred to set a pH between 3 and 6, particularly preferably between 4 and 5.5.
  • Addition of activators such as alkali fluorides, for example NaF or KF, increases the deposition rate.

Der Polymeranteil der Dispersionsbeschichtung wird hauptsächlich durch die Menge der zugesetzten Polymerdispersion und die Wahl der Detergentien beeinflusst. Dabei spielt die Konzentration des Polymers die größere Rolle; hohe Polymerkonzentrationen der Tauchbäder führen zu einem überproportional höheren Polymeranteil in der Metall-Phosphor-Polymer-Dispersionsschicht bzw. Metall-Bor-Polymer-Dispersionsschicht.The polymer portion of the dispersion coating is mainly by the amount of polymer dispersion added and the choice of detergents. The concentration of the Polymers the bigger role; high polymer concentrations of Immersion baths lead to a disproportionately high proportion of polymer in the metal-phosphor polymer dispersion layer or metal-boron polymer dispersion layer.

Es wurde gefunden, daß die erfindungsgemäß behandelten Oberflächen einen guten Wärmedurchgang ermöglichen, obwohl die Beschichtungen eine nicht unerhebliche Dicke von 1 bis 100 µm aufweisen können. Bevorzugt sind 3 bis 20 µm, insbesondere 5 bis 16 µm. Der Polymeranteil der Dispersionsbeschichtung beträgt 5 bis 30 Vol.-%, bevorzugt 15 bis 25 Vol.-%, besonders bevorzugt sind 19 bis 21 Vol.-%. Die erfindungsgemäß behandelten Oberflächen weisen ferner eine exzellente Haltbarkeit auf.It was found that the surfaces treated according to the invention allow good heat transfer, although the coatings have a not inconsiderable thickness of 1 to 100 µm can. 3 to 20 μm, in particular 5 to 16 μm, are preferred. The The polymer content of the dispersion coating is 5 to 30 % By volume, preferably 15 to 25% by volume, 19 being particularly preferred up to 21 vol.%. The surfaces treated according to the invention have excellent durability.

Vorzugsweise wird im Anschluß an den Tauchvorgang eine Temperung bei 200 bis 400°, vor allem bei 315 bis 380°C, durchgeführt. Die Temperierungsdauer beträgt im allgemeinen 5 Minuten bis 3 Stunden, bevorzugt 35 bis 60 Minuten.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung eines beschichteten Reaktors, der eine besonders haftfeste, haltbare und wärmebeständige Beschichtung aufweist und deshalb die erfindungsgemäße Aufgabe in besonderer Weise löst.
Subsequent to the dipping process, an annealing is preferably carried out at 200 to 400 °, especially at 315 to 380 ° C. The tempering period is generally 5 minutes to 3 hours, preferably 35 to 60 minutes.
Another object of the present invention is a method for producing a coated reactor, which has a particularly adhesive, durable and heat-resistant coating and therefore solves the problem according to the invention in a special way.

Dieses Verfahren ist dadurch gekennzeichnet, dass vor dem Aufbringen der Metall-Polymer-Dispersionsschicht zusätzlich eine 1 bis 15 µm, bevorzugt 1 bis 5 µm dicke Metall-Phosphor-Schicht durch stromloses chemisches Abscheiden aufgebracht wird.This method is characterized in that before application the metal-polymer dispersion layer additionally a 1 to 15 microns, preferably 1 to 5 microns thick metal-phosphor layer is applied by electroless chemical deposition.

Das stromlose chemische Aufbringen einer 1 bis 15 µm dicken Metall-Phosphor-Schicht zur Haftverbesserung erfolgt wiederum durch Metall-Elektrolytbäder, denen jedoch in diesem Fall keine stabilisierte Polymer-Dispersion zugesetzt wird. Auf eine Temperung wird zu diesem Zeitpunkt vorzugsweise verzichtet, da diese die Haftfähigkeit der nachfolgenden Metall-Polymer-Dispersionsschicht im Allgemeinen negativ beeinflusst. Nach Abscheidung der Metall-Phosphor-Schicht wird das Werkstück in ein zweites Tauchbad gebracht, das neben dem Metall-Elektrolyt auch eine stabilisierte Polymer-Dispersion umfaßt. Hierbei bildet sich die Metall-Polymer-Dispersionsschicht.Electroless chemical application of a 1 to 15 µm thick metal-phosphor layer to improve adhesion is done by Metal electrolyte baths, but in this case none stabilized Polymer dispersion is added. For tempering is preferably dispensed with at this time, since this is the Adhesion of the subsequent metal-polymer dispersion layer generally adversely affected. After the deposition of the metal-phosphor layer the workpiece is placed in a second immersion bath, which in addition to the metal electrolyte also a stabilized one Includes polymer dispersion. This forms the metal-polymer dispersion layer.

Vorzugsweise wird anschließend eine Temperung bei 100 bis 450°C, insbesondere bei 315 bis 400°C, durchgeführt. Die Temperungsdauer beträgt im allgemeinen 5 Minuten bis 3 Stunden, bevorzugt 35 bis 45 Minuten.An annealing at 100 to 450 ° C. is then preferably carried out, performed in particular at 315 to 400 ° C. The annealing time is generally 5 minutes to 3 hours, preferably 35 to 45 minutes.

