EP1144556A2 - Schmierstoffe für kugelgelenke - Google Patents

Schmierstoffe für kugelgelenke

Info

Publication number
EP1144556A2
EP1144556A2 EP00967516A EP00967516A EP1144556A2 EP 1144556 A2 EP1144556 A2 EP 1144556A2 EP 00967516 A EP00967516 A EP 00967516A EP 00967516 A EP00967516 A EP 00967516A EP 1144556 A2 EP1144556 A2 EP 1144556A2
Authority
EP
European Patent Office
Prior art keywords
particles
ball
lubricant
smaller
larger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00967516A
Other languages
English (en)
French (fr)
Other versions
EP1144556A3 (de
Inventor
Werner Stehr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF Lemfoerder GmbH
Original Assignee
ZF Lemfoerder GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZF Lemfoerder GmbH filed Critical ZF Lemfoerder GmbH
Publication of EP1144556A2 publication Critical patent/EP1144556A2/de
Publication of EP1144556A3 publication Critical patent/EP1144556A3/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • C10M143/02Polyethene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M147/00Lubricating compositions characterised by the additive being a macromolecular compound containing halogen
    • C10M147/02Monomer containing carbon, hydrogen and halogen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M149/00Lubricating compositions characterised by the additive being a macromolecular compound containing nitrogen
    • C10M149/12Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M149/14Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds a condensation reaction being involved
    • C10M149/18Polyamides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/022Ethene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/14Synthetic waxes, e.g. polythene waxes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/06Perfluorinated compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/02Organic macromolecular compounds containing halogen as ingredients in lubricant compositions obtained from monomers containing carbon, hydrogen and halogen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/06Perfluoro polymers
    • C10M2213/062Polytetrafluoroethylene [PTFE]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/044Polyamides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/045Polyureas; Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings

