EP1139361B1 - Electrical circuit for the transmitting the status information, particularly for railway material, and system incorporating such a circuit - Google Patents

Electrical circuit for the transmitting the status information, particularly for railway material, and system incorporating such a circuit Download PDF

Info

Publication number
EP1139361B1
EP1139361B1 EP01400349A EP01400349A EP1139361B1 EP 1139361 B1 EP1139361 B1 EP 1139361B1 EP 01400349 A EP01400349 A EP 01400349A EP 01400349 A EP01400349 A EP 01400349A EP 1139361 B1 EP1139361 B1 EP 1139361B1
Authority
EP
European Patent Office
Prior art keywords
state
electric circuit
circuit
circuit breaker
representing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01400349A
Other languages
German (de)
French (fr)
Other versions
EP1139361A1 (en
Inventor
Michel Bert
Ladimir Prince
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom SA
Original Assignee
Alstom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0004160A external-priority patent/FR2807193A1/en
Application filed by Alstom SA filed Critical Alstom SA
Publication of EP1139361A1 publication Critical patent/EP1139361A1/en
Application granted granted Critical
Publication of EP1139361B1 publication Critical patent/EP1139361B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/16Indicators for switching condition, e.g. "on" or "off"
    • H01H9/167Circuits for remote indication
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/60Auxiliary means structurally associated with the switch for cleaning or lubricating contact-making surfaces
    • H01H1/605Cleaning of contact-making surfaces by relatively high voltage pulses

Definitions

  • the invention relates to an electrical circuit for the routing of all-or-nothing information, particularly for an application in the railway field.
  • these signals are representative of the state of a circuit breaker or the open or closed position of a car access door.
  • the signals are intended to be routed with a high degree of security and availability, making the use of computer-based low-energy links unsuitable.
  • One solution currently used is to connect to the two terminals of a battery a closed loop electrical circuit, which comprises in series at least one switch linked to the state of the body to be monitored, a resistor, and a galvanically isolated connection connected to the receiving device of the information contained in the signal, for example the electronic controller control circuit or the control and signaling board.
  • the open or closed position of the switch is representative of the state of a parameter or equipment.
  • a current whose intensity is limited by the resistance, circulates in the circuit.
  • no current flows.
  • the presence or absence of this current is transformed by the galvanically isolated connection into an all or nothing information communicated to the electronic circuit.
  • a train has a plurality of such circuits connected to the terminals of the same accumulator.
  • This current is consumed at a loss in the resistance.
  • the battery generally supplying several circuits, and other equipment, the voltage it delivers varies over time with the level of the load at its terminals.
  • the intensity of the current in the circuit therefore also varies, in proportion to the state of charge of the accumulator.
  • the amount of heat dissipated increases with the number of switches and information to be transmitted.
  • DE-A-4,221,916 discloses an electric circuit according to the preamble of claim 1.
  • the invention aims to reduce the aforementioned drawbacks of the prior art.
  • the purpose of the invention is therefore to provide the routing of all-or-nothing information with a high degree of reliability and availability, while reducing the power dissipated by the Joule effect.
  • the invention also relates to an electrical system for transmitting a plurality of status information, characterized in that it comprises an accumulator and a plurality of electrical circuits, as defined above, each intended to transmit a state information and connected in parallel across said accumulator.
  • each switch being associated to an organ or equipment of said railway train, to control its state or position.
  • FIG. 1 A first embodiment of an electrical system 1 according to the invention is illustrated in FIG. 1
  • the electrical system 1 is able to transmit a plurality of all or nothing information to an electronic control circuit 2 of the controllers.
  • the electrical system 1 comprises a plurality of elementary electrical circuits CE (i), here n in number, connected in parallel to the terminals of a supply accumulator 3.
  • each elementary circuit CE (i ) is able to transmit information all or nothing representative of the state of an organ or equipment to be controlled, including a railway vehicle equipment.
  • a connection S (1) ... S (i) ... S (n) retrieves at the output of each elementary circuit CE (i), the all or nothing information by means of a connection which will be described below. to transmit it to one of the input ports P (1) ... P (i) ... P (n) of the electronic circuit 2.
  • the electronic circuit 2 also includes output ports 4 for example for the control of PLCs (not shown).
  • the supply accumulator 3 the electrical system 1 and the electronic circuit 2 are intended to be embedded in a train. It goes without saying that the electronic control circuit 2 of PLCs can be replaced by a control and signaling board or by any device capable of receiving and processing an all or nothing information.
  • the supply accumulator 3 is the only source of DC voltage for the entire train. Also, the various on-board equipment that requires a DC power supply are powered by this single battery 3. The voltage it delivers is therefore likely to vary over time, depending on the load at its terminals, between 0.6 times and 1.4 times its nominal voltage.
  • Accumulators 3 generally currently used in trains, have nominal voltages of 24 volts, 36 volts, 48 volts, 96 volts and 110 volts.
  • This elementary electrical circuit CE (i) entering the construction of the electrical system 1 has been isolated in FIG. 2.
  • This elementary circuit CE (i) comprises a loop B fed by the accumulator 3 and which comprises , arranged in series, a state switch 5, an inductor 6, a galvanically isolated connection 7 which can for example be achieved by means of an optocoupler, and two branches 8 and 9 in parallel.
  • the flow direction of a current in the loop B from the + terminal to the - terminal of the battery 3 defines a positive orientation of this loop B.
  • the branch 8 comprises, arranged in series, a transistor 10 and a regulating device 11 controlling said transistor 10.
  • the polarization of the transistor 10 is such that a current flowing between the two main electrodes, other than that of the control, of the transistor is positive according to the conventional orientation of the B loop adopted previously.
  • the regulating device 11 comprises means for measuring the intensity of the current flowing through the branch 8, as well as a clock (not shown).
  • the second branch 9 comprises a diode 12 and a capacitor 13 in series.
  • a resistor 14 is disposed between a point P of the branch 9 located between the diode 12 and the capacitor 13, and the + terminal of the accumulator 3.
  • the diode 12 is polarized so as to prevent the discharge of the capacitor 13 other than by the resistor 14.
  • the organ or the equipment whose state is to be controlled actuates the closing and opening of the state switch 5.
  • the control frequency of the transistor 10 is set, for example around 240 kHz, by the clock of the regulator 11.
  • T a period defined as the inverse of this control frequency of the transistor 10, which period is, in the example described fixed, but which can be made variable in other embodiments, the transistor 10 is consecutively turned on then blocked.
  • the duty cycle ⁇ equal to the time during which the transistor 10 is passing divided by the period T, is variable. It is determined by the regulating device 11 by comparing the peak value of the current traversing the branch 8 during a period T to a set value of the order of 25 mA stored in the regulating device 11, in order to regulate the current in the loop B.
  • the current i 6 has reached a value such that the duty cycle ⁇ begins to move away from its initial value equal to 1 and the transistor 10 is blocked.
  • the inductor 6 is demagnetized by a current i 12 passing through the diode 12, towards the point P.
  • This current i 12 divides into P in two currents i 13 and i 14 which respectively traverse the capacitor 13 and the resistor 14.
  • the current i 14 is initially relatively low, since most of the current i 12 from the diode 12 is applied to the capacitor 13.
  • the current i 13 increases the charge of the capacitor 13 and the potential V p at the point P increases above of its initial value E.
  • the transistor 10 is switched on again and if the switch 5 is still closed, the cycle just described repeats several times in an almost identical manner, except that the potential V p at point P now increases.
  • V p gradually increases to tend towards a stabilization value after the transient phase which has just been described.
  • FIGS. 3a, 3b and 3c illustrate the operation of the elementary circuit CE (i) once it has entered this substantially stabilized regime where the current flowing in the inductor is not interrupted.
  • curve 3a shows the variation of current i 6 in function of time in the inductor 6
  • curves 3b and 3c show the contribution of this current i 6 in the intensities of the respectively current i 10 flowing through the transistor 10 and the current i 12 passing in the diode 12.
  • the potential E of the accumulator 3 is applied to the inductor 6.
  • the intensity of the current i 6 increases approximately linearly over time t with a slope E The , from a minimum intensity i 6m to a maximum intensity i 6M .
  • This current i 6 through the inductor 6 flows partly into the closed loop comprising the inductor 6, the diode 12, the capacitor 13, the accumulator 3 and the switch 5.
  • the other part of this current i 6 flows in the resistor 14 and goes through the closed loop comprising the inductor 6, the diode 12, the resistor 14 and the switch 5.
  • the capacitor 13 also discharges during the time ⁇ T, while the diode 12 is blocked, by an amount that must be equal on average to its recharge by the diode 12 during the time (1- ⁇ ) T , in steady state.
  • the capacitor 13 When it discharges, the capacitor 13 returns a portion of its energy to the circuit by supplying at least the switch 5, the inductor 6, the galvanically isolated connection 7 and the transistor 10, and possibly also supplying the accumulator 3.
  • the capacitor 13 discharges, and a part of its energy is transferred to the inductor 6 which is magnetized, which generates the current i 6 in the 5, the inductance 6, the galvanically isolated connection and the transistor 10.
  • the inductance demagnetizes and a part of its energy is transferred to the capacitor 13 which is charge, which generates the current i 6 in the switch 5, the inductor 6 and the connection with galvanic isolation 7.
  • the current i 6 is therefore partly the consequence of a transfer of energy from the capacitor 13 to the inductor 6, then from the inductance 6 to the capacitor 13. It should be noted that between these two phases of transfer of energy, the polarity of the connections between the inductor 6 and the capacitor 13 are reversed.
  • the accumulator 13 maintains the energy level of the circuit by compensating for the losses, in particular in the resistor 14.
  • the accumulator 3 also has the function of supplying the initial energy to the circuit during the transient start phase commented previously.
  • the regulation device 11 determines the duty cycle ⁇ so as to regulate the intensity of the current i 6 which passes through the inductor 6.
  • the current i 6 increases. Conversely, this current i 6 decreases when the transistor 10 is off.
  • the cyclic ratio ⁇ thus determines the durations of the growth and decay phases of the current i 6 during a period T. By increasing one of said durations relative to the other, the regulating device 11 can vary the intensity of the current i 6 between the beginning and the end of the period T.
  • the position of the galvanically isolated connection 7 in series with the switch 5 is advantageous since the signal that it generates at the output is a substantially faithful image of the current flowing through this switch 5.
  • the current coming from the capacitor 13 or outgoing current and which passes through the resistor 14 is the one which ensures the discharge of the capacitor 13.
  • the average current leaving the capacitor 13 is equal to the current i 6 coming from the inductance 6 that goes into it.
  • the latter is fixed by the regulating device 11.
  • the current coming from the capacitor 13 and passing through the resistor 14 is also determined by the regulating device 11.
  • the potential difference V P -E across the resistor 14 is set to a value proportional to the voltage. intensity of this current and inversely proportional to the value R of this resistor 14. Also, the value R of the resistor 14 makes it possible to determine the potential difference V P -E, the value of the current i 6 being fixed elsewhere.
  • the accumulator 3 maintains the energy level in the circuit, and only the power it releases for this purpose is consumed by Joule effect.
  • the current i 6 in the switch 5 is not limited only by a resistor which necessarily dissipates energy by Joule effect as in the cited prior art, but also by the alternative transfer of a quantity of energy which causes a growth then a decrease of this current i 6 and allows its regulation.
  • the intensity of the current i 6 injected into the circuit is regulated by its maximum value i 6M which is independent of the voltage E delivered by the accumulator 3. Contrary to what is obtained in the prior art, a variation of the voltage E delivered by the accumulator 3 does not introduce a variation of the current consumed by the resistor 14.
  • the galvanically isolated connection consists of a magnetic coupling produced by a transformer 7 ', with an air gap in the case where the DC component of the current flowing through the primary is large, the primary winding of which also forms, at least in part, that of the inductor 6.
  • the secondary is, for its part, connected to the connection S (i).
  • the galvanically isolated connection 7 has been moved from a position in series with the inductor 6 to a position in series with the transistor 10, on the branch 8.
  • the operation of the elementary circuit CE (i) remains the same, the output signal recovered on the connection S (i) being intermittent as the current i 10 which passes through the transistor 10.
  • Means for smoothing or averaging this output signal can be provided on the output circuit associated with the output connection S (i).
  • the regulation device 11 has been replaced by a regulation device 11 'which comprises means for measuring the voltage V P across the capacitor 13.
  • the regulation device 11 determines the duty cycle ⁇ and controls the transistor 10 so as to regulate the voltage V P across the capacitor 13 around a set value.
  • An advantageous control variant uses a measurement of the voltage V p -E across the resistor 14 to regulate the current in the resistor 14 by the relation (V p -E) / R and thus the power dissipated (V p -E ) 2 / R, while maintaining a current in the switch 5 slightly decreasing as a function of the voltage of the accumulator 3.
  • the galvanically isolated connection may be arranged on any one of the branches of the elementary circuit CE (i), for example in series with the diode 12, the capacitor 13 or with the resistor 14.
  • the transistor 10 can be replaced by any type of controlled switch.
  • the output information can be generated by the regulating device 11 or 11 ', which then fulfills the function of the galvanically isolated connection 7 or 7', on the basis of the value of the duty cycle ⁇ , which is equal to to 1 when the switch 5 is open and deviates from 1 when it is closed.
  • a failure for example following the failure of a component can occur, in an elementary circuit CE (i) according to the invention, without being detected or at least not before a time that can be longer or shorter. such a possibility affecting the reliability sought.
  • the state switch determines the passage of the current in this elementary circuit CE (i), it may be envisaged, in a first step, to use it to perform a test of operation in which the actual reception of the all-or-nothing signal is checked.
  • this state switch is not always accessible and / or easily operable. For example, it can be placed in a place on the train away from the place where the reception is tested.
  • the elementary circuit CE (i) illustrated in FIG. 7 comprises means 15 able to test its correct operation, whatever the position of the state switch.
  • This elementary circuit CE (i) has a basic structure identical to that of the first embodiment of the invention illustrated in Figure 2 and previously commented, and has the same elements. However, the state switch and the galvanically isolated link are here formed respectively of a voltage inverter 5 'and an optocoupler 7 ", this particular choice being only intended to illustrate certain characteristics.
  • the means 15 for testing the correct operation of the elementary circuit CE (i) comprise a protection diode 16 arranged between the voltage inverter 5 'and the inductor 6, and polarized so as to allow the passage of a positive current according to the conventional orientation of the B loop adopted previously.
  • another series circuit comprises another protection diode 17, a test switch formed of a transistor 18, and a test accumulator 19, all of which belong to the means 15.
  • the protection diode 17 and the test accumulator 19 are polarized so that the latter is able to supply the elementary circuit CE (i ), with the exception of the voltage inverter 5 ', producing a current of direction identical to that provided by the supply accumulator 3, in place of the latter.
  • the protective diode 17 is advantageously disposed downstream of the transistor 18, itself disposed downstream of this test battery 19.
  • the means 15 for testing the correct operation of the electric circuit CE (i) also comprise an automatic test unit 20, connected to the transistor 18 and advantageously to the regulating device 11, and receiving the status information transmitted by the opto- 7 "coupler thanks to a connection on connection S (i).
  • the protection diode 16 is located on one side or the other of the assembly comprising the voltage inverter 5 'and the supply accumulator 3 in series.
  • optional charges C (1)... C (j)... C (m) but represented to illustrate certain operating characteristics, formed for example of relays, actuators, circuit breaker closing coils and / or or of indicator lamps, and whose state, like that of the opto-coupler 7 ", is intended to be connected to the open or closed position of the voltage inverter 5 ', are each arranged in parallel with the series circuit comprising the voltage inverter 5 'and the supply accumulator 3, with the exception of the protective diode 16.
  • the automatic test unit 20 is capable of conducting an automated test verifying that the electrical circuit CE (i) is functioning correctly, said test being triggered for example by each new start of the train.
  • the voltage inverter 5 ' whose operation can be made tedious because of the large number of such switches, can be indifferently in an open or closed position.
  • the automatic test unit 20 commands the transistor 18 to close, thus ensuring that the portion of the electrical circuit CE (i) located downstream of the protection diode 16 is energized.
  • This unit 20 verifies the transmission, in the connection S (i), of information representative of the passage of a current in the opto-coupler 7 ", which must occur when this part of the circuit CE (i), located downstream of the protection diode 16, operates correctly.
  • the galvanically isolated connection here is formed of an opto-coupler 7 ", it should also be verified that the phototransistor of this opto-coupler, passing when it receives the luminous information due to the passage of a current in the associated light-emitting diode returns to its off state, corresponding to an open switch, in the absence of this current, but, as previously mentioned, the voltage inverter 5 'can be in any state.
  • the automatic test unit 20 maintains, via the regulating device 11, the transistor 10 in the off state
  • the current flowing through the opto-coupler 7 "s' gradually cancels out due to the energy stored in the inductor 6, during a transient period which can be estimated at 5 times the time constant of this inductance (5xL / r).
  • the voltage at the terminals of the test battery 19 is here chosen to be equal to or less than that at the terminals of the accumulator 3, the current that could flow through the resistor 14 of the one towards the other of these two accumulators due to the potential difference across their terminals is blocked by the protective diode 17.
  • the automatic test unit 20 verifies that the signal it receives the connection S (i) effectively corresponds to a blocked state of the phototransistor of the opto-coupler 7 ".
  • the protective diode 17 prevents a current from being established between these two accumulators, if the inverter Voltage 5 'is closed at the moment when the automatic test unit 20 keeps the transistor 18 in the on state.
  • this protection diode 17 further protects the transistor 18 destructive effects of a too high negative voltage at its terminals.
  • the protection diode 16 isolates the accumulators 3 and 19 and avoids a current from one to the other, when the test voltage is greater than the supply voltage, a situation that can be encountered when the second step of the aforementioned test is not provided, for example because the galvanically isolated connection is not an optocoupler.
  • This protection diode 16 also prevents a short-circuit current emitted by the test battery 19 from being set up when the voltage inverter 5 'is in the open position, that is to say when it disconnects. the elementary circuit CE (i) of the supply accumulator 3 and imposes a zero voltage across this electric circuit CE (i), while, parallel, the transistor 18 is passing. Of course, this situation that is to be avoided does not exist when a simple switch is disposed in place of this voltage inverter 5 '.
  • the protection diode 16 also avoids being powered by the test battery 19, when the transistor 18 is conducting, the charges C (1) ... C (j) ... C (m), of which it is appropriate remember that the state is intended to be linked to that of the voltage inverter 5 '.
  • the supply accumulator 3 while keeping its arrangement inside the electrical circuit CE (i), can also be connected so as to replace the test accumulator 19.
  • the The supply accumulator successively fulfills two distinct functions over time, thus making it possible to economize on a specific test accumulator.
  • the transistor 18 is then connected directly in parallel with the voltage inverter 5 '.
  • the protection diode 17 becomes superfluous.
  • the protective diode 16 only the presence of the charges C (1) ... C (j) ... C (m) or the use of a voltage inverter 5 'instead of a simple switch make it necessary.
  • any type of switch can replace the voltage inverter 5 ', it has been chosen only to illustrate the particular role performed by the protective diode 16 in the case where it is used.
  • the opto-coupler 7 "having been chosen for similar reasons, it too can be replaced by any other component capable of making a connection with galvanic isolation, some of them, such as for example the previously mentioned transformer, do not require a second test phase, since they can not generate alone, that is to say in the absence of any current passing through them, an output signal on the connection S (i) corresponding to such a current In this case, the connection connecting the automatic test unit 20 to the regulating device 11 is no longer necessary.
  • transistor 18 may be replaced by any component fulfilling the function of controlled switch.
  • the means 15 for testing the correct operation of the electric circuit CE (i) are intended to be adapted to any variant embodiment of the invention, for example to all those which have previously been described, although these means have been presented in FIG. a particular combination with only one of them.
  • the invention is not limited to a railway application, but relates to the transmission, in any field, of all-or-nothing information.
  • This reduction in size makes it possible to reduce the size of a reading channel, and thus to make room for a larger number of reading circuits on an identical electronic card surface, despite a larger number of components.
  • Means 15 for automatically testing the operation of the electrical circuit CE (i) have the particular advantage of being in the form of a simple circuit, using few components and, therefore, inexpensive.
  • these means 15 allow to implement a test whose coverage rate is close to 100%, only the protective diode 16 is not verified.

