EP1137500B9 - Binder system for producing polyurethane-based cores and moulds - Google Patents

Binder system for producing polyurethane-based cores and moulds Download PDF

Info

Publication number
EP1137500B9
EP1137500B9 EP99957988A EP99957988A EP1137500B9 EP 1137500 B9 EP1137500 B9 EP 1137500B9 EP 99957988 A EP99957988 A EP 99957988A EP 99957988 A EP99957988 A EP 99957988A EP 1137500 B9 EP1137500 B9 EP 1137500B9
Authority
EP
European Patent Office
Prior art keywords
binder system
casting
phenol resin
component
mould
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99957988A
Other languages
German (de)
French (fr)
Other versions
EP1137500A1 (en
EP1137500B1 (en
Inventor
Jean-Claude Roze
Günter Weicker
Diether Koch
Andreas Werner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ashland Suedchemie Kernfest GmbH
Original Assignee
Ashland Suedchemie Kernfest GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ashland Suedchemie Kernfest GmbH filed Critical Ashland Suedchemie Kernfest GmbH
Publication of EP1137500A1 publication Critical patent/EP1137500A1/en
Application granted granted Critical
Publication of EP1137500B1 publication Critical patent/EP1137500B1/en
Publication of EP1137500B9 publication Critical patent/EP1137500B9/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • B22C1/2233Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B22C1/2273Polyurethanes; Polyisocyanates

