EP1144702A1 - Hard material sintered compact with a nickel- and cobalt-free, nitrogenous steel as binder of the hard phase - Google Patents

Hard material sintered compact with a nickel- and cobalt-free, nitrogenous steel as binder of the hard phase

Info

Publication number
EP1144702A1
EP1144702A1 EP99962163A EP99962163A EP1144702A1 EP 1144702 A1 EP1144702 A1 EP 1144702A1 EP 99962163 A EP99962163 A EP 99962163A EP 99962163 A EP99962163 A EP 99962163A EP 1144702 A1 EP1144702 A1 EP 1144702A1
Authority
EP
European Patent Office
Prior art keywords
hard material
weight
steel
nitrogen
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP99962163A
Other languages
German (de)
French (fr)
Inventor
Werner Hesse
Hans Wohlfromm
Peter Uggowitzer
Markus Speidel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1144702A1 publication Critical patent/EP1144702A1/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to hard material sintered molded parts, as well as feedstocks and methods for their production.
  • hard material sintered molded parts are referred to as sintered materials which consist of a hard material phase and a metallic phase as a binder of the hard material phase.
  • Hard material sintered parts, starting materials and processes for their production are well known.
  • Hard sintered molded parts are usually very hard and have a high melting point, but are also resistant to temperature changes and therefore represent a valuable group of materials. They are used, for example, for combustion chamber or nozzle linings, cutting, drilling, milling, grinding, crushing, Digging or pressing tools, sealing or bearing rings, welding electrodes, thread guides or the like are processed.
  • the known hard material sintered molded parts those are sought as materials whose hard material portion consists of ceramic hard materials such as oxides, nitrides or carbides.
  • the most commonly used hard materials are tantalum and tungsten carbide.
  • As the metallic binder a metal is to be selected which can be processed well into the hard material sintered molded part, does not impair the required properties of the material and binds the hard material phase in a suitable manner.
  • the most commonly used metals by far are nickel and cobalt, but occasionally other metals are used that meet the required properties.
  • JP-A 63-317 601 discloses the use of a cobalt-nickel alloy as a metallic binder.
  • US Pat. No. 3,964,878 teaches hard material sintered molded parts with metal carbides, the metallic binder of which consists of the metal also contained in the carbide and an additional 0.5 to 1.5% by weight of iron, copper or Nikkei.
  • EP-A 169 292 and FR-A 1 475 069 teach hard material sintered molded parts with a metallic binder made of iron, nickel and / or cobalt, the metallic binder of the hard material sintered molded parts disclosed in EP-A 365 506 additionally contains a special high-speed steel , and the metallic binder of the hard material sintered parts disclosed in JP-A 58-031 059 contains iron, nickel, cobalt and / or molybdenum. US-A 4,308,059 teaches a ruthenium bonded hard material sintered molding.
  • EP-A 46 209 discloses a hard material sintered molded part with steel as a metallic binder. Hard material sintered molded parts often also show color properties that lead to an attractive exterior of the workpieces made from them and are therefore not only used as a material for purely functionally determined components, but also as a material in decorative applications such as watch cases, jewelry,
  • JP-A 48-018 109 discloses hard material sintered molded parts consisting of TaC and a metallic binder containing nickel, molybdenum and chromium and having a gold-like surface and their use in watch cases.
  • Hard sintered molded parts are usually produced using powder metallurgy.
  • a mixture of the hard material powder and a metallic powder is brought into a mold, usually pressed, and then sintered, the metal and hard material powders combining to form the hard material sintered molded part.
  • the sintered molded part can then be further processed as such, for example post-treatment, or used, but also ground and applied as a hard material sintered molded part powder as a surface layer on a workpiece.
  • DE-A 40 37 480 teaches the production of a sintered body from tungsten, titanium, tantalum or niobium carbide and cobalt as a metallic binder.
  • a sinterable powder is mixed with a thermoplastic, which is usually also called “binder” in powder injection molding technology (but must not be confused with the metallic phase referred to as "binder" of the hard material in the technology of hard material sintered molded parts), and if appropriate mixed with other auxiliaries, so that a thermoplastic injection molding compound (“feedstock”) is formed.
  • EP-A 413 231 teaches such a catalytic debinding process
  • EP-A 465 940 and EP-A 446 708 disclose feedstocks for the production of metallic moldings
  • EP-A 444 475 discloses a feedstock for the production of ceramic moldings.
  • EP-A 443 048 to produce hard material sintered molded parts by powder metallurgy
  • EP-A 800 882 teaches an improved method for producing hard material sintered molded part feedstocks.
  • US Pat. No. 5,714,115 describes a special nickel-free austenitic steel alloy with a maximum of 0.3% by weight of carbon, 2 to 26% by weight of manganese, 11 to 24% by weight of chromium, 2.5 to 10% by weight of molybdenum , as well as a maximum of 8% by weight of tungsten, the austenitic structure of which is stabilized by 0.55 to 1.2% by weight of nitrogen.
  • This alloy is used for workpieces that are or may come into contact with the human body in order to avoid the allergic reactions to nickel or cobalt, which have recently become increasingly worrying.
  • W.-F the alloy with a maximum of 0.3% by weight of carbon, 2 to 26% by weight of manganese, 11 to 24% by weight of chromium, 2.5 to 10% by weight of molybdenum , as well as a maximum of 8% by weight of tungsten, the austenitic structure of which is stabilized by 0.55 to 1.2% by weight of nitrogen.
  • hard-material sintered molded parts with a nickel- and cobalt-free, nitrogen-containing steel were found as a binder in the hard material phase. Furthermore, a process and feedstocks for the production of the hard material sintered molded parts according to the invention were found.
  • the sintered molded parts according to the invention have excellent mechanical, thermal and magnetic properties. They are hard, have a high melting point and high thermal shock resistance, are non-magnetic in preferred embodiments, and also do not cause any nickel or cobalt allergies. They also show no giant grain growth during sintering, and they can be polished very well. They can be produced in a simple manner using the method according to the invention; in particular, only a comparatively low sintering temperature is required when producing the hard material sintered molded parts according to the invention, compared to the use of Nikkei or cobalt binders.
  • the hard material sintered molded parts according to the invention contain at least 50% by weight, preferably at least 70% by weight and in a particularly preferred manner at least 80% by weight of hard material. They also contain at most 99% by weight, preferably at most 97% by weight and in a particularly preferred manner at most 95% by weight of hard material. Accordingly, the hard material sintered molded parts according to the invention contain at least 1% by weight, preferably at least 3% by weight and in a particularly preferred manner at least 5% by weight and at most 50% by weight, preferably at most 30% by weight and in particular preferably at most 20% by weight of metallic binder.
  • the metallic binder of the hard material sintered molded parts according to the invention, its precursor or its constituents, and the hard material are used in the form of fine powders.
  • the average particle sizes used are usually in the range below 100 micrometers, preferably below 50 micrometers, and in a particularly preferred form below 20 micrometers, and generally above 0.1 micrometer.
  • Such powders are commercially available or can be produced in any known manner, for example by precipitation and calcining, grinding, and the metallic powders, in particular by water or gas atomization.
  • a hard material is contained in the hard material sintered molded parts according to the invention.
  • All known ceramic materials or hard metals that have already been used as hard materials in known hard material sintered molded parts can be used as hard material individually or as a mixture, for example the oxides such as aluminum oxide, cadmium oxide, chromium oxide, magnesium oxide, silicon dioxide, thorium oxide, uranium oxide and / or zirconium oxide , the carbides such as boron carbide, zirconium carbide, chromium carbide, silicon carbide, tantalum carbide, titanium carbide, niobium carbide and / or tungsten carbide, the borides such as chromium boride, titanium boride and / or zirconium boride, the silicides such as molybdenum silicide and / or the nitrides such as silicon nitride , Titanium nitride and / or zirconium nitride, and /
  • tantalum carbide tungsten carbide, niobium carbide, titanium nitride and / or zirconium nitride is preferred; the use of tantalum carbide is particularly preferred. carbide and / or tungsten carbide. These hard materials are well known and common commodities.
  • the metallic binder of the hard material sintered molded parts according to the invention is a nickel and cobalt-free, nitrogen-containing steel. Freedom from nickel and / or cobalt is understood to mean the absence of intentionally added portions of these elements.
  • the permissible upper limit for nickel and / or cobalt in the metallic binder of the hard material sintered molded parts according to the invention is generally 0.5% by weight, preferably 0.3% by weight and in a particularly preferred manner 0.05% by weight. At these levels, the usual limits for the release of nikkei and / or cobalt ions when using the workpiece on or in the human body (as a watch, ear plug, implant, etc.) are normally not reached.
  • the metallic binder contains nickel and / or cobalt exclusively as inevitable impurities.
  • the steel used as the metallic binder contains nitrogen, preferably in an amount of at least 0.3% by weight and at most 2% by weight.
  • the metallic binder is preferably a non-ferromagnetic and in particular an austenitic steel.
  • Austenitic steels are known to be those in which there is a face-centered cubic lattice of the iron atoms.
  • the austenite structure in the iron / carbon system is a high-temperature modification that is stabilized by certain alloy additives at low temperatures.
  • additional alloy additives give the austenitic steels toughness, corrosion resistance, hardness or other desired properties.
  • the manufacture, processing and properties of austenitic steels are well known to the material expert.
  • the metallic binder is an austenitic iron alloy which contains at most 0.5% by weight of carbon, 2 to 26% by weight of manganese, 11 to 24% by weight of chromium, 2.5 to 10% by weight. % Molybdenum, a maximum of 8% by weight tungsten and 0.55 to 1.2% by weight nitrogen. In addition to the elements mentioned, it preferably contains no other, with the exception of inevitable impurities. Examples of impurities which can usually be tolerated in the hard material sintered molded parts according to the invention are up to 0.5% by weight of nickel and / or cobalt, up to 2% by weight of silicon, up to 0.2% by weight Sulfur, up to 5% by weight bismuth and up to 5% by weight copper.
  • the very particularly preferred metallic binder of the hard material sintered molded parts according to the invention is austenitic and contains at most 0.3% by weight of carbon, preferably it contains at most 0.1% by weight of carbon. It contains at least 2% by weight of manganese, preferably at least 6% by weight, and at most 26% by weight of manganese, preferably at most 20% by weight. It contains at least 11% by weight of chromium and at most 24% by weight of chromium, preferably at most 20% by weight. It also contains at least 2.5% by weight of molybdenum and at most 10% by weight of molybdenum, preferably at most 6% by weight. If particularly high corrosion stability is required, the metallic binder of the hard material sintered molded parts according to the invention contains tungsten in an amount of at most 8% by weight, preferably at most
  • This metallic binder also contains iron in addition to the elements mentioned, preferably the entire rest is 100% by weight, with the exception of impurities, iron.
  • Alloys of this type are known to the person skilled in the art, are commercially available or can be produced in a simple manner by known metallurgical processes. Since the nitrogen content of these alloys is above 0.8 to 0.9% by weight higher than the nitrogen solubility in the molten alloy, the alloy must be melted under increased nitrogen pressure, for example with the pressure electro-slag remelting process. It is equally possible to introduce the nitrogen content into the metallic binder of the otherwise finished sintered molded part in a nitridation step (“nitriding”) by heat treatment in a furnace atmosphere containing nitrogen.
  • nitriding nitridation step
  • the nitrogen content is preferably obtained by nitridation during the sintering or immediately before or after this, without interim removal of the sintered molded part from the sintering furnace or cooling below the sintering or nitriding temperature, such sintering and nitriding processes are known to the person skilled in the art.
  • the corresponding nitrogen-free or a low-nitrogen alloy is to be used as the precursor of the actual metallic binder, which alloy then converts to the metallic binder of the hard material sintered molded part according to the invention in the course of the nitridation process.
  • These alloys are also commercially available or can be melted in a known manner.
  • the corresponding nitrogen-free precursor is a ferritic steel, which is converted into an austenitic steel by the nitriding.
  • the metallic binder or its nitrogen-free precursor according to the “master-alloy” technique known to the person skilled in the art from a master alloy or several master alloys which essentially contain or contain elements other than iron and, if appropriate, a proportion of iron , and to produce pure iron, so that the metallic binder according to the invention only forms during the sintering and / or nitriding process by diffusion of the alloying elements, possibly including nitrogen.
  • the hard material sintered molded parts according to the invention are produced by powder metallurgy.
  • the hard material and the binder or its precursor are mixed in powder form and brought into a shape with a shaping tool which comes as close as possible to the desired final geometric shape in order to avoid any time-consuming finishing of the finished hard material sintered molded part.
  • the shaping step is carried out using a conventional shaping tool, for example a press.
  • the workpieces shrink during sintering, which is usually compensated for by correspondingly larger dimensioning of the molded parts before sintering.
  • the molding is then sintered in a sintering furnace to form a hard material sintered part and, if a precursor of the metallic binder which is free of nitrogen or low in nitrogen is used, the desired nitrogen content is set by nitriding.
  • the optimal composition of the furnace atmosphere for sintering and optionally nitriding and the optimal temperature control depend on the exact chemical composition of the metallic binder or its precursor used, in particular its nitrogen solubility, on the desired nitrogen content of the metallic binder and on the grain size of the powder used from. In general, both the increase in the nitrogen partial pressure in the furnace atmosphere and the decrease in the temperature are directly correlated with higher nitrogen contents in the metallic binder. However, since the lowering of the temperature not only slows down the sintering process itself, but also reduces the rate of diffusion of nitrogen in the metallic binder of the hard material sintered part, the sintering and / or nitridation process takes correspondingly longer at a lower temperature.
  • the optimum combination of furnace atmosphere, in particular the nitrogen partial pressure, temperature and duration of sintering and / or nitriding to achieve a certain desired nitrogen content in a homogeneous, dense sintered molded part, can easily be determined in individual cases using a few routine tests.
  • Such sintering processes are for sintered molded parts made of metal in a particularly preferred form Binder used steel without a hard material phase, for example in the publications by Bahre et al. and Wohlfromm et al. described. We expressly refer to these two publications.
  • the properties of the steel 5 do not change due to the presence of the hard material phase, so that the measures described there bring about the same effects in the method according to the invention.
  • Nitrogen partial pressures are usually in the furnace atmosphere.
  • the furnace atmosphere can consist of pure nitrogen or contain inert gases such as argon and / or reactive gases such as hydrogen. Most of the time it is
  • the proportion of hydrogen is generally at least 5% by volume, preferably at least 15% by volume, and generally at most
  • this furnace atmosphere can also contain inert gases, for example argon.
  • the oven atmosphere should preferably be largely dry, generally a dew point of - 40 ° C is sufficient.
  • the (absolute) pressure in the sintering and / or nitridation furnace is usually at least 100 mbar, preferably at least 250 mbar. It is also generally at most 2.5 bar, preferably at most 2 bar. In a particularly preferred manner
  • the sintering and / or nitridation temperature is generally at least 1000 ° C., preferably at least 1050 ° C. and in a particularly preferred manner at least 1100 ° C. It is also
  • the temperature can be varied during the sintering and / or nitridation process, for example in order to completely or largely densely sinter the workpiece only at a higher temperature
  • the optimal heating rates are easily determined by a few routine tests, usually they are at least 1 ° C. per 45 minutes, preferably at least 2 ° C. per minute and in a particularly preferred manner at least 3 ° C. per minute. Economic considerations generally result in the highest possible heating rate in order to avoid a negative influence on the quality of the sintering and / or nitridation, however, a heating rate below 20 ° C per minute will usually have to be set.
  • a temperature which is below the sintering and / or nitriding temperature for example over a period of 30 minutes to two hours, for example one hour, a temperature in the range from 500 ° C. to 700 ° C., for example 600 ° C.
  • the sintering and / or nitriding time that is to say the holding time at the sintering and / or nitriding temperature, is generally set so that the sintered molded parts are both sufficiently densely sintered and sufficiently homogeneously nitrided.
  • the sintering and / or nitridation time is generally at least 30 minutes and preferably at least 60 minutes.
  • This duration of the sintering and / or nitridation process also determines the production rate, which is why the sintering and / or nitridation is preferably carried out in such a way that the sintering and / or nitridation process does not take an unsatisfactorily long time from an economic point of view.
  • the sintering and nitriding process (without the heating and cooling phases) can be completed after a maximum of 10 hours.
  • the sintering and / or nitridation process is ended by cooling the sintered molded parts.
  • a specific cooling process may be necessary, for example, cooling as quickly as possible in order to maintain high-temperature phases or to prevent the components of the steel from segregating.
  • the upper limit of the cooling rate is reached when sintered molded parts occur in economically unsatisfactorily large quantities with defects such as cracking, tearing or deformation due to rapid cooling. The optimal cooling rate is therefore easily determined in a few routine tests.
  • the sintered molded parts can be quenched, for example, in cold water or oil. Subsequent to sintering and / or nitriding, any desired aftertreatment, for example solution annealing and quenching in water or oil or hot isostatic pressing of the sintered molded parts can be carried out.
  • the sintered moldings are preferably solution-annealed by being at a temperature of at least 1000 ° C., preferably at least 1100 ° C.
  • the hard material sintered molded parts according to the invention are preferably produced using the powder injection molding process and in particular for producing geometrically complex shaped workpieces. This differs in the implementation of conventional powder metallurgical processes such as pressing and sintering by the type of shaping and an additional step required to remove the thermoplastic powder injection molding binder used for shaping. However, what has been said above applies to sintering and nitriding.
  • thermoplastic, non-metallic material as a powder injection molding binder
  • the powder injection molding composition is thus produced.
  • Suitable thermoplastics for the production of injection molding compositions are known.
  • Thermoplastic materials are mostly used, for example polyolefins such as polyethylene or polypropylene or polyethers such as polyethylene oxide
  • Polyethylene glycol Preference is given to the use of thermoplastics which can be removed catalytically from the green compact at a comparatively low temperature.
  • a polyacetal plastic is preferably used as the base of the thermoplastic, and in a particularly preferred form polyoximethylene (“POM", paraformaldehyde , Paraldehyde) is used.
  • POM polyoximethylene
  • the injection molding compound is optionally admixed with auxiliaries to improve its processing properties, for example dispersing aids.
  • thermoplastic compositions and processes for their production and processing by injection molding and catalytic debinding are known and are described, for example, in EP-A 413 231, EP-A 465 940, EP-A 446 708, EP-A 444 475 and EP- A 800 882 described, to which reference is hereby expressly made.
  • the metallic or ceramic powders specified there must be replaced accordingly by a powder mixture of the hard material and the metallic binder or its precursor.
  • a preferred injection molding composition according to the invention consists of:
  • the known ceramic materials or hard metals used in known hard material sintered molded parts are used individually or as a mixture as hard material al), for example oxides such as aluminum oxide, cadmium oxide, chromium oxide, magnesium oxide, silicon dioxide, thorium oxide, uranium oxide and / or zirconium oxide, carbides such as boron carbide, zirconium carbide, chromium carbide, silicon carbide, tantalum carbide, titanium carbide, niobium carbide and / or tungsten carbide, borides such as chromium boride, titanium boride and / or zirconium boride, silicides such as molybdenum silicide and / or nitrides such as silicon nitride, titanium nitride and / or zirconium nitride / or mixed phases such as carbonitrides, oxicarbides and / or sialones.
  • oxides such as aluminum oxide, cadmium oxide
  • the hard material is preferably tantalum carbide, tungsten carbide, niobium carbide, titanium nitride and / or zirconium nitride, and in a particularly preferred manner the hard material is tantalum carbide and / or tungsten carbide.
  • An iron alloy which contains at most 0.5% by weight of carbon, 2 to 26% by weight of manganese, 11 to 24% by weight of chromium, is preferably used as the nickel- and cobalt-free, nitrogen-containing steel or precursor of such a steel a2). 2.5 to 10% by weight of molybdenum and a maximum of 8% by weight of tungsten.
  • an iron alloy is used as component a2) which contains at most 0.3% by weight, advantageously at most 0.1% by weight carbon, at least 2% by weight, advantageously at least 6% by weight , Manganese, at most 26% by weight, advantageously at most 20% by weight, manganese, at least
  • component a2) additionally contains tungsten in an amount of at most 8% by weight, preferably at most 6% by weight.
  • Component a2) contains iron in addition to the elements mentioned.
  • a certain content of impurities in a2) which go beyond the level of unavoidable impurities, is usually tolerable depending on the application of the hard material sintered molded part.
  • impurities that can usually be tolerated are up to 0.5% by weight of nickel and / or cobalt, up to 2% by weight of silicon, up to 0.2% by weight of sulfur, up to 5% by weight bismuth and up to 5% by weight copper.
  • the entire rest of component a2) is preferably 100% by weight of iron, with the exception of inevitable impurities.
  • component a2) can be a mixture of pure iron powder and an alloy powder which contains the other alloy elements and optionally also iron.
  • the hard material (component a1)) is preferably contained in a) in an amount of at least 70% by weight and in a particularly preferred manner in an amount of at least 80% by weight. Its amount is also preferably at most 97% by weight and in a particularly preferred manner at most 95% by weight.
  • the metallic binder or its precursor (component a2)) is accordingly in a) preferably in an amount of at least 3% by weight and in a particularly preferred manner of at least 5% by weight and preferably of at most 30% by weight and in particularly preferably contain at most 20% by weight.
  • the average particle sizes of hard material a1) and metallic powder a2) are preferred wise at most 50 microns and, in a particularly preferred form, at most 20 microns.
  • the polyoxymethylene homo- and copolymers used as components bl) and b2) and the polymers optionally used as component b2) homogeneously dissolved or dispersed in component bl) are known and, for example, as components B1) and B2), respectively, in EP-A 444 475.
  • the homopolymerizates are usually produced by polymerizing (mostly catalyzed polymerisation) formaldehyde or trioxane.
  • a cyclic ether or a plurality of cyclic ethers is or are conveniently used as comonomer (s) together with formaldehyde and / or trioxane in the polymerization, so that the polyoxymethylene chain with its sequence of (-0CH 2 ) units is interrupted by units in which more than one carbon atom is arranged between two oxygen atoms.
  • cyclic ethers suitable as comonomers are ethylene oxide, 1,2-propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,3-dioxolane, dioxepane, linear oligo- and polyformals such as polydioxolane or polydioxepane and oximeethylene terpolymers.
  • a polymer can also be used as component b2), for example an aliphatic polyurethane, aliphatic uncrosslinked polyepoxides, poly (C 5 -C 5 ) alkylene oxides, aliphatic polyamides, polyacrylates, polyolefins and mixtures thereof.
  • Components bl) and b2) can be identical except for a different comonomer (s) content.
  • Component c) is a dispersing aid.
  • Dispersing aids are widespread and known to the person skilled in the art. In general, any dispersing aid can be used which leads to the improvement of the homogeneity of the injection molding compound.
  • Preferred dispersing agents are oligomeric polyethylene oxide with an average molecular weight of 200 to 400, stearic acid, hydroxystearic acid, fatty alcohols, fatty alcohol sulfonates and block copolymers of ethylene and propylene oxide. A mixture of different substances with dispersing properties can also be used as the dispersing aid.
  • the injection molding compositions according to the invention are deformed in a conventional manner with conventional injection molding machines.
  • the moldings are freed from the thermoplastic powder injection binder in the usual way, for example by pyrolysis.
  • the powder injection molding binder is preferably removed catalytically from the preferred injection molding composition according to the invention by the green compacts in a known manner with a gaseous acid Atmosphere to be heat treated.
  • This atmosphere is created by evaporating an acid with sufficient vapor pressure, conveniently by passing a carrier gas, in particular nitrogen, through a storage vessel with an acid, advantageously nitric acid, and then introducing the acidic gas into the debinding furnace.
  • the optimal acid concentration in the debinding furnace depends on the specific material and the dimensions of the workpiece and is determined in individual cases through routine tests. In general, treatment in such an atmosphere at temperatures in the temperature range from 20 ° C. to 180 ° C. over a period of from 10 minutes to 24 hours will suffice for the debinding. After the debinding process, any residues of the thermoplastic powder injection binder and / or of the auxiliaries which are still present are pyrolyzed during heating to the sintering temperature and thereby completely removed.
  • the debindered injection-molded articles are then sintered and, if appropriate, shaped, which originate from other shaping processes, for example pressing, and optionally nitrided.
  • the sintered moldings were then still very weakly magnetic and were subjected to a subsequent heat treatment for 10 minutes at 1150 ° C. under nitrogen and subsequent sealing. scare completely non-magnetic in water.
  • the density of the pale gold sintered molded parts was 13.2 g / ml (theoretical density 13.3 g / ml).
  • the sintered molded parts had a hardness HV 0.5 of 1400, a four-point bending strength according to DIN EN 843 (in the "as fired” state) of 774 MPa and a fracture toughness K ⁇ c according to DIN 51109 of 12 MPa (m ) 0 - 5.
  • the parts were ground and polished, the microstructure was homogeneous and showed no crystals with a diameter above 5 micrometers.
  • the granules were injection molded into molded parts, which were then catalytically debindered at 120 ° C. in a nitrogen atmosphere containing nitric acid.
  • the moldings were then sintered in a sintering oven at 1500 ° C. for one hour under nitrogen.
  • the density of the sintered molded parts was 13.6 g / ml (equal to the theoretical density). Lower sintering temperatures were used in parallel experiments, but these did not lead to a satisfactory sintering density.
  • the sintered molded parts had a hardness of HV 0.5 of 950, no further mechanical properties were determined.
  • the parts were ground and polished.
  • the microstructure was practically non-porous, however giant grain growth was observed, crystallite sizes up to more than 100 micrometers in diameter were created, which were visible to the naked eye and significantly impaired the optical appearance of the polished parts.
  • Example 1 shows that the sintered molded parts according to the invention not only have excellent mechanical properties, but also have advantages in applications in which the optical impression of the sintered molded part is decisive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