Abstract

An electrical circuit for transmitting an item of information relating to the state of a parameter or of a piece of equipment, in particular for application in the railway field. The circuit includes a device for regulating the current flowing through the switch, including a switch device for switching over connections and having an inductive energy storage device and a capacitive energy storage device which, under steady conditions, alternate between being a device for storing and a device for restoring a fraction of the energy of the electrical circuit depending on the alternating state of the connections, as defined by the switch device. The invention also provides an electrical system incorporating such a circuit.

Description

L'invention concerne un circuit électrique pour l'acheminement d'informations de type tout ou rien, notamment pour une application dans le domaine ferroviaire.The invention relates to an electrical circuit for the routing of all-or-nothing information, particularly for an application in the railway field.

Dans un train, de nombreux signaux de type tout ou rien indiquant l'état d'un paramètre ou d'un équipement sont acheminés par exemple jusqu'à un circuit électronique de commande d'automates ou jusqu'à un tableau de contrôle et de signalisation.In a train, many all-or-nothing signals indicating the state of a parameter or equipment are routed, for example, to an electronic controller control circuit or to a control and control panel. signaling.

Par exemple, ces signaux sont représentatifs de l'état d'un disjoncteur ou de la position ouverte ou fermée d'une porte d'accès à une voiture.For example, these signals are representative of the state of a circuit breaker or the open or closed position of a car access door.

Les signaux sont destinés à être acheminés avec un degré élevé de sécurité et de disponibilité, ce qui rend inadaptée l'utilisation de liaisons de faible énergie de type informatique.The signals are intended to be routed with a high degree of security and availability, making the use of computer-based low-energy links unsuitable.

Une solution actuellement utilisée consiste à brancher aux deux bornes d'un accumulateur un circuit électrique en boucle fermée, qui comporte en série au moins un interrupteur lié à l'état de l'organe à contrôler, une résistance, et une liaison à isolation galvanique reliée au dispositif destinataire de l'information contenue dans le signal, par exemple le circuit électronique de commande d'automate ou le tableau de contrôle et de signalisation.One solution currently used is to connect to the two terminals of a battery a closed loop electrical circuit, which comprises in series at least one switch linked to the state of the body to be monitored, a resistor, and a galvanically isolated connection connected to the receiving device of the information contained in the signal, for example the electronic controller control circuit or the control and signaling board.

La position ouverte ou fermée de l'interrupteur est représentative de l'état d'un paramètre ou d'un équipement. Lorsque l'interrupteur est fermé, un courant, dont l'intensité est limitée par la résistance, circule dans le circuit. Lorsqu'il est ouvert, aucun courant ne passe. La présence ou l'absence de ce courant est transformée par la liaison à isolation galvanique en une information tout ou rien communiquée au circuit électronique.The open or closed position of the switch is representative of the state of a parameter or equipment. When the switch is closed, a current, whose intensity is limited by the resistance, circulates in the circuit. When it is open, no current flows. The presence or absence of this current is transformed by the galvanically isolated connection into an all or nothing information communicated to the electronic circuit.

Généralement, un train comporte une pluralité de tels circuits connectés aux bornes d'un même accumulateur.Generally, a train has a plurality of such circuits connected to the terminals of the same accumulator.

Comme les interrupteurs ont tendance à s'oxyder, une intensité minimale de courant, de l'ordre de quelques dizaines de milliampères, doit traverser chacun de ces interrupteurs pour les nettoyer.As the switches tend to oxidize, a minimum current intensity, of the order of a few tens of milliamperes, must pass through each of these switches to clean them.

Ce courant est consommé à perte dans la résistance.This current is consumed at a loss in the resistance.

De plus, la puissance dissipée dans la résistance par effet Joule produit de la chaleur, qui doit être évacuée.In addition, the power dissipated in the Joule effect produces heat, which must be removed.

Une solution consisterait à utiliser des ventilateurs.One solution would be to use fans.

Cependant, à l'heure actuelle, on évite, voire on s'interdit, d'utiliser de tels ventilateurs comme mode de refroidissement des circuits électroniques embarqués dans les trains pour des raisons de fiabilité, un ventilateur comportant des composants mécaniques susceptibles de se coincer, de se gripper et, de manière générale, de provoquer une panne.However, at present, it is avoided, or even forbidden, to use such fans as a cooling mode of the electronic circuits embedded in the trains for reasons of reliability, a fan with mechanical components likely to get stuck. , to seize and, in general, to cause a breakdown.

La fiabilité des composants électriques et électroniques diminuant fortement lorsque la température ambiante augmente, on cherche à produire le moins de chaleur possible.The reliability of electrical and electronic components decreases sharply when the ambient temperature increases, we try to produce the least possible heat.

Par ailleurs, l'accumulateur alimentant généralement plusieurs circuits, et d'autres équipements, la tension qu'il délivre varie dans le temps avec le niveau de la charge à ses bornes.Moreover, the battery generally supplying several circuits, and other equipment, the voltage it delivers varies over time with the level of the load at its terminals.

L'intensité du courant dans le circuit varie donc elle aussi, proportionnellement à l'état de charge de l'accumulateur.The intensity of the current in the circuit therefore also varies, in proportion to the state of charge of the accumulator.

Par conséquent, pour obtenir l'intensité minimale requise pour le nettoyage des interrupteurs, il faut consentir à consommer un important surcroît de courant et donc de puissance, pendant certaines périodes au cours du fonctionnement du circuit. La production supplémentaire de chaleur qui l'accompagne accroît le problème de l'évacuation de cette chaleur.Therefore, to obtain the minimum intensity required for the cleaning of the switches, it is necessary to consent to consume a large amount of current and therefore power, during certain periods during the operation of the circuit. The additional heat production that accompanies it increases the problem of the evacuation of this heat.

La quantité de chaleur dissipée augmente avec le nombre d'interrupteurs et d'informations à transmettre.The amount of heat dissipated increases with the number of switches and information to be transmitted.

Le document DE-A- 4 221 916 décrit un circuit électrique selon le préambule de la revendication 1.DE-A-4,221,916 discloses an electric circuit according to the preamble of claim 1.

L'invention vise à réduire les inconvénients susmentionnés de l'art antérieur.The invention aims to reduce the aforementioned drawbacks of the prior art.

L'invention a donc pour but de réaliser l'acheminent d'une information de type tout ou rien avec un degré élevé de fiabilité et de disponibilité, tout en réduisant la puissance dissipée par effet Joule.The purpose of the invention is therefore to provide the routing of all-or-nothing information with a high degree of reliability and availability, while reducing the power dissipated by the Joule effect.

Elle a donc pour objet un circuit électrique de transmission de l'état d'un paramètre ou d'un équipement, destiné à être branché aux bornes d'un accumulateur d'alimentation et comportant :

  • une liaison à isolation galvanique entre ledit circuit électrique et une sortie pour l'émission d'une information d'état, et
  • un interrupteur dont la position ouverte ou fermée est représentative de l'information d'état et qui détermine le passage d'un courant dans ledit circuit électrique,
    le circuit électrique assurant la transmission de l'information d'état de l'interrupteur vers la sortie, par l'intermédiaire de la liaison à isolation galvanique,
caractérisé en ce qu'il comporte des moyens pour réguler l'intensité du courant dans l'interrupteur, comportant des moyens de commutation des connexions entre les éléments constitutifs du circuit électrique et comportant des moyens d'emmagasinage selfiques en série avec l'interrupteur et des moyens d'emmagasinage capacitifs qui, en régime établi, forment chacun alternativement moyens de stockage et moyens de restitution d'une partie de l'énergie dudit circuit électrique, selon l'état alternatif desdites connexions entre les différents éléments du circuit électrique, déterminé par les moyens de commutation.It therefore relates to an electrical circuit for transmitting the state of a parameter or equipment, intended to be connected to the terminals of a supply battery and comprising:
  • a galvanically isolated link between said electrical circuit and an output for transmitting state information, and
  • a switch whose open or closed position is representative of the state information and which determines the passage of a current in said electric circuit,
    the electrical circuit for transmitting the status information of the switch to the output, via the galvanically isolated connection,
characterized in that it comprises means for regulating the intensity of the current in the switch, comprising means for switching the connections between the constituent elements of the electrical circuit and comprising inductive storage means in series with the switch and capacitive storage means which, in steady state, each form alternately storage means and means for restoring a portion of the energy of said electric circuit, according to the alternative state of said connections between the various elements of the electric circuit, determined by the switching means.