Definitions

  • the invention relates to a lubricant containing particles, in particular a liquid lubricant such as 01 or a grease, according to the preamble of patent claim 1
  • the lubricant is particularly intended for use in ball joints, such as those used in steering rods of motor vehicles. Use of the lubricant in other bearings or for other lubrication purposes is also possible
  • AI lubricants which have particles with two different particle sizes.
  • the size difference of the particles can be in the range of 1 100 or more
  • the purpose of the lubricant of the first-mentioned publication is good heat resistance and lubricating properties at high temperatures and heavy loads.
  • the purpose of the lubricant of the second-mentioned publication is to coat the porous bearing surfaces of a ner combustion engine with the particles in order to smooth the surface.
  • the purpose of the third-mentioned publication is to dampen chatter vibrations with in particular self-locking gearboxes of joint fittings on vehicle seats.
  • the known lubricants are not specifically intended for ball joints and do not solve the problems described on ball joints described below If a ball joint that is at rest is to be moved (swiveled), a kind of breakaway torque, i.e. an increased moment, must first be exerted in order to set a ball socket of the ball joint in motion in relation to a ball of the ball joint. The ball socket moves in relation to the ball , the moment is reduced, usually suddenly to significantly less than half the
  • Breakaway torque The start of the pivoting of the ball joint from rest is accompanied by a jerk, which can be felt in individual cases and is sometimes audible as a crack.
  • This jerk and the breakaway moment at the start of pivoting the ball joint out of rest is explained by the fact that the ball of the ball joint with the ball joint at rest, grease or other lubricant is displaced from one point of the ball joint.
  • the film thickness decreases to a fraction of the lubrication thickness when the ball joint is moving; in extreme cases, the lubrication thickness becomes zero.
  • the decrease in the film thickness is time-dependent for example three to nine times too high This high friction has to be overcome at the start of the pivoting of the ball joint If the ball moves in the ball socket, the lubricant spreads over the surface of the ball, which reduces the friction of the ball joint
  • the ball socket is first made hemispherical in shape with a hollow cylindrical rim attached in one piece and smooth to the hollow hemisphere so that the ball can be inserted into the ball socket.
  • the hollow cylindrical edge is shaped inwards, so that the ball socket encloses the ball on more than one hemisphere surface and thus has a form-fitting hold by means of a grip.
  • a friction-reducing bearing shell made of plastic, for example made of polyacetate (POM)
  • POM polyacetate
  • the invention has for its object to propose a lubricant that enables precise adjustment of the gap between the ball and ball socket in the manufacture of a ball joint
  • the particles of the lubricant according to the invention have a lower dissolution temperature in the lubricant than the smaller particles
  • dissolution temperature is meant the temperature from which the particles dissolve in the lubricant in some way. It is questionable whether the particles in the lubricant dissolve or what the particles actually happen, in any case the particles disappear when the lubricant is viewed under the microscope and, which is essential, they no longer occur after the lubricant has cooled below the dissolution temperature after heating and, if necessary, keeping the lubricant at the dissolution temperature of the larger particles and subsequent cooling the larger particles no longer exist as such.
  • the lubricant according to the invention has the following advantage in the production of a spherical joint when reshaping the hollow cylindrical edge of the otherwise hemispherical ball socket to enclose the ball of the ball joint lying in the ball socket of the lubricant the ball socket at a distance from the ball.
  • the ball joint is then heated up to the dissolution temperature of the larger particles and temporarily held at this temperature, as a result of which the larger particles dissolve, whereas the smaller particles with the higher dissolution temperature remain. Since the larger particles do not form again after the lubricant has cooled, only the smaller particles remain in the lubricant and form the spacers, which maintain the distance (gap) between the ball and the ball socket even when the ball joint is at a standstill prevent the ball socket and thereby avoid the breakaway torque of the ball joint. Larger particles or a bearing shell are preferably selected, the dissolution temperature or softening temperature of which are approximately the same and are below the dissolution temperature of the smaller particles.
  • the larger particles of the lubricant according to the invention become with a dissolution temperature of approximately 80-100 ° C. and the smaller ones Particles selected with a dissolution temperature of approx. 120 ° C or higher.
  • the larger particles are made from polyethylene and the smaller particles from polyamide with a higher dissolution temperature in the lubricant.
  • the lubricant itself is, for example, an oil or a grease into which the particles are evenly distributed, for example by stirring.
  • the particles preferably have a rounded shape, they are preferably spherical. Due to the particle size, the particles are available as powder, which are stirred into the lubricant.
  • the larger particles form a kind of spacer, which, as long as they are not dissolved in the lubricant, ensure a distance of the ball from the ball socket or generally a distance between two bodies between which the lubricant is located.
  • the smaller particles are located between the larger particles and keep them at a distance from each other. In between spaces there is lubricant in the particles The smaller particles prevent the larger particles from agglomerating, i.e.
  • the larger particles accumulate at one or more points, for example in the gap between a ball and a ball socket of a ball and socket joint.Thus, the smaller particles keep the larger particles distributed in the gap of the ball and socket joint.
  • a minimum gap thickness which corresponds to the diameter of the larger particles, is ensured at every point, which causes a friction that is not or only slightly higher at the beginning of the pivoting of the ball joint than during the pivoting. An increase in the friction at the beginning of the pivoting of the ball joint to a multiple of the friction of the moving ball joint even after a long standstill is avoided.
  • the lubricant has particles with only two different particle sizes, it is not disturbing if the particles are present in the lubricant with possibly further particle sizes. This should not be excluded from the invention.
  • the particles come as solid lubricant particles, plastics such as polymers such. B polyamide (PA), polyethylene (PE), polyetrafluoroethylene (PTFE) and / or the like into consideration, the particles preferably having a spherical shape
  • the difference in size between the particles of the lubricant according to the invention is 1,100 or more, whereby the difference in diameter means the difference in diameter or the difference in another characteristic dimension of the particles.
  • the different large particles have a different (apparent) surface tension quasi the particles with the smaller surface tension the particles with the larger surface tension
  • the smaller particles preferably have a smaller surface tension than the larger particles, so that due to their smaller surface tension they virtually wet the larger particles.They adhere distributed on the surface of the larger particles which have the larger surface tension, which means that the larger particles have the smaller particles are coated
  • the surface tension can be changed by means of an additive ("friction modifiers" or catalyst)
  • agglomeration that is to say an accumulation of, in particular, the larger particles, is thus prevented and the desired distribution, in particular of the larger particles forming the spacer elements, is achieved in the lubricant.
  • the difference in the surface tensions of the smaller and the larger particles is selected such that the desired Distributed arrangement of the smaller particles on the surface of the larger particles occurs and the desired agglomeration does not occur.As a comparable effect is conceivable with a reversed surface tension ratio, the case that the surface tension of the larger particles is smaller than the surface tension of the smaller particles should not be excluded
  • the difference in the surface tension of the particles of different sizes must be present in the grease, regardless of whether this surface tension is effective even in the absence of the lubricant
  • a lubricant according to the invention is a lubricating grease into which spherical particles of polyethylene and of polyetrafluoroethylene are stirred, the particles of polyethylene having an approximately 100 times the diameter of the particles of polyetrafluoroethylene.
  • the particles lie before being stirred into the Lubricating grease in powder form Due to the large (apparent) surface tension of the polyethylene and the small (apparent) surface tension of the polyetrafluoroethylene, the smaller particles made of polyetrafluoroethylene adhere to the surface of the approximately 100 times larger particles made of polyethylene and prevent agglomeration of the larger particles made of polyethylene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
  • Pivots And Pivotal Connections (AREA)