Als Reaktoren für die Hochdruckpolymerisation von Ethylen werden, wie eingangs ausgeführt, Hochdruckautoklaven oder aber Rohrreaktoren verwendet, wobei Rohrreaktoren bevorzugt sind. Rohrförmige Reaktoren lassen sich besonders gut durch eine bevorzugte Variante des erfindungsgemäßen Verfahrens beschichten, indem man die Metall-Elektrolytlösung bzw. das Metall-Elektrolyt-Polymerdispersionsgemisch durch den zu beschichtenden Reaktor pumpt.As reactors for the high pressure polymerization of ethylene, as stated at the beginning, high-pressure autoclaves or tubular reactors used, with tubular reactors being preferred. tubular Reactors can be particularly well by a preferred Coating variant of the method according to the invention by the metal electrolyte solution or the metal electrolyte polymer dispersion mixture pumps through the reactor to be coated.

Im Falle einer Ausführungsform, die sich rohrförmiger Reaktoren bedient, lassen sich die erfindungsgemäßen beschichteten Rohre problemlos in Polymerisationsanlagen zur Hochdruckpolymerisation einbauen und dabei nicht beschichtete Rohre ersetzen.In one embodiment, the tubular reactors served, the coated tubes of the invention without problems in polymerization plants for high pressure polymerization install, replacing uncoated pipes.

Die Ethylenpolymerisation in den erfindungsgemäßen Anlagen, die die erfindungsgemäßen Rohre enthalten, erfolgt üblicherweise bei Temperaturen von 400 bis 6000 bar, bevorzugt von 500 bis 5000 bar und besonders bevorzugt 1000 bis 3500 bar.The ethylene polymerization in the plants according to the invention, the the pipes according to the invention usually take place at Temperatures from 400 to 6000 bar, preferably from 500 to 5000 bar and particularly preferably 1000 to 3500 bar.

Die Reaktionstemperatur beträgt 150 bis 450°C, bevorzugt sind 160 bis 250°C.The reaction temperature is 150 to 450 ° C, 160 are preferred up to 250 ° C.

Als Monomer bei dem erfindungsgemäßen Polymerisationsverfahren ist Ethylen besonders geeignet. Es lassen sich auch Copolymerisate mit Ethylen herstellen, wobei prinzipiell alle radikalisch mit Ethylen copolymerisierbaren Olefine als Comonomere geeignet sind. Bevorzugt sind

  • 1-Olefine wie Propylen, 1-Buten, 1-Penten, 1-Hexen, 1-Octen und 1-Decen,
  • Acrylate wie Acrylsäure, Acrylsäuremethylester, Acrylsäureethylester, Acrylsäure-n-butylester oder Acrylsäure-tert.-butylester;
  • Metnacrylsäure, Methacrylsäuremethylester, Metnacrylsaureethylester, Methacrylsäure-n-butylester oder Methacrylsäuretert.-butylester;
  • Vinylcarboxylate, wobei Vinylacetat besonders bevorzugt ist,
  • Ungesättigte Dicarbonsäuren, besonders bevorzugt ist Maleinsäure,
  • ungesättigte Dicarbonsäurederivate, besonders bevorzugt sind Maleinsäureanhydrid und Maleinsäurealkylimide wie beispielsweise Maleinsäuremethylimid.
Ethylene is particularly suitable as a monomer in the polymerization process according to the invention. Copolymers with ethylene can also be prepared, in principle all olefins which can be copolymerized with ethylene by free radicals are suitable as comonomers. Are preferred
  • 1-olefins such as propylene, 1-butene, 1-pentene, 1-hexene, 1-octene and 1-decene,
  • Acrylates such as acrylic acid, acrylic acid methyl ester, acrylic acid ethyl ester, acrylic acid n-butyl ester or acrylic acid tert-butyl ester;
  • Methacrylic acid, methacrylic acid methyl ester, methacrylic acid ethyl ester, methacrylic acid n-butyl ester or methacrylic acid tert-butyl ester;
  • Vinyl carboxylates, with vinyl acetate being particularly preferred,
  • Unsaturated dicarboxylic acids, maleic acid is particularly preferred,
  • unsaturated dicarboxylic acid derivatives, maleic anhydride and maleic alkylimides such as maleic acid methylimide are particularly preferred.

Als Molmassenregler sind Wasserstoff, aliphatische Aldehyde, Ketone, CH-acide Verbindungen wie Mercaptane oder Alkohole, Olefine und Alkane geeignet.The molecular weight regulators are hydrogen, aliphatic aldehydes, Ketones, CH-acidic compounds such as mercaptans or alcohols, Suitable for olefins and alkanes.