Suivant d'autres caractéristiques de ce circuit électrique :

  • la liaison à isolation galvanique est connectée en série avec l'interrupteur ;
  • les moyens pour réguler l'intensité du courant dans l'interrupteur comportent en outre des moyens de contrôle d'une grandeur caractéristique de l'état du circuit électrique et de commande alternative des moyens de commutation des connexions entre les éléments constitutifs du circuit électrique en fonction de l'état dudit circuit électrique ;
  • les moyens de commutation des connexions entre les éléments constitutifs du circuit électrique connectent alternativement au moins les moyens d'emmagasinage selfiques, l'interrupteur, l'accumulateur et les moyens d'emmagasinage capacitifs en série dans une boucle fermée lors d'une première phase, en régime établi, de restitution par les moyens d'emmagasinage selfiques d'une quantité d'énergie qui est stockée par les moyens d'emmagasinage capacitifs, et les moyens d'emmagasinage selfiques, l'interrupteur et les moyens d'emmagasinage capacitifs en série dans une boucle fermée lors d'une deuxième phase , en régime établi, de restitution par les moyens d'emmagasinage capacitifs d'une quantité d'énergie qui est stockée par les moyens d'emmagasinage selfiques, la polarité des branchements entre les moyens d'emmagasinage selfiques et les moyens d'emmagasinage capacitifs étant inversés entre la première et la deuxième phase ;
  • les moyens d'emmagasinage selfiques et les moyens d'emmagasinage capacitifs comportent respectivement une inductance en série avec l'interrupteur et une capacité, le circuit électrique comporte en série avec l'interrupteur et l'inductance, des première et deuxième branches en parallèle, et comporte une résistance en parallèle avec l'interrupteur et l'inductance, et connectée à un point de la deuxième branche, la capacité étant connectée dans la deuxième branche, et les moyens de commutation des connexions comportent des moyens pour diriger alternativement dans les première et deuxième branches le courant passant dans l'interrupteur et l'inductance ;
  • la liaison à isolation galvanique est connectée dans la première branche ;
  • la liaison à isolation galvanique est connectée en série avec le condensateur dans la deuxième branche ;
  • la liaison à isolation galvanique est connectée en série avec la résistance ;
  • la période, durant laquelle le courant passant dans l'interrupteur et l'inductance circule successivement dans la première puis dans la deuxième branche, et le rapport cyclique, égal au temps de circulation de ce courant dans la première branche divisé par ladite période, sont respectivement fixe et variable et déterminés par les moyens de contrôle de la grandeur caractéristique de l'état du circuit électrique et de commande périodique des moyens de commutation ;
  • les moyens pour diriger alternativement dans les première et deuxième branches le courant passant dans l'interrupteur et l'inductance comportent un interrupteur commandé connecté dans la première branche et une diode connectée dans la deuxième branche entre d'une part, l'une des deux jonctions des première et deuxième branches, et d'autre part, le point de connexion de la résistance sur la deuxième branche, la capacité se trouvant entre d'une part l'autre de ces deux jonctions des première et deuxième branches, et d'autre part, le point de connexion de la résistance sur la deuxième branche ;
  • la liaison à isolation galvanique est connectée en série avec la diode ;
  • la liaison à isolation galvanique consiste en un opto-coupleur ;
  • la liaison à isolation galvanique consiste en un transformateur ;
  • le primaire dudit transformateur forme également au moins une partie des moyens d'emmagasinage selfiques ;
  • lesdits moyens de contrôle d'une grandeur caractéristique de l'état du circuit électrique et de commande périodique des moyens de commutation forment également la liaison à isolation galvanique et sont, à cet effet, pourvus de ladite sortie pour l'émission de l'information d'une part, et aptes à émettre cette information à partir du traitement de ladite grandeur caractéristique, notamment à partir du rapport cyclique, d'autre part ;
  • la valeur de crête, au cours d'une période, du courant passant dans l'interrupteur constitue ladite grandeur caractéristique de l'état du circuit électrique ;
  • le potentiel au point de connexion de la résistance sur la deuxième branche constitue ladite grandeur caractéristique de l'état du circuit électrique ;
  • la tension aux bornes de la résistance constitue ladite grandeur caractéristique de l'état du circuit électrique ;
  • il comporte en outre des moyens pour tester son fonctionnement correct, indépendamment de la position de l'interrupteur d'état ;
  • les moyens pour tester le fonctionnement correct de ce circuit électrique comportent :
    • un interrupteur commandé de test et un accumulateur de test connectés dans un premier circuit série qui est à son tour connecté en parallèle avec un deuxième circuit série comportant l'interrupteur d'état et un emplacement destiné au branchement de l'accumulateur d'alimentation, et
    • une unité de test automatique, connectée à la borne de commande de l'interrupteur commandé de test et à la sortie pour l'émission d'une information d'état ;
  • les moyens pour tester le fonctionnement correct de ce circuit électrique comportent :
    • un interrupteur commandé de test connecté en parallèle avec l'interrupteur d'état, l'ensemble étant connecté en série avec un emplacement pour le branchement de l'accumulateur d'alimentation destiné à assurer également la fonction d'un accumulateur de test ; et
    • une unité de test automatique, connectée à la borne de commande de l'interrupteur commandé de test et à la sortie pour l'émission d'une information d'état ;
  • l'unité de test automatique, également connectée aux moyens de contrôle d'une grandeur caractéristique de l'état du circuit électrique et de commande alternative des moyens de commutation des connexions, est apte à maintenir lesdits moyens de commutation dans au moins une position d'annulation du courant dans ledit circuit électrique ;
  • les moyens pour tester le fonctionnement correct de ce circuit électrique comportent au moins une diode de protection connectée en série avec l'interrupteur d'état, pour bloquer un courant en provenance de l'interrupteur commandé de test ;
  • les moyens pour tester le fonctionnement correct de ce circuit électrique comportent une autre diode de protection connectée en série avec l'interrupteur commandé de test, pour bloquer un courant en provenance de l'interrupteur d'état.
According to other characteristics of this electric circuit:
  • the galvanically isolated connection is connected in series with the switch;
  • the means for regulating the intensity of the current in the switch further comprise means for controlling a quantity characteristic of the state of the electric circuit and of the alternative control of the means for switching the connections between the constituent elements of the electrical circuit in function of the state of said electric circuit;
  • the means for switching the connections between the constituent elements of the electrical circuit alternately connect at least the inductive storage means, the switch, the accumulator and the capacitive storage means in series in a closed loop during a first phase , in steady state, of restitution by the inductive storage means of an amount of energy which is stored by the capacitive storage means, and the inductive storage means, the switch and the capacitive storage means in series in a closed loop during a second phase, in steady state, of restitution by the capacitive storage means of a quantity of energy which is stored by the inductive storage means, the polarity of the connections between the inductive storage means and the capacitive storage means being reversed between the first and the second phase;
  • the inductive storage means and the capacitive storage means respectively comprise an inductance in series with the switch and a capacitance, the electric circuit comprises in series with the switch and the inductor, first and second branches in parallel, and comprises a resistor in parallel with the switch and the inductor, and connected to a point of the second branch, the capacitor being connected in the second branch, and the connection switching means comprise means for alternately directing in the first branch; and second branches the current passing through the switch and the inductor;
  • the galvanically isolated connection is connected in the first branch;
  • the galvanically isolated connection is connected in series with the capacitor in the second branch;
  • the galvanically isolated connection is connected in series with the resistor;
  • the period during which the current flowing in the switch and the inductor flows successively in the first and the second branch, and the duty cycle, equal to the circulation time of this current in the first branch divided by said period, are respectively fixed and variable and determined by the control means of the characteristic magnitude of the state of the electric circuit and periodic control of the switching means;
  • the means for alternately directing in the first and second branches the current flowing in the switch and the inductor comprise a controlled switch connected in the first branch and a diode connected in the second branch between on the one hand, one of the two junctions of the first and second branches, and secondly, the connection point of the resistance on the second branch, the capacity is finding on the one hand the other of these two junctions of the first and second branches, and on the other hand, the connection point of the resistance on the second branch;
  • the galvanically isolated connection is connected in series with the diode;
  • the galvanically isolated connection consists of an optocoupler;
  • the galvanically isolated connection consists of a transformer;
  • the primary of said transformer also forms at least a portion of the inductive storage means;
  • said means for controlling a magnitude characteristic of the state of the electrical circuit and periodic control of the switching means also form the galvanically isolated link and are, for this purpose, provided with said output for the transmission of the information on the one hand, and able to transmit this information from the processing of said characteristic quantity, in particular from the duty cycle, on the other hand;
  • the peak value, during a period, of the current flowing in the switch constitutes said characteristic quantity of the state of the electric circuit;
  • the potential at the connection point of the resistor on the second branch constitutes said characteristic quantity of the state of the electric circuit;
  • the voltage across the resistor constitutes said characteristic quantity of the state of the electric circuit;
  • it further comprises means for testing its correct operation, regardless of the position of the state switch;
  • the means for testing the correct operation of this electrical circuit comprise:
    • a controlled test switch and a test accumulator connected in a first series circuit which is in turn connected in parallel with a second series circuit having the state switch and a location for connecting the supply accumulator, and
    • an automatic test unit, connected to the control terminal of the test controlled switch and to the output for the transmission of status information;
  • the means for testing the correct operation of this electrical circuit comprise:
    • a test-controlled switch connected in parallel with the status switch, the assembly being connected in series with a location for connecting the supply battery to also perform the function of a test battery; and
    • an automatic test unit, connected to the control terminal of the test controlled switch and to the output for the transmission of status information;
  • the automatic test unit, also connected to the control means of a quantity characteristic of the state of the electrical circuit and of the alternative control of the switching means of the connections, is able to maintain said switching means in at least one position of canceling the current in said electric circuit;
  • the means for testing the correct operation of this electrical circuit comprise at least one protection diode connected in series with the state switch, for blocking a current coming from the controlled test switch;
  • the means for testing the correct operation of this electrical circuit comprise another protection diode connected in series with the test controlled switch, for blocking a current coming from the state switch.

L'invention a également pour objet un système électrique destiné à transmette une pluralité d'informations d'état, caractérisé en ce qu'il comporte un accumulateur et une pluralité de circuits électriques, tels que définis ci-dessus, destinés chacun à transmettre une information d'état et branchés en parallèles aux bornes dudit accumulateur.The invention also relates to an electrical system for transmitting a plurality of status information, characterized in that it comprises an accumulator and a plurality of electrical circuits, as defined above, each intended to transmit a state information and connected in parallel across said accumulator.

Suivant d'autres caractéristiques de ce système électrique, celui-ci est embarqué dans un convoi ferroviaire, chaque interrupteur étant associé à un organe ou un équipement dudit convoi ferroviaire, pour en contrôler l'état ou la position.According to other characteristics of this electrical system, it is embedded in a railway train, each switch being associated to an organ or equipment of said railway train, to control its state or position.

L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés, sur lesquels :

  • la Fig.1 représente un système électrique selon une première variante de réalisation de l'invention pour la transmission d'une pluralité d'informations tout ou rien ;
  • la Fig.2 représente un circuit électrique élémentaire du système électrique de la figure 1 pour la transmission d'une information tout ou rien ;
  • les graphes des figures 3a, 3b et 3c représentent les valeurs théoriques des courants en fonction du temps, respectivement dans trois branches du circuit de la figure 2 ;
  • la Fig.4 représente un circuit élémentaire analogue à celui de la figure 2 selon un exemple de réalisation de la première variante de réalisation de l'invention ;
  • la Fig.5 représente un circuit élémentaire analogue à celui de la figure 2 selon une deuxième variante de réalisation de l'invention ;
  • la Fig.6 représente un circuit élémentaire analogue à celui de la figure 2 selon une troisième variante de réalisation de l'invention ; et
  • la Fig. 7 représente un circuit élémentaire conforme à la première variante de réalisation de l'invention illustrée à la figure 2, ce circuit élémentaire comportant en outre des moyens pour tester automatiquement son fonctionnement correct.
The invention will be better understood on reading the description which follows, given solely by way of example and with reference to the appended drawings, in which:
  • Fig.1 shows an electrical system according to a first embodiment of the invention for transmitting a plurality of all or nothing information;
  • FIG. 2 represents an elementary electrical circuit of the electrical system of FIG. 1 for the transmission of an all or nothing information;
  • the graphs of FIGS. 3a, 3b and 3c represent the theoretical values of the currents as a function of time, respectively in three branches of the circuit of FIG. 2;
  • 4 represents an elementary circuit similar to that of Figure 2 according to an exemplary embodiment of the first embodiment of the invention;
  • FIG. 5 represents an elementary circuit similar to that of FIG. 2 according to a second variant embodiment of the invention;
  • Fig.6 shows a similar elementary circuit to that of Figure 2 according to a third embodiment of the invention; and
  • FIG. 7 shows an elementary circuit according to the first embodiment of the invention illustrated in Figure 2, this elementary circuit further comprising means for automatically testing its correct operation.

Une première variante de réalisation d'un système électrique 1 selon l'invention est illustrée sur la figure 1.A first embodiment of an electrical system 1 according to the invention is illustrated in FIG.