Abstract

Die Erfindung betrifft einen Schmierstoff für ein Kugelgelenk, wobei in ein Öl oder ein Schmierfett kugelförmige Partikel mit zwei unterschiedlichen Partikelgrössen eingebracht sind. Die grösseren Partikel wirken als Abstandshalter (Spacer), die ein Setzen einer Kugel des Kugelgelenks auf eine Lagerpfanne bei Stillstand des Kugelgelenks verhindern. Die kleineren Partikel verhindern eine Agglomeration der grösseren Partikel, sie halten die grösseren Partikel in Abstand voneinander und dadurch im spalt des Kugelgelenks verteilt.

Description

Schmier stofF
Beschreibung:
Die Erfindung betrifft einen Partikel aufweisenden Schmierstoff, insbesondere einen flussigen Schmierstoff wie 01 oder ein Schmierfett, nach dem Oberbegriff des Patentanspruchs 1
Der Schmierstoff ist insbesondere zur Verwendung in Kugelgelenken vorgesehen, wie sie beispielsweise in Lenkgestangen von Kraftwagen eingesetzt werden Eine Verwendung des Schmierstoffs in sonstigen Lagern oder zu anderen Schmierzwecken ist ebenso möglich
Aus der JP-A 63-172 795, der US 48 88 122 oder der DE 198 39 296 AI sind Schmierstoffe bekannt, die Partikel mit zwei unterschiedlichen Partikelgroßen aufweisen Dabei kann der Großenunterschied der Partikel im Bereich von 1 100 oder mehr liegen
Zweck des Schmierstoffs der erstgenannten Druckschrift sind gute Warmebestandigkeit und Schmiereigenschaften bei hohen Temperaturen sowie starker Beanspruchung Zweck des Schmierstoffs der zweitgenannten Druckschrift ist es, poröse Lagerflachen eines Nerbrennungsmotors mit den Partikeln zu beschichten, um die Oberflache zu glatten Zweck der drittgenannten Druckschrift ist die Dampfung von Ratterschwingungen bei insbesondere selbsthemmenden Getrieben von Gelenkbeschlagen an Fahrzeugsitzen Die bekannten Schmierstoffe sind nicht speziell für Kugelgelenke vorgesehen und losen nicht die nachfolgend beschriebenen, an Kugelgelenken auftretenden Probleme Soll ein in Ruhe befindliches Kugelgelenk bewegt (verschwenkt) werden, muss zunächst eine Art Losbrechmoment, also ein erhöhtes Moment ausgeübt werden, um eine Kugelpfanne des Kugelgelenks in Bezug auf eine Kugel des Kugelgelenks in Bewegung zu versetzen Bewegt sich die Kugelpfanne in bezug auf die Kugel, verringert sich das Moment, und zwar üblicherweise sprungartig auf deutlich weniger als die Hälfte des
Losbrechmoments Der Beginn des Nerschwenkens des Kugelgelenks aus der Ruhe wird von einem Ruck begleitet, der in einzelnen Fallen spurbar und manchmal als Knacken hörbar ist Dieser Ruck und das Losbrechmoment am Beginn des Nerschwenkens des Kugelgelenks aus der Ruhe wird dadurch erklart, dass die Kugel des Kugelgelenks bei ruhendem Kugelgelenk Fett oder sonstigen Schmierstoff von einer Stelle des Kugelgelenks verdrangt Eine Schπuerfilmdicke verringert sich an dieser Stelle auf den Bruchteil der Schmierdicke bei bewegtem Kugelgelenk, im Extremfall wird die Schmierdicke zu Null Die Abnahme der Schmierfilmdicke ist zeitabhängig Mit abnehmender Schmierfilmdicke nimmt die Reibung des Kugelgelenks auf beispielsweise das Drei- bis Nierfache zu Diese hohe Reibung muss zu Beginn des Nerschwenkens des Kugelgelenks überwunden werden Bewegt sich die Kugel in der Kugelpfanne, verteilt sich der Schmierstoff über die Oberflache der Kugel, wodurch sich die Reibung des Kugelgelenks verringert
Zur Herstellung eines Kugelgelenks wird die Kugelpfanne zunächst halbkugelformig mit einstuckig und glatt an die hohle Halbkugel angesetztem, hohlzylindπschem Rand hergestellt, um die Kugel in die Kugelpfanne einlegen zu können Nach dem Einlegen der Kugel in die Kugelpfanne wird der hohlzy ndπsche Rand nach innen umgeformt, so dass die Kugelpfanne die Kugel auf mehr als einer Halbkugelflache umschließt und somit formschlussig durch Hintergriff halt Vielfach ist in die Kugelpfanne eine reibungsvermindernde Lagerschale aus Kunststoff, beispielsweise aus Polyazetat (POM) eingelegt Vor dem Einlegen der Kugel in die Kugelpfanne wird ein Schmierstoff, meistens ein Schmierfett auf die Kugel und/oder in die Kugelpfanne bzw die Lagerschale aufgetragen Nach dem Einlegen der Kugel in die Kugelpfanne und dem Umformen des hohlzyhndrischen Randes der Kugelpfanne nach Innen zum Umschließen der Kugel wird das Kugelgelenk erwärmt Dies hat den Zweck, das sich die Lagerschale an die Form der Kugel anpaßt Ein zur Verschwenkbarkeit des Kugelgelenks erforderlicher Spalt zwischen der Kugel und der Kugelpfanne stellt sich dadurch ein, dass der hohlzylindrische Rand der Kugelpfanne nach dem Umformen nach Innen wieder auffedert