The invention relates to hard material sintered compacts with a nickel- and cobalt-free, nitrogenous steel as binder of the hard phase. The invention further relates to a method for producing said hard material sintered compacts by methods of powder metallurgy, especially by powder injection molding, and to powder injection molding masses for producing said hard material sintered compacts by powder injection molding.

Description

Hartstoff- Sinterformteil mit einem nickel- und kobaltfreien, stickstoffhaltigen Stahl als Binder der Hartstof phaseHard material sintered molded part with a nickel and cobalt-free, nitrogen-containing steel as a binder of the hard material phase
Beschreibungdescription
Die vorliegende Erfindung betrifft Hartstoff-Sinterformteile sowie Einsatzstoffe und Verfahren zu ihrer Herstellung.The present invention relates to hard material sintered molded parts, as well as feedstocks and methods for their production.
Als Hartstoff-Sinterformteile werden im Rahmen dieser Erfindung gesinterte Werkstoffe bezeichnet, die aus einer Hartstoffphase und einer metallischen Phase als Binder der Hartstoffphase bestehen. Hartstoff-Sinterformteile, Einsatzstoffe und Verfahren zu ihrer Herstellung sind wohlbekannt. Hartstoff-Sinterformteile sind zumeist sehr hart und haben einen hohen Schmelzpunkt, sind daneben aber auch temperaturwechselbeständig und stellen daher eine wertvolle Werkstoffgruppe dar. Sie werden beispielsweise zu Brennkammer- oder Düsenauskleidungen, Schneid-, Bohr-, Fräs-, Mahl-, Brech-, Grab- oder Presswerkzeugen, Dichtungs- oder Lager- ringen, Schweißelektroden, Fadenführungen oder ähnlichem verarbeitet. Unter den bekannten Hartstoff-Sinterformteilen sind als Werkstoffe besonders solche gesucht, deren Hartstoffanteil aus keramischen Hartstoffen wie beispielsweise Oxiden, Nitriden oder Carbiden besteht. Die dabei am häufigsten verwendeten Hartstoffe sind Tantal- und Wolframcarbid. Als metallischer Binder ist dabei ein Metall zu wählen, das sich gut zum Hartstoff-Sinterformteil verarbeiten läßt, die geforderten Eigenschaften des Werkstoffs nicht beeinträchtigt und die Hartstoffphase in geeigneter Weise bindet. Die technisch mit Abstand am häufigsten verwendeten Me- talle sind Nickel und Kobalt, gelegentlich werden jedoch auch andere Metalle verwendet, die die geforderten Eigenschaften erfüllen. Beispielsweise offenbart JP-A 63-317 601 die Verwendung einer Kobalt -Nickel -Legierung als metallischem Binder. US- A 3,964,878 lehrt Hartstoff-Sinterformteile mit Metallcarbiden, deren metallischer Binder aus dem auch im Carbid enthaltenen Metall und zusätzlichen 0,5 bis 1,5 Gew. -% Eisen, Kupfer oder Nikkei besteht. EP-A 169 292 und FR-A 1 475 069 lehren Hartstoff- Sinterformteile mit einem metallischen Binder aus Eisen, Nickel und/oder Kobalt, der metallische Binder der in EP-A 365 506 of - fenbarten Hartstoff-Sinterformteile enthält zusätzlich einen speziellen Schnellarbeitsstahl, und der metallische Binder der in JP-A 58-031 059 offenbarten Hartstoff-Sinterformteile enthält Eisen, Nickel, Kobalt und/oder Molybdän. US-A 4,308,059 lehrt ein mit Ruthenium gebundenes Hartstoff-Sinterformteil. EP-A 46 209 offenbart ein Hartstoff-Sinterformteil mit Stahl als metallischem Binder. Hartstoff-Sinterformteile zeigen zusätzlich oftmals Farbeigenschaften, die zu attraktivem Äußeren der daraus hergestellten Werkstücke führen und werden daher nicht nur als Werkstoff für rein funktionsbestimmte Bauteile, sondern auch als Werkstoff in dekorativen Anwendungen wie etwa bei Uhrgehäusen, Schmuck,In the context of this invention, hard material sintered molded parts are referred to as sintered materials which consist of a hard material phase and a metallic phase as a binder of the hard material phase. Hard material sintered parts, starting materials and processes for their production are well known. Hard sintered molded parts are usually very hard and have a high melting point, but are also resistant to temperature changes and therefore represent a valuable group of materials. They are used, for example, for combustion chamber or nozzle linings, cutting, drilling, milling, grinding, crushing, Digging or pressing tools, sealing or bearing rings, welding electrodes, thread guides or the like are processed. Among the known hard material sintered molded parts, those are sought as materials whose hard material portion consists of ceramic hard materials such as oxides, nitrides or carbides. The most commonly used hard materials are tantalum and tungsten carbide. As the metallic binder, a metal is to be selected which can be processed well into the hard material sintered molded part, does not impair the required properties of the material and binds the hard material phase in a suitable manner. The most commonly used metals by far are nickel and cobalt, but occasionally other metals are used that meet the required properties. For example, JP-A 63-317 601 discloses the use of a cobalt-nickel alloy as a metallic binder. US Pat. No. 3,964,878 teaches hard material sintered molded parts with metal carbides, the metallic binder of which consists of the metal also contained in the carbide and an additional 0.5 to 1.5% by weight of iron, copper or Nikkei. EP-A 169 292 and FR-A 1 475 069 teach hard material sintered molded parts with a metallic binder made of iron, nickel and / or cobalt, the metallic binder of the hard material sintered molded parts disclosed in EP-A 365 506 additionally contains a special high-speed steel , and the metallic binder of the hard material sintered parts disclosed in JP-A 58-031 059 contains iron, nickel, cobalt and / or molybdenum. US-A 4,308,059 teaches a ruthenium bonded hard material sintered molding. EP-A 46 209 discloses a hard material sintered molded part with steel as a metallic binder. Hard material sintered molded parts often also show color properties that lead to an attractive exterior of the workpieces made from them and are therefore not only used as a material for purely functionally determined components, but also as a material in decorative applications such as watch cases, jewelry,
Schreibgeräten oder ähnlichem verwendet. Ein Beispiel eines bekannten Hartstoff-Sinterformteils gibt etwa JP-A 48-018 109, die aus TaC und einem Nickel, Molybdän und Chrom enthaltenden metallischen Binder bestehende Hartstoff-Sinterformteile mit goldähn- licher Oberfläche und ihre Verwendung in Uhrgehäusen offenbart.Writing utensils or the like used. An example of a known hard material sintered molded part is JP-A 48-018 109, which discloses hard material sintered molded parts consisting of TaC and a metallic binder containing nickel, molybdenum and chromium and having a gold-like surface and their use in watch cases.
Üblicherweise werden Hartstoff-Sinterformteile pulvermetallurgisch hergestellt. Dazu wird ein Gemisch aus dem Hartstoffpulver und einem metallischen Pulver in eine Form gebracht, meist ge- preßt, und anschließend gesintert, wobei sich die Metall- und Hartstoffpulver zum Hartstoff-Sinterformteil verbinden. Das Sinterformteil kann anschließend als solches weiterverarbeitet, beispielsweise formgebend nachbehandelt, oder verwendet werden, aber auch gemahlen werden und als Hartstoff-Sinterformteil -Pulver als Oberflächenschicht auf ein Werkstück aufgebracht werden. Beispielsweise lehrt DE-A 40 37 480 die Herstellung eines Sinterkörpers aus Wolfram-, Titan-, Tantal- oder Niobcarbid und Kobalt als metallischem Binder.Hard sintered molded parts are usually produced using powder metallurgy. For this purpose, a mixture of the hard material powder and a metallic powder is brought into a mold, usually pressed, and then sintered, the metal and hard material powders combining to form the hard material sintered molded part. The sintered molded part can then be further processed as such, for example post-treatment, or used, but also ground and applied as a hard material sintered molded part powder as a surface layer on a workpiece. For example, DE-A 40 37 480 teaches the production of a sintered body from tungsten, titanium, tantalum or niobium carbide and cobalt as a metallic binder.
Ein wesentlicher Nachteil einfacher pulvermetallurgischer Formgebungsverfahren wie etwa Pressen in eine Form ist, daß damit nur Formkörper mit einer vergleichsweise einfachen äußeren Form hergestellt werden können. Ein anderes bekanntes pulvermetallurgisches Verfahren, das insbesondere zur Herstellung von Sinterform- körpern mit komplexer Geometrie geeignet ist, ist der Pulverspritzguß. Dazu wird ein sinterfähiges Pulver mit einem Thermoplasten, der in der Pulverspritzguß -Technologie üblicherweise ebenfalls „Binder" genannt wird (aber nicht mit dem in der Technologie der Hartstoff-Sinterformteile als „Binder" des Hartstoffs bezeichneten metallischen Phase verwechselt werden darf) , und gegebenenfalls weiteren Hilfsstoffen vermischt, so daß insgesamt eine thermoplastische Spritzgußmasse („Feedstock") entsteht. Diese wird mit der aus der Verarbeitung thermoplastischer Kunststoffe bekannten Spritzgußtechnologie in eine Form spritzgegos- sen, aus dem spritzgegossenen Körper („Grünling") wird anschließend der thermoplastische Pulverspritzguß -Binder entfernt („Ent- binderung") , und der von diesem Binder befreite Körper („Braun- ling") zum fertigen Sinterformkörper gesintert. Das Hauptproblem bei diesen Verfahren ist die Entbinderung, die üblicherweise thermisch durch Pyrolyse des Thermoplasten durchgeführt wird, wobei häufig Risse im Werkstück entstehen. Vorteilhafterweise wird daher ein bei niedrigen Temperaturen katalytisch entfernbarer Thermoplast verwendet. EP-A 413 231 lehrt ein derartiges kataly- tisches Entbinderungsverfahren, EP-A 465 940 und EP-A 446 708 offenbaren Feedstocks für die Herstellung metallischer Formkörper, und EP-A 444 475 offenbart einen Feedstock für die Herstellung keramischer Formkörper. Aus EP-A 443 048 ist auch bekannt, Hartstoff-Sinterformteile auf pulvermetallurgischem Weg herzustellen, EP-A 800 882 lehrt ein verbessertes Verfahren zur Herstellung von Hartstoff-Sinterformteil -Feedstocks.A major disadvantage of simple powder metallurgy shaping processes, such as pressing into a mold, is that only shaped bodies with a comparatively simple outer shape can be produced with them. Another known powder metallurgical process, which is particularly suitable for the production of sintered bodies with complex geometry, is powder injection molding. For this purpose, a sinterable powder is mixed with a thermoplastic, which is usually also called "binder" in powder injection molding technology (but must not be confused with the metallic phase referred to as "binder" of the hard material in the technology of hard material sintered molded parts), and if appropriate mixed with other auxiliaries, so that a thermoplastic injection molding compound (“feedstock”) is formed. This is injection molded into a mold using the injection molding technology known from the processing of thermoplastic materials, and the injection molded body (“green body”) is then used to produce the thermoplastic powder injection molding. Binder removed ("debinding"), and the body freed from this binder ("Braunling") sintered into the finished sintered molding. The main problem with these processes is the debinding, which is usually carried out thermally by pyrolysis of the thermoplastic, which often causes cracks in the workpiece. It is therefore advantageous if one becomes catalytically removable at low temperatures Thermoplastic used. EP-A 413 231 teaches such a catalytic debinding process, EP-A 465 940 and EP-A 446 708 disclose feedstocks for the production of metallic moldings, and EP-A 444 475 discloses a feedstock for the production of ceramic moldings. It is also known from EP-A 443 048 to produce hard material sintered molded parts by powder metallurgy, EP-A 800 882 teaches an improved method for producing hard material sintered molded part feedstocks.
Aus US-A 5,714,115 ist eine spezielle nickelfreie austenitische Stahllegierung mit höchstens 0,3 Gew. -% Kohlenstoff, 2 bis 26 Gew.-% Mangan, 11 bis 24 Gew. -% Chrom, 2,5 bis 10 Gew. -% Molybdän, sowie höchstens 8 Gew. -% Wolfram bekannt, deren austenitische Struktur durch 0,55 bis 1,2 Gew. -% Stickstoff stabilisiert wird. Diese Legierung wird für Werkstücke, die in Kontakt mit dem menschlichen Körper stehen oder kommen können, verwendet, um die in neuerer Zeit zunehmend Bedenken hervorrufenden allergischen Reaktionen auf Nickel oder Kobalt zu vermeiden. W.-F. Bahre, P. J. Uggowitzer und M. O. Speidel : „Competitive Advantages by Near-Net-Shape-Manufacturing" (Hrsg. H.-D. Kunze), Deutsche Gesellschaft für Metallurgie, Frankfurt, 1997 (ISBN 3-88355-246-1) sowie H. Wohlfromm, M. Blömacher, D. Weinand, E.-M. Langer und M. Schwarz: „Novel Materials in Metal Injection Molding", Procee- dings of PIM-97 - Ist European Symposium on Powder Injection Moulding, Munich Trade Fair Centre, Munich, Germany, OctoberUS Pat. No. 5,714,115 describes a special nickel-free austenitic steel alloy with a maximum of 0.3% by weight of carbon, 2 to 26% by weight of manganese, 11 to 24% by weight of chromium, 2.5 to 10% by weight of molybdenum , as well as a maximum of 8% by weight of tungsten, the austenitic structure of which is stabilized by 0.55 to 1.2% by weight of nitrogen. This alloy is used for workpieces that are or may come into contact with the human body in order to avoid the allergic reactions to nickel or cobalt, which have recently become increasingly worrying. W.-F. Bahre, PJ Uggowitzer and MO Speidel: "Competitive Advantages by Near-Net-Shape-Manufacturing" (ed. H.-D. Kunze), Deutsche Gesellschaft für Metallurgie, Frankfurt, 1997 (ISBN 3-88355-246-1) and H. Wohlfromm, M. Blömacher, D. Weinand, E.-M. Langer and M. Schwarz: "Novel Materials in Metal Injection Molding", Processes of PIM-97 - Is European Symposium on Powder Injection Molding, Munich Trade Fair Center, Munich, Germany, October
15-16, 1997, European Powder Metallurgy Association 1997, (ISBN 1-899072-05-5) beschreiben Pulverspritzgußverfahren zur Herstellung von nickelfreien stickstoffhaltigen Stählen unter Aufstik- kung während des Sintervorgangs .15-16, 1997, European Powder Metallurgy Association 1997, (ISBN 1-899072-05-5) describe powder injection molding processes for the production of nickel-free nitrogen-containing steels with embossing during the sintering process.
Trotz des weit entwickelten Stands der Technik besteht angesichts der Bedeutung der Werkstoffklasse die Aufgabe, neue Hartstoff- Sinterformteile mit verbesserten oder neuen Eigenschaften und verbreiterten oder neuen Anwendungsbereichen zu finden.Despite the well-developed state of the art, given the importance of the material class, the task is to find new hard material sintered parts with improved or new properties and widened or new areas of application.
Dementsprechend wurden Hartstoff-Sinterformteile mit einem nik- kel- und kobaltfreien, stickstoffhaltigen Stahl als Binder der Hartstoffphase gefunden. Weiterhin wurden ein Verfahren und Ein- satzstoffe zur Herstellung der erfindungsgemäßen Hartstoff-Sin- terformteile gefunden.Accordingly, hard-material sintered molded parts with a nickel- and cobalt-free, nitrogen-containing steel were found as a binder in the hard material phase. Furthermore, a process and feedstocks for the production of the hard material sintered molded parts according to the invention were found.