Le système électrique 1 est apte à transmettre une pluralité d'informations tout ou rien à un circuit électronique 2 de commande d'automates.The electrical system 1 is able to transmit a plurality of all or nothing information to an electronic control circuit 2 of the controllers.

Le système électrique 1 comporte une pluralité de circuits électriques élémentaires CE(i), ici au nombre de n, connectés en parallèle aux bornes d'un accumulateur d'alimentation 3. Comme cela sera expliqué par la suite, chaque circuit élémentaire CE(i) est apte à transmettre une information tout ou rien représentative de l'état d'un organe ou d'un équipement à contrôler, notamment un équipement de véhicules ferroviaires.The electrical system 1 comprises a plurality of elementary electrical circuits CE (i), here n in number, connected in parallel to the terminals of a supply accumulator 3. As will be explained below, each elementary circuit CE (i ) is able to transmit information all or nothing representative of the state of an organ or equipment to be controlled, including a railway vehicle equipment.

Une connexion S(1)...S(i)...S(n) récupère en sortie de chaque circuit élémentaire CE(i), l'information tout ou rien au moyen d'une liaison qui sera décrite ci-après, pour la transmettre à l'un des ports d'entrée P(1)...P(i)...P(n) du circuit électronique 2.A connection S (1) ... S (i) ... S (n) retrieves at the output of each elementary circuit CE (i), the all or nothing information by means of a connection which will be described below. to transmit it to one of the input ports P (1) ... P (i) ... P (n) of the electronic circuit 2.

Le circuit électronique 2 comporte également des ports 4 de sortie par exemple pour la commande d'automates (non représentés).The electronic circuit 2 also includes output ports 4 for example for the control of PLCs (not shown).

Dans l'application principale visée, l'accumulateur d'alimentation 3, le système électrique 1 et le circuit électronique 2 sont destinés à être embarqués dans un train. Il va de soi que le circuit électronique 2 de commande d'automates peut être remplacé par un tableau de contrôle et de signalisation ou par tout dispositif susceptible de recevoir et de traiter une information tout ou rien.In the main application referred to, the supply accumulator 3, the electrical system 1 and the electronic circuit 2 are intended to be embedded in a train. It goes without saying that the electronic control circuit 2 of PLCs can be replaced by a control and signaling board or by any device capable of receiving and processing an all or nothing information.

Généralement, l'accumulateur d'alimentation 3 est la seule source de tension continue pour tout le train. Aussi, les divers équipements embarqués qui nécessitent une alimentation en courant continu sont alimentés par cet unique accumulateur 3. La tension qu'il délivre est donc susceptible de varier dans le temps, en fonction de la charge à ses bornes, entre 0,6 fois et 1,4 fois sa tension nominale.Generally, the supply accumulator 3 is the only source of DC voltage for the entire train. Also, the various on-board equipment that requires a DC power supply are powered by this single battery 3. The voltage it delivers is therefore likely to vary over time, depending on the load at its terminals, between 0.6 times and 1.4 times its nominal voltage.

Les accumulateurs 3 généralement utilisés à l'heure actuelle dans les trains, présentent des tensions nominales de 24 volts, 36 volts, 48 volts, 96 volts et 110 volts.Accumulators 3 generally currently used in trains, have nominal voltages of 24 volts, 36 volts, 48 volts, 96 volts and 110 volts.

Par soucis de clarté, on a isolé sur la figure 2, un circuit électrique élémentaire CE(i) entrant dans la construction du système électrique 1. Ce circuit élémentaire CE(i) comporte une boucle B alimentée par l'accumulateur 3 et qui comprend, disposés en série, un interrupteur d'état 5, une inductance 6, une liaison à isolation galvanique 7 qui peut par exemple être réalisée au moyen d'un opto-coupleur, et deux branches 8 et 9 en parallèle.For the sake of clarity, an elementary electrical circuit CE (i) entering the construction of the electrical system 1 has been isolated in FIG. 2. This elementary circuit CE (i) comprises a loop B fed by the accumulator 3 and which comprises , arranged in series, a state switch 5, an inductor 6, a galvanically isolated connection 7 which can for example be achieved by means of an optocoupler, and two branches 8 and 9 in parallel.

Pour des raisons de commodité, la convention suivante est adoptée dans la suite de la description : le sens de circulation d'un courant dans la boucle B de la borne + vers la borne - de l'accumulateur 3 définit une orientation positive de cette boucle B.For the sake of convenience, the following convention is adopted in the rest of the description: the flow direction of a current in the loop B from the + terminal to the - terminal of the battery 3 defines a positive orientation of this loop B.

La branche 8 comporte, disposés en série, un transistor 10 et un dispositif de régulation 11 commandant ledit transistor 10. La polarisation du transistor 10 est telle qu'un courant circulant entre les deux électrodes principales, autres que celle de commande, du transistor est positif selon l'orientation conventionnelle de la boucle B adoptée précédemment.The branch 8 comprises, arranged in series, a transistor 10 and a regulating device 11 controlling said transistor 10. The polarization of the transistor 10 is such that a current flowing between the two main electrodes, other than that of the control, of the transistor is positive according to the conventional orientation of the B loop adopted previously.

Le dispositif de régulation 11 comporte des moyens de mesure de l'intensité du courant qui parcourt la branche 8, ainsi qu'une horloge (non représentée).The regulating device 11 comprises means for measuring the intensity of the current flowing through the branch 8, as well as a clock (not shown).

La deuxième branche 9 comporte une diode 12 et un condensateur 13 en série.The second branch 9 comprises a diode 12 and a capacitor 13 in series.

Une résistance 14 est disposée entre un point P de la branche 9 localisé entre la diode 12 et ie condensateur 13, et la borne + de l'accumulateur 3.A resistor 14 is disposed between a point P of the branch 9 located between the diode 12 and the capacitor 13, and the + terminal of the accumulator 3.

La diode 12 est polarisée de manière à interdire la décharge du condensateur 13 ailleurs que par la résistance 14.The diode 12 is polarized so as to prevent the discharge of the capacitor 13 other than by the resistor 14.

L'organe ou l'équipement dont on veut contrôler l'état actionne la fermeture et l'ouverture de l'interrupteur d'état 5.The organ or the equipment whose state is to be controlled actuates the closing and opening of the state switch 5.

Lorsque l'interrupteur 5 est ouvert, aucun courant ne passe dans la boucle B au travers de la liaison galvanique 7, qui, lorsqu'elle consiste en un opto-coupleur, ne délivre aucun courant de sortie sur la connexion S(i) ou sortie pour l'émission d'une information d'état.When the switch 5 is open, no current flows in the loop B through the galvanic connection 7, which, when it consists of an opto-coupler, delivers no output current on the connection S (i) or output for issuing state information.

La fréquence de commande du transistor 10 est fixée, par exemple autour de 240 kHz, par l'horloge du dispositif de régulation 11. Au cours d'une période T définie comme l'inverse de cette fréquence de commande du transistor 10, laquelle période est, dans l'exemple décrit fixe, mais qui peut être rendue variable dans d'autres réalisations, le transistor 10 est consécutivement rendu passant puis bloqué. Le rapport cyclique α, égal au temps durant lequel le transistor 10 est passant divisé par la période T, est variable. Il est déterminé par le dispositif de régulation 11 par comparaison de la valeur de crête du courant parcourant la branche 8 au cours d'une période T à une valeur de consigne de l'ordre de 25 mA mémorisée dans le dispositif de régulation 11, afin de réguler le courant dans la boucle B.The control frequency of the transistor 10 is set, for example around 240 kHz, by the clock of the regulator 11. During a period T defined as the inverse of this control frequency of the transistor 10, which period is, in the example described fixed, but which can be made variable in other embodiments, the transistor 10 is consecutively turned on then blocked. The duty cycle α, equal to the time during which the transistor 10 is passing divided by the period T, is variable. It is determined by the regulating device 11 by comparing the peak value of the current traversing the branch 8 during a period T to a set value of the order of 25 mA stored in the regulating device 11, in order to regulate the current in the loop B.

Lorsque l'interrupteur 5 est ouvert, le courant dans la branche 8 est nul, et donc inférieur à la valeur de consigne du dispositif de régulation 11. Le rapport cyclique α est alors égal à 1 et le transistor 10 est passant d'une façon continue.When the switch 5 is open, the current in the branch 8 is zero, and therefore less than the set value of the regulator 11. The duty cycle α is then equal to 1 and the transistor 10 is moving in a manner keep on going.

On notera également que, dans cette position de l'interrupteur 5, le potentiel Vp au point P est égal à la tension E aux bornes de l'accumulateur 3.It will also be noted that, in this position of the switch 5, the potential V p at the point P is equal to the voltage E at the terminals of the accumulator 3.

Lorsque l'interrupteur 5 est actionné de sa position ouverte vers sa position fermée, débute alors une phase transitoire. Le transistor 10 étant passant, l'inductance 6 de valeur L et de résistance propre r est soumise à la tension E délivrée par l'accumulateur 3. L'intensité i6 du courant dans l'inductance 6 est déterminée parla relation: E = L di 6 dt + ri 6

Figure imgb0001
et croît exponentiellement en fonction du temps t dans le cas général et sensiblement linéairement lorsque la période de commande est très inférieure à la constante de temps de l'inductance 6 de valeur L/r.When the switch 5 is actuated from its open position to its closed position, then starts a transient phase. Since the transistor 10 is on, the inductance 6 of value L and of its own resistance r is subjected to the voltage E delivered by the accumulator 3. The intensity i 6 of the current in the inductor 6 is determined by the relation: E = The di 6 dt + ri 6
Figure imgb0001
and exponentially increases as a function of time t in the general case and substantially linearly when the control period is much lower than the time constant of inductance 6 of value L / r.

Après une ou plusieurs périodes T, le courant i6 est parvenu à une valeur telle que le rapport cyclique α commence à s'éloigner de sa valeur initiale égale à 1 et le transistor 10 se bloque.After one or more periods T, the current i 6 has reached a value such that the duty cycle α begins to move away from its initial value equal to 1 and the transistor 10 is blocked.

L'inductance 6 se démagnétise par un courant i12 traversant la diode 12, en direction du point P. Ce courant i12 se divise en P en deux courants i13 et i14 qui parcourent respectivement le condensateur 13 et la résistance 14. Le courant i14 est initialement relativement faible, car l'essentiel du courant i12 en provenance de la diode 12 est appliqué au condensateur 13. Le courant i13 accroît la charge du condensateur 13 et le potentiel Vp au point P croît au-dessus de sa valeur initiale E.The inductor 6 is demagnetized by a current i 12 passing through the diode 12, towards the point P. This current i 12 divides into P in two currents i 13 and i 14 which respectively traverse the capacitor 13 and the resistor 14. The current i 14 is initially relatively low, since most of the current i 12 from the diode 12 is applied to the capacitor 13. The current i 13 increases the charge of the capacitor 13 and the potential V p at the point P increases above of its initial value E.

En fin de période T, le transistor 10 est de nouveau passant et si l'interrupteur 5 est toujours fermé, le cycle qui vient d'être décrit se répète plusieurs fois de manière quasi-identique à cette différence près que le potentiel Vp au point P désormais augmente.At the end of the period T, the transistor 10 is switched on again and if the switch 5 is still closed, the cycle just described repeats several times in an almost identical manner, except that the potential V p at point P now increases.

A chaque nouveau cycle, le potentiel Vp augmente progressivement pour tendre vers une valeur de stabilisation après la phase transitoire qui vient d'être décrite. La valeur de stabilisation de Vp est atteinte lorsque la moyenne de l'intensité du courant i14, déterminée par la tension aux bornes de la résistance 14 et la valeur R de cette résistance 14 selon la relation i 14 = V p - E R ,

Figure imgb0002
est égale à la valeur moyenne du courant i12 à travers la diode 12.At each new cycle, the potential V p gradually increases to tend towards a stabilization value after the transient phase which has just been described. The stabilization value of V p is reached when the average of the intensity of the current i 14 , determined by the voltage across the resistor 14 and the value R of this resistor 14 according to the relation i 14 = V p - E R ,
Figure imgb0002
is equal to the average value of the current i 12 through the diode 12.

Désormais, le circuit élémentaire CE(i) est entré dans un régime sensiblement stabilisé. La valeur du potentiel Vp au point P est alors sensiblement constante.From now on, the elementary circuit CE (i) has entered a substantially stabilized regime. The value of the potential V p at the point P is then substantially constant.

Les figures 3a, 3b et 3c illustrent le fonctionnement du circuit élémentaire CE(i) une fois qu'il est entré dans ce régime sensiblement stabilisé où le courant circulant dans l'inductance n'est pas interrompu.FIGS. 3a, 3b and 3c illustrate the operation of the elementary circuit CE (i) once it has entered this substantially stabilized regime where the current flowing in the inductor is not interrupted.

Plus précisément, la courbe 3a représente l'évolution du courant i6 en fonction du temps dans l'inductance 6, et les courbes 3b et 3c représentent la contribution de ce courant i6 dans les intensités respectivement du courant i10 passant dans le transistor 10 et du courant i12 passant dans la diode 12.More precisely, curve 3a shows the variation of current i 6 in function of time in the inductor 6, and curves 3b and 3c show the contribution of this current i 6 in the intensities of the respectively current i 10 flowing through the transistor 10 and the current i 12 passing in the diode 12.

Lorsque le transistor 10 est passant en début de période T pendant une durée αT, le potentiel E de l'accumulateur 3 est appliqué à l'inductance 6. Le courant i6 qui s'établit dans l'interrupteur 5, l'inductance 6, la liaison à isolation galvanique 7, et le transistor 10, est déterminé, en première approximation, si la période de commande est très inférieure à la constante de temps de l'inductance 6, par la relation :
E = L di 6 dt ,

Figure imgb0003
ou encore, par la relation i 6 = E L t + i 6 m ,
Figure imgb0004
dans lesquelles t est le temps et i6m est la valeur minimale du courant i6 à l'instant où le transistor 10 devient passant.When the transistor 10 is at the beginning of the period T for a duration αT, the potential E of the accumulator 3 is applied to the inductor 6. The current i 6 which is established in the switch 5, the inductor 6 the galvanically isolated connection 7 and the transistor 10 are determined, in a first approximation, if the control period is much shorter than the time constant of inductance 6, by the relation:
E = The di 6 dt ,
Figure imgb0003
or again, by the relation i 6 = E The t + i 6 m ,
Figure imgb0004
where t is the time and i 6m is the minimum value of the current i 6 at the moment the transistor 10 becomes on.