Es tritt das Problem auf, dass sich wahrend der Umformung ein Spalt zwischen der Kugel und der Kugelpfanne einstellt Diese selbsttätige Einstellung des Spalts zwischen Kugel und Kugelpfanne ist jedoch ungenau und kann dabei die Kugelgelenkparameter negativ beeinflussen.
Der Erfindung liegt die Aufgabe zugrunde, einen Schmierstoff vorzuschlagen, der eine genaue Einstellung des Spalts zwischen Kugel und Kugelpfanne bei der Herstellung eines Kugelgelenks ermöglicht
Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1 gelost.
Die Partikel des erfindungsgemaßen Schmierstoffs weisen eine niedrigere Auflosungstemperatur im Schmierstoff auf als die kleineren Partikel Mit Auflosungstemperatur ist die Temperatur gemeint, ab der sich die Partikel in irgend einer Weise im Schmierstoff auflosen Dabei ist fraglich, ob die Partikel im Schmierstoff in Losung gehen oder was mit den Partikeln tatsachlich geschieht, jedenfalls verschwinden die Partikel bei Betrachtung des Schmierstoffs im Mikroskop und, was wesentlich ist, sie treten nach Abkühlung des Schmierstoffs unter die Auflosungstemperatur nicht mehr auf Nach Erwarmen und ggf Halten des Schmierstoffs auf der Auflosungstemperatur der größeren Partikel und anschließendem Abkühlen sind die größeren Partikel als solches nicht mehr vorhanden Auf diese Weise ist es möglich, durch Erwarmen des erfindungsgemaßen Schmierstoffs auf oder über die Auflosungstemperartur der größeren Partikel, jedoch nicht bis zur Auflosungstemperatur der kleineren Partikel und Halten des Schmierstoffs auf dieser Temperatur, die größeren Partikel aufzulösen Der erfindungsgemaße Schmierstoff hat folgenden Vorteil bei der Herstellung eines Kugelgelenks- beim Umformen des hohlzylindrischen Randes der im übrigen halbkugelformigen Kugelpfanne zum Umschließen der in der Kugelpfanne einliegenden Kugel des Kugelgelenks halten die größeren Partikel des Schmierstoffs die Kugelpfanne in einem Abstand von der Kugel. Durch die Wahl des Durchmessers der größeren Partikel lässt sich der nach dem Umformen der Kugelpfanne zwischen dieser und der Kugel vorhandene Spalt sehr exakt einstellen. Anschließend wird das Kugelgelenk bis auf die Aufiösungstemperatur der größeren Partikel erwärmt und vorübergehend auf dieser Temperatur gehalten, wodurch sich die größeren Partikel auflösen, wogegen die kleineren Partikel mit der höheren Aufiösungstemperatur vorhanden bleiben. Da sich die größeren Partikel nach Abkühlen des Schmierstoffs nicht wieder bilden, verbleiben lediglich die kleineren Partikel im Schmierstoff und bilden die Abstandselemente (Spacer), die auch bei Stillstand des Kugelgelenks den Abstand (Spalt) zwischen Kugel und Kugelpfanne aufrechterhalten, ein Setzen der Kugel auf die Kugelpfanne verhindern und dadurch das Losbrechmoment des Kugelgelenks vermeiden. Es werden vorzugsweise größere Partikel bzw. eine Lagerschale gewählt, deren Aufiösungstemperatur bzw. Erweichungstemperatur in etwa gleich hoch sind und unter der Aufiösungstemperatur der kleineren Partikel liegen. Im Falle von Polyazetat (POM) als Werkstoff der Lagerschale, der bei ungefähr 100 °C erweicht und ab ungefähr 120°C zu schmelzen beginnt, werden die größeren Partikel des erfindungsgemäßen Schmierstoffs mit einer Aufiösungstemperatur von ca. 80 - 100 °C und die kleineren Partikel mit einer Aufiösungstemperatur von ca. 120°C oder höher gewählt. Die größeren Partikel werden beispielsweise aus Polyethylen und die kleineren Partikel aus Polyamid mit einer höheren Aufiösungstemperatur im Schmierstoff hergestellt.