Die erfindungsgemäßen Sinterformteile weisen ausgezeichnete mechanische, thermische und magnetische Eigenschaften auf. Sie sind hart, haben einen hohen Schmelzpunkt und hohe Temperaturwechsel - beständigkeit, sind in bevorzugten Ausführungsformen unmagnetisch, und verursachen auch keine Nickel- oder Kobaltallergien. Sie zeigen zudem kein Riesenkornwachstum während der Sinterung, und sie können sehr gut poliert werden. Sie können mit dem erfindungsgemäßen Verfahren in einfacher Weise hergestellt werden, insbesondere ist bei der Herstellung der erfindungsgemäßen Hartstoff-Sinterformteile nur eine vergleichsweise niedrige Sinter- temperatur erforderlich, verglichen mit der Verwendung von Nikkei- oder Kobalt-Bindern.The sintered molded parts according to the invention have excellent mechanical, thermal and magnetic properties. They are hard, have a high melting point and high thermal shock resistance, are non-magnetic in preferred embodiments, and also do not cause any nickel or cobalt allergies. They also show no giant grain growth during sintering, and they can be polished very well. They can be produced in a simple manner using the method according to the invention; in particular, only a comparatively low sintering temperature is required when producing the hard material sintered molded parts according to the invention, compared to the use of Nikkei or cobalt binders.
Die erfindungsgemäßen Hartstoff-Sinterformteile enthalten mindestens 50 Gew. -%, bevorzugterweise mindestens 70 Gew. -% und in be- sonders bevorzugter Weise mindestens 80 Gew. -% Hartstoff. Sie enthalten ferner höchstens 99 Gew.-%, bevorzugterweise höchstens 97 Gew. -% und in besonders bevorzugter Weise höchstens 95 Gew. -% Hartstoff. Demgemäß enthalten die erfindungsgemäßen Hartstoff- Sinterformteile mindestens 1 Gew. -%, vorzugsweise mindestens 3 Gew. -% und in besonders bevorzugter Weise mindestens 5 Gew. -% sowie höchstens 50 Gew. -%, vorzugsweise höchstens 30 Gew. -% und in besonders bevorzugter Weise höchstens 20 Gew. -% metallischen Binder.The hard material sintered molded parts according to the invention contain at least 50% by weight, preferably at least 70% by weight and in a particularly preferred manner at least 80% by weight of hard material. They also contain at most 99% by weight, preferably at most 97% by weight and in a particularly preferred manner at most 95% by weight of hard material. Accordingly, the hard material sintered molded parts according to the invention contain at least 1% by weight, preferably at least 3% by weight and in a particularly preferred manner at least 5% by weight and at most 50% by weight, preferably at most 30% by weight and in particular preferably at most 20% by weight of metallic binder.
Der metallische Binder der erfindungsgemäßen Hartstoff-Sinterformteile, sein Vorläufer oder seine Bestandteile, sowie der Hartstoff werden in Form feiner Pulver eingesetzt. Die eingesetzten mittleren Partikelgrößen liegen üblicherweise im Bereich unter 100 Mikrometer, vorzugsweise unter 50 Mikrometer, und in be- sonders bevorzugter Form unter 20 Mikrometer, und im allgemeinen oberhalb von 0,1 Mikrometer. Derartige Pulver sind kommerziell erhältlich oder können auf jede bekannte Weise hergestellt werden, beispielsweise durch Fällen und Kalzinieren, Mahlen, und die metallischen Pulver insbesondere durch Wasser- oder Gasverdüsung.The metallic binder of the hard material sintered molded parts according to the invention, its precursor or its constituents, and the hard material are used in the form of fine powders. The average particle sizes used are usually in the range below 100 micrometers, preferably below 50 micrometers, and in a particularly preferred form below 20 micrometers, and generally above 0.1 micrometer. Such powders are commercially available or can be produced in any known manner, for example by precipitation and calcining, grinding, and the metallic powders, in particular by water or gas atomization.
In den erfindungsgemäßen Hartstoff-Sinterformteilen ist ein Hartstoff enthalten. Als Hartstoff können alle bekannten, schon bisher als Hartstoffe in bekannten Hartstoff-Sinterformteilen eingesetzten keramischen Stoffe oder Hartmetalle einzeln oder als Ge- misch verwendet werden, beispielsweise die Oxide wie Aluminiumoxid, Cadmiumoxid, Chromoxid, Magnesiumoxid, Siliciumdioxid, Thoriumoxid, Uranoxid und/oder Zirkonoxid, die Carbide wie Borcar- bid, Zirkoncarbid, Chromcarbid, Siliciumcarbid, Tantalcarbid, Ti- tancarbid, Niobcarbid und/oder Wolframcarbid, die Boride wie Chromborid, Titanborid und/oder Zirkonborid, die Silicide wie Mo- lybdänsilicid und/oder die Nitride wie Siliciumnitrid, Titannitrid und/oder Zirkonnitrid, und/oder Mischphasen wie Carboni- tride, Oxicarbide und/oder Sialone. Bevorzugt ist die Verwendung von Tantalcarbid, Wolframcarbid, Niobcarbid, Titannitrid und/oder Zirkonnitrid, besonders bevorzugt ist die Verwendung von Tantal- carbid und/oder Wolframcarbid. Diese Hartstoffe sind bekannt und gängige Handelswaren.A hard material is contained in the hard material sintered molded parts according to the invention. All known ceramic materials or hard metals that have already been used as hard materials in known hard material sintered molded parts can be used as hard material individually or as a mixture, for example the oxides such as aluminum oxide, cadmium oxide, chromium oxide, magnesium oxide, silicon dioxide, thorium oxide, uranium oxide and / or zirconium oxide , the carbides such as boron carbide, zirconium carbide, chromium carbide, silicon carbide, tantalum carbide, titanium carbide, niobium carbide and / or tungsten carbide, the borides such as chromium boride, titanium boride and / or zirconium boride, the silicides such as molybdenum silicide and / or the nitrides such as silicon nitride , Titanium nitride and / or zirconium nitride, and / or mixed phases such as carbonitrides, oxicarbides and / or sialones. The use of tantalum carbide, tungsten carbide, niobium carbide, titanium nitride and / or zirconium nitride is preferred; the use of tantalum carbide is particularly preferred. carbide and / or tungsten carbide. These hard materials are well known and common commodities.
Der metallische Binder der erfindungsgemäßen Hartstoff-Sinter- formteile ist ein nickel- und kobaltfreier, stickstoffhaltiger Stahl. Unter Freiheit von Nickel und/oder Kobalt die Abwesenheit von absichtlich zugesetzten Anteilen dieser Elemente zu verstehen. Die zulässige Obergrenze für Nickel und/oder Kobalt im metallischen Binder der erfindungsgemäßen Hartstoff-Sinterformteile beträgt im allgemeinen 0,5 Gew. -%, vorzugsweise 0,3 Gew. -% und in besonders bevorzugter Weise 0,05 Gew.-%. Bei diesen Gehalten werden normalerweise übliche Grenzwerte für die Freisetzung von Nikkei- und/oder Kobaltionen bei Gebrauch des Werkstücks am oder im menschlichen Körper (als Uhr, Ohrstecker, Implantat etc.) unter- schritten. In ganz besonders bevorzugter Weise enthält der metallische Binder Nickel und/oder Kobalt ausschließlich als unvermeidliche Verunreinigungen. Der als metallischer Binder verwendete Stahl enthält Stickstoff, vorzugsweise in einer Menge von mindestens 0,3 Gew. -% und höchstens 2 Gew.-%.The metallic binder of the hard material sintered molded parts according to the invention is a nickel and cobalt-free, nitrogen-containing steel. Freedom from nickel and / or cobalt is understood to mean the absence of intentionally added portions of these elements. The permissible upper limit for nickel and / or cobalt in the metallic binder of the hard material sintered molded parts according to the invention is generally 0.5% by weight, preferably 0.3% by weight and in a particularly preferred manner 0.05% by weight. At these levels, the usual limits for the release of nikkei and / or cobalt ions when using the workpiece on or in the human body (as a watch, ear plug, implant, etc.) are normally not reached. In a very particularly preferred manner, the metallic binder contains nickel and / or cobalt exclusively as inevitable impurities. The steel used as the metallic binder contains nitrogen, preferably in an amount of at least 0.3% by weight and at most 2% by weight.
Vorzugsweise ist der metallische Binder ein nicht ferromagneti- scher und insbesondere ein austenitischer Stahl. Austenitische Stähle sind bekanntlich solche, in denen ein kubisch flächenzentriertes Gitter der Eisenatome vorliegt. Die Austenitstruktur ist im System Eisen/Kohlenstoff eine Hochtemperaturmodifikation, die durch bestimmte Legierungszusätze bei niedrigen Temperaturen stabilisiert wird. Weitere Legierungszusätze verleihen den austeni- tischen Stählen je nach Anforderungsprofil Zähigkeit, Korrosionsfestigkeit, Härte oder andere jeweils gewünschte Eigenschaften. Herstellung, Verarbeitung und Eigenschaften austenitischer Stähle sind dem Werkstoff -Fachmann wohlbekannt.The metallic binder is preferably a non-ferromagnetic and in particular an austenitic steel. Austenitic steels are known to be those in which there is a face-centered cubic lattice of the iron atoms. The austenite structure in the iron / carbon system is a high-temperature modification that is stabilized by certain alloy additives at low temperatures. Depending on the requirement profile, additional alloy additives give the austenitic steels toughness, corrosion resistance, hardness or other desired properties. The manufacture, processing and properties of austenitic steels are well known to the material expert.
In besonders bevorzugter Form ist der metallische Binder eine austenitische Eisenlegierung, die höchstens 0,5 Gew. -% Kohlen- Stoff, 2 bis 26 Gew. -% Mangan, 11 bis 24 Gew. -% Chrom, 2,5 bis 10 Gew. -% Molybdän, höchstens 8 Gew. -% Wolfram sowie 0,55 bis 1,2 Gew. -% Stickstoff enthält. In bevorzugter Weise enthält sie außer den genannten Elementen keine weiteren, mit Ausnahme von unvermeidlichen Verunreinigungen. Beispiele von Verunreinigungen, die in den erfindungsgemäßen Hartstoff-Sinterformteile üblicherweise toleriert werden können, sind bis zu 0,5 Gew. -% Nickel und/oder Kobalt, bis zu 2 Gew. -% Silicium, bis zu 0,2 Gew. -% Schwefel, bis zu 5 Gew. -% Bismut und bis zu 5 Gew. -% Kupfer.In a particularly preferred form, the metallic binder is an austenitic iron alloy which contains at most 0.5% by weight of carbon, 2 to 26% by weight of manganese, 11 to 24% by weight of chromium, 2.5 to 10% by weight. % Molybdenum, a maximum of 8% by weight tungsten and 0.55 to 1.2% by weight nitrogen. In addition to the elements mentioned, it preferably contains no other, with the exception of inevitable impurities. Examples of impurities which can usually be tolerated in the hard material sintered molded parts according to the invention are up to 0.5% by weight of nickel and / or cobalt, up to 2% by weight of silicon, up to 0.2% by weight Sulfur, up to 5% by weight bismuth and up to 5% by weight copper.
Der ganz besonders bevorzugte metallische Binder der erfindungs- gemäßen Hartstoff-Sinterformteile ist austenitisch und enthält höchstens 0,3 Gew. -% Kohlenstoff, bevorzugterweise enthält er höchstens 0,1 Gew. -% Kohlenstoff. Er enthält mindestens 2 Gew. -% Mangan, bevorzugterweise mindestens 6 Gew. -%, und höchstens 26 Gew. -% Mangan, bevorzugterweise höchstens 20 Gew.-%. Er enthält mindestens 11 Gew. -% Chrom und höchstens 24 Gew. -% Chrom, bevorzugterweise höchstens 20 Gew.-%. Er enthält weiterhin mindestens 2,5 Gew. -% Molybdän und höchstens 10 Gew. -% Molybdän, bevorzugterweise höchstens 6 Gew.-%. Wenn eine besonders hohe Korrosionsstabilität erforderlich ist, enthält der metallische Binder der erfindungsgemäßen Hartstoff-Sinterformteile Wolfram in einer Menge von höchstens 8 Gew. -%, vorzugsweise höchstensThe very particularly preferred metallic binder of the hard material sintered molded parts according to the invention is austenitic and contains at most 0.3% by weight of carbon, preferably it contains at most 0.1% by weight of carbon. It contains at least 2% by weight of manganese, preferably at least 6% by weight, and at most 26% by weight of manganese, preferably at most 20% by weight. It contains at least 11% by weight of chromium and at most 24% by weight of chromium, preferably at most 20% by weight. It also contains at least 2.5% by weight of molybdenum and at most 10% by weight of molybdenum, preferably at most 6% by weight. If particularly high corrosion stability is required, the metallic binder of the hard material sintered molded parts according to the invention contains tungsten in an amount of at most 8% by weight, preferably at most
6 Gew. -%. Er enthält weiterhin mindestens 0,55 Gew. -% Stickstoff, vorzugsweise mindestens 0,7 Gew. -%, und höchstens 1,2 Gew. -% Stickstoff, vorzugsweise höchstens 1,1 Gew.-%. Dieser metallische Binder enthält über die genannten Elemente hinaus noch Eisen, be- vorzugterweise ist der gesamte Rest zu 100 Gew. -%, mit Ausnahme von Verunreinigungen, Eisen.6% by weight. It also contains at least 0.55% by weight of nitrogen, preferably at least 0.7% by weight, and at most 1.2% by weight of nitrogen, preferably at most 1.1% by weight. This metallic binder also contains iron in addition to the elements mentioned, preferably the entire rest is 100% by weight, with the exception of impurities, iron.
Derartige Legierungen sind dem Fachmann bekannt, handelsüblich oder auf einfache Weise durch bekannte metallurgische Verfahren herstellbar. Da ein Stickstoffgehalt dieser Legierungen oberhalb von 0,8 bis 0,9 Gew. -% höher ist als die Stickstofflöslichkeit in der geschmolzenen Legierung, muß die Legierung unter erhöhtem Stickstoffdruck erschmolzen werden, dies ist beispielsweise mit dem Druck-Elektroschlacke-Umschmelzverfahren möglich. Es ist ge- nauso möglich, den Stickstoffgehalt in den metallischen Binder des ansonsten fertigen Sinterformteils in einem Nitridierungs- schritt („Aufstickung") durch Wärmebehandlung in einer Stickstoff enthaltenden Ofenatmosphäre einzuführen. Vorzugsweise wird der Stickstoffgehalt jedoch durch Nitridierung während der Sinterung oder unmittelbar vor oder nach dieser, ohne zwischenzeitliche Entnahme des Sinterformteils aus dem Sinterofen oder Abkühlung unter die Sinter- oder die Nitridierungstemperatur eingestellt. Derartige Sinter- und Nitridierungsverfahren sind dem Fachmann bekannt.Alloys of this type are known to the person skilled in the art, are commercially available or can be produced in a simple manner by known metallurgical processes. Since the nitrogen content of these alloys is above 0.8 to 0.9% by weight higher than the nitrogen solubility in the molten alloy, the alloy must be melted under increased nitrogen pressure, for example with the pressure electro-slag remelting process. It is equally possible to introduce the nitrogen content into the metallic binder of the otherwise finished sintered molded part in a nitridation step (“nitriding”) by heat treatment in a furnace atmosphere containing nitrogen. However, the nitrogen content is preferably obtained by nitridation during the sintering or immediately before or after this, without interim removal of the sintered molded part from the sintering furnace or cooling below the sintering or nitriding temperature, such sintering and nitriding processes are known to the person skilled in the art.