L'intensité du courant i6 croît approximativement linéairement au cours du temps t avec une pente E L ,

Figure imgb0005
à partir d'une intensité minimale i6m jusqu'à une intensité i6M maximale.The intensity of the current i 6 increases approximately linearly over time t with a slope E The ,
Figure imgb0005
from a minimum intensity i 6m to a maximum intensity i 6M .

Après une durée αT, le transistor 10 se bloque et ce, jusqu'en fin de période T. La tension aux bornes de l'inductance 6 est égale à E-Vp, le potentiel VP au point P étant sensiblement constant et supérieur à E. L'intensité du courant i6 qui traverse l'inductance 6 est en première approximation déterminée par la relation :

  • i 6 = E - V p L t + i 6 M ,
    Figure imgb0006
    et décroît linéairement de la valeur maximale i6M jusqu'à la valeur minimale i6m.
After a duration αT, the transistor 10 is blocked until the end of the period T. The voltage across the inductance 6 is equal to EV p , the potential V P at the point P being substantially constant and greater than E The intensity of the current i 6 which passes through the inductor 6 is in first approximation determined by the relation:
  • i 6 = E - V p The t + i 6 M ,
    Figure imgb0006
    and decreases linearly from the maximum value i 6M to the minimum value i 6m .

Ce courant i6 à travers l'inductance 6 s'écoule pour une part dans la boucle fermée comprenant l'inductance 6, la diode 12, le condensateur 13, l'accumulateur 3 et l'interrupteur 5. L'autre part de ce courant i6 circule dans la résistance 14 et parcourt la boucle fermée comportant l'inductance 6, la diode 12, la résistance 14 et l'interrupteur 5.This current i 6 through the inductor 6 flows partly into the closed loop comprising the inductor 6, the diode 12, the capacitor 13, the accumulator 3 and the switch 5. The other part of this current i 6 flows in the resistor 14 and goes through the closed loop comprising the inductor 6, the diode 12, the resistor 14 and the switch 5.

La part du courant i6 qui passe dans le condensateur 13 lorsque le transistor 10 est bloqué et l'inductance 6 se décharge, entretient la charge de ce condensateur 13 et le potentiel VP au point P.The part of the current i 6 which passes into the capacitor 13 when the transistor 10 is off and the inductor 6 discharges, maintains the charge of this capacitor 13 and the potential V P at the point P.

En effet, le condensateur 13 se décharge par ailleurs durant le temps αT, pendant que la diode 12 est bloquée, d'une quantité qui doit être en moyenne égale à sa recharge par la diode 12, pendant le temps (1-α)T, en régime établi.Indeed, the capacitor 13 also discharges during the time αT, while the diode 12 is blocked, by an amount that must be equal on average to its recharge by the diode 12 during the time (1-α) T , in steady state.

Lorsqu'il se décharge, le condensateur 13 restitue une partie de son énergie au circuit en alimentant au moins l'interrupteur 5, l'inductance 6, la liaison à isolation galvanique 7 et le transistor 10, et éventuellement en alimentant également l'accumulateur 3.When it discharges, the capacitor 13 returns a portion of its energy to the circuit by supplying at least the switch 5, the inductor 6, the galvanically isolated connection 7 and the transistor 10, and possibly also supplying the accumulator 3.

D'un point de vue énergétique, en début de période T, pendant αT, le condensateur 13 se décharge, et une partie de son énergie est transférée à l'inductance 6 qui se magnétise, ce qui génère le courant i6 dans l'interrupteur 5, l'inductance 6, la liaison à isolation galvanique et le transistor 10. En fin de période T, pendant (1-α)T, l'inductance se démagnétise et une partie de son énergie est transférée au condensateur 13 qui se charge, ce qui génère le courant i6 dans l'interrupteur 5, l'inductance 6 et la liaison à isolation galvanique 7.From an energy point of view, at the beginning of the period T, during αT, the capacitor 13 discharges, and a part of its energy is transferred to the inductor 6 which is magnetized, which generates the current i 6 in the 5, the inductance 6, the galvanically isolated connection and the transistor 10. At the end of the period T, during (1-α) T, the inductance demagnetizes and a part of its energy is transferred to the capacitor 13 which is charge, which generates the current i 6 in the switch 5, the inductor 6 and the connection with galvanic isolation 7.

Le courant i6 est donc en partie la conséquence d'un transfert d'énergie du condensateur 13 vers l'inductance 6, puis de l'inductance 6 vers le condensateur 13. Il convient de noter qu'entre ces deux phases de transfert d'énergie, la polarité des branchements entre l'inductance 6 et le condensateur 13 sont inversés. L'accumulateur 13 entretient le niveau d'énergie du circuit en compensant les pertes notamment dans la résistance 14. L'accumulateur 3 a également pour fonction de fournir l'énergie initiale au circuit lors de la phase transitoire de démarrage commentée précédemment.The current i 6 is therefore partly the consequence of a transfer of energy from the capacitor 13 to the inductor 6, then from the inductance 6 to the capacitor 13. It should be noted that between these two phases of transfer of energy, the polarity of the connections between the inductor 6 and the capacitor 13 are reversed. The accumulator 13 maintains the energy level of the circuit by compensating for the losses, in particular in the resistor 14. The accumulator 3 also has the function of supplying the initial energy to the circuit during the transient start phase commented previously.

Le dispositif de régulation 11 détermine le rapport cyclique α de manière à réguler l'intensité du courant i6 qui traverse l'inductance 6. Lorsque le transistor 10 est passant, le courant i6 croît. Inversement, ce courant i6 décroît quand le transistor 10 est bloqué. Le rapport cyclique α détermine donc les durées des phases de croissance et de décroissance du courant i6 au cours d'une période T. En augmentant l'une desdites durées par rapport à l'autre, le dispositif de régulation 11 peut faire varier l'intensité du courant i6 entre le début et la fin de la période T.The regulation device 11 determines the duty cycle α so as to regulate the intensity of the current i 6 which passes through the inductor 6. When the transistor 10 is on, the current i 6 increases. Conversely, this current i 6 decreases when the transistor 10 is off. The cyclic ratio α thus determines the durations of the growth and decay phases of the current i 6 during a period T. By increasing one of said durations relative to the other, the regulating device 11 can vary the intensity of the current i 6 between the beginning and the end of the period T.

En régime stabilisé, le courant i6 dans l'inductance 6 tel qu'illustré sur la figure 3a, sans être tout à fait continu, n'évolue que sur une plage réduite comprise entre i6m et i6M. Sa valeur moyenne est ajustée de manière à obtenir le passage du courant minimal requis pour assurer le nettoyage de l'interrupteur 5.In steady state, the current i 6 in the inductor 6 as shown in Figure 3a, without being quite continuous, evolves only over a reduced range between i 6m and i 6M . Its average value is adjusted so as to obtain the passage of the minimum current required to clean the switch 5.

Or, le courant qui traverse l'inductance 6 s'écoule également dans la liaison à isolation galvanique 7.However, the current flowing through the inductor 6 also flows in the galvanically isolated connection 7.

Ainsi, lorsque l'interrupteur 5 est fermé, il s'établit un courant dans la liaison à isolation galvanique 7, laquelle produit en réponse un signal de sortie sur la connexion S(i).Thus, when the switch 5 is closed, a current is established in the galvanically isolated connection 7, which produces in response an output signal on the connection S (i).

La position de la liaison à isolation galvanique 7 en série avec l'interrupteur 5 est avantageuse puisque le signal qu'elle génère en sortie est une image sensiblement fidèle du courant qui traverse cet interrupteur 5.The position of the galvanically isolated connection 7 in series with the switch 5 is advantageous since the signal that it generates at the output is a substantially faithful image of the current flowing through this switch 5.

On notera que plus la capacité C du condensateur 13 est élevée, plus le potentiel VP est stable.It will be noted that the higher the capacitance C of the capacitor 13, the more the potential V P is stable.

En effet, la variation de tension aux bornes du condensateur 13 en raison d'une variation donnée de sa charge, est inversement proportionnelle à sa capacité C.Indeed, the voltage variation across the capacitor 13 due to a given variation of its load, is inversely proportional to its capacitance C.

Toutefois, les durées des régimes transitoires à l'ouverture et à la fermeture de l'interrupteur 5 durant lesquels le condensateur 13 respectivement se charge et se décharge et que l'on souhaite les plus courtes possible, évoluent avec la capacité C de ce condensateur 13 et dans le même sens qu'elle. Aussi, la détermination de C réside dans un compromis.However, the duration of the transient conditions at the opening and closing of the switch 5 during which the capacitor 13 respectively charges and discharges and that we want the shortest possible, evolve with the capacitor C of this capacitor 13 and in the same sense as it. Also, the determination of C lies in a compromise.

Le courant en provenance du condensateur 13 ou courant sortant et qui traverse la résistance 14 est celui qui assure la décharge du condensateur 13. Or, en régime stabilisé, le courant moyen sortant du condensateur 13 est égal au courant i6 en provenance de l'inductance 6 qui y entre. Ce dernier est fixé par le dispositif de régulation 11.The current coming from the capacitor 13 or outgoing current and which passes through the resistor 14 is the one which ensures the discharge of the capacitor 13. Now, in steady state, the average current leaving the capacitor 13 is equal to the current i 6 coming from the inductance 6 that goes into it. The latter is fixed by the regulating device 11.

Par conséquent, le courant en provenance du condensateur 13 et qui traverse la résistance 14 est lui aussi déterminé par le dispositif de régulation 11. La différence de potentiel VP-E aux bornes de la résistance 14 s'établit à une valeur proportionnelle à l'intensité de ce courant et inversement proportionnelle à la valeur R de cette résistance 14. Aussi, la valeur R de la résistance 14 permet de déterminer la différence de potentiel VP-E, la valeur du courant i6 étant fixée par ailleurs.Consequently, the current coming from the capacitor 13 and passing through the resistor 14 is also determined by the regulating device 11. The potential difference V P -E across the resistor 14 is set to a value proportional to the voltage. intensity of this current and inversely proportional to the value R of this resistor 14. Also, the value R of the resistor 14 makes it possible to determine the potential difference V P -E, the value of the current i 6 being fixed elsewhere.

Le fonctionnement de l'invention qui vient d'être exposé réduit l'énergie dissipée par effet Joule de deux manières.The operation of the invention which has just been described reduces the energy dissipated by the Joule effect in two ways.

Premièrement, l'accumulateur 3 entretient le niveau d'énergie dans le circuit, et seule la puissance qu'il libère à cet effet est consommée par effet Joule. Le courant i6 dans l'interrupteur 5 n'est pas uniquement limité par une résistance qui dissipe nécessairement de l'énergie par effet Joule comme dans l'art antérieur cité, mais aussi par le transfert alternatif d'une quantité d'énergie qui cause une croissance puis une décroissance de ce courant i6 et permet sa régulation.First, the accumulator 3 maintains the energy level in the circuit, and only the power it releases for this purpose is consumed by Joule effect. The current i 6 in the switch 5 is not limited only by a resistor which necessarily dissipates energy by Joule effect as in the cited prior art, but also by the alternative transfer of a quantity of energy which causes a growth then a decrease of this current i 6 and allows its regulation.

Deuxièmement, l'intensité du courant i6 injectée dans le circuit est régulée par sa valeur maximale i6M qui est indépendante de la tension E délivrée par l'accumulateur 3. Contrairement à ce qui est obtenu dans l'art antérieur, une variation de la tension E délivrée par l'accumulateur 3 n'introduit pas une variation du courant consommé par la résistance 14.Secondly, the intensity of the current i 6 injected into the circuit is regulated by its maximum value i 6M which is independent of the voltage E delivered by the accumulator 3. Contrary to what is obtained in the prior art, a variation of the voltage E delivered by the accumulator 3 does not introduce a variation of the current consumed by the resistor 14.

Sur la figure 4, la liaison à isolation galvanique consiste en un couplage magnétique réalisé par un transformateur 7', à entrefer dans le cas où la composante continue du courant traversant le primaire est importante, dont l'enroulement primaire forme également, au moins en partie, celui de l'inductance 6. Le secondaire est, pour sa part, relié à la connexion S(i).In FIG. 4, the galvanically isolated connection consists of a magnetic coupling produced by a transformer 7 ', with an air gap in the case where the DC component of the current flowing through the primary is large, the primary winding of which also forms, at least in part, that of the inductor 6. The secondary is, for its part, connected to the connection S (i).

Le fonctionnement du circuit élémentaire CE(i) reste inchangé. La variation du courant i6 dans l'inductance 6 entre i6m et i6M, lorsque l'interrupteur 5 est fermé, produit en sortie une tension et/ou un courant aux bornes du secondaire du transformateur 7' qui constituent le signal de sortie après redressement par un redresseur non représenté.The operation of the elementary circuit CE (i) remains unchanged. The variation of the current i 6 in the inductance 6 between i 6m and i 6M , when the switch 5 is closed, produces a voltage output and / or a current across the secondary of the transformer 7 'which constitute the output signal after recovery by an unrepresented rectifier.

Dans la variante de réalisation représentée sur la figure 5, la liaison à isolation galvanique 7 a été déplacée depuis une position en série avec l'inductance 6 vers une position en série avec le transistor 10, sur la branche 8. Le fonctionnement du circuit élémentaire CE(i) demeure le même, le signal de sortie récupéré sur la connexion S(i) étant intermittent comme le courant i10 qui traverse le transistor 10. Des moyens permettant de lisser ou de moyenner ce signal de sortie peuvent être prévus sur le circuit de sortie associé à la connexion de sortie S(i).In the variant embodiment shown in FIG. 5, the galvanically isolated connection 7 has been moved from a position in series with the inductor 6 to a position in series with the transistor 10, on the branch 8. The operation of the elementary circuit CE (i) remains the same, the output signal recovered on the connection S (i) being intermittent as the current i 10 which passes through the transistor 10. Means for smoothing or averaging this output signal can be provided on the output circuit associated with the output connection S (i).