Der Schmierstoff selbst ist beispielsweise ein Öl oder ein Schmierfett, in welches die Partikel gleichmäßig verteilt, beispielsweise durch Einrühren, eingebracht sind. Die Partikel weisen vorzugsweise eine gerundete Form auf, vorzugsweise sind sie kugelförmig. Aufgrund der Partikelgröße liegen die Partikel als Pulver vor, die in den Schmierstoff eingerührt werden. Die größeren Partikel bilden eine Art Abstandshalter (Spacer), die, solange sie nicht im Schmierstoff aufgelöst sind, einen Abstand der Kugel von den Kugelpfanne oder allgemein einen Abstand zwischen zwei Körpern, zwischen denen sich der Schmierstoff befindet, sicherstellen. Die kleineren Partikel befinden sich zwischen den größeren Partikeln und halten diese in Abstand voneinander. In Zwischenräumen zwischen den Partikeln befindet sich Schmierstoff Die kleineren Partikel verhindern ein Agglomerieren der größeren Partikel, also ein Anhäufen der größeren Partikel an einer oder mehreren Stellen beispielsweise im Spalt zwischen einer Kugel und einer Kugelpfanne eines Kugelgelenks Dadurch halten die kleineren Partikel die größeren Partikel im Spalt des Kugelgelenks verteilt Es wird an jeder Stelle eine Mindestpaltdicke, die dem Durchmesser der größeren Partikel entspricht, sichergestellt, die eine Reibung bewirkt, die zu Beginn des Verschwenkens des Kugelgelenks nicht oder nur wenig hoher ist als wahrend des Verschwenkens Eine Erhöhung der Reibung zu Beginn des Verschwenkens des Kugelgelenks auf ein Vielfaches der Reibung des bewegten Kugelgelenks auch nach längerem Stillstand wird vermieden Ein ruckartiger Bewegungsbeginn oder
Knackgerausche werden vermieden Auch wenn es erfindungsgemaß vorgesehen ist, dass der Schmierstoff Partikel mit nur zwei unterschiedlichen Partikelgroßen aufweist, ist es nicht störend, wenn die Partikel mit eventuell weiteren Partikelgrößen im Schmierstoff vorhanden sind. Dies soll von der Erfindung nicht ausgeschlossen sein Als Partikel kommen Festschmierstoffpartikel, Kunststoffe wie Polymere z. B Polyamid (PA), Polyethylen (PE), Polyetraflourethylen (PTFE) und/oder dgl In Betracht, wobei die Partikel vorzugsweise eine Kugelform aufweisen
Der Großenunterschied zwischen den Partikeln des erfindungsgemaßen Schmierstoffs betragt 1 100 oder mehr, wobei mit Großenunterschied der Durchmesserunterschied oder der Unterschied einer sonstigen, charakteristischen Abmessung der Partikel gemeint ist Bei einer Ausgestaltung der Erfindung weisen die unterschiedlichen großen Partikel eine unterschiedliche (scheinbare) Oberflachenspannung auf Dadurch benetzen quasi die Partikel mit der kleineren Oberflachenspannung die Partikel mit der größeren Oberflachenspannung
Vorzugsweise weisen die kleineren Partikel eine kleinere Oberflachenspannung als die größeren Partikel auf, so dass diese aufgrund ihrer kleineren Oberflachenspannung die größeren Partikel quasi benetzen Sie haften verteilt auf der Oberflache der größeren, die größere Oberflachenspannung aufweisenden Partikel, was bedeutet, dass die größeren Partikel mit den kleineren Partikeln überzogen sind Die Änderung der Oberflachenspannung kann dabei mittels eines Zusatzstoffes („friction modifiers" oder Katalysator) erfolgen
Erfindungsgemäß wird somit eine Agglomeration , also eine Anhäufung insbesondere der größeren Partikel verhindert und die gewünschte Verteilung insbesondere der größeren, die Abstandselemente (Spacer) bildenden Partikel im Schmierstoff erreicht Der Unterschied der Oberflachenspannungen der kleineren und der größeren Partikel wird so gewählt, dass die gewünschte, verteilte Anordnung der kleineren Partikel auf der Oberflache der größeren Partikel eintritt und die erwünschte Agglomeration ausbleibt Da ein vergleichbarer Effekt bei umgekehrtem Oberflachenspannungsverhaltnis denkbar ist, soll der Fall, dass die Oberflachenspannung der größeren Partikel kleiner als die Oberflächenspannung der kleineren Partikel ist, nicht ausgeschlossen werden Der Unterschied der Oberflachenspannung der unterschiedlich großen Partikel muss im Schmierfett vorhanden sein, unabhängig davon, ob diese Oberflachenspannung auch in Abwesenheit des Schmierstoffs wirksam ist
Ein Beispiel für einen derartigen, erfindungsgemaßen Schmierstoff ist ein Schmierfett, in welches kugelförmige Partikel aus Polyethylen und aus Polyetraflourethylen eingerührt sind, wobei die Partikel aus Polyethylen einen ungefähr 100 mal so großen Durchmesser wie die Partikel aus Polyetraflourethylen aufweisen Die Partikel liegen vor dem Einruhren in das Schmierfett in Pulverform vor Aufgrund der großen (scheinbaren) Oberflachenspannung des Polyethylen und der kleinen (scheinbaren) Oberflachenspannung des Polyetraflourethylen haften die kleineren Partikel aus Polyetraflourethylen verteilt auf der Oberflache der ungefähr 100 mal so großen Partikel aus Polyethylen und verhindern eine Agglomeration der größeren Partikel aus Polyethylen