Im Fall einer nachträglichen Nitridierung ist als Vorläufer des eigentlichen metallischen Binders die entsprechende stickstofffreie oder eine Stickstoffärmere Legierung einzusetzen, die sich dann im Zuge des Nitridierungsvorgangs zum metallischen Binder des erfindungsgemäßen Hartstoff-Sinterformteils umwandelt. Auch diese Legierungen sind handelsüblich oder können auf bekannte Weise erschmolzen werden. Im Falle der bevorzugten austenitischen Binder ist der entsprechende stickstofffreie Vorläufer ein ferritischer Stahl, der sich durch die Nitridierung in einen austeni- tischen Stahl umwandelt. Es ist ebenso möglich, den metallischen Binder oder seinen stickstofffreien Vorläufer nach der dem Fachmann bekannten „master- alloy" -Technik aus einer Vorlegierung oder mehreren Vorlegierungen, die im wesentlichen die von Eisen verschiedenen Elemente so- wie gegebenenfalls noch einen Anteil Eisen enthält oder enthalten, und reinem Eisen herzustellen, so daß sich der erfindungsgemäße metallische Binder erst während des Sinter- und/oder Nitri- dierungsvorgangs durch Diffusion der Legierungselemente, gegebenenfalls einschließlich des Stickstoffs, bildet.In the case of a subsequent nitridation, the corresponding nitrogen-free or a low-nitrogen alloy is to be used as the precursor of the actual metallic binder, which alloy then converts to the metallic binder of the hard material sintered molded part according to the invention in the course of the nitridation process. These alloys are also commercially available or can be melted in a known manner. In the case of the preferred austenitic binder, the corresponding nitrogen-free precursor is a ferritic steel, which is converted into an austenitic steel by the nitriding. It is also possible to make the metallic binder or its nitrogen-free precursor according to the “master-alloy” technique known to the person skilled in the art from a master alloy or several master alloys which essentially contain or contain elements other than iron and, if appropriate, a proportion of iron , and to produce pure iron, so that the metallic binder according to the invention only forms during the sintering and / or nitriding process by diffusion of the alloying elements, possibly including nitrogen.
Die erfindungsgemäßen Hartstoff-Sinterformteile werden auf pulvermetallurgischem Weg hergestellt. Dazu werden der Hartstoff und der Binder oder sein Vorläufer in Pulverform gemischt und mit einem Formgebungswerkzeug in eine Form gebracht, die zur Vermeidung etwaiger aufwendiger Nachbearbeitungen des fertigen Hartstoff - Sinterformteils seiner gewünschten geometrischen Endform möglichst nahe kommt. Der Formgebungsschritt wird durch ein übliches Formgebungswerkzeug durchgeführt, beispielsweise eine Presse. Bei der Sinterung tritt bekanntlich ein Schwund der Werkstücke auf, der üblicherweise durch entsprechend größere Dimensionierung der Formteile vor Sinterung kompensiert wird. Anschließend wird der Formling in einem Sinterofen zum Hartstoff -Sinterformteil gesintert und, falls ein stickstofffreier oder Stickstoffärmerer Vorläufer des metallischen Binders verwendet wurde, wird durch Ni - tridierung der gewünschte Stickstoffgehalt eingestellt.The hard material sintered molded parts according to the invention are produced by powder metallurgy. For this purpose, the hard material and the binder or its precursor are mixed in powder form and brought into a shape with a shaping tool which comes as close as possible to the desired final geometric shape in order to avoid any time-consuming finishing of the finished hard material sintered molded part. The shaping step is carried out using a conventional shaping tool, for example a press. As is well known, the workpieces shrink during sintering, which is usually compensated for by correspondingly larger dimensioning of the molded parts before sintering. The molding is then sintered in a sintering furnace to form a hard material sintered part and, if a precursor of the metallic binder which is free of nitrogen or low in nitrogen is used, the desired nitrogen content is set by nitriding.
Die zur Sinterung und gegebenenfalls zur Nitridierung optimale Zusammensetzung der Ofenatmosphäre und die optimale Temperatur- führung hängen von der exakten chemische Zusammensetzung des ver- wendeten metallischen Binders oder seines Vorläufers, insbesondere seinem Stickstofflösungsvermögen, vom gewünschten Stickstoffgehalt des metallischen Binders und von der Korngröße der eingesetzten Pulver ab. Im allgemeinen sind sowohl die Erhöhung des Stickstoffpartialdrucks in der Ofenatmosphäre als auch die Absenkung der Temperatur direkt mit höheren Stickstoffgehalten im metallischen Binder korreliert. Da aber mit einer Absenkung der Temperatur nicht nur der Sintervorgang selbst verlangsamt wird, sondern auch die Diffusionsgeschwindigkeit des Stickstoffs im metallischen Binder des Hartstoff -Sinterformteils sinkt, dauert der Sinter- und/oder Nitridierungsvorgang bei niedrigerer Temperatur entsprechend länger. Die zur Erzielung eines bestimmten gewünschten Stickstoffgehalts in einem homogenen, dichten Sinterformteil optimale Kombination von Ofenatmosphäre, insbesondere dem Stickstoffpartialdruck, Temperatur und Dauer von Sinterung und/oder Nitridierung sind im Einzelfall anhand weniger Routineversuche leicht zu ermitteln. Derartige Sinterverfahren sind für Sinterformteile aus dem in besonders bevorzugter Form als metallischen Binder verwendeten Stahl, ohne Hartstoffphase, beispielsweise in den Publikationen von Bahre et al . sowie Wohlfromm et al . beschrieben. Auf diese beiden Veröffentlichungen wird hiermit ausdrücklich Bezug genommen. Die Eigenschaften des Stahls ändern 5 sich durch das Vorhandensein der Hartstoffphase nicht, so daß die dort beschriebenen Maßnahmen beim erfindungsgemäßen Verfahren dieselben Effekte bewirken.The optimal composition of the furnace atmosphere for sintering and optionally nitriding and the optimal temperature control depend on the exact chemical composition of the metallic binder or its precursor used, in particular its nitrogen solubility, on the desired nitrogen content of the metallic binder and on the grain size of the powder used from. In general, both the increase in the nitrogen partial pressure in the furnace atmosphere and the decrease in the temperature are directly correlated with higher nitrogen contents in the metallic binder. However, since the lowering of the temperature not only slows down the sintering process itself, but also reduces the rate of diffusion of nitrogen in the metallic binder of the hard material sintered part, the sintering and / or nitridation process takes correspondingly longer at a lower temperature. The optimum combination of furnace atmosphere, in particular the nitrogen partial pressure, temperature and duration of sintering and / or nitriding to achieve a certain desired nitrogen content in a homogeneous, dense sintered molded part, can easily be determined in individual cases using a few routine tests. Such sintering processes are for sintered molded parts made of metal in a particularly preferred form Binder used steel without a hard material phase, for example in the publications by Bahre et al. and Wohlfromm et al. described. We expressly refer to these two publications. The properties of the steel 5 do not change due to the presence of the hard material phase, so that the measures described there bring about the same effects in the method according to the invention.
Üblicherweise werden Stickstoffpartialdrücke in der Ofenatmosphä-Nitrogen partial pressures are usually in the furnace atmosphere.
10 re von mindestens 0,1, vorzugsweise mindestens 0,25 bar, angewandt. Dieser Stickstoffpartialdruck beträgt im allgemeinen höchstens 2 bar, vorzugsweise höchstens 1 bar. Die Ofenatmosphäre kann aus reinem Stickstoff bestehen oder auch Inertgase wie Argon und/oder reaktive Gase wie Wasserstoff enthalten. Meist ist es10 re of at least 0.1, preferably at least 0.25 bar, applied. This nitrogen partial pressure is generally at most 2 bar, preferably at most 1 bar. The furnace atmosphere can consist of pure nitrogen or contain inert gases such as argon and / or reactive gases such as hydrogen. Most of the time it is
15 vorteilhaft, als Ofenatmosphäre eine Mischung aus Stickstoff und Wasserstoff zu verwenden, um möglicherweise störende oxidische Verunreinigungen der Metalle zu entfernen. Der Wasserstoffanteil , sofern vorhanden, beträgt im allgemeinen mindestens 5 Vol.-%, vorzugsweise mindestens 15 Vol.-%, und im allgemeinen höchstensIt is advantageous to use a mixture of nitrogen and hydrogen as the furnace atmosphere in order to remove potentially disruptive oxidic impurities from the metals. The proportion of hydrogen, if present, is generally at least 5% by volume, preferably at least 15% by volume, and generally at most
20 50 Vol.-%, vorzugsweise höchstens 30 Vol.-%. Falls gewünscht, kann diese Ofenatmosphäre zusätzlich auch Inertgase, beispielsweise Argon, enthalten. Die Ofenatmosphäre sollte vorzugsweise weitgehend trocken sein, im allgemeinen ist dazu ein Taupunkt von - 40 °C ausreichend.20 50 vol .-%, preferably at most 30 vol .-%. If desired, this furnace atmosphere can also contain inert gases, for example argon. The oven atmosphere should preferably be largely dry, generally a dew point of - 40 ° C is sufficient.
2525
Der (absolute) Druck im Sinter- und/oder Nitridierungsofen beträgt üblicherweise mindestens 100 mbar, vorzugsweise mindestens 250 mbar. Er beträgt ferner im allgemeinen höchstens 2,5 bar, vorzugsweise höchstens 2 bar. In besonders bevorzugter Weise wirdThe (absolute) pressure in the sintering and / or nitridation furnace is usually at least 100 mbar, preferably at least 250 mbar. It is also generally at most 2.5 bar, preferably at most 2 bar. In a particularly preferred manner
30 bei Normaldruck gearbeitet.30 worked at normal pressure.
Die Sinter- und/oder Nitridierungstemperatur beträgt im allgemeinen mindestens 1000 °C, vorzugsweise mindestens 1050 °C und in besonders bevorzugter Weise mindestens 1100 °C. Sie beträgt fernerThe sintering and / or nitridation temperature is generally at least 1000 ° C., preferably at least 1050 ° C. and in a particularly preferred manner at least 1100 ° C. It is also
35 im allgemeinen höchstens 1450 °C, vorzugsweise höchstens 1400 °C und in besonders bevorzugter Weise höchstens 1350 °C. Die Temperatur kann während des Sinter- und/oder Nitridierungsvorgangs variiert werden, beispielsweise, um das Werkstück erst bei einer höheren Temperatur vollständig oder weitgehend dicht zu sintern35 generally at most 1450 ° C, preferably at most 1400 ° C and in a particularly preferred manner at most 1350 ° C. The temperature can be varied during the sintering and / or nitridation process, for example in order to completely or largely densely sinter the workpiece only at a higher temperature
40 und anschließend bei einer niedrigeren Temperatur den gewünschten Stickstoffgehalt einzustellen.40 and then set the desired nitrogen content at a lower temperature.
Die optimalen Aufheizraten werden durch einige Routineversuche leicht ermittelt, üblicherweise betragen sie mindestens 1 °C pro 45 Minute, vorzugsweise mindestens 2 °C pro Minute und in besonders bevorzugter Weise mindestens 3 °C pro Minute. Aus wirtschaftlichen Erwägungen wird im allgemeinen eine möglichst hohe Aufheizrate angestrebt, um einen negativen Einfluß auf die Qualität der Sinterung und/oder Nitridierung zu vermeiden, wird jedoch meist eine Aufheizrate unterhalb von 20 °C pro Minute einzustellen sein.Unter Umständen ist es vorteilhaft, während des Aufheizens auf die Sin- ter- und/oder Nitridierungstemperatur eine Wartezeit bei einer Temperatur, die unterhalb der Sinter- und/oder Nitridierungstemperatur liegt, einzuhalten, beispielsweise über einen Zeitraum von 30 Minuten bis zwei Stunden, beispielsweise eine Stunde, eine Temperatur im Bereich von 500 °C bis 700 °C, beispielsweise 600 °C, zu halten.The optimal heating rates are easily determined by a few routine tests, usually they are at least 1 ° C. per 45 minutes, preferably at least 2 ° C. per minute and in a particularly preferred manner at least 3 ° C. per minute. Economic considerations generally result in the highest possible heating rate in order to avoid a negative influence on the quality of the sintering and / or nitridation, however, a heating rate below 20 ° C per minute will usually have to be set. Under certain circumstances, it is advantageous to heat up the sintering and / or or the nitriding temperature to maintain a waiting time at a temperature which is below the sintering and / or nitriding temperature, for example over a period of 30 minutes to two hours, for example one hour, a temperature in the range from 500 ° C. to 700 ° C., for example 600 ° C.
Die Sinter- und/oder Nitridierungsdauer, also die Haltezeit bei Sinter- und/oder Nitridierungstemperatur, wird im allgemeinen so eingestellt, daß die Sinterformteile sowohl ausreichend dicht gesintert als auch ausreichend homogen nitridiert sind. Bei üblichen Sinter- und/oder Nitridierungstemperaturen, Stickstoffpar- tialdrücken und Formteilgrößen beträgt die Sinter- und/oder Nitridierungsdauer im allgemeinen mindestens 30 Minuten und vorzugsweise mindestens 60 Minuten. Diese Dauer des Sinter- und /oder Nitridierungsvorgangs bestimmt die Produktionsrate mit, deshalb wird die Sinterung und/oder Nitridierung vorzugsweise so durchgeführt, daß der Sinter- und/oder Nitridierungsvorgang aus wirtschaftlicher Sicht nicht unbefriedigend lang dauert. Im allgemeinen wird der Sinter- und Nitridierungsvorgang (ohne die Auf - heiz- und Abkühlphasen) nach höchstens 10 Stunden abgeschlossen werden können.The sintering and / or nitriding time, that is to say the holding time at the sintering and / or nitriding temperature, is generally set so that the sintered molded parts are both sufficiently densely sintered and sufficiently homogeneously nitrided. At usual sintering and / or nitridation temperatures, nitrogen partial pressures and molded part sizes, the sintering and / or nitridation time is generally at least 30 minutes and preferably at least 60 minutes. This duration of the sintering and / or nitridation process also determines the production rate, which is why the sintering and / or nitridation is preferably carried out in such a way that the sintering and / or nitridation process does not take an unsatisfactorily long time from an economic point of view. In general, the sintering and nitriding process (without the heating and cooling phases) can be completed after a maximum of 10 hours.