Dans la variante de réalisation de la figure 6, le dispositif de régulation 11 a été remplacé par un dispositif de régulation 11' qui comporte des moyens de mesure de la tension VP aux bornes du condensateur 13.In the variant embodiment of FIG. 6, the regulation device 11 has been replaced by a regulation device 11 'which comprises means for measuring the voltage V P across the capacitor 13.

Le dispositif de régulation 11' détermine le rapport cyclique α et commande le transistor 10 de manière à réguler la tension VP aux bornes du condensateur 13 autour d'une valeur de consigne.The regulation device 11 'determines the duty cycle α and controls the transistor 10 so as to regulate the voltage V P across the capacitor 13 around a set value.

En effet, lorsque le rapport cyclique α augmente, l'intensité moyenne du courant i6 dans l'inductance 6 augmente comme cela a été vu précédemment, ainsi que la part de ce courant i6 qui s'écoule dans le condensateur 13 et le charge. Cela a pour effet de faire croître le potentiel VP au point P.Indeed, when the duty cycle α increases, the average intensity of the current i 6 in the inductor 6 increases as has been seen previously, as well as the share of this current i 6 flowing in the capacitor 13 and the charge. This has the effect of increasing the potential V P at point P.

En effet, en régime stabilisé, le courant moyen qui sort du condensateur 13 doit être égal au courant moyen en provenance de l'inductance 6 qui y entre. Or, ce courant qui sort du condensateur 13 et qui le décharge s'établit également dans la résistance 14 et est déterminé par la différence de potentiel VP-E aux bornes de cette résistance 14.Indeed, in steady state, the average current coming out of the capacitor 13 must be equal to the average current from the inductor 6 which enters. However, this current coming out of the capacitor 13 and discharging it is also established in the resistor 14 and is determined by the potential difference V P -E across this resistor 14.

Dans le sens contraire, une diminution du rapport cyclique α permet de faire descendre la valeur du potentiel VP au point P, ce qui traduit une diminution de l'intensité moyenne du courant i6 circulant dans l'inductance 6. Le fonctionnement du circuit élémentaire CE(i) reste inchangé par ailleurs.In the opposite direction, a decrease in the duty cycle α makes it possible to reduce the value of the potential V P to the point P, which represents a decrease in the average intensity of the current i 6 flowing in the inductor 6. The operation of the circuit elementary EC (i) remains unchanged elsewhere.

Une variante de commande avantageuse utilise une mesure de la tension Vp-E aux bornes de la résistance 14 pour réguler le courant dans la résistance 14 par la relation (Vp-E)/R et donc la puissance dissipée (Vp-E)2/R, tout en maintenant un courant dans l'interrupteur 5 faiblement décroissant en fonction de la tension de l'accumulateur 3.An advantageous control variant uses a measurement of the voltage V p -E across the resistor 14 to regulate the current in the resistor 14 by the relation (V p -E) / R and thus the power dissipated (V p -E ) 2 / R, while maintaining a current in the switch 5 slightly decreasing as a function of the voltage of the accumulator 3.

L'invention ne se limite pas aux variantes de réalisation qui viennent d'être décrites. Notamment, la liaison à isolation galvanique peut être disposée sur l'une quelconque des branches du circuit élémentaire CE(i) par exemple en série avec la diode 12, le condensateur 13 ou avec la résistance 14.The invention is not limited to the embodiments that have just been described. In particular, the galvanically isolated connection may be arranged on any one of the branches of the elementary circuit CE (i), for example in series with the diode 12, the capacitor 13 or with the resistor 14.

De même, le transistor 10 peut être remplacé par n'importe quel type d'interrupteur commandé.Similarly, the transistor 10 can be replaced by any type of controlled switch.

Egalement, l'information de sortie peut être générée par le dispositif de régulation 11 ou 11', qui remplit alors la fonction de la liaison à isolation galvanique 7 ou 7', sur la base de la valeur du rapport cyclique α, laquelle est égale à 1 quand l'interrupteur 5 est ouvert et s'écarte de 1 quand il est fermé.Also, the output information can be generated by the regulating device 11 or 11 ', which then fulfills the function of the galvanically isolated connection 7 or 7', on the basis of the value of the duty cycle α, which is equal to to 1 when the switch 5 is open and deviates from 1 when it is closed.

Par ailleurs, une panne par exemple consécutive à la défaillance d'un composant peut se produire, dans un circuit élémentaire CE(i) conforme à l'invention, sans être détectée ou du moins pas avant un temps qui peut être plus ou moins long, une telle possibilité nuisant à la fiabilité recherchée.Moreover, a failure for example following the failure of a component can occur, in an elementary circuit CE (i) according to the invention, without being detected or at least not before a time that can be longer or shorter. such a possibility affecting the reliability sought.

Dans la mesure où l'interrupteur d'état détermine le passage du courant dans ce circuit élémentaire CE(i), il peut être envisagé, dans un premier temps, de l'utiliser pour effectuer un test de fonctionnement dans lequel la réception effective du signal tout ou rien est vérifiée. Cependant, cet interrupteur d'état n'est pas toujours accessible et/ou actionnable facilement. Par exemple, il peut être disposé dans un endroit du train éloigné du lieu où la réception est testée.Since the state switch determines the passage of the current in this elementary circuit CE (i), it may be envisaged, in a first step, to use it to perform a test of operation in which the actual reception of the all-or-nothing signal is checked. However, this state switch is not always accessible and / or easily operable. For example, it can be placed in a place on the train away from the place where the reception is tested.

Aussi, le circuit élémentaire CE(i) illustré à la figure 7 comporte des moyens 15 aptes à tester son fonctionnement correct, quelle que soit la position de l'interrupteur d'état.Also, the elementary circuit CE (i) illustrated in FIG. 7 comprises means 15 able to test its correct operation, whatever the position of the state switch.

Ce circuit élémentaire CE(i) possède une structure de base identique à celle de la première variante de réalisation de l'invention illustrée à la figure 2 et précédemment commentée, et comporte les mêmes éléments. Toutefois, l'interrupteur d'état et la liaison à isolation galvanique sont ici respectivement formés d'un inverseur de tension 5' et d'un opto-coupleur 7", ce choix particulier étant uniquement destiné à illustrer certaines caractéristiques.This elementary circuit CE (i) has a basic structure identical to that of the first embodiment of the invention illustrated in Figure 2 and previously commented, and has the same elements. However, the state switch and the galvanically isolated link are here formed respectively of a voltage inverter 5 'and an optocoupler 7 ", this particular choice being only intended to illustrate certain characteristics.

Les moyens 15 pour tester le fonctionnement correct du circuit élémentaire CE(i) comportent une diode de protection 16 disposée entre l'inverseur de tension 5' et l'inductance 6, et polarisée de manière à permettre le passage d'un courant positif selon l'orientation conventionnelle de la boucle B adoptée précédemment. Connecté en parallèle avec le circuit série comportant la diode de protection 16, l'inverseur de tension 5' et l'accumulateur d'alimentation 3, un autre circuit série comprend une autre diode de protection 17, un interrupteur commandé de test formé d'un transistor 18, et un accumulateur de test 19, qui appartiennent tous trois aux moyens 15. La diode de protection 17 et l'accumulateur de test 19 sont polarisés de manière à ce que ce dernier soit apte à alimenter le circuit élémentaire CE(i), à l'exception de l'inverseur de tension 5', en produisant un courant de sens identique à celui fourni par l'accumulateur d'alimentation 3, à la place de celui-ci.The means 15 for testing the correct operation of the elementary circuit CE (i) comprise a protection diode 16 arranged between the voltage inverter 5 'and the inductor 6, and polarized so as to allow the passage of a positive current according to the conventional orientation of the B loop adopted previously. Connected in parallel with the series circuit comprising the protection diode 16, the voltage inverter 5 'and the supply accumulator 3, another series circuit comprises another protection diode 17, a test switch formed of a transistor 18, and a test accumulator 19, all of which belong to the means 15. The protection diode 17 and the test accumulator 19 are polarized so that the latter is able to supply the elementary circuit CE (i ), with the exception of the voltage inverter 5 ', producing a current of direction identical to that provided by the supply accumulator 3, in place of the latter.

Par rapport à ce courant émis par la borne positive de l'accumulateur de test 19, la diode de protection 17 est avantageusement disposée en aval du transistor 18, lui-même disposé en aval de cet accumulateur de test 19.With respect to this current emitted by the positive terminal of the test battery 19, the protective diode 17 is advantageously disposed downstream of the transistor 18, itself disposed downstream of this test battery 19.

Les moyens 15 pour tester le fonctionnement correct du circuit électrique CE(i) comportent encore une unité de test automatique 20, reliée au transistor 18 et avantageusement au dispositif de régulation 11, et recevant l'information d'état émise par l'opto-coupleur 7" grâce à un branchement sur la connexion S(i).The means 15 for testing the correct operation of the electric circuit CE (i) also comprise an automatic test unit 20, connected to the transistor 18 and advantageously to the regulating device 11, and receiving the status information transmitted by the opto- 7 "coupler thanks to a connection on connection S (i).

Avantageusement, la diode de protection 16 est située d'un côté ou de l'autre de l'ensemble comportant l'inverseur de tension 5' et l'accumulateur d'alimentation 3 en série. Ainsi, des charges C(1)... C(j)... C(m) optionnelles mais représentées pour illustrer certaines particularités de fonctionnement, formées par exemple de relais, d'actionneurs, de bobines de fermeture de disjoncteurs et/ou de lampes témoins, et dont l'état, tout comme celui de l'opto-coupleur 7", est destiné à être lié à la position ouverte ou fermée de l'inverseur de tension 5', sont disposées chacune en parallèle avec le circuit série comportant l'inverseur de tension 5' et l'accumulateur d'alimentation 3, à l'exception de la diode de protection 16.Advantageously, the protection diode 16 is located on one side or the other of the assembly comprising the voltage inverter 5 'and the supply accumulator 3 in series. Thus, optional charges C (1)... C (j)... C (m) but represented to illustrate certain operating characteristics, formed for example of relays, actuators, circuit breaker closing coils and / or or of indicator lamps, and whose state, like that of the opto-coupler 7 ", is intended to be connected to the open or closed position of the voltage inverter 5 ', are each arranged in parallel with the series circuit comprising the voltage inverter 5 'and the supply accumulator 3, with the exception of the protective diode 16.

Hors test, le fonctionnement de ce circuit électrique CE(i) reste identique à celui précédemment décrit, le courant à travers l'inverseur de tension 5' et l'inductance 6 traversant ici également la diode de protection 16.Out of the test, the operation of this electric circuit CE (i) remains identical to that previously described, the current through the voltage inverter 5 'and the inductance 6 also passing through the protective diode 16.

L'unité de test automatique 20 est apte à conduire un test automatisé vérifiant que le circuit électrique CE(i) fonctionne correctement, ledit test étant déclenché par exemple par chaque nouveau démarrage du train.The automatic test unit 20 is capable of conducting an automated test verifying that the electrical circuit CE (i) is functioning correctly, said test being triggered for example by each new start of the train.

Il convient de noter que l'inverseur de tension 5', dont l'actionnement peut être rendu fastidieux en raison du nombre important de tels interrupteurs, peut se trouver indifféremment dans une position ouverte ou fermée.It should be noted that the voltage inverter 5 ', whose operation can be made tedious because of the large number of such switches, can be indifferently in an open or closed position.

Lors d'une première étape du test, l'unité de test automatique 20 commande le transistor 18 à la fermeture, assurant ainsi la mise sous tension de la partie du circuit électrique CE(i) située en aval de la diode de protection 16. Cette unité 20 vérifie alors l'émission, dans la connexion S(i), d'une information représentative du passage d'un courant dans l'opto-coupleur 7", ce qui doit se produire lorsque cette partie du circuit CE(i), située en aval de la diode de protection 16, fonctionne correctement.During a first step of the test, the automatic test unit 20 commands the transistor 18 to close, thus ensuring that the portion of the electrical circuit CE (i) located downstream of the protection diode 16 is energized. This unit 20 then verifies the transmission, in the connection S (i), of information representative of the passage of a current in the opto-coupler 7 ", which must occur when this part of the circuit CE (i), located downstream of the protection diode 16, operates correctly.

Comme la liaison à isolation galvanique est ici formée d'un opto-coupleur 7", il convient de vérifier également que le phototransistor de cet opto-coupleur, passant lorsqu'il reçoit l'information lumineuse en raison du passage d'un courant dans la diode photo-émettrice associée, retrouve son état bloqué, correspondant à un interrupteur ouvert, en l'absence de ce courant. Or, comme cela a été mentionné précédemment, l'inverseur de tension 5' peut se trouver dans un état quelconque. Aussi, dans une deuxième étape du test, l'unité de test automatique 20 maintient, par l'intermédiaire du dispositif de régulation 11, le transistor 10 à l'état bloqué. Le courant qui traverse l'opto-coupleur 7" s'annule progressivement du fait de l'énergie emmagasinée dans l'inductance 6, lors d'une période transitoire qui peut être estimée à 5 fois la constante de temps de cette inductance (5xL/r). En effet, comme la tension aux bornes de l'accumulateur de test 19 est ici choisie pour être égale ou inférieure à celle aux bornes de l'accumulateur 3, le courant qui pourrait circuler à travers la résistance 14 de l'un vers l'autre de ces deux accumulateurs en raison de la différence de potentiel à leurs bornes est bloqué par la diode de protection 17. Après avoir attendu que la période transitoire se soit écoulée, l'unité de test automatique 20 vérifie que le signal qu'elle reçoit de la connexion S(i) correspond effectivement à un état bloqué du phototransistor de l'opto-coupleur 7".Since the galvanically isolated connection here is formed of an opto-coupler 7 ", it should also be verified that the phototransistor of this opto-coupler, passing when it receives the luminous information due to the passage of a current in the associated light-emitting diode returns to its off state, corresponding to an open switch, in the absence of this current, but, as previously mentioned, the voltage inverter 5 'can be in any state. Also, in a second step of the test, the automatic test unit 20 maintains, via the regulating device 11, the transistor 10 in the off state The current flowing through the opto-coupler 7 "s' gradually cancels out due to the energy stored in the inductor 6, during a transient period which can be estimated at 5 times the time constant of this inductance (5xL / r). Indeed, since the voltage at the terminals of the test battery 19 is here chosen to be equal to or less than that at the terminals of the accumulator 3, the current that could flow through the resistor 14 of the one towards the other of these two accumulators due to the potential difference across their terminals is blocked by the protective diode 17. After waiting for the transient period to elapse, the automatic test unit 20 verifies that the signal it receives the connection S (i) effectively corresponds to a blocked state of the phototransistor of the opto-coupler 7 ".