Die Polymerisation kann mit sauerstoffhaltigen Gasen wie beispielsweise Luft gestartet werden, aber auch mit organischen Peroxoverbindungen oder mit organischen Azoverbindungen wie beispielsweise AIBN (Azobisisobutyronitril). Bevorzugt sind organische Peroxoverbindungen, wobei Benzoylperoxid und Di-tert.butylperoxid besonders bevorzugt sind.The polymerization can be carried out with oxygen-containing gases such as for example air can be started, but also with organic Peroxo compounds or with organic azo compounds such as for example AIBN (Azobisisobutyronitrile). Are preferred organic peroxo compounds, with benzoyl peroxide and di-tert.butyl peroxide are particularly preferred.

Die durch das erfindungsgemäße Verfahren hergestellten Polymerisate des Ethylens können abhängig von den Reaktionsbedingungen sehr unterschiedliche Molmassen haben. Bevorzugte Molmassen Mw liegen zwischen 500 und 600.000 g.The polymers of ethylene produced by the process according to the invention can have very different molar masses depending on the reaction conditions. Preferred molar masses M w are between 500 and 600,000 g.

Besonders vorteilhaft an den nach dem erfindungsgemäß hergestellten Ethylenpolymerisaten ist ihre geringen Stippenzahl, die üblicherweise in der Form einer Stippennote spezifiziert wird, wobei eine niedrige Stippennote üblicherweise einer niedrigen Stippenzahl entspricht. Die erfindungsgemäß hergestellten Polymerisate eignen sich in besonderem Maße zur Herstellung von Formkörpern und Flächengebilden, wie Folien oder Tüten.Particularly advantageous in those produced according to the invention Ethylene polymers are their small number of specks is usually specified in the form of a speck note, a low speck grade is usually a low one Number of specks corresponds. The polymers produced according to the invention are particularly suitable for the production of moldings and sheets, such as foils or bags.

Die Erfindung soll anhand eines Arbeitsbeispiels erläutert werden.The invention will be explained using a working example.

Arbeitsbeispiel:Working Example: 1. Chemisch Nickel-System1. Chemical nickel system

Das ausgebaute Reaktorrohr (Länge 150 m, Durchmesser 15 mm) wurde bei einer Temperatur von 88°C mit einer wässrigen Nikkelsalzlösung kontaktiert, wobei die Lösung die folgende Zusammensetzung hatte: 27 g/l NiSO4·6 H2O, 21 g/l NaH2PO2·2 H2O, Milchsäure CH3CHOHCO2H 20 g/l, Propionsäure C2H5CO2H 3 g/l, Na-Citrat 5 g/l, NaF 1 g/l (Anmerkung: Chemisch stromlose Nickelelektrolytlösungen dieser und anderer Konzentration sind kommerziell erhältlich, beispielsweise bei Riedel Galvano- und Filtertechnik GmbH, Halle, Westfalen; oder bei Atotech Deutschland GmbH, Berlin)). Der pH-Wert betrug 4,8. Zur Erzielung gleichmäßiger Schichtdicken wurde die Lösung mit einer Strömungsgeschwindigkeit von 0,1 m/s durch das Rohr gepumpt. Bei einer Abscheidegeschwindigkeit von 12 µm/h ist der Prozess nach 75 min beendet. Die erzielte Schichtdicke betrug 16 µm. Anschließend wurde das beschichtete Rohr mit Wasser gespült, getrocknet und bei 400°C eine Stunde lang getempert.The removed reactor tube (length 150 m, diameter 15 mm) was contacted at a temperature of 88 ° C. with an aqueous nickel salt solution, the solution having the following composition: 27 g / l NiSO 4 .6 H 2 O, 21 g / l NaH 2 PO 2 .2 H 2 O, lactic acid CH 3 CHOHCO 2 H 20 g / l, propionic acid C 2 H 5 CO 2 H 3 g / l, Na citrate 5 g / l, NaF 1 g / l (note: Chemically electroless nickel electrolyte solutions of this and other concentrations are commercially available, for example from Riedel Galvano- und Filtertechnik GmbH, Halle, Westphalia; or from Atotech Deutschland GmbH, Berlin)). The pH was 4.8. To achieve uniform layer thicknesses, the solution was pumped through the pipe at a flow rate of 0.1 m / s. At a deposition rate of 12 µm / h, the process is finished after 75 min. The layer thickness achieved was 16 µm. The coated tube was then rinsed with water, dried and annealed at 400 ° C. for one hour.