Der Sinter-und/oder Nitridierungsvorgang wird durch Abkühlen der Sinterformteile beendet. Je nach der Zusammensetzung des Binders kann ein bestimmtes Abkühlverfahren erforderlich sein, beispielsweise ein möglichst schnelles Abkühlen, um Hochtemperaturphasen zu erhalten oder die Entmischung der Komponenten des Stahls zu verhindern. Im allgemeinen ist es auch aus wirtschaftlichen Überlegungen wünschenswert, möglichst schnell abzukühlen, um eine ho- he Produktionsrate zu erreichen. Die Obergrenze der Abkühlrate ist erreicht, wenn in wirtschaftlich unbefriedigend hoher Menge Sinterformteile mit durch zu schnelles Abkühlen bedingten Fehlern wie Springen, Reißen oder Verformung auftreten. Die optimale Abkühlrate wird demnach in wenigen Routineversuchen leicht ermit- telt. Im allgemeinen, und im besonderen bei den bevorzugten Zusammensetzungen des metallischen Binders ist es empfehlenswert, Abkühlraten von mindestens 100 °C pro Minute zu verwenden, bevorzugterweise von mindestens 200 °C pro Minute. Die Sinterformteile können beispielsweise in kaltem Wasser oder Öl abgeschreckt wer- den. Anschließend an Sinterung und/oder Nitridierung kann jede gewünschte Nachbehandlung, beispielsweise Lösungsglühen und Abschrecken in Wasser oder Öl oder heißisostatisches Pressen der Sinterformteile vorgenommen werden. Bevorzugterweise werden die Sinterformteile lösungsgeglüht, indem sie über eine Zeit von mindestens 5 Minuten, vorzugsweise mindestens 10 Minuten und höchstens 2 Stunden, vorzugsweise höchstens einer Stunde bei einer Temperatur von mindestens 1000 °C, vorzugsweise mindestens 1100 °C und höchstens 1250 °C, vorzugsweise höchstens 1200 °C unter Inert- gas, beispielsweise unter Stickstoff und/oder Argon, wärmebehandelt werden und anschließend abgeschreckt werden, beispielsweise in kaltem Wasser.The sintering and / or nitridation process is ended by cooling the sintered molded parts. Depending on the composition of the binder, a specific cooling process may be necessary, for example, cooling as quickly as possible in order to maintain high-temperature phases or to prevent the components of the steel from segregating. In general, it is also desirable for economic reasons to cool down as quickly as possible in order to achieve a high production rate. The upper limit of the cooling rate is reached when sintered molded parts occur in economically unsatisfactorily large quantities with defects such as cracking, tearing or deformation due to rapid cooling. The optimal cooling rate is therefore easily determined in a few routine tests. In general, and particularly in the preferred compositions of the metallic binder, it is advisable to use cooling rates of at least 100 ° C per minute, preferably at least 200 ° C per minute. The sintered molded parts can be quenched, for example, in cold water or oil. Subsequent to sintering and / or nitriding, any desired aftertreatment, for example solution annealing and quenching in water or oil or hot isostatic pressing of the sintered molded parts can be carried out. The sintered moldings are preferably solution-annealed by being at a temperature of at least 1000 ° C., preferably at least 1100 ° C. and at most 1250 ° C., preferably over a period of at least 5 minutes, preferably at least 10 minutes and at most 2 hours, preferably at most one hour at most 1200 ° C under inert gas, for example under nitrogen and / or argon, are heat treated and then quenched, for example in cold water.
Vorzugsweise und insbesondere zur Herstellung geometrisch kompli- ziert geformter Werkstücke, werden die erfindungsgemäßen Hartstoff-Sinterformteile mit dem Pulverspritzgußverfahren hergestellt. Dieses unterscheidet sich in der Durchführung von üblichen pulvermetallurgischen Verfahren wie Pressen und Sintern durch die Art der Formgebung und einen dadurch bedingten zusätz- liehen Schritt zur Entfernung des zur Formgebung verwendeten thermoplastischen Pulverspritzguß -Binders. Für Sinterung und Nitridierung gilt jedoch das oben gesagte.The hard material sintered molded parts according to the invention are preferably produced using the powder injection molding process and in particular for producing geometrically complex shaped workpieces. This differs in the implementation of conventional powder metallurgical processes such as pressing and sintering by the type of shaping and an additional step required to remove the thermoplastic powder injection molding binder used for shaping. However, what has been said above applies to sintering and nitriding.
Zur Durchführung dieses Verfahrens werden die Hartstoff- und Me- tallpulver mit einem thermoplastischen, nichtmetallischen Material als Pulverspritzguß-Binder vermischt und so die Pulverspritzgußmasse hergestellt. Geeignete Thermoplasten zur Herstellung von Spritzgußmassen sind bekannt. Meist werden thermoplastische Kunststoffe verwendet, beispielsweise Polyolefine wie Poly- ethylen oder Polypropylen oder Polyether wie PolyethylenoxidTo carry out this process, the hard material and metal powders are mixed with a thermoplastic, non-metallic material as a powder injection molding binder, and the powder injection molding composition is thus produced. Suitable thermoplastics for the production of injection molding compositions are known. Thermoplastic materials are mostly used, for example polyolefins such as polyethylene or polypropylene or polyethers such as polyethylene oxide
(„Polyethylenglykol") . Bevorzugt ist die Verwendung solcher Thermoplaste, die sich katalytisch bei vergleichsweise niedriger Temperatur aus dem Grünling entfernen lassen. Bevorzugterweise wird als Basis des Thermoplasten ein Polyacetalkunststoff verwendet, und in besonders bevorzugter Form Polyoximethylen („POM", Para- formaldehyd, Paraldehyd) verwendet. Der Spritzgußmasse werden wahlweise noch Hilfsstoffe zur Verbesserung ihrer Verarbeitungs - eigenschaften beigemischt, beispielsweise Dispergierhilfsmittel . Vergleichbare thermoplastische Massen und Verfahren zu ihrer Her- Stellung und Verarbeitung durch Spritzguß und katalytische Ent- binderung sind bekannt und beispielsweise in EP-A 413 231, EP-A 465 940, EP-A 446 708, EP-A 444 475 und EP-A 800 882 beschrieben, auf die hiermit ausdrücklich Bezug genommen wird. Die dort jeweils angegebenen metallischen oder keramischen Pulver sind entsprechend durch eine Pulvermischung aus dem Hartstoff und dem metallischen Binder oder seinem Vorläufer zu ersetzen. Eine bevorzugte erfindungsgemäße Spritzgußmasse besteht aus:("Polyethylene glycol"). Preference is given to the use of thermoplastics which can be removed catalytically from the green compact at a comparatively low temperature. A polyacetal plastic is preferably used as the base of the thermoplastic, and in a particularly preferred form polyoximethylene ("POM", paraformaldehyde , Paraldehyde) is used. The injection molding compound is optionally admixed with auxiliaries to improve its processing properties, for example dispersing aids. Comparable thermoplastic compositions and processes for their production and processing by injection molding and catalytic debinding are known and are described, for example, in EP-A 413 231, EP-A 465 940, EP-A 446 708, EP-A 444 475 and EP- A 800 882 described, to which reference is hereby expressly made. The metallic or ceramic powders specified there must be replaced accordingly by a powder mixture of the hard material and the metallic binder or its precursor. A preferred injection molding composition according to the invention consists of:
a) 40 bis 65 Vol.-% einer Mischung aus al) 50 bis 99 Gew. -% eines Hartstoffs in Pulverform mit einer mittleren Partikelgröße von mindestens 0,1 Mikrometer und höchstens 100 Mikrometer und a2) 1 bis 50 Gew. -% eines nickel- und kobaltfreien, stickstoffhaltigen Stahls oder eines Vorläufers eines solchen Stahls in Pulverform mit einer mittleren Partikelgröße von mindestens 0,1 Mikrometer und höchstens 100 Mikrometer; b) 35 bis 60 Vol.-% einer Mischung aus bl) 70 bis 90 Gew. -% eines Polyoximethylenhomo- oder -copoly- merisats mit bis zu 10 Mol-% Comonomereinheiten und b2) 10 bis 30 Gew. -% eines Polyoximethylencopolymerisats mit einem Comonomeranteil von 20 bis 99 Mol-% Poly-1, 3 -dioxo- lan, Poly-1, 3 -dioxan oder Poly- 1, 3 -dioxepan, oder eines in bl) homogen gelösten oder mit einer mittleren Teil- chengröße von weniger als 1 Mikrometer in bl) dispergier- ten Polymerisats oder deren Mischungen als thermoplastischer Pulverspritzguß -Binder der Pulvermischung a) , und c) 0 bis 5 Vol.-% eines Dispergierhilfsmittels .a) 40 to 65% by volume of a mixture of al) 50 to 99% by weight of a hard material in powder form with an average particle size of at least 0.1 micrometer and at most 100 micrometer and a2) 1 to 50% by weight of one nickel- and cobalt-free, nitrogen-containing steel or a precursor of such steel in powder form with an average particle size of at least 0.1 micrometer and at most 100 micrometer; b) 35 to 60% by volume of a mixture of bl) 70 to 90% by weight of a polyoxymethylene homo- or copolymer with up to 10 mol% of comonomer units and b2) 10 to 30% by weight of a polyoxymethylene copolymer a comonomer content of 20 to 99 mol% of poly-1, 3-dioxolane, poly-1, 3-dioxane or poly-1, 3-dioxepane, or one homogeneously dissolved in bl) or with an average particle size of less than 1 micrometer in bl) dispersed polymer or mixtures thereof as thermoplastic powder injection molding binder of the powder mixture a), and c) 0 to 5 vol .-% of a dispersing aid.
Als Hartstoff al) werden die bekannten, in bekannten Hartstoff- Sinterformteilen eingesetzten keramischen Stoffe oder Hartmetalle einzeln oder als Gemisch verwendet, beispielsweise Oxide wie Alu- miniumoxid, Cadmiumoxid, Chromoxid, Magnesiumoxid, Siliciumdio- xid, Thoriumoxid, Uranoxid und/oder Zirkonoxid, Carbide wie Bor- carbid, Zirkoncarbid, Chromcarbid, Siliciumcarbid, Tantalcarbid, Titancarbid, Niobcarbid und/oder Wolframcarbid, Boride wie Chromborid, Titanborid und/oder Zirkonborid, Silicide wie Molybdänsi- licid und/oder Nitride wie Siliciumnitrid, Titannitrid und/oder Zirkonnitrid, und/oder Mischphasen wie Carbonitride, Oxicarbide und/oder Sialone. Bevorzugterweise ist der Hartstoff Tantalcarbid, Wolframcarbid, Niobcarbid, Titannitrid und/oder Zirkonnitrid, und in besonders bevorzugter Weise ist der Hartstoff Tantalcarbid und/oder Wolframcarbid.The known ceramic materials or hard metals used in known hard material sintered molded parts are used individually or as a mixture as hard material al), for example oxides such as aluminum oxide, cadmium oxide, chromium oxide, magnesium oxide, silicon dioxide, thorium oxide, uranium oxide and / or zirconium oxide, carbides such as boron carbide, zirconium carbide, chromium carbide, silicon carbide, tantalum carbide, titanium carbide, niobium carbide and / or tungsten carbide, borides such as chromium boride, titanium boride and / or zirconium boride, silicides such as molybdenum silicide and / or nitrides such as silicon nitride, titanium nitride and / or zirconium nitride / or mixed phases such as carbonitrides, oxicarbides and / or sialones. The hard material is preferably tantalum carbide, tungsten carbide, niobium carbide, titanium nitride and / or zirconium nitride, and in a particularly preferred manner the hard material is tantalum carbide and / or tungsten carbide.
Als nickel- und kobaltfreier, stickstoffhaltiger Stahl oder Vorläufers eines solchen Stahls a2) wird vorzugsweise eine Eisenlegierung verwendet, die höchstens 0,5 Gew. -% Kohlenstoff, 2 bis 26 Gew.-% Mangan, 11 bis 24 Gew. -% Chrom, 2,5 bis 10 Gew. -% Molybdän sowie höchstens 8 Gew. -% Wolfram enthält. In besonders bevorzugter Weise wird als Komponente a2) eine Eisenlegierung verwendet, die höchstens 0,3 Gew. -%, vorteilhafter- weise höchstens 0,1 Gew. -% Kohlenstoff, mindestens 2 Gew. -%, vorteilhafterweise mindestens 6 Gew. -%, Mangan, höchstens 26 Gew. -%, vorteilhafterweise höchstens 20 Gew. -%, Mangan, mindestensAn iron alloy which contains at most 0.5% by weight of carbon, 2 to 26% by weight of manganese, 11 to 24% by weight of chromium, is preferably used as the nickel- and cobalt-free, nitrogen-containing steel or precursor of such a steel a2). 2.5 to 10% by weight of molybdenum and a maximum of 8% by weight of tungsten. In a particularly preferred manner, an iron alloy is used as component a2) which contains at most 0.3% by weight, advantageously at most 0.1% by weight carbon, at least 2% by weight, advantageously at least 6% by weight , Manganese, at most 26% by weight, advantageously at most 20% by weight, manganese, at least
11 Gew. -% Chrom und höchstens 24 Gew. -%, vorteilhafterweise höchstens 20 Gew. -%, Chrom, und weiterhin mindestens 2,5 Gew. -% Molybdän und höchstens 10 Gew. -%, vorteilhafterweise höchstens 6 Gew.-%, Molybdän enthält. Wenn eine besonders hohe Korrosions- Stabilität der aus der Spritzgußmasse letztendlich herzustellenden Hartstoff-Sinterformteile erforderlich ist, enthält die Komponente a2) zusätzlich Wolfram in einer Menge von höchstens 8 Gew. -%, vorzugsweise höchstens 6 Gew.-%.11% by weight of chromium and at most 24% by weight, advantageously at most 20% by weight, chromium, and furthermore at least 2.5% by weight of molybdenum and at most 10% by weight, advantageously at most 6% by weight , Contains molybdenum. If a particularly high corrosion stability of the hard material sintered molded parts ultimately to be produced from the injection molding compound is required, component a2) additionally contains tungsten in an amount of at most 8% by weight, preferably at most 6% by weight.
Die Komponente a2) enthält über die genannten Elemente hinaus noch Eisen. Ein gewisser Gehalt an Verunreinigungen in a2) , die über das Maß unvermeidlicher Verunreinigungen hinausgehen, ist je nach Anwendung des Hartstoff- Sinterformteils meist tolerierbar. Beispiele von Verunreinigungen, die üblicherweise toleriert wer- den können, sind bis zu 0,5 Gew. -% Nickel und/oder Kobalt, bis zu 2 Gew. -% Silicium, bis zu 0,2 Gew. -% Schwefel, bis zu 5 Gew. -% Bismut und bis zu 5 Gew. -% Kupfer. Bevorzugterweise ist jedoch der gesamte Rest der Komponente a2) zu 100 Gew. -% Eisen, mit Ausnahme von unvermeidlichen Verunreinigungen.Component a2) contains iron in addition to the elements mentioned. A certain content of impurities in a2), which go beyond the level of unavoidable impurities, is usually tolerable depending on the application of the hard material sintered molded part. Examples of impurities that can usually be tolerated are up to 0.5% by weight of nickel and / or cobalt, up to 2% by weight of silicon, up to 0.2% by weight of sulfur, up to 5% by weight bismuth and up to 5% by weight copper. However, the entire rest of component a2) is preferably 100% by weight of iron, with the exception of inevitable impurities.
Als Komponente a2) müssen jedoch nicht homogene Legierungen eingesetzt werden, vielmehr können die Legierungselemente auch als Gemisch verschiedener Legierungen und/oder Reinelementen vorliegen, aus dem sich nach der „master alloy" -Technik beim Sintervor- gang durch Diffusion eine Legierung der gewünschten Bruttozusammensetzung bildet. Beispielsweise kann Komponente a2) ein Gemisch aus reinem Eisenpulver und einem Legierungspulver, das die übrigen Legierungselemente und wahlweise auch noch Eisen enthält, sein.However, it is not necessary to use homogeneous alloys as component a2), rather the alloy elements can also be present as a mixture of different alloys and / or pure elements, from which, according to the “master alloy” technique, an alloy of the desired gross composition is formed by diffusion during the sintering process For example, component a2) can be a mixture of pure iron powder and an alloy powder which contains the other alloy elements and optionally also iron.