Lors de ce test considéré dans sa totalité, seule la diode 16 de protection n'est pas testée, et sera avantageusement surdimensionnée en conséquence.During this test considered in its entirety, only the protective diode 16 is not tested, and will advantageously be oversized accordingly.

Lorsque la tension aux bornes de l'accumulateur d'alimentation 3 est supérieure à celle aux bornes de l'accumulateur de test 19, la diode de protection 17 évite qu'un courant s'instaure entre ces deux accumulateurs, si l'inverseur de tension 5' est fermé au moment où l'unité de test automatique 20 maintient le transistor 18 à l'état passant.When the voltage at the terminals of the supply accumulator 3 is greater than that at the terminals of the test accumulator 19, the protective diode 17 prevents a current from being established between these two accumulators, if the inverter Voltage 5 'is closed at the moment when the automatic test unit 20 keeps the transistor 18 in the on state.

Avantageusement disposée en aval du transistor 18 par rapport à un courant émis par la borne positive de l'accumulateur de test 19, cette diode de protection 17 protège en outre le transistor 18 des effets destructeurs d'une trop forte tension négative à ses bornes.Advantageously disposed downstream of the transistor 18 with respect to a current emitted by the positive terminal of the test battery 19, this protection diode 17 further protects the transistor 18 destructive effects of a too high negative voltage at its terminals.

Pour sa part, la diode de protection 16 isole les accumulateurs 3 et 19 et évite un courant de l'un vers l'autre, lorsque la tension de test est supérieure à la tension d'alimentation, situation que l'on peut rencontrer lorsque la deuxième étape du test précité n'est pas prévue, par exemple parce que la liaison à isolation galvanique n'est pas un opto-coupleur.For its part, the protection diode 16 isolates the accumulators 3 and 19 and avoids a current from one to the other, when the test voltage is greater than the supply voltage, a situation that can be encountered when the second step of the aforementioned test is not provided, for example because the galvanically isolated connection is not an optocoupler.

Cette diode de protection 16 évite également qu'un courant de court-circuit émis par l'accumulateur de test 19 s'instaure quand l'inverseur de tension 5' est en position ouverte, c'est-à-dire lorsqu'il déconnecte le circuit élémentaire CE(i) de l'accumulateur d'alimentation 3 et impose une tension nulle aux bornes de ce circuit électrique CE(i), tandis que, parallèlement, le transistor 18 est passant. Bien entendu, cette situation que l'on cherche à éviter n'existe pas quand un interrupteur simple est disposé à la place de cet inverseur de tension 5'.This protection diode 16 also prevents a short-circuit current emitted by the test battery 19 from being set up when the voltage inverter 5 'is in the open position, that is to say when it disconnects. the elementary circuit CE (i) of the supply accumulator 3 and imposes a zero voltage across this electric circuit CE (i), while, parallel, the transistor 18 is passing. Of course, this situation that is to be avoided does not exist when a simple switch is disposed in place of this voltage inverter 5 '.

La diode de protection 16 évite aussi que ne soient alimentées par l'accumulateur de test 19, quand le transistor 18 est passant, les charges C(1)... C(j)... C(m), dont il convient de rappeler que l'état est destiné à être lié à celui de l'inverseur de tension 5'.The protection diode 16 also avoids being powered by the test battery 19, when the transistor 18 is conducting, the charges C (1) ... C (j) ... C (m), of which it is appropriate remember that the state is intended to be linked to that of the voltage inverter 5 '.

En variante, l'accumulateur d'alimentation 3, tout en conservant sa disposition à l'intérieur du circuit électrique CE(i), peut également être connecté de manière à remplacer l'accumulateur de test 19. Dans une telle disposition, l'accumulateur d'alimentation remplit successivement dans le temps deux fonctions distinctes, permettant ainsi de réaliser l'économie d'un accumulateur de test spécifique. Le transistor 18 est alors connecté directement en parallèle avec l'inverseur de tension 5'. La diode de protection 17 devient superflue. Quant à la diode de protection 16, seule la présence des charges C(1)... C(j)... C(m) ou l'utilisation d'un inverseur de tension 5' au lieu d'un simple interrupteur la rendent nécessaire.Alternatively, the supply accumulator 3, while keeping its arrangement inside the electrical circuit CE (i), can also be connected so as to replace the test accumulator 19. In such an arrangement, the The supply accumulator successively fulfills two distinct functions over time, thus making it possible to economize on a specific test accumulator. The transistor 18 is then connected directly in parallel with the voltage inverter 5 '. The protection diode 17 becomes superfluous. As for the protective diode 16, only the presence of the charges C (1) ... C (j) ... C (m) or the use of a voltage inverter 5 'instead of a simple switch make it necessary.

Il va de soi que tout type d'interrupteur peut remplacer l'inverseur de tension 5', celui-ci n'ayant été choisi que pour illustrer le rôle particulier rempli par la diode de protection 16 dans le cas où il est employé.It goes without saying that any type of switch can replace the voltage inverter 5 ', it has been chosen only to illustrate the particular role performed by the protective diode 16 in the case where it is used.

L'opto-coupleur 7" ayant été choisi pour des raisons similaires, lui aussi peut être remplacé par n'importe quel autre composant apte à réaliser une liaison à isolation galvanique. Certains d'entre eux, comme par exemple le transformateur précédemment évoqué, ne nécessitent pas de deuxième phase de test, puisqu'ils ne peuvent générer seuls, c'est-à-dire en l'absence de tout courant les traversant, un signal de sortie sur la connexion S(i) correspondant à un tel courant. Dans ce cas, la connexion reliant l'unité de test automatique 20 au dispositif de régulation 11 n'est plus nécessaire.The opto-coupler 7 "having been chosen for similar reasons, it too can be replaced by any other component capable of making a connection with galvanic isolation, some of them, such as for example the previously mentioned transformer, do not require a second test phase, since they can not generate alone, that is to say in the absence of any current passing through them, an output signal on the connection S (i) corresponding to such a current In this case, the connection connecting the automatic test unit 20 to the regulating device 11 is no longer necessary.

Pour sa part, le transistor 18 peut être remplacé par tout composant remplissant la fonction d'interrupteur commandé.For its part, transistor 18 may be replaced by any component fulfilling the function of controlled switch.

Les moyens 15 pour tester le fonctionnement correct du circuit électrique CE(i) sont destinés à s'adapter à toute variante de réalisation de l'invention, par exemple à toutes celles qui ont précédemment décrites, bien que ces moyens 15 aient été présentés dans une combinaison particulière avec une seule d'entre elles.The means 15 for testing the correct operation of the electric circuit CE (i) are intended to be adapted to any variant embodiment of the invention, for example to all those which have previously been described, although these means have been presented in FIG. a particular combination with only one of them.

L'invention ne se limite pas à une application ferroviaire, mais concerne la transmission, dans tout domaine, d'une information tout ou rien.The invention is not limited to a railway application, but relates to the transmission, in any field, of all-or-nothing information.

Parmi les avantages de l'invention, on notera que la réduction de la puissance totale dissipée par effet Joule dans un circuit conforme à l'invention permet de diminuer la taille des résistances, composants les plus encombrants, à température et à vitesse d'air de refroidissement identiques.Among the advantages of the invention, it will be noted that the reduction of the total power dissipated by the Joule effect in a circuit according to the invention makes it possible to reduce the size of the resistances, the most bulky components, at temperature and at air speed. identical cooling.

Cette diminution de taille permet de réduire l'encombrement d'une voie de lecture, et donc de ménager de la place à un plus grand nombre de circuits de lecture sur une surface de carte électronique identique, malgré un nombre de composants plus importants.This reduction in size makes it possible to reduce the size of a reading channel, and thus to make room for a larger number of reading circuits on an identical electronic card surface, despite a larger number of components.

Les moyens 15 pour tester automatiquement le fonctionnement du circuit électrique CE(i) présentent notamment l'avantage de se présenter sous la forme d'un circuit simple, utilisant peu de composants et, par conséquent, peu coûteux.Means 15 for automatically testing the operation of the electrical circuit CE (i) have the particular advantage of being in the form of a simple circuit, using few components and, therefore, inexpensive.

De plus, ces moyens 15 permettent de mettre en oeuvre un test dont le taux de couverture est proche de 100%, seule la diode de protection 16 n'étant pas vérifiée.In addition, these means 15 allow to implement a test whose coverage rate is close to 100%, only the protective diode 16 is not verified.

Le surdimensionnement de cette diode de protection 16 limite notablement le risque de la voir provoquer une panne.Oversizing this protection diode 16 significantly reduces the risk of seeing it cause a failure.

Claims (26)