Definitions

  • the present invention relates to a binder system for the production of Cores and molds based on polyurethane.
  • the named "cold box method” or "Ashland method” has become known in the foundry industry a top position conquered.
  • the Component 1 consists of the solution of a polyol that at least contains two OH groups per molecule.
  • Component 2 is the solution of a Polyisocyanate with at least two NCO groups per molecule.
  • the Curing of the binder system is carried out using basic Catalysts. Liquid bases can be added to the binder system before Shaping be added to the two components for the reaction to bring (US-A-3,676,392). Another possibility is according to US-A-3,409,579 therein, gaseous tertiary amines after shaping by the To pass molding material / binder system mixture.
  • phenolic resins are used as polyols used by condensation of phenol with aldehydes, preferably Formaldehyde, in the liquid phase at temperatures up to approx. 130 ° C in Presence of catalytic amounts of metal ions can be obtained.
  • aldehydes preferably Formaldehyde
  • the Binder systems have increased thermal stability.
  • Solvents for the phenolic component are predominantly mixtures from high boiling point polar solvents (e.g., esters and ketones) and high-boiling aromatic hydrocarbons used.
  • polyisocyanates are preferred in high-boiling aromatic Hydrocarbons dissolved.
  • European Patent Application EP-A-0 771 599 formulations are described in which by use of fatty acid methyl esters wholly or at least largely aromatic Solvent is omitted.
  • the fatty acid methyl esters are included either as a sole solvent or with the addition of polarity increasing Solvents (phenol component) or aromatic solvents (Isocyanate component) used.
  • the with these binder systems made cores can be particularly easily from the molds remove.
  • Binder systems that have little or no aromatic Contain hydrocarbons.
  • a binder system comprising a Phenolic resin component and a polyisocyanate component in that the phenolic resin component and / or the polyisocyanate component comprises a fatty acid ester and the phenolic resin component comprises an alkoxy-modified phenolic resin wherein less than 25 mol% of the hydroxymethyl groups in the phenolic resin a primary or secondary aliphatic alcohol of 1 to 10 Are etherified carbon atoms and wherein the solvent content of the Phenolic resin component is at most 40 wt .-%.
  • the invention relates to molding compositions, the aggregates and up to 15 Wt .-% based on the weight of the aggregates of an inventive Binder system include.
  • the casting molding thus obtained can according to the invention for casting metal be used.
  • Essential to the invention is the choice of the alkoxy-modified phenolic resin, the has a low viscosity and favorable polarity. According to the invention allows the alkoxy-modified phenolic resin that needed Total solvent amount in both the phenolic resin component as also reduce in the isocyanate component. Furthermore, on the Use of aromatic hydrocarbons in one or both Binder components are dispensed with. By combining the alkoxy-modified phenolic resin with oxygen-rich, polar, organic Solvents are improved with reduced smoke formation Achieved instant strength. The addition of fatty acid ester has a positive effect the release effect and the moisture resistance.
  • Phenolic resins are made by condensation of phenols and aldehydes (Ullmann's Encyclopedia of Industrial Chemistry, Vol. A19, page 371 ff, 5th edition, VCH Verlag, Weinheim).
  • substituted phenols and mixtures thereof may also be used be used. Suitable are all conventionally used substituted phenols.
  • the phenolic compounds are either in both ortho positions or unsubstituted in an ortho and in the para position, to allow the polymerization. The remaining ring carbons may be substituted.
  • the choice of the substituent is not particular if the substituent limited the polymerization of the phenol and the Aldehyds are not adversely affected.
  • substituted phenols are alkyl-substituted phenols, aryl-substituted phenols, cycloalkyl-substituted Phenols, alkenyl-substituted phenols, alkoxy-substituted phenols, aryloxy-substituted Phenols and halogen-substituted phenols.
  • the abovementioned substituents have 1 to 26, preferably 1 to 12, carbon atoms.
  • suitable phenols besides the most preferred unsubstituted phenols are o-cresol, m-cresol, p-cresol, 3,5-xylene, 3,4-xylene, 3,4,5-trimethylphenol, 3-ethylphenol, 3,5 Diethylphenol, p-butylphenol, 3,5-dibutylphenol, p-amylphenol, cyclohexylphenol, p-octylphenol, 3,5-dicyclohexylphenol, p-crotylphenol, p-phenylphenol, 3,5-dimethoxyphenol, 3,4,5-trimethoxyphenol , p-ethoxyphenol, p-butoxyphenol, 3-methyl-4-methoxyphenol and p-phenoxyphenol.
  • Particularly preferred is phenol itself.
  • the phenols can also be described by the general formula: where A, B and C may be hydrogen, alky
  • Formaldehyde used as aldehyde according to the invention
  • formaldehyde either in its aqueous form or as paraformaldehyde.
  • an at least equivalent number of moles of formaldehyde based on the number of moles of Phenol component, can be used.
  • the molar ratio is preferably Formaldehyde: Phenol, therefore, at least 1: 1.0, more preferably at least 1: 0.58.
  • primary and secondary aliphatic alcohols having one OH group and from 1 to 10 Carbon atoms used.
  • Suitable primary or secondary alcohols include e.g. Methanol, ethanol, n-propanol, iso-propanol, n-butanol and Hexanol.
  • the phenol component in the one-step process, the phenol component, the formaldehyde and the alcohol in the presence of a suitable catalyst for the reaction brought.
  • a suitable catalyst for the reaction brought.
  • a non-modified Resin prepared, which is then treated with alcohol.
  • Suitable catalysts are salts of divalent ions of Mn, Zn, Cd, Mg, Co, Ni, Fe, Pb, Ca and Ba.
  • zinc acetate is used.
  • the alkoxylation leads to resins with a low viscosity.
  • the resins have mainly ortho-ortho Benzylethermaschinen and also have ortho and para to the phenolic OH group alkoxymethylene groups of the general formula - (CH 2 O) n R on.