Vorzugsweise ist der Hartstoff (Komponente al) ) in a) in einer Menge von mindestens 70 Gew. -% und in besonders bevorzugter Weise in einer Menge von mindestens 80 Gew. -% enthalten. Seine Menge beträgt ferner vorzugsweise höchstens 97 Gew. -% und in besonders bevorzugter Weise höchstens 95 Gew.-%. Der metallische Binder oder sein Vorläufer (Komponente a2) ) ist in a) dementsprechend vorzugsweise in einer Menge von mindestens 3 Gew. -% und in besonders bevorzugter Weise von mindestens 5 Gew. -% sowie bevorzugterweise von höchstens 30 Gew. -% und in besonders bevorzugter Weise von höchstens 20 Gew. -% enthalten. Die mittleren Partikelgrößen von Hartstoff al) und metallischem Pulver a2) betragen Vorzugs- weise höchstens 50 Mikrometer und in besonders bevorzugter Form höchstens 20 Mikrometer.The hard material (component a1)) is preferably contained in a) in an amount of at least 70% by weight and in a particularly preferred manner in an amount of at least 80% by weight. Its amount is also preferably at most 97% by weight and in a particularly preferred manner at most 95% by weight. The metallic binder or its precursor (component a2)) is accordingly in a) preferably in an amount of at least 3% by weight and in a particularly preferred manner of at least 5% by weight and preferably of at most 30% by weight and in particularly preferably contain at most 20% by weight. The average particle sizes of hard material a1) and metallic powder a2) are preferred wise at most 50 microns and, in a particularly preferred form, at most 20 microns.
Die als Komponenten bl) und b2) verwendeten Polyoximethylenhomo- und -copolymerisate und die wahlweise als Komponente b2) verwendeten homogen in Komponente bl) gelösten oder dispergierten Polymerisate sind bekannt und beispielsweise als Komponenten Bl) und B2) , respektive, in EP-A 444 475 beschrieben. Die Homopolymeri - säte werden üblicherweise durch Polymerisation (meist kataly- sierte Polymerisation) von Formaldehyd oder Trioxan hergestellt. Zur Herstellung von Polyoximethylencopolymeren wird oder werden bequemerweise ein cyclischer Ether oder mehrere cyclische Ether als Comonomer(e) gemeinsam mit Formaldehyd und/oder Trioxan in die Polymerisation eingesetzt, so daß die Polyoximethylenkette mit ihrer Folge von ( -0CH2) -Einheiten von Einheiten unterbrochen wird, in denen mehr als ein Kohlenstoffatom zwischen zwei Sauer- stoffatomen angeordnet ist. Beispiele für als Comonomere geeignete cyclische Ether sind Ethylenoxid, 1, 2 -Propylenoxid, 1,2-Bu- tylenoxid, 1,3-Dioxan, 1, 3 -Dioxolan, Dioxepan, lineare Oligo- und Polyformale wie Polydioxolan oder Polydioxepan sowie Oximethylen- terpolymerisate. Als Komponente b2) kann auch ein Polymerisat verwendet werden, beispielsweise ein aliphatisches Polyurethan, aliphatische unvernetzte Polyepoxide, Poly (C -C5) -alkylenoxide, aliphatische Polyamide, Polyacrylate, Polyolefine und deren Mi- schungen.The polyoxymethylene homo- and copolymers used as components bl) and b2) and the polymers optionally used as component b2) homogeneously dissolved or dispersed in component bl) are known and, for example, as components B1) and B2), respectively, in EP-A 444 475. The homopolymerizates are usually produced by polymerizing (mostly catalyzed polymerisation) formaldehyde or trioxane. To produce polyoxymethylene copolymers, a cyclic ether or a plurality of cyclic ethers is or are conveniently used as comonomer (s) together with formaldehyde and / or trioxane in the polymerization, so that the polyoxymethylene chain with its sequence of (-0CH 2 ) units is interrupted by units in which more than one carbon atom is arranged between two oxygen atoms. Examples of cyclic ethers suitable as comonomers are ethylene oxide, 1,2-propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,3-dioxolane, dioxepane, linear oligo- and polyformals such as polydioxolane or polydioxepane and oximeethylene terpolymers. A polymer can also be used as component b2), for example an aliphatic polyurethane, aliphatic uncrosslinked polyepoxides, poly (C 5 -C 5 ) alkylene oxides, aliphatic polyamides, polyacrylates, polyolefins and mixtures thereof.
Die Komponenten bl) und b2) können bis auf einen unterschiedlichen Gehalt an Comonomer (en) identisch sein.Components bl) and b2) can be identical except for a different comonomer (s) content.
Komponente c) ist ein Dispergierhilfsmittel . Dispergierhilfsmit- tel sind weit verbreitet und dem Fachmann bekannt. Im allgemeinen kann jedes Dispergierhilfsmittel verwendet werden, das zur Verbesserung der Homogenität der Spritzgußmasse führt. Bevorzugte Dispergierhilfsmittel sind oligomeres Polyethylenoxid mit einem mittleren Molekulargewicht von 200 bis 400, Stearinsäure, Hydro- xistearinsäure, Fettalkohole, Fettalkoholsulfonate und Blockcopo- lymere aus Ethylen- und Propylenoxid. Als Dispergierhilfsmittel kann auch ein Gemisch verschiedener Substanzen mit dispergieren- den Eigenschaften verwendet werden.Component c) is a dispersing aid. Dispersing aids are widespread and known to the person skilled in the art. In general, any dispersing aid can be used which leads to the improvement of the homogeneity of the injection molding compound. Preferred dispersing agents are oligomeric polyethylene oxide with an average molecular weight of 200 to 400, stearic acid, hydroxystearic acid, fatty alcohols, fatty alcohol sulfonates and block copolymers of ethylene and propylene oxide. A mixture of different substances with dispersing properties can also be used as the dispersing aid.
Die Verformung der erfindungsgemäßen Spritzgußmassen erfolgt auf konventionelle Weise mit üblichen Spritzgußmaschinen. Die Formkörper werden auf übliche Weise, beispielsweise durch Pyrolyse, vom thermoplastischen Pulverspritzguß -Binder befreit. Aus der be- vorzugten erfindungsgemäßen Spritzgußmasse wird der Pulverspritz - guß -Binder vorzugsweise katalytisch entfernt, indem die Grünlinge auf bekannte Weise mit einer eine gasförmige Säure enthaltenden Atmosphäre wärmebehandelt werden. Diese Atmosphäre wird durch Verdampfen einer Säure mit ausreichendem Dampfdruck hergestellt, bequemerweise durch Durchleiten eines Trägergases, insbesondere Stickstoff, durch ein Vorratsgefäß mit einer Säure, vorteilhaf- terweise Salpetersäure, und anschließendes Einleiten des säurehaltigen Gases in den Entbinderungsofen. Die optimale Säurekonzentration im Entbinderungsofen ist vom konkreten Werkstoff und von den Dimensionen des Werkstücks abhängig und wird im Einzelfall durch Routineversuche ermittelt. Im allgemeinen wird zur Entbinderung eine Behandlung in einer derartigen Atmosphäre bei Temperaturen im Temperaturbereich von 20 °C bis 180 °C über einen Zeitraum von 10 Minuten bis 24 Stunden genügen. Nach der Entbinderung etwaige noch vorhandene Reste des thermoplastischen Pulverspritzguß-Binders und/oder der Hilfsstoffe werden beim Aufhei - zen auf Sintertemperatur pyrolysiert und dadurch vollständig entfernt.The injection molding compositions according to the invention are deformed in a conventional manner with conventional injection molding machines. The moldings are freed from the thermoplastic powder injection binder in the usual way, for example by pyrolysis. The powder injection molding binder is preferably removed catalytically from the preferred injection molding composition according to the invention by the green compacts in a known manner with a gaseous acid Atmosphere to be heat treated. This atmosphere is created by evaporating an acid with sufficient vapor pressure, conveniently by passing a carrier gas, in particular nitrogen, through a storage vessel with an acid, advantageously nitric acid, and then introducing the acidic gas into the debinding furnace. The optimal acid concentration in the debinding furnace depends on the specific material and the dimensions of the workpiece and is determined in individual cases through routine tests. In general, treatment in such an atmosphere at temperatures in the temperature range from 20 ° C. to 180 ° C. over a period of from 10 minutes to 24 hours will suffice for the debinding. After the debinding process, any residues of the thermoplastic powder injection binder and / or of the auxiliaries which are still present are pyrolyzed during heating to the sintering temperature and thereby completely removed.
Die entbinderten spritzgegossenen Formkörper werden anschließend ebenso wie Formkörper, die anderen Formgebungsverfahren entstam- men, beispielsweise Pressen, gesintert und gegebenenfalls nitridiert.The debindered injection-molded articles are then sintered and, if appropriate, shaped, which originate from other shaping processes, for example pressing, and optionally nitrided.
BeispieleExamples
Beispiel 1example 1
3600 g Tantalcarbidpulver (mittlerer Teilchendurchmesser 0,9 Mikrometer) , 400 g eines ferritischen Legierungspulvers aus 17 Gew. -% Chrom, 3,4 Gew. -% Molybdän, 12,1 Gew. -% Mangan, Rest Eisen, wobei noch unvermeidbare Verunreinigungen, insbesondere 0,035 Gew. -% Nickel und 0,6 Gew.-% Silicium vorhanden waren, (mittlere Teilchengröße 8 Mikrometer) , 64 g Polyethylenglykol mit einem mittleren Molekulargewicht ca. 800 g/Mol, 43 g Polybutan- diolformal mit einem mittleren Molekulargewicht von ca. 30000 g/ Mol sowie 312 g Polyoximethylen mit einem Anteil von 2 Gew. -% Bu- tandiolformal wurden in einem beheizbaren Kneter vorgelegt, durch Erwärmung auf 175 °C aufgeschmolzen und für eine Stunde durch Kneten homogenisiert. Anschließend wurde die Mischung abgekühlt und granuliert. Das Granulat wurde zu Formteilen spritzgegossen, die anschließend in einer Salpetersäure enthaltenden Stickstoffat- mosphäre katalytisch bei 120 °C entbindert wurden. Anschließend wurden die Formteile in einem Sinterofen über eine Stunde bei 1350 °C und anschließend über 5 Stunden bei 1280 °C in einer Ofenatmosphäre aus 75 Vol.-% Stickstoff und 25 Vol.-% Wasserstoff gesintert. Die Sinterformteile waren danach noch sehr schwach magnetisch und wurden durch eine anschließende Wärmebehandlung über 10 Minuten bei 1150 °C unter Stickstoff und anschließendes Ab- schrecken in Wasser völlig unmagnetisch. Die Dichte der blaßgoldenen Sinterformteile betrugt 13,2 g/ml (theoretische Dichte 13,3 g/ml) .3600 g of tantalum carbide powder (average particle diameter 0.9 micrometer), 400 g of a ferritic alloy powder composed of 17% by weight of chromium, 3.4% by weight of molybdenum, 12.1% by weight of manganese, the rest being iron, with impurities still unavoidable , in particular 0.035% by weight of nickel and 0.6% by weight of silicon were present (average particle size 8 micrometers), 64 g of polyethylene glycol with an average molecular weight of approximately 800 g / mol, 43 g of polybutanediol formal with an average molecular weight Approx. 30,000 g / mol and 312 g of polyoxymethylene with a proportion of 2% by weight of butanediol formal were placed in a heatable kneader, melted by heating to 175 ° C. and homogenized for one hour by kneading. The mixture was then cooled and granulated. The granules were injection molded into molded parts, which were then catalytically debindered at 120 ° C. in a nitrogen atmosphere containing nitric acid. The moldings were then sintered in a sintering furnace at 1350 ° C. for one hour and then at 1280 ° C. for 5 hours in a furnace atmosphere composed of 75% by volume nitrogen and 25% by volume hydrogen. The sintered moldings were then still very weakly magnetic and were subjected to a subsequent heat treatment for 10 minutes at 1150 ° C. under nitrogen and subsequent sealing. scare completely non-magnetic in water. The density of the pale gold sintered molded parts was 13.2 g / ml (theoretical density 13.3 g / ml).
Die Sinterformteile wiesen eine Härte HV 0,5 von 1400 auf, eine Vier-Punkt-Biegefestigkeit nach DIN EN 843 (im „as fired"-Zu- stand) von 774 MPa und eine Rißzähigkeit Kιc nach DIN 51109 von 12 MPa(m)0-5. Die Teile wurden geschliffen und poliert. Die Gefügestruktur war homogen und zeige keine Kristalle von einem Durch- messer oberhalb von 5 Mikrometer.The sintered molded parts had a hardness HV 0.5 of 1400, a four-point bending strength according to DIN EN 843 (in the "as fired" state) of 774 MPa and a fracture toughness Kι c according to DIN 51109 of 12 MPa (m ) 0 - 5. The parts were ground and polished, the microstructure was homogeneous and showed no crystals with a diameter above 5 micrometers.
Vergleichsbeispiel 1Comparative Example 1
3600 g Tantalcarbidpulver (mittlerer Teilchendurchmesser 0,9 Mi- krometer) , 400 g Nickelpulver (mittlere Teilchengröße kleiner 10 Mikrometer) , 56 g Polyethylenglykol mit einem mittleren Molekulargewicht ca. 800 g/Mol, 41 g Polybutandiolformal mit einem mittleren Molekulargewicht von ca. 30000 g/Mol sowie 303 g Polyoximethylen mit einem Anteil von 2 Gew. -% Butandiolformal wurden in einem beheizbaren Kneter vorgelegt, durch Erwärmung auf 175 °C aufgeschmolzen und für eine Stunde durch Kneten homogenisiert. Anschließend wurde die Mischung abgekühlt und granuliert. Das Granulat wurde zu Formteilen spritzgegossen , die anschließend in einer Salpetersäure enthaltenden Stickstoffatmosphäre katalytisch bei 120 °C entbindert wurden. Anschließend wurden die Formteile in einem Sinterofen über eine Stunde bei 1500 °C unter Stickstoff gesintert. Die Dichte der Sinterformteile betrugt 13,6 g/ml (gleich der theoretischen Dichte) . In Parallelversuchen wurden niedrigere Sintertemperaturen angewendet, diese führten jedoch nicht zu einer befriedigenden Sinterdichte.3600 g tantalum carbide powder (average particle diameter 0.9 micrometer), 400 g nickel powder (average particle size less than 10 micrometers), 56 g polyethylene glycol with an average molecular weight of approx. 800 g / mol, 41 g polybutanediol formal with an average molecular weight of approx. 30,000 g / mol and 303 g of polyoxymethylene with a proportion of 2% by weight of butanediol formal were placed in a heatable kneader, melted by heating to 175 ° C. and homogenized for one hour by kneading. The mixture was then cooled and granulated. The granules were injection molded into molded parts, which were then catalytically debindered at 120 ° C. in a nitrogen atmosphere containing nitric acid. The moldings were then sintered in a sintering oven at 1500 ° C. for one hour under nitrogen. The density of the sintered molded parts was 13.6 g / ml (equal to the theoretical density). Lower sintering temperatures were used in parallel experiments, but these did not lead to a satisfactory sintering density.
Die Sinterformteile wiesen eine Härte HV 0,5 von 950 auf, weitere mechanische Eigenschaften wurden nicht bestimmt. Die Teile wurden geschliffen und poliert. Die Gefügestruktur war praktisch poren- frei, allerdings wurde Riesenkornwachstum beobachtet, es waren Kristallitgrößen bis über 100 Mikrometer Durchmesser entstanden, die mit bloßem Auge sichtbar waren und das optische Erscheinungsbild der polierten Teile deutlich beeinträchtigten.The sintered molded parts had a hardness of HV 0.5 of 950, no further mechanical properties were determined. The parts were ground and polished. The microstructure was practically non-porous, however giant grain growth was observed, crystallite sizes up to more than 100 micrometers in diameter were created, which were visible to the naked eye and significantly impaired the optical appearance of the polished parts.
Der Vergleich von Beispiel 1 mit Vergleichsbeispiel 1 zeigt, daß die erfindungsgemäßen Sinterformteile nicht nur hervorragende mechanische Eigenschaften aufweisen, sondern auch in Anwendungen, in denen der optische Eindruck des Sinterformteils entscheidend ist, Vorteile aufweisen. The comparison of Example 1 with Comparative Example 1 shows that the sintered molded parts according to the invention not only have excellent mechanical properties, but also have advantages in applications in which the optical impression of the sintered molded part is decisive.