2. Nickel-PTFE-System2. Nickel-PTFE system

Die Herstellung erfolgte in 2 Stufen. Zunächst wurde das ausgebaute Reaktorrohr (Länge 150 m, Durchmesser 15 mm) bei einer Temperatur von 88°C mit einer wässrigen Nickelsalzlösung kontaktiert, wobei die Lösung die folgende Zusammensetzung hatte: 27 g/l
NiSO4·6 H2O, 21 g/l NaH2PO2·2H2O, 20 g/l Milchsäure CH3CHOHCO2H, 3 g/l Propionsäure C2H5CO2H, 5 g/l Na-Citrat, 1 g/l NaF. Der pH-Wert betrug 4,8. Zur Erzielung gleichmäßiger Schichtdicken wurde die Lösung mit einer Strömungsgeschwindigkeit von 0,1 m/s durch das Rohr gepumpt. Bei einer Abscheidegeschwindigkeit von 12 µm/h wurde 25 min. gearbeitet, um die erzielte Schichtdicke von 5 µm zu erhalten.
The production took place in two stages. First, the removed reactor tube (length 150 m, diameter 15 mm) was contacted at a temperature of 88 ° C. with an aqueous nickel salt solution, the solution having the following composition: 27 g / l
NiSO 4 .6H 2 O, 21 g / l NaH 2 PO 2 .2H 2 O, 20 g / l lactic acid CH 3 CHOHCO 2 H, 3 g / l propionic acid C 2 H 5 CO 2 H, 5 g / l Na -Citrate, 1 g / l NaF. The pH was 4.8. To achieve uniform layer thicknesses, the solution was pumped through the pipe at a flow rate of 0.1 m / s. At a deposition rate of 12 µm / h, 25 min. worked to get the achieved layer thickness of 5 microns.

Nach diesem Schritt wurde nicht gespült.No rinsing was carried out after this step.

Anschließend wurde die Nickelsalzlösung zusätzlich mit 1 Vol.-% einer PTFE-Dispersion mit einer Dichte von 1,5 g/ml versetzt. Diese PTFE-Dispersion enthielt 50 Gew.-% Feststoff. Bei einer Abscheidegeschwindigkeit von 8 µm/h war der Prozess in zwei Stunden beendet (Schichtdicke 16 µm). Das beschichtete Rohr wurde mit Wasser gespült, getrocknet und bei 350°C eine Stunde lang getempert.Then the nickel salt solution was also added 1% by volume of a PTFE dispersion with a density of 1.5 g / ml added. This PTFE dispersion contained 50% by weight solids. The process was at a deposition speed of 8 µm / h finished in two hours (layer thickness 16 µm). That coated The tube was rinsed with water, dried and at 350 ° C annealed for an hour.

3. Polymerisationsbeispiele 1 bis 33. Polymerization Examples 1 to 3

Die Polymerisation erfolgte in einem Reaktor von insgesamt 400 m. Eine detaillierte Beschreibung des Reaktors und der Polymerisationsbedingungen sind in DE-A 40 10 271 zu finden. Der Reaktor wurde in 3 Zonen eingeteilt; zu Beginn jeder Zone wurde mit Peroxid-Lösung initiiert. Die Abmessungen der Zonen sind Tabelle 1 zu entnehmen.The polymerization was carried out in a total reactor 400 m. A detailed description of the reactor and the Polymerization conditions can be found in DE-A 40 10 271. The reactor was divided into 3 zones; at the beginning of each zone was initiated with peroxide solution. The dimensions of the zones are shown in Table 1.

Es wurde bei einem Druck von 3000 bar polymerisiert. Als Molekulargewichtsregler wurde Propionaldehyd verwendet. Die Temperatur des Kühlmediums Wasser betrug 200°C. Die maximalen Reaktionstemperaturen wurden - wie bei Hochdruckrohrreaktoren üblich - durch Dosierung der entsprechenden Menge Peroxid-Lösung eingestellt.It was polymerized at a pressure of 3000 bar. As Molecular weight regulator propionaldehyde was used. The Temperature of the cooling medium water was 200 ° C. The maximum Reaction temperatures were - as with high-pressure tube reactors usual - by dosing the appropriate amount of peroxide solution set.

Die Stippennote wurde mittels einer automatischen in-line-Messeinrichtung ermittelt (Fa. Brabender, Duisburg, "Autograder"). Dazu wurde ein geringer Teil der Polymerschmelze mittels einer ca. 10 cm breiten Schlitzdüse bei 200 °C zu einer Folie geformt deren Dicke ca. 0,5 mm betrug. Mittels einer Videokamera und einer automatischen Zählvorrichtung wurde die Anzahl der Stippen ermittelt. Anhand der Anzahl erfolgte dann die Einstufung in der Stippennote. Abmessungen der Reaktionszonen des Versuchsreaktors Zone Nr. 1 2 3 Länge [m] 150 150 100 Durchmesser
[mm]
15 25 25
The speck mark was determined by means of an automatic in-line measuring device (Brabender, Duisburg, "Autograder"). For this purpose, a small part of the polymer melt was shaped into a film using an approx. 10 cm wide slot die at 200 ° C., the thickness of which was approx. 0.5 mm. The number of specks was determined using a video camera and an automatic counting device. The number was then classified in the speck grade. Dimensions of the reaction zones of the experimental reactor Zone no. 1 2 3 Length [m] 150 150 100 diameter
[Mm]
15 25 25