  1. Electric circuit (CE(i)) for transmission of the state of a parameter or equipment, intended to be connected to the terminals of a supply storage battery (3) and comprising:
    - a galvanic isolation stage (7; 7') between said electric circuit (CE(i)) and an output (S(i)) for outputting a state datum, and
    - a state-representing circuit breaker (5; 5'), the open or closed position of which is representative of the state datum and which determines the passage, in non-test operation, of current through said electric circuit (CE(i)),
    the electric circuit (CE(i)) carrying out the transmission of the state datum from the state-representing circuit breaker (5; 5') to the output (S(i)) by way of the galvanic isolation stage (7; 7'),
    characterised in that it comprises means for regulating the intensity of the current in the state-representing circuit breaker (5; 5'), comprising means for switching over (10, 12) the connections between the elements making up the electric circuit (CE(i)) and comprising inductive storage means (6) in series with the state-representing circuit breaker (5; 5') and capacitative storage means (13) which, in the steady state, each alternatively form means for storing and means for returning part of the energy of said electric circuit (CE(i)), depending on the particular alternative state of said connections between the various elements of the electric circuit (CE(i)), determined by the switching-over means.
  2. Electric circuit (CE(i)) according to claim 1, characterised in that the galvanic isolation stage (7, 7') is connected in series with the state-representing circuit breaker (5; 5').
  3. Electric circuit (CE(i)) according to claim 1 or 2, characterised in that the means for regulating the intensity of the current in the state-representing circuit breaker (5; 5') additionally comprise means (11; 11') for checking a quantity characteristic of the state of the electric circuit (CE(i)) and for alternation control of the means for switching over (10, 12) the connections between the elements making up the electric circuit (CE(i)) as a function of the state of said electric circuit.
  4. Electric circuit (CE(i)) according to any one of the preceding claims,
    characterised in that the means for switching over (10, 12) the connections between the elements making up the electric circuit (CE(i)) connect alternatively at least:
    - the inductive storage means (6), the state-representing circuit breaker (5; 5'), the storage battery (3) and the capacitative storage means (13) in series in a closed loop during a first phase - in the steady state - of returning, by the inductive storage means (6), a quantity of energy, which is stored by the capacitative storage means (13), and
    - the inductive storage means (6), the state-representing circuit breaker (5; 5') and the capacitative storage means (13) in series in a closed loop during a second phase - in the steady state - of returning, by the capacitative storage means (13), a quantity of energy, which is stored by the inductive storage means (6), the polarity of the connections between the inductive storage means (6) and the capacitative storage means (13) being reversed between the first and the second phase.
  5. Electric circuit (CE(i)) according to any one of the preceding claims, characterised in that the inductive storage means and the capacitative storage means comprise, respectively, an inductance (6) in series with the state-representing circuit breaker (5; 5') and a capacitance (13); in that the electric circuit (CE(i)) comprises, in series with the state-representing circuit breaker (5; 5') and the inductance (6), first and second branches (8, 9) in parallel and comprises a resistance (14) in parallel with the state-representing circuit breaker (5; 5') and the inductance (6) and connected to a point (P) in the second branch (9), the capacitance (13) being connected in the second branch (9); and in that the means for switching over the connections comprise means (10, 12) for alternately directing into the first and second branches (8, 9) the current passing through the state-representing circuit breaker (5; 5') and the inductance (6).
  6. Electric circuit (CE(i)) according to claim 5, characterised in that the galvanic isolation stage (7; 7') is connected in the first branch (8).
  7. Electric circuit (CE(i)) according to claim 5, characterised in that the galvanic isolation stage (7; 7') is connected in series with the capacitor (13) in the second branch (9).
  8. Electric circuit (CE(i)) according to claim 5, characterised in that the galvanic isolation stage (7; 7') is connected in series with the resistance (14).
  9. Electric circuit (CE(i)) according to any one of claims 5 to 8, characterised in that the period (T) during which the current passing through the state-representing circuit breaker (5; 5') and the inductance (6) flows successively in the first (8) and then in the second branch (9), and the cycle ratio (α), equal to the time of flow of that current in the first branch (8) divided by said period (T) are, respectively, fixed and variable and determined by the means (11; 11') for checking the quantity characteristic of the state of the electric circuit (CE(i)) and for periodic control of the switching-over means (10, 12).
  10. Electric circuit (CE(i)) according to any one of claims 5 to 9, characterised in that the means (10) for alternately directing into the first and second branches (8, 9) the current passing through the state-representing circuit breaker (5; 5') and the inductance (6) comprise a controlled circuit breaker (10) connected in the first branch (8) and a diode (12) connected in the second branch (9) between, on the one hand, one of the two junctions of the first and second branches (8, 9) and, on the other hand, the point (P) of connection of the resistance (14) on the second branch (9), the capacitance (13) being located between, on the one hand, the other of those two junctions of the first and second branches (8, 9) and, on the other hand, the point (P) of connection of the resistance (14) on the second branch (9).
  11. Electric circuit (CE(i)) according to claim 10, characterised in that the galvanic isolation stage (7; 7') is connected in series with the diode (12).
  12. Electric circuit (CE(i)) according to any one of the preceding claims,
    characterised in that the galvanic isolation stage (7) consists of an optocoupler.
  13. Electric circuit (CE(i)) according to any one of the preceding claims,
    characterised in that the galvanic isolation stage consists of a transformer (7').
  14. Electric circuit according to any one of claims 1 to 6, characterised in that the galvanic isolation stage (7; 7') consists of a transformer (7') which is connected in series with the state-representing circuit breaker (5; 5') and the primary of which also forms at least part of the inductive storage means.
  15. Electric circuit (CE(i)) according to any one of claims 3 to 14, characterised in that said means (11; 11') for checking a quantity characteristic of the state of the electric circuit (CE(i)) and for periodic control of the switching-over means (10, 12) also form the galvanic isolation stage (7; 7') and to that end, on the one hand, are provided with said output S(i) for outputting the datum and, on the other hand, are arranged to output that datum based on the processing of said characteristic quantity, especially based on the cycle ratio (α).
  16. Electric circuit (CE(i)) according to any one of claims 3 to 15, characterised in that the peak value, in the course of a period (T), of the current passing through the state-representing circuit breaker (5; 5') constitutes said quantity characteristic of the state of the electric circuit (CE(i)).
  17. Electric circuit (CE(i)) according to any one of claims 5 to 15, characterised in that the potential (Vp) at the point (P) of connection of the resistance (14) on the second branch (9) constitutes said quantity characteristic of the state of the electric circuit (CE(i)).
  18. Electric circuit (CE(i)) according to any one of claims 5 to 15, characterised in that the voltage (E-Vp) at the terminals of the resistance (14) constitutes said quantity characteristic of the state of the electric circuit (CE(i)).
  19. Electric circuit (CE(i)) according to any one of the preceding claims, characterised in that it additionally comprises means (15) for testing its correct operation, independently of the position of the state-representing circuit breaker (5; 5').
  20. Electric circuit (CE(i)) according to claim 19, characterised in that the means (15) for testing the correct operation of that electric circuit (CE(i)) comprise:
    - a controlled test circuit breaker (18) and a test storage battery (19) connected in a first series circuit which is in turn connected in parallel with a second series circuit comprising the state-representing circuit breaker (5; 5') and a location intended for the connection of the supply storage battery (3), and
    - an automatic test unit (20) connected to the control terminal of the controlled test circuit braker (18) and to the output (S(i)) for outputting a state datum.
  21. Electric circuit (CE(i)) according to claim 19, characterised in that the means (15) for testing the correct operation of that electric circuit (CE(i)) comprise:
    - a controlled test circuit breaker (18) connected in parallel with the state-representing circuit breaker (5; 5'), that arrangement being connected in series with a location for the connection of the supply storage battery (3), which is also intended to carry out the function of a test storage battery; and
    - an automatic test unit (20) connected to the control terminal of the controlled test circuit breaker (18) and to the output (S(i)) for outputting a state datum.
  22. Electric circuit (CE(i)) according to claim 20 or 21, characterised in that the automatic test unit (20), also connected to the means (11; 11') for checking a quantity characteristic of the state of the electric circuit (CE(i)) and for alternation control of the means for switching over (10, 12) the connections, is capable of maintaining said switching-over means (10, 12) in at least one position of zero current in said electric circuit (CE(i)).
  23. Electric circuit (CE(i)) according to any one of claims 20 to 22, characterised in that the means (15) for testing the correct operation of that electric circuit (CE(i)) comprise at least one protection diode (16) connected in series with the state-representing circuit breaker (5; 5') for blocking a current coming from the controlled test circuit breaker (18).
  24. Electric circuit (CE(i)) according to any one of claims 20 to 23, characterised in that the means (15) for testing the correct operation of that electric circuit (CE(i)) comprise another protection diode (17) connected in series with the controlled test circuit breaker (18) for blocking a current coming from the state-representing circuit breaker (5; 5').
  25. Electric system (1) intended for transmission of a plurality of state data, characterised in that it comprises a supply storage battery (3) and a plurality of electric circuits (CE(i)) according to any one of claims 1 to 24 each of which is intended for transmission of a state datum and which are connected in parallel to the terminals of said storage battery (3).
  26. Electric system (1) according to claim 25, characterised in that it is provided on a railway train, each state-representing circuit breaker (5; 5') being associated with a device or equipment of said railway train for monitoring the state or position thereof.
EP01400349A 2000-03-31 2001-02-09 Electrical circuit for the transmitting the status information, particularly for railway material, and system incorporating such a circuit Expired - Lifetime EP1139361B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0004160A FR2807193A1 (en) 2000-03-31 2000-03-31 Electric circuit for transmission of binary state information from a rail vehicle, uses energy storage devices to deliver current indicating state of mechanical contact
FR0007646A FR2807194B1 (en) 2000-03-31 2000-06-15 ELECTRICAL CIRCUIT FOR THE TRANSMISSION OF STATE INFORMATION, IN PARTICULAR OF A ROLLING RAILWAY EQUIPMENT, AND ELECTRICAL SYSTEM INCORPORATING SUCH A CIRCUIT
FR0004160 2000-06-15
FR0007646 2000-06-15

Publications (2)

Publication Number Publication Date
EP1139361A1 EP1139361A1 (en) 2001-10-04
EP1139361B1 true EP1139361B1 (en) 2007-03-28

Family

ID=26212313

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01400349A Expired - Lifetime EP1139361B1 (en) 2000-03-31 2001-02-09 Electrical circuit for the transmitting the status information, particularly for railway material, and system incorporating such a circuit

Country Status (10)

Country Link
US (1) US6483431B2 (en)
EP (1) EP1139361B1 (en)
JP (1) JP2002002417A (en)
AT (1) ATE358323T1 (en)
CA (1) CA2342716C (en)
DE (1) DE60127484T2 (en)
DK (1) DK1139361T3 (en)
ES (1) ES2284599T3 (en)
FR (1) FR2807194B1 (en)
PT (1) PT1139361E (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2817380B1 (en) * 2000-11-24 2003-01-03 Alstom ELECTRIC CIRCUIT FOR THE TRANSMISSION OF STATE INFORMATION, IN PARTICULAR OF AN ORGAN OF ROLLING RAIL MATERIAL, AND ELECTRIC SYSTEM INCORPORATING SUCH A CIRCUIT
FR2831893B1 (en) * 2001-11-07 2004-07-16 Leroy Automatique Ind ACTIVE DEVICE WITH REDUCED DISSIPATION FOR ELECTRICAL CIRCUITS, ESPECIALLY AN AUTOMATON OR AN INDUSTRIAL COMPUTER
US6903584B2 (en) * 2002-03-08 2005-06-07 Stmicroelectronics, Inc. Circuit and method for detecting the state of a switch
FR2846783B1 (en) * 2002-11-06 2005-01-28 Schneider Electric Ind Sas METHOD AND DEVICE FOR CONTROLLING A SWITCH DEVICE
FR2938656B1 (en) * 2008-11-18 2011-08-26 Thales Sa INTRINSIC SECURITY SYSTEM AND TEST MODULE, IN PARTICULAR FOR USE IN A RAILWAY SIGNALING SYSTEM
DE102013215789A1 (en) * 2013-08-09 2015-02-12 Continental Automotive Gmbh Method for generating uniform low-resistance contacts in a star point relay
DE102013110993A1 (en) * 2013-10-02 2015-04-02 Knorr-Bremse Gmbh Method and device for monitoring at least one electronic switch contact for a vehicle
JP6318911B2 (en) * 2014-06-26 2018-05-09 株式会社デンソー Semiconductor device inspection circuit and inspection method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975708A (en) * 1974-02-27 1976-08-17 T.S.W.S., Inc. Vehicle condition monitoring system
DE3000301C2 (en) * 1979-01-10 1985-01-31 Gestinvest, Brüssel Electric lighting system for buildings
GB2159285B (en) * 1984-05-11 1987-10-14 Cambridge Instr Ltd Circuit monitor
US4855709A (en) * 1985-06-17 1989-08-08 Naderi Mohammad T System of alarm to make aware about bad condition of car
US4751498A (en) * 1986-03-11 1988-06-14 Tracer Electronics, Inc. Single-wire loop alarm system
GB8614198D0 (en) * 1986-06-11 1986-07-16 Salplex Ltd Information handling & control systems
DE4221916A1 (en) * 1992-07-03 1994-01-05 Sel Alcatel Ag Monitoring circuit for switch status in electrical power circuit - has switch coupled to additional AC source and circuit elements forming resonance circuit
DE59302293D1 (en) * 1993-12-24 1996-05-23 Landis & Gyr Tech Innovat Control device for actuating switching devices
DE59300336D1 (en) * 1993-12-24 1995-09-07 Landis & Gry Tech Innovat Ag Control device for actuating switching devices according to a time program.
JPH10108379A (en) * 1996-09-30 1998-04-24 Nissan Motor Co Ltd Charging control system for electric vehicle
JP3724909B2 (en) * 1997-03-11 2005-12-07 株式会社ケーヒン Electric car breaker device
JP2000173428A (en) * 1998-12-01 2000-06-23 Sanyo Electric Co Ltd Main relay welding detecting device for electric car

Also Published As

Publication number Publication date
CA2342716A1 (en) 2001-09-30
FR2807194B1 (en) 2002-05-31
FR2807194A1 (en) 2001-10-05
US20010026227A1 (en) 2001-10-04
DE60127484D1 (en) 2007-05-10
DE60127484T2 (en) 2007-12-06
US6483431B2 (en) 2002-11-19
CA2342716C (en) 2008-02-12
ES2284599T3 (en) 2007-11-16
EP1139361A1 (en) 2001-10-04
ATE358323T1 (en) 2007-04-15
PT1139361E (en) 2007-07-11
DK1139361T3 (en) 2007-07-30
JP2002002417A (en) 2002-01-09

Similar Documents

Publication Publication Date Title
EP3105845B1 (en) Dc voltage supply system configured to precharge a smoothing capacitor before supplying a load
EP1854165B1 (en) Method for the balanced charging of a lithium-ion or lithium-polymer battery
EP1265336A2 (en) Equalisation method for an electric battery in a discontinuous recharging mode and battery management system for carrying out the same
CA2778315A1 (en) Wireless current sensor
EP0629036A2 (en) Device for supplying a voltage to an electronic circuit, in particular to an electronic circuit associated to a current sensor placed on an electric line
EP1139361B1 (en) Electrical circuit for the transmitting the status information, particularly for railway material, and system incorporating such a circuit
EP2600462A1 (en) Method for balancing the voltages of electrochemical cells arranged in a plurality of parallel arms
EP1274106A1 (en) Supercapacity balancing method and device
FR2568715A1 (en) DEVICE FOR CONTROLLING AN ELECTROMAGNET COIL AND ELECTRIC SWITCHING APPARATUS PROVIDED WITH SUCH A DEVICE
EP3435396A1 (en) Controllable apparatus for cutting an electrical current and electrical assembly comprising this apparatus
EP1009003A1 (en) Control device for an electromagnet, with a power supply powered by the holding current of the electromagnet
EP0183597A1 (en) Protection circuit against electric power supply cut-off
EP1209709B1 (en) Electrical circuit for transmitting the status information, particularly for railway material, and system incorporating such a circuit
EP0809342B1 (en) Arrangement for controlling the charge of a modular assembly of electrochemical cells connected in series and corresponding module for measuring the cells
EP2320438B1 (en) Electromagnetic actuator and electrical contactor comprising such actuator
EP0077531A1 (en) Charging device for a group of batteries, especially of buffer batteries fed by a limited power supply
FR2807193A1 (en) Electric circuit for transmission of binary state information from a rail vehicle, uses energy storage devices to deliver current indicating state of mechanical contact
EP0539301A1 (en) Coupling device of an external power supply to an aircraft on the ground
EP0562959B1 (en) Information input module with electrical contacts for command- and control-installations
FR2712747A1 (en) Regulated supply appts. for resistive load from electric vehicle principal battery
WO2004051686A1 (en) Electromagnetic relay control
FR2786895A1 (en) COMMUNICATION DEVICE HAVING A POWER SUPPLY CIRCUIT AND POWER SUPPLY METHOD FOR SUCH A DEVICE
EP1393088B1 (en) Device for holding an electronic circuit in a predetermined state
FR3100396A1 (en) Inductive holding circuit
FR2638585A1 (en) Charger for cadmium-nickel battery

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020404

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60127484

Country of ref document: DE

Date of ref document: 20070510

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20070628

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070626

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2284599

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070328

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070328

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20100129

Year of fee payment: 10

Ref country code: CH

Payment date: 20100223

Year of fee payment: 10

Ref country code: ES

Payment date: 20100222

Year of fee payment: 10

Ref country code: LU

Payment date: 20100225

Year of fee payment: 10

Ref country code: DK

Payment date: 20100210

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20100215

Year of fee payment: 10

Ref country code: IT

Payment date: 20100223

Year of fee payment: 10

Ref country code: FR

Payment date: 20100226

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100218

Year of fee payment: 10

Ref country code: AT

Payment date: 20100212

Year of fee payment: 10

Ref country code: DE

Payment date: 20100219

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070328

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100215

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20100401

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20100212

Year of fee payment: 10

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20110809

BERE Be: lapsed

Owner name: ALSTOM

Effective date: 20110228

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110901

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110809

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110209

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110209

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110901

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110209

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60127484

Country of ref document: DE

Effective date: 20110901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110209

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20120411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110901