Claims

Patentansprüche claims
1. Hartstoff- Sinterformteil mit einem nickel- und kobaltfreien, stickstoffhaltigen Stahl als Binder der Hartstoffphase.1. Hard material sintered part with a nickel and cobalt-free, nitrogen-containing steel as a binder of the hard material phase.
2. Hartstoff -Sinterformteil nach Anspruch 1, wobei der Binder ein nicht ferromagnetischer Stahl ist.2. Hard material sintered part according to claim 1, wherein the binder is a non-ferromagnetic steel.
3. Hartstoff-Sinterformteil nach Anspruch 1, wobei der Binder ein austenitischer Stahl mit höchstens 0,5 Gew. -% Kohlenstoff, 2 bis 26 Gew. -% Mangan, 11 bis 24 Gew. -% Chrom, 2,5 bis 10 Gew. -% Molybdän, höchstens 8 Gew. -% Wolfram sowie 0,55 bis 1,2 Gew. -% Stickstoff ist.3. Hard material sintered molding according to claim 1, wherein the binder is an austenitic steel with at most 0.5% by weight of carbon, 2 to 26% by weight of manganese, 11 to 24% by weight of chromium, 2.5 to 10% by weight % Molybdenum, a maximum of 8% by weight tungsten and 0.55 to 1.2% by weight nitrogen.
4. Hartstoff- Sinterformteil nach Anspruch 1, wobei der Hartstoff Tantalcarbid, Wolframcarbid, Niobcarbid, Titannitrid und/oder Zirkonnitrid ist.4. hard material sintered part according to claim 1, wherein the hard material is tantalum carbide, tungsten carbide, niobium carbide, titanium nitride and / or zirconium nitride.
5. Hartstoff-Sinterformteil nach Anspruch 3, wobei der Hartstoff Tantalcarbid und/oder Wolframcarbid ist.5. Hard material sintered part according to claim 3, wherein the hard material is tantalum carbide and / or tungsten carbide.
6. Verfahren zur Herstellung eines Hartstoff -Sinterformteils mit einem nickel- und kobaltfreien, stickstoffhaltigen Stahl als Binder der Hartstoffphase, das die Herstellung eines Form- lings aus einer Pulvermischung, die ein Hartstoffpulver und einen nickel- und kobaltfreien, stickstoffhaltigen Stahl oder einen Vorläufer eines solchen Stahls enthält, und die Sinterung des Formlings umfaßt, sowie, falls ein Vorläufer eines nickel- und kobaltfreien, stickstoffhaltigen Stahls in der Pulvermischung enthalten ist, die Umwandlung dieses Vorläufers in einen solchen Stahl durch Aufstickung.6. A process for the production of a hard material sintered part with a nickel- and cobalt-free, nitrogen-containing steel as a binder of the hard material phase, which involves the production of a molding from a powder mixture, a hard material powder and a nickel- and cobalt-free, nitrogen-containing steel or a precursor of one contains such steel, and comprises the sintering of the molded article, and, if a precursor of a nickel- and cobalt-free, nitrogen-containing steel is contained in the powder mixture, the conversion of this precursor into such a steel by nitriding.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß man einen Formling aus einer Pulvermischung, die ein Hartstoff - pulver und einen ferritischen, nickel- und kobaltfreien, stickstofffreien Vorläufer eines austenitischen, nickel- und kobaltfreien, stickstoffhaltigen Stahls enthält, herstellt und den Vorläufer des austenitischen Stahls durch Aufstickung vor, während oder nach der Sinterung in den austenitischen Stahl umwandelt.7. The method according to claim 6, characterized in that a molding from a powder mixture containing a hard material - powder and a ferritic, nickel- and cobalt-free, nitrogen-free precursor of an austenitic, nickel- and cobalt-free, nitrogenous steel contains, and the precursor of the austenitic steel is converted into the austenitic steel by embroidery before, during or after the sintering.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß man die Formgebung durch Pulverspritzguß einer thermoplastischen Spritzgußmasse, die neben den metallischen und keramischen Pulvern einen Thermoplasten enthält, und anschließende Ent- binderung vornimmt .8. The method according to claim 7, characterized in that the shaping by powder injection molding of a thermoplastic injection molding compound, in addition to the metallic and ceramic Powder contains a thermoplastic, and then carries out debinding.
9. Thermoplastische Spritzgußmasse, die ein Metallpulver, beste- hend aus einem nickel- und kobaltfreien, stickstoffhaltigen Stahl oder einem Vorläufer eines solchen Stahls, ein Hart- stoffpulver und einen Thermoplasten enthält. 9. Thermoplastic injection molding compound, which contains a metal powder, consisting of a nickel- and cobalt-free, nitrogen-containing steel or a precursor of such a steel, a hard material powder and a thermoplastic.
EP99962163A 1998-12-01 1999-11-25 Hard material sintered compact with a nickel- and cobalt-free, nitrogenous steel as binder of the hard phase Ceased EP1144702A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19855422 1998-12-01
DE19855422A DE19855422A1 (en) 1998-12-01 1998-12-01 Hard material sintered part with a nickel- and cobalt-free, nitrogen-containing steel as a binder of the hard material phase
PCT/EP1999/009136 WO2000032828A1 (en) 1998-12-01 1999-11-25 Hard material sintered compact with a nickel- and cobalt-free, nitrogenous steel as binder of the hard phase