Es wurde jeweils nur Zone Nummer 1 erfindungsgemäß beschichtet und die entsprechenden Experimente gefahren. Die Ergebnisse sind Tabelle 2 zu entnehmen. Es ist zu erwarten, dass eine Beschichtung der übrigen Zonen zu einer weiteren Erhöhung des Umsatzes führt. Polymerisationen in unterschiedlich beschichteten Reaktoren Beispiel Nr. 1 2 3 (Vergleichs beispiel) Beschichtung Zone 1 Nickel Nickel-PTFE keine Tmax 1 [°C] 280 280 280 Tmin 1 [°C] 223 219 235 Tmax 2 [°C] 280 280 280 Tmax 3 [°C] 280 278 279 Produktdichte (g/ml) 0,9229 0,9230 0,9225 MFI [g/min] 0,8 0,79 0,8 Umsatz [%] 27,9 28,3 26,3 Stippennote 2,5 2 3 In each case only zone number 1 was coated according to the invention and the corresponding experiments were carried out. The results are shown in Table 2. It is expected that coating the other zones will further increase sales. Polymerizations in differently coated reactors Example No. 1 2 3 (comparative example) Coating zone 1 nickel Nickel-PTFE no T max 1 [° C] 280 280 280 T min 1 [° C] 223 219 235 T max 2 [° C] 280 280 280 T max 3 [° C] 280 278 279 Product density (g / ml) .9229 0.9230 .9225 MFI [g / min] 0.8 0.79 0.8 Sales [%] 27.9 28.3 26.3 fisheye score 2.5 2 3

Claims (16)

  1. A process for coating a reactor for the high-pressure polymerization of 1-olefins, which comprises depositing a metal layer or a metal/polymer dispersion layer on the internal surface of the reactor in an electroless manner by bringing the surfaces into contact with a metal electrolyte solution which, besides the metal electrolyte, comprises a reducing agent and optionally a halogenated polymer to be deposited in dispersed form.
  2. A process as claimed in claim 1, wherein the metal electrolyte used is a nickel or copper electrolyte solution, and the reducing agent used is a hypophosphite or a borohydride.
  3. A process as claimed in claim 1, wherein a dispersion of a halogenated polymer is added to the metal electrolyte solution.
  4. A process as claimed in claim 1, wherein the metal electrolyte employed is a nickel salt solution, which is reduced in situ using an alkali metal hypophosphite and to which a polytetrafluoroethylene dispersion is added as halogenated polymer.
  5. A process as claimed in claims 1 to 4, wherein a halogenated polymer comprising spherical particles having a mean diameter of from 0.1 to 1.0 µm is used.
  6. A process as claimed in claims 1 to 5, wherein a halogenated polymer comprising spherical particles having a mean diameter of from 0.1 to 0.3 µm is used.
  7. A process as claimed in claims 1 to 6, wherein a nickel/phosphorus/polytetrafluoroethylene layer having a thickness of from 1 to 100 µm is deposited.
  8. A process as claimed in claims 1 to 7, wherein a nickel/phosphorus/polytetrafluoroethylene layer having a thickness of from 3 to 20 µm is deposited.
  9. A process as claimed in claims 1 to 8, wherein a nickel/phosphorus/polytetrafluoroethylene layer having a thickness of from 5 to 16 µm is deposited.
  10. A process as claimed in claims 1 to 9, wherein firstly an additional metal/phosphorus layer having a thickness of from 1 to 15 µm and then a metal/phosphorus/polymer dispersion layer are deposited on the inside of the reactor in an electroless manner.
  11. A process as claimed in claims 1 to 9, wherein the additional metal/phosphorus layer deposited is a nickel/phosphorus layer, a copper/phosphorus layer, a nickel/boron layer or a copper/boron layer having a thickness of from 1 to 5 µm.
  12. A reactor coated on the inside, obtainable by a process as claimed in claims 1 to 11.
  13. A reactor coated on the inside as claimed in claim 12, in particular a tubular reactor, coated with a metal/phosphorus/polymer dispersion layer having a thickness of from 3 to 20 µm.
  14. A reactor as claimed in claims 12 and 13, which carries a nickel/phosphorus layer having a thickness of from 1 to 15 µm below the nickel/phosphorus/polytetrafluoroethylene dispersion layer having a thickness of from 3 to 20 µm.
  15. The use of a reactor, in particular a tubular reactor, as claimed in claims 12 to 14 in high-pressure processes for the polymerization or copolymerization of ethylene.
  16. A process for the continuous polymerization or copolymerization of ethylene at pressures of from 500 to 6000 bar and temperatures of from 150 to 450°C, which comprises carrying out the polymerization in a high-pressure reactor as claimed in claims 12 to 15.
EP99965554A 1998-12-30 1999-12-24 Method for coating reactors for high pressure polymerisation of 1-olefins Expired - Lifetime EP1144725B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19860526A DE19860526A1 (en) 1998-12-30 1998-12-30 Heat exchangers with reduced tendency to form deposits and processes for their production
DE19860526 1998-12-30
PCT/EP1999/010372 WO2000040775A2 (en) 1998-12-30 1999-12-24 Method for coating reactors for high pressure polymerisation of 1-olefins

Publications (2)

Publication Number Publication Date
EP1144725A2 EP1144725A2 (en) 2001-10-17
EP1144725B1 true EP1144725B1 (en) 2003-07-16

Family

ID=7892984

Family Applications (3)