  • R is the alkyl group of the alcohol and n is a small integer in the range of 1 to 5.
  • solvents which are conventionally used in binder systems for foundry technology can be used in the systems according to the invention. It is even possible to use aromatic hydrocarbons as a solvent component in larger proportions, but this does not avoid the above-mentioned, potentially environmentally and health-endangering solvents.
  • aromatic hydrocarbons As solvents for the phenolic resin component therefore oxygen-rich, polar, organic solvents are preferably used.
  • Particularly suitable are dicarboxylic acid esters, glycol ether esters, glycol diesters, glycol diethers, cyclic ketones, cyclic esters (lactones) or cyclic carbonates. Dicarboxylic acid esters, cyclic ketones and cyclic carbonates are preferably used.
  • Dicarboxylic acid esters have the formula R 1 OOC-R 2 -COOR 1 , wherein each R 1 independently represents an alkyl group having 1-12 (preferably 1-6) carbon atoms and R 2 is an alkylene group having 1-4 carbon atoms.
  • R 1 independently represents an alkyl group having 1-12 (preferably 1-6) carbon atoms
  • R 2 is an alkylene group having 1-4 carbon atoms.
  • dimethyl esters of carboxylic acids having 4 to 6 carbon atoms which are obtainable, for example, under the name Dibasic Ester from DuPont.
  • Glycol ether esters are compounds of the formula R 3 -OR 4 -OOCR 5 where R 3 is an alkyl group of 1-4 carbon atoms, R 4 is an alkylene group of 2-4 carbon atoms and R 5 is an alkyl group of 1-3 carbon atoms (eg butyl glycol acetate ), preferred are glycol ether acetates.
  • Glycol diesters correspondingly have the general formula R 5 COO-R 4 -OOCR 5 , wherein R 4 and R 5 are as defined above and the radicals R 5 are each independently selected (eg propylene glycol diacetate), glycol diacetates are preferred.
  • Glycol diethers can be characterized by the formula R 3 -OR 4 -OR 3 in which R 3 and R 4 are as defined above and the radicals R 3 are each independently selected (eg dipropylene glycol dimethyl ether). Cyclic ketones, cyclic esters and cyclic carbonates of 4-5 carbon atoms are also suitable (eg, propylene carbonate).
  • the alkyl and alkylene groups may each be branched or unbranched.
  • These organic polar solvents are preferably used either as a sole solvent for the phenolic resin or in combination with fatty acid esters, wherein the content of the oxygen-rich solvents in the solvent mixture should predominate.
  • the content of oxygen-rich solvents should thus be more than 50% by weight, preferably more than 55% by weight.
  • the measure had a positive effect on the development of quality, the To reduce the total content of solvents in the binder system. While conventional phenolic resins predominantly about 45 wt .-% and partially up to 55 wt .-% solvent to a Processing-compatible viscosity (up to about 400 mPa ⁇ s) can be achieved by Use of a low-viscosity phenolic resin of the invention Solvent content in the phenol component to at most 40 wt .-%, preferably even limited to at most 35 wt .-%.
  • the dynamic Viscosity is e.g. determined by the Brookfield rotary spindle method.
  • Suitable binder systems have an instantaneous strength of at least 150 N / cm 2 at a used amount of each 0.8 parts by weight of phenolic resin component and isocyanate component, based on 100 parts by weight of aggregate, such as quartz sand H 32 (see EP-A-0 771 599 or DE -A-4 327 292).
  • fatty acid ester to the solvent of the phenolic component leads to particularly good release properties.
  • Suitable fatty acids are e.g. with 8 to 22 carbons esterified with an aliphatic alcohol.
  • fatty acids of natural origin e.g. from tall oil, Rapeseed oil, sunflower oil, germ oil and coconut oil.
  • the natural oils which are mostly mixtures of different fatty acids,
  • single fatty acids e.g. palmitic or myristic fatty acid.
  • Aliphatic monoalcohols with 1 to 12 carbons are suitable for Esterification of fatty acids. Preference is given to alcohols having 1 to 10 Carbon atoms, particularly preferred are alcohols having 4 to 10 Carbon atoms. Due to the lower polarity of the fatty acid esters, whose alcohol component has 4 to 10 carbon atoms, it is possible to reduce the fatty acid ester content and reduce the formation of smoke. A number of fatty acid esters are commercially available.
  • fatty acid esters whose Alcohol component contains 4 to 10 carbon atoms particularly advantageous because they are excellent for the binder system Impart release properties when their content in the solvent of the Phenol component is less than 50 wt .-% is.
  • Fatty acid esters with longer alcohol components are the butyl esters of Oleic acid and tall oil fatty acid and the mixed octyl / decyl ester of Called tall oil fatty acid.
  • the alkoxy-modified Phenolic resins can be aromatic hydrocarbons as a solvent avoid the phenol component. This is due to the balanced polarity of the Due to the use of oxygenated, organic, polar solvents e.g. as a sole solvent.
  • By the use of the alkoxy-modified Phenolic resins can reduce the amount of solvent needed to less than 35 wt .-% of phenol component are limited. This is done by the low viscosity of the resin allows.
  • aromatic Hydrocarbons can also be avoided.
  • binder system according to the invention with at least 50 wt .-% of above-mentioned oxygen-rich, polar, organic solvent as Part of the solvent of the phenol component also leads to a significantly reduced smoke development compared to conventional Systems with a high proportion of fatty acid esters in the solvent.
  • the second component of the binder system comprises an aliphatic, cycloaliphatic or aromatic polyisocyanate, preferably with 2 to 5 Isocyanate groups. Depending on the desired properties can also Mixtures of organic isocyanates are used.
  • suitable Polyisocyanates include aliphatic polyisocyanates, e.g. Hexamethylene diisocyanate, alicyclic polyisocyanates such as e.g. 4,4'-dicyclohexylmethane and dimethyl derivatives thereof.
  • aromatic polyisocyanates examples