Claims

Schmierstoff
Patentansprüche:
Schmierstoff, der Partikel mit zwei unterschiedlichen Partikelgroßen aufweist, wobei der Großenunterschied der Partikel im Bereich von 1 100 oder mehr egt, dadurch gekennzeichnet, dass die größeren Partikel eine niedrigere Auflosungstemperatur im Schmierstoff aufweisen als die kleineren Partikel
Schmierstoff nach Anspruch 1, dadurch gekennzeichnet, dass die größeren Partikel eine Auflosungstemperatur im Schmierstoff von ca 80°C-100°C und die kleineren Partikel eine Auflosungstemperatur von ca 120°C oder hoher aufweisen
Schmierstoff nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Partikel eine gerundete Form aufweisen
Schmierstoff nach einem der vorstehend genannten Ansprüche, dadurch gekennzeichnet, dass die Partikel Festschmierstoff-Partikel sind
Schmierstoff nach Anspruch 4, dadurch gekennzeichnet, dass die Partikel Polymere
Schmierstoff nach Anspruch 5, dadurch gekennzeichnet, dass die Partikel aus Polyethylen (PE), Polyamid (PA) und/oder Polyetraflourethylen (PTFE) bestehen
7. Schmierstoff nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die unterschiedlich großen Partikel eine unterschiedliche (scheinbare) Oberflächenspannung aufweisen.
8. Schmierstoff nach Anspruch 7, dadurch gekennzeichnet, dass die größeren Partikel eine größere (scheinbare) Oberflächenspannung aufweisen als die kleineren Partikel.
9. Schmierstoff nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, dass die Änderung der Oberflächenspannung mittels eines friction modifiers erfolgt.
EP00967516A 1999-08-10 2000-08-10 Schmierstoffe für kugelgelenke Withdrawn EP1144556A3 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19937657 1999-08-10
DE19937657A DE19937657C2 (de) 1999-08-10 1999-08-10 Schmierstoff
PCT/DE2000/002728 WO2001010985A2 (de) 1999-08-10 2000-08-10 Schmierstoffe für kugelgelenke