Application Number Title Priority Date Filing Date
EP99965554A Expired - Lifetime EP1144725B1 (en) 1998-12-30 1999-12-24 Method for coating reactors for high pressure polymerisation of 1-olefins
EP99964672A Expired - Lifetime EP1144724B1 (en) 1998-12-30 1999-12-24 Heat exchanger with a reduced tendency to produce deposits and method for producing same
EP99967007A Expired - Lifetime EP1144723B1 (en) 1998-12-30 1999-12-24 Method for coating apparatuses and parts of apparatuses used in chemical manufacturing

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP99964672A Expired - Lifetime EP1144724B1 (en) 1998-12-30 1999-12-24 Heat exchanger with a reduced tendency to produce deposits and method for producing same
EP99967007A Expired - Lifetime EP1144723B1 (en) 1998-12-30 1999-12-24 Method for coating apparatuses and parts of apparatuses used in chemical manufacturing

Country Status (10)

Country Link
US (3) US6617047B1 (en)
EP (3) EP1144725B1 (en)
JP (3) JP2003511551A (en)
KR (3) KR20010100009A (en)
CN (3) CN1636305A (en)
AT (3) ATE237006T1 (en)
CA (2) CA2358099A1 (en)
DE (4) DE19860526A1 (en)
ES (2) ES2204184T3 (en)
WO (3) WO2000040774A2 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10049338A1 (en) * 2000-10-05 2002-04-11 Basf Ag Micro-structured, self-cleaning catalytically-active surface comprises catalytically-active material in the hollows of the micro-structure, used for the production of hydrogenation catalysts in the form of metal foil
EP1353882A1 (en) * 2001-01-12 2003-10-22 Basf Aktiengesellschaft Method for rendering surfaces resistant to soiling
JP4249614B2 (en) * 2001-08-20 2009-04-02 バーゼル、ポリオレフィン、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング High pressure polymerization of ethylene
DE10241947A1 (en) * 2001-09-14 2003-04-03 Magna Steyr Powertrain Ag & Co Process for surface treating a weakly loaded machine element comprises mechanically working the workpiece and coating the contact zones with a nickel layer having embedded particles of an oscillating damping non-metal
DE10146027B4 (en) * 2001-09-18 2006-07-13 Huppmann Ag Component for a brewery plant and method for producing such components
US20030066632A1 (en) 2001-10-09 2003-04-10 Charles J. Bishop Corrosion-resistant heat exchanger
DE10205442A1 (en) * 2002-02-08 2003-08-21 Basf Ag Hydrophilic composite material
US6887348B2 (en) * 2002-11-27 2005-05-03 Kimberly-Clark Worldwide, Inc. Rolled single ply tissue product having high bulk, softness, and firmness
US6837923B2 (en) * 2003-05-07 2005-01-04 David Crotty Polytetrafluoroethylene dispersion for electroless nickel plating applications
DE10344845A1 (en) * 2003-09-26 2005-04-14 Basf Ag Apparatus for mixing, drying and coating powdered, granular or formed bulk material in a fluidized bed and process for the preparation of supported catalysts using such apparatus
ES2291792T3 (en) * 2004-09-17 2008-03-01 Bernd Terstegen PROCEDURE FOR THE COVERING OF APPLIANCES AND APPLIANCE PARTS FOR THE CONSTRUCTION OF CHEMICAL PLANTS.
KR100753476B1 (en) * 2004-12-10 2007-08-31 주식회사 엘지화학 Coating film for inhibiting cokes formation in ethylene dichloride cracker and method for producing the same
DE102005017327B4 (en) * 2005-04-14 2007-08-30 EKATO Rühr- und Mischtechnik GmbH processing plant
US20080271712A1 (en) * 2005-05-18 2008-11-06 Caterpillar Inc. Carbon deposit resistant component
US20070028588A1 (en) * 2005-08-03 2007-02-08 General Electric Company Heat transfer apparatus and systems including the apparatus
US20070031639A1 (en) * 2005-08-03 2007-02-08 General Electric Company Articles having low wettability and methods for making
JP4495054B2 (en) * 2005-09-02 2010-06-30 三菱重工業株式会社 Rotary machine parts and rotary machines
JP4644814B2 (en) * 2006-03-30 2011-03-09 山形県 Method for forming a functional metal film on a metal product having a temperature control function
JP5176337B2 (en) * 2006-05-12 2013-04-03 株式会社デンソー Film structure and method for forming the same
JP5225978B2 (en) * 2007-03-23 2013-07-03 イーグル工業株式会社 Solenoid valve and manufacturing method thereof
DE102008014272A1 (en) * 2008-03-04 2009-09-10 Deutsches Zentrum für Luft- und Raumfahrt e.V. Coating for a heat transfer element of a heat transfer device at a side that is turned to a media space with vapor-liquid-phase change, comprises a matrix made of a metallic material, and hydrophobic polymer islands arranged at the matrix
WO2010036670A2 (en) * 2008-09-24 2010-04-01 Earth To Air Systems, Llc Heat transfer refrigerant transport tubing coatings and insulation for a direct exchange geothermal heating/cooling system and tubing spool core size
JP5616764B2 (en) * 2010-11-26 2014-10-29 本田技研工業株式会社 Internal heat exchange type distillation equipment
EP2458030A1 (en) 2010-11-30 2012-05-30 Alfa Laval Corporate AB Method of coating a part of a heat exchanger and heat exchanger
AT511572B1 (en) * 2011-06-01 2013-02-15 Ke Kelit Kunststoffwerk Gmbh COATING INCLUDING NI-P-PTFE IN COMBINATION WITH A POLYMERIC POLYMER
FR3011308B1 (en) * 2013-10-02 2017-01-13 Vallourec Oil & Gas France CONNECTING ELEMENT OF A TUBULAR COMPONENT COATED WITH A COMPOSITE METAL DEPOSITION
GB2551107A (en) * 2016-04-27 2017-12-13 Edwards Ltd Vacuum pump component
US11054199B2 (en) 2019-04-12 2021-07-06 Rheem Manufacturing Company Applying coatings to the interior surfaces of heat exchangers
CN113846318A (en) * 2021-09-16 2021-12-28 一汽解放汽车有限公司 Venturi tube surface treatment method
DE102022108533B4 (en) 2022-04-08 2024-06-20 CSB Chemische Spezialbeschichtungen GmbH Process for the preparation of a chemical NiP electrolyte dispersion with solid particles to be incorporated