Publications (1)

Publication Number Publication Date
EP1144702A1 true EP1144702A1 (en) 2001-10-17

Family

ID=7889647

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99962163A Ceased EP1144702A1 (en) 1998-12-01 1999-11-25 Hard material sintered compact with a nickel- and cobalt-free, nitrogenous steel as binder of the hard phase

Country Status (11)

Country Link
US (1) US6641640B1 (en)
EP (1) EP1144702A1 (en)
JP (1) JP2002531693A (en)
KR (1) KR100674048B1 (en)
CN (1) CN1113968C (en)
AU (1) AU1860100A (en)
DE (1) DE19855422A1 (en)
IL (1) IL143348A (en)
RU (1) RU2001118043A (en)
TW (1) TW509726B (en)
WO (1) WO2000032828A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102744401A (en) * 2012-07-24 2012-10-24 王伟德 Geological mineral exploration device and preparation method thereof

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6553667B1 (en) 1997-09-08 2003-04-29 Trent West Apparatus and method for manufacturing composite articles including wear resistant jewelry and medical and industrial devices and components thereof
US8091556B2 (en) * 2001-04-20 2012-01-10 V-Wave Ltd. Methods and apparatus for reducing localized circulatory system pressure
US7326274B2 (en) * 2001-10-18 2008-02-05 Praxis Powder Technology, Inc. Binder compositions and methods for binder assisted forming
US6585483B2 (en) 2001-11-20 2003-07-01 Honeywell International Inc. Stationary roller shaft formed of a material having a low inclusion content and high hardness
US8070708B2 (en) * 2004-02-03 2011-12-06 V-Wave Limited Device and method for controlling in-vivo pressure
US20060162398A1 (en) * 2004-05-26 2006-07-27 Parsons Kevin L Light weight handcuff with sintered bow
US7065990B2 (en) * 2004-05-26 2006-06-27 Armament Systems & Procedures, Inc. High contact conical bow
US20060285991A1 (en) * 2005-04-27 2006-12-21 Mckinley Laurence M Metal injection moulding for the production of medical implants
US20060242813A1 (en) * 2005-04-29 2006-11-02 Fred Molz Metal injection molding of spinal fixation systems components
JP2007248397A (en) * 2006-03-17 2007-09-27 Seiko Epson Corp Decoration and timepiece
US20070256461A1 (en) * 2006-05-08 2007-11-08 Parsons Kevin L Light weight hinged handcuff with powdered metal hinge
DE102006045481B3 (en) * 2006-09-22 2008-03-06 H.C. Starck Gmbh metal powder
US9403213B2 (en) * 2006-11-13 2016-08-02 Howmedica Osteonics Corp. Preparation of formed orthopedic articles
JP5212602B2 (en) * 2007-09-14 2013-06-19 セイコーエプソン株式会社 Device and housing material manufacturing method
US8105967B1 (en) * 2007-10-05 2012-01-31 The United States Of America As Represented By The Secretary Of The Navy Lightweight ballistic armor including non-ceramic-infiltrated reaction-bonded-ceramic composite material
US9139893B2 (en) 2008-12-22 2015-09-22 Baker Hughes Incorporated Methods of forming bodies for earth boring drilling tools comprising molding and sintering techniques
US20100176339A1 (en) * 2009-01-12 2010-07-15 Chandran K S Ravi Jewelry having titanium boride compounds and methods of making the same
US9949539B2 (en) 2010-06-03 2018-04-24 Frederick Goldman, Inc. Method of making multi-coated metallic article
CN102002640B (en) * 2010-09-09 2012-08-08 中国兵器工业第五二研究所 Method for preparing high nitrogen steel by adopting pressurized induction
WO2012167080A1 (en) * 2011-06-01 2012-12-06 Frederick Goldman, Inc. Methods for producing a design in a sintered product
EP2713802A4 (en) 2011-06-03 2015-03-11 Frederick Goldman Inc Multi-coated metallic products and methods of making the same
AU2012262012A1 (en) 2011-06-03 2013-12-12 Frederick Goldman, Inc. Coated metallic products and methods for making the same
US9155363B2 (en) 2013-10-25 2015-10-13 Diamond Direct, LLC Method of manufacturing multi-element tungsten carbide jewelry rings
CN106591711A (en) * 2017-02-09 2017-04-26 江苏汇诚机械制造有限公司 Preparation method for high strength and toughness modified high manganese steel based TiN steel bonded cemented carbide
CN106801183A (en) * 2017-02-09 2017-06-06 江苏汇诚机械制造有限公司 A kind of preparation method of monikrom cast iron base TiN steel bonded carbide
CN106591679A (en) * 2017-02-09 2017-04-26 江苏汇诚机械制造有限公司 Preparation method for high-toughness modified high-manganese steel-based TiC/TiN steel-bonded hard alloy
CN106591678A (en) * 2017-02-09 2017-04-26 江苏汇诚机械制造有限公司 Preparation method of chromium-nickel-molybdenum alloy-cast-iron-based TiC/TiN steel-bonded carbide
CN106591674A (en) * 2017-02-09 2017-04-26 江苏汇诚机械制造有限公司 Preparation method for high-strength high-toughness heat-resistant TiN steel-bonded hard alloy
EP3482850B1 (en) * 2017-11-08 2021-02-24 The Swatch Group Research and Development Ltd Moulding composition by powder metallurgy, especially for producing sintered solid cermet lining or decorative articles and said sintered solid cermet lining or decorative articles
CN109226742B (en) * 2018-10-31 2019-12-31 广东省材料与加工研究所 Preparation method of superfine hard alloy injection molding feed
DE102019006457A1 (en) * 2019-06-07 2020-12-10 SAUKE.SEMRAU GmbH Metal and ceramic composite material and process for its manufacture
CN110405214B (en) * 2019-08-26 2021-11-05 怡力精密制造有限公司 Preparation method of stainless steel material
EP3851551A1 (en) * 2020-01-20 2021-07-21 Deutsche Edelstahlwerke Specialty Steel GmbH & Co. KG Metal powder for an additive manufacturing method, uses of the metal powder, method for producing a component and component
CN116217246B (en) * 2023-02-27 2023-12-19 合肥水泥研究设计院有限公司 Inorganic binder and preparation method of inorganic binder/TiC composite material
CN117753928B (en) * 2024-02-22 2024-04-26 潍坊卓安重工科技有限公司 Lost foam casting method for manufacturing ball mill end cover by utilizing spheroidal graphite cast iron

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3368882A (en) * 1965-04-06 1968-02-13 Chromalloy American Corp Surface hardened composite metal article of manufacture
FR1475069A (en) 1966-03-04 1967-03-31 Du Pont Articles of agglomerated metal carbide and its manufacturing process
FR2058845A5 (en) * 1969-09-30 1971-05-28 Chromalloy American Corp Work hardening refractory carbided steel
US3936297A (en) * 1972-05-08 1976-02-03 Allegheny Ludlum Industries, Inc. Method of producing austenitic stainless steel
DE2244470C3 (en) * 1972-09-11 1975-03-13 Deutsche Edelstahlwerke Ag, 4150 Krefeld Highly corrosion-resistant and wear-resistant sintered steel alloy
US3861907A (en) * 1973-03-23 1975-01-21 Crucible Inc Wear resistant low-alloy valve steel
US3964878A (en) 1973-06-06 1976-06-22 Gte Sylvania Incorporated Cemented carbide employing a refractory metal binder and process for producing same
DE2717842C2 (en) * 1977-04-22 1983-09-01 Fried. Krupp Gmbh, 4300 Essen Process for the surface treatment of sintered hard metal bodies
US4308059A (en) 1979-06-28 1981-12-29 Gte Products Corporation Capillary
CA1188136A (en) 1980-08-18 1985-06-04 Nicholas Makrides Steel-hard carbide macrostructured tools, compositions and methods of forming
JPS5760049A (en) * 1980-08-18 1982-04-10 Kennametal Inc Steel hard carbite macro-textured tool composition and formation
US4608318A (en) * 1981-04-27 1986-08-26 Kennametal Inc. Casting having wear resistant compacts and method of manufacture
SE440753B (en) 1983-05-13 1985-08-19 Santrade Ltd CUTTING PROCESSING TOOLS EXISTING CORE AND WRAP
SE467210B (en) 1988-10-21 1992-06-15 Sandvik Ab MAKE MANUFACTURING TOOL MATERIALS FOR CUTTING PROCESSING
US4946644A (en) * 1989-03-03 1990-08-07 Baltimore Specialty Steels Corporation Austenitic stainless steel with improved castability
WO1991004119A1 (en) 1989-09-14 1991-04-04 Sumitomo Electric Industries, Ltd. Method of producing cemented carbide or cermet alloy
DE4001238A1 (en) 1990-01-18 1991-07-25 Basf Ag METHOD FOR ENRICHMENT OR CLEANING OF BIOMOLECULES
EP0444475B1 (en) 1990-02-21 1994-04-27 BASF Aktiengesellschaft Thermoplastic composition for the preparation of ceramic moulding masses
DE4007345A1 (en) 1990-03-08 1991-09-12 Basf Ag THERMOPLASTIC MEASURES FOR THE PRODUCTION OF METALLIC MOLDED BODIES
DE4021739A1 (en) 1990-07-07 1992-01-09 Basf Ag THERMOPLASTIC MEASURES FOR THE PRODUCTION OF METALLIC MOLDED BODIES
DE4037480A1 (en) 1990-11-24 1992-05-27 Krupp Widia Gmbh METHOD FOR PRODUCING A COATED CARBIDE CUTTING BODY
JPH04354839A (en) * 1991-05-31 1992-12-09 Sumitomo Electric Ind Ltd External ornamental parts for timepiece and manufacture of the same
DE19513407C1 (en) * 1995-04-08 1996-10-10 Vsg En & Schmiedetechnik Gmbh Steel alloy used for jewellery implants and dental applications
DE19614006A1 (en) 1996-04-09 1997-10-16 Basf Ag Process for the production of granules and molded parts from hard metal or cermet materials
US5848350A (en) * 1997-10-31 1998-12-08 Flomet, Inc. Nickel-free stainless steel alloy processible through metal injection molding techniques to produce articles intended for use in contact with the human body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0032828A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102744401A (en) * 2012-07-24 2012-10-24 王伟德 Geological mineral exploration device and preparation method thereof
CN102744401B (en) * 2012-07-24 2014-04-02 王伟德 Geological mineral exploration device and preparation method thereof

Also Published As

Publication number Publication date
KR100674048B1 (en) 2007-01-25
AU1860100A (en) 2000-06-19
IL143348A (en) 2004-09-27
RU2001118043A (en) 2003-10-27
JP2002531693A (en) 2002-09-24
KR20010080641A (en) 2001-08-22
CN1333839A (en) 2002-01-30
TW509726B (en) 2002-11-11
IL143348A0 (en) 2002-04-21
US6641640B1 (en) 2003-11-04
CN1113968C (en) 2003-07-09
DE19855422A1 (en) 2000-06-08
WO2000032828A1 (en) 2000-06-08

Similar Documents

Publication Publication Date Title
WO2000032828A1 (en) Hard material sintered compact with a nickel- and cobalt-free, nitrogenous steel as binder of the hard phase
EP1198604B1 (en) Nickel-poor austenitic steel
EP1536027B1 (en) Raw or granulated powder for sintering, and sintered compacts therefrom
DE3740547C2 (en) Process for the manufacture of extruder screws and extruder screws made therewith
EP2253398B1 (en) Wear-resistant material
WO2001000897A1 (en) Nickel-poor austenitic steel
DE68927094T2 (en) Sintered alloy steel with excellent corrosion resistance and method of manufacture
US20150000468A1 (en) Metal powder for powder metallurgy and sintered body
KR100768700B1 (en) Fabrication method of alloy parts by metal injection molding and the alloy parts
WO2004039522A1 (en) Metal powder injection molding material and metal powder injection molding method
EP1563931B1 (en) Process for joining inorganic part produced by injection moulding with inorganic parts produced by another process
EP0652190A1 (en) Process for the preparation of sintered ceramic bodies and compositions therefor
DE10120172C1 (en) Manufacture of components by metal injection molding (MIM)
AT392929B (en) METHOD FOR THE POWDER METALLURGICAL PRODUCTION OF WORKPIECES OR TOOLS
EP0217807B1 (en) Sintering method
DE10297020T5 (en) Multi-component ceramic powder, method for producing multi-component ceramic powder, sintered body and method for producing a sintered body
DE68924678T2 (en) Steel alloy powder for injection molding process, its connections and a process for producing sintered parts therefrom.
DE102005045046A1 (en) Tungsten shot
DE10117657B4 (en) Complex boride cermet body and use of this body
WO2008077776A2 (en) Method for thermally debinding a molded metallic and/or ceramic body which is produced by injection molding, extrusion or compression using a thermoplastic material
DE1207634B (en) Powder mixture for the production of steel objects according to known powder metallurgical processes
DE10228924C1 (en) Component made from a titanium aluminide material used in internal combustion engines has oxygen as oxide of a further element formed by thermal treatment and/or during sintering embedded in the titanium aluminide material
JPH05263164A (en) Manufacture of tungsten heavy alloy product
DE4440544C2 (en) Sintered hard material molded body and process for its production
DE1216550B (en) Use of a titanium carbide steel alloy produced by powder metallurgy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010519

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20020328

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20060226