Publications (2)

Publication Number Publication Date
EP1144556A2 true EP1144556A2 (de) 2001-10-17
EP1144556A3 EP1144556A3 (de) 2001-11-07

Family

ID=7917800

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00967516A Withdrawn EP1144556A3 (de) 1999-08-10 2000-08-10 Schmierstoffe für kugelgelenke

Country Status (9)

Country Link
US (1) US6413915B1 (de)
EP (1) EP1144556A3 (de)
JP (1) JP2003506559A (de)
KR (1) KR20010088819A (de)
CN (1) CN1191343C (de)
BR (1) BR0006994A (de)
DE (1) DE19937657C2 (de)
WO (1) WO2001010985A2 (de)
ZA (1) ZA200102271B (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013082A (ja) * 2001-07-02 2003-01-15 Hoshizaki Electric Co Ltd 潤滑用グリースの改質剤
US7403890B2 (en) 2002-05-13 2008-07-22 Roushar Joseph C Multi-dimensional method and apparatus for automated language interpretation
US8178612B2 (en) * 2004-01-22 2012-05-15 E. I. Du Pont De Nemours And Company Fluoropolymer emulsion coatings
US20070166096A1 (en) * 2005-06-03 2007-07-19 Lim Chong K Joint assembly
DE102006036684A1 (de) * 2006-08-05 2008-02-07 Zf Friedrichshafen Ag Getriebe
US20110072944A1 (en) * 2009-09-29 2011-03-31 Jeffrey Eggers Flexible linked cutting system
DE102013221964B3 (de) * 2013-10-29 2015-03-12 Zf Friedrichshafen Ag Verfahren und Vorrichtung zur Herstellung eines Kugelgelenks
US10138685B1 (en) 2015-12-18 2018-11-27 Jeffrey Eggers Drilling system with teeth driven in opposite directions
US11242498B2 (en) 2018-11-07 2022-02-08 Equistar Chemicals, Lp Polyolefin compositions for grease and lubricant applications
CN111548843B (zh) * 2020-05-09 2022-08-23 中国石油化工股份有限公司 一种商用车转向球头润滑脂及其应用

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4204968A (en) 1978-08-11 1980-05-27 CLM International Corp. Lubricant additive
US4834894A (en) 1980-12-29 1989-05-30 Tribophysics Corporation PTFE oil additive
US5160646A (en) * 1980-12-29 1992-11-03 Tribophysics Corporation PTFE oil coating composition
US4486319A (en) * 1982-09-27 1984-12-04 Armco, Inc. Microporous ionomer polymer lubricating composition
US4888122A (en) * 1986-11-24 1989-12-19 Mccready David F Engine oil additive dry lubricant powder
JPS63172795A (ja) 1987-01-09 1988-07-16 Amuni Kk 潤滑剤
JP2611400B2 (ja) * 1988-12-12 1997-05-21 ダイキン工業株式会社 含フッ素重合体水性分散体および含フッ素重合体オルガノゾル組成物
JPH05329683A (ja) * 1991-12-03 1993-12-14 Kobe Steel Ltd ワイヤ送給及び伸線用潤滑剤
DE69327377T2 (de) * 1992-09-25 2000-06-08 Oiles Industry Co Ltd Mehrschichtiger Gleitteil
US5670461A (en) * 1994-08-19 1997-09-23 Gkn Automotive Ag High temperature lubricating grease containing urea compounds
US5565417A (en) * 1995-06-26 1996-10-15 Salvia; Vincent F. Hybrid series transition metal polymer composite sets
US5744539A (en) * 1995-07-28 1998-04-28 Mccoy; Frederic C. Manufacturing procedures for making high polytetrafluoroethylene content dispersions in oil for lubricant use and the compositions so produced
JP3811529B2 (ja) * 1996-04-25 2006-08-23 株式会社ジェイテクト 転がり摺動部品
US6017857A (en) * 1997-01-31 2000-01-25 Elisha Technologies Co Llc Corrosion resistant lubricants, greases, and gels
US5863875A (en) * 1998-06-24 1999-01-26 The Lubrizol Corporation Coating additive, coating composition containing said additive and method for coating a substrate using said coating composition
DE19839296C2 (de) * 1998-08-28 2003-07-03 Keiper Gmbh & Co Kg Schmierstoff zur Dämpfung von Ratterschwingungen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0110985A2 *