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3753757A (en) * 1970-05-15 1973-08-21 Union Carbide Corp Two step porous boiling surface formation
US4064914A (en) * 1974-05-08 1977-12-27 Union Carbide Corporation Porous metallic layer and formation
CH623851A5 (en) * 1975-10-04 1981-06-30 Akzo Nv
JPS52133321U (en) * 1976-04-06 1977-10-11
CH633586A5 (en) 1979-09-25 1982-12-15 Fonte Electr Sa Chemical metallising or metal recovery - by contacting hot surface with soln. of metal salt and reducing agent
US4344993A (en) * 1980-09-02 1982-08-17 The Dow Chemical Company Perfluorocarbon-polymeric coatings having low critical surface tensions
DE3114875A1 (en) 1981-04-13 1982-11-04 Basf Ag, 6700 Ludwigshafen METHOD FOR PRODUCING IMPACT-RESISTANT THERMOPLASTIC MOLDING MATERIALS
IT1152230B (en) * 1982-05-31 1986-12-31 Montedison Spa PROCEDURE FOR THE PREPARATION OF LUBRICANT FATS BASED ON POLYTETRAFLUOROETHYLENE AND PERFLUOROPOLYETERS
US4483711A (en) * 1983-06-17 1984-11-20 Omi International Corporation Aqueous electroless nickel plating bath and process
JPS60174454A (en) * 1984-02-21 1985-09-07 Matsushita Electric Ind Co Ltd Heat exchanger for water heating
JPS63280775A (en) * 1987-05-14 1988-11-17 Nippon Paint Co Ltd Coating composition and heat exchanger coated therewith
JPS63293169A (en) 1987-05-25 1988-11-30 Kurose:Kk Surface treatment of tube sheet of heat exchanger
SU1671740A1 (en) 1989-10-23 1991-08-23 Казахский Химико-Технологический Институт Electrolyte for depositing composite nickel-fluoropolymer coats
DE4010271A1 (en) 1990-03-30 1991-10-02 Basf Ag METHOD FOR PRODUCING ETHYLENE POLYMERISATS AT PRESSURES ABOVE 500 BAR IN A PIPE REACTOR WITH INJECTION FINGER
JPH04328146A (en) * 1991-04-30 1992-11-17 Kunio Mori Conductive anisotropic pvc material
JPH0517649A (en) * 1991-07-11 1993-01-26 Kunio Mori Conductive, anisotropic pvc material
DE4214173A1 (en) 1992-04-30 1993-11-04 Basf Ag METHOD FOR REMOVING LOW MOLECULAR TOE PRODUCTS IN THE HIGH PRESSURE POLYMERIZATION OF ETHYLENE
DE4220225A1 (en) 1992-06-20 1993-12-23 Basf Ag Process for the production of pearl-shaped expandable styrene polymers
JPH0626786A (en) 1992-07-09 1994-02-04 Nippon Hanetsuku:Kk Heat exchange plate
JPH06108287A (en) 1992-09-30 1994-04-19 Nippon Zeon Co Ltd Heat exchanger
JP2936129B2 (en) * 1995-04-12 1999-08-23 セイコー精機株式会社 Anti-corrosion structure
GB2306510B (en) 1995-11-02 1999-06-23 Univ Surrey Modification of metal surfaces
FI104823B (en) * 1996-06-24 2000-04-14 Borealis Polymers Oy Anti-fouling coating
US5930581A (en) * 1996-12-24 1999-07-27 The Dow Chemical Company Method of preparing complex-shaped ceramic-metal composite articles and the products produced thereby
DE19708472C2 (en) * 1997-02-20 1999-02-18 Atotech Deutschland Gmbh Manufacturing process for chemical microreactors
DE19728629A1 (en) 1997-07-04 1999-01-07 Basf Ag Thermoplastic molding compounds with low intrinsic color
DE19835467A1 (en) * 1998-08-06 2000-02-17 Elenac Gmbh Solid reactor with antistatic coating for carrying out reactions in the gas phase
US6230498B1 (en) * 1998-10-22 2001-05-15 Inframetrics Inc. Integrated cryocooler assembly with improved compressor performance

Also Published As

Publication number Publication date
DE59903362D1 (en) 2002-12-12
KR20010100009A (en) 2001-11-09
EP1144723B1 (en) 2003-04-09
EP1144723A2 (en) 2001-10-17
ATE237006T1 (en) 2003-04-15
KR20010103724A (en) 2001-11-23
CN1338008A (en) 2002-02-27
ATE245210T1 (en) 2003-08-15
DE59905005D1 (en) 2003-05-15
WO2000040774A2 (en) 2000-07-13
WO2000040775A2 (en) 2000-07-13
EP1144725A2 (en) 2001-10-17
US6617047B1 (en) 2003-09-09
EP1144723A3 (en) 2002-11-13
DE59906313D1 (en) 2003-08-21
EP1144724A2 (en) 2001-10-17
WO2000040775A3 (en) 2000-11-09
ES2197710T3 (en) 2004-01-01
CA2358099A1 (en) 2000-07-13
EP1144724B1 (en) 2002-11-06
US6509103B1 (en) 2003-01-21
DE19860526A1 (en) 2000-07-06
JP2003511551A (en) 2003-03-25
ATE227360T1 (en) 2002-11-15
JP2002534605A (en) 2002-10-15
WO2000040774A3 (en) 2002-09-26
JP2002534606A (en) 2002-10-15
KR20010100013A (en) 2001-11-09
WO2000040773A2 (en) 2000-07-13
CN1332810A (en) 2002-01-23
ES2204184T3 (en) 2004-04-16
WO2000040773A3 (en) 2000-11-09
US6513581B1 (en) 2003-02-04
CA2358097A1 (en) 2000-07-13
CN1636305A (en) 2005-07-06

Similar Documents

Publication Publication Date Title
EP1144725B1 (en) Method for coating reactors for high pressure polymerisation of 1-olefins
DE69923477T2 (en) PROCESS FOR A FIRE SPRAYING AND "GALVANO ALING" PROCESS IN AN ALUMINUM-CONTAINING ZINC BATH
EP0834518B1 (en) Process and apparatus for the preparation of homo- and copolymers by polymerisation in emulsion
DE2603362B2 (en) Heating surfaces of heat exchangers for liquids and processes for their manufacture
WO2001073162A2 (en) Method for coating apparatuses and parts of apparatuses for the construction of chemical installations
EP1976893B1 (en) Method for treating surfaces
DE102006038703A1 (en) A method of producing oxide nanoparticles from an oxide particle-forming material
DE1259174B (en) Improved process and a surface treatment agent for the production of deep black copper oxide surfaces
CH682823A5 (en) Platierungszusammensetzungen and procedures.
DE971364C (en) Process for the preparation of colloidal dispersions by emulsion polymerization of tetrafluoroethylene
DE60208843T2 (en) Coagulation of PTFE latex
DE1621372B2 (en) METHOD FOR MANUFACTURING METAL-COATED PLASTICS
EP1976892B1 (en) Copolymers, method for producing them and their use for treating surfaces
CH635130A5 (en) METHOD FOR PRODUCING A CARBIDE LAYER ON THE SURFACE OF AN OBJECT FROM AN IRON ALLOY.
WO2003018646A1 (en) Method for high pressure polymerization of ethylene
DE3517171C2 (en)
DE2409237A1 (en) COMPOSITE PANEL AND METHOD OF MANUFACTURING IT
DE4305618A1 (en) Coating of porous, hydrophobic substrates with thermoplastic fluoropolymers
EP1187855B2 (en) Method for drying and degassing ethylene copolymers
CN114772753B (en) Efficient phosphorus-free prefilming agent for cooling water system and preparation method thereof
DE2951122A1 (en) METHOD FOR PRODUCING POWDER-SHAPED ETHYLENE POLYMERISATES
WO2003002620A1 (en) Use of quaternised dialkylaminoalkyl (meth)acrylates as soil release polymers for hard surfaces and a method for production thereof
DE19962641B4 (en) Method for producing a microstructure on a metallic surface and microstructured metallic surface
DE1770199B1 (en) PROCESS FOR THE PRODUCTION OF VINYLIDEN FLUORIDE POLYMERISATES
EP1760173A2 (en) Matt zinc coating and method for the electrodeposition of matt zinc coatings

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010612

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030716

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030716

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59906313

Country of ref document: DE

Date of ref document: 20030821

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031016

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031016

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031016

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20031205

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20031210

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20031211

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031224

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031224

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20031230

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040102

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20040212

Year of fee payment: 5

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2204184

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040419

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041224

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20050202

BERE Be: lapsed

Owner name: *BASF A.G.

Effective date: 20041231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051224

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20041227

BERE Be: lapsed

Owner name: *BASF A.G.

Effective date: 20041231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031216