Also Published As

Publication number Publication date
DE19937657C2 (de) 2001-08-02
CN1191343C (zh) 2005-03-02
JP2003506559A (ja) 2003-02-18
DE19937657A1 (de) 2001-03-15
BR0006994A (pt) 2001-06-26
KR20010088819A (ko) 2001-09-28
US6413915B1 (en) 2002-07-02
WO2001010985A3 (de) 2001-05-17
ZA200102271B (en) 2001-11-09
CN1327471A (zh) 2001-12-19
WO2001010985A2 (de) 2001-02-15
EP1144556A3 (de) 2001-11-07

Similar Documents

Publication Publication Date Title
DE3823084C2 (de)
EP3586021B1 (de) Gleitlager für ein stützlager, verfahren zur herstellung eines gleitkörpers sowie verfahren zur herstellung eines gleitlagers
EP2342470B1 (de) Gleithülse
EP1144556A2 (de) Schmierstoffe für kugelgelenke
DE60109298T2 (de) Gleitlager
WO2013127865A1 (de) Verfahren zur herstellung eines wälzlagerkäfigs für ein axial-radial-wälzlager sowie axial-radial-wälzlager
DE69534033T2 (de) Element mit einer Beschichtung aus festem Schmiermittel für ein Wälzlager mit Fettschmierung
EP0232922A1 (de) Verbund-Gleitlagerwerkstoff
DE3728273C2 (de)
EP0757187B1 (de) Gleitschuh zur Verwendung in einem Gleitlager
EP2573410A2 (de) Haltemittel mit einem axialen Durchgang zur Aufnahme eines Formatteiles
WO2005105431A1 (de) Verfahren zur herstellung eines gleitlagermaterials
DE102014102125A1 (de) Hybrider Metall-Kunststoff-Verbund für ein Gleitlager und Verfahren zu seiner Herstellung
DE102015216872A1 (de) Beschichteter Stahlkäfig für ein Wälzlager sowie Verfahren zu dessen Herstellung
EP3555491B1 (de) Lagerbuchse
WO2017067759A1 (de) Gleitlagerbuchse mit integrierter dichtlippe
EP1787036A2 (de) Gelenk- und/oder lageranordnung
DE102016222411A1 (de) Schmiermittelzuführbauteil
WO2008104254A2 (de) Koaxiales steckverbindungsteil
EP4121663A1 (de) Gleitlagerverbundwerkstoff und verfahren zu seiner herstellung
EP3661742B1 (de) Metall-kunststoff-gleitlagerverbundwerkstoff und hieraus hergestelltes gleitlagerelement
EP3545060B1 (de) Oberflächenmaterial auf polyamid basis mit füllstoffen für gleitelement
DE1569057A1 (de) Zusaetzlich einen zweiten Kunststoff enthaltendes Kunststoff-Gleitmaterial und Verfahren zu seiner Herstellung
DE102015202631B4 (de) Lager und Verfahren
DE102006003823A1 (de) Eine Methode zum hocheffektiven Beschichten einer Oberfläche eines Systems von Bewegungspaaren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAK Availability of information related to the publication of the international search report

Free format text: ORIGINAL CODE: 0009015

17P Request for examination filed

Effective date: 20010321

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

XX Miscellaneous (additional remarks)

Free format text: DERZEIT SIND DIE WIPO-PUBLIKATIONSDATEN A3 NICHT VERFUEGBAR.

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7C 10M 171/06 A

17Q First examination report despatched

Effective date: 20020205

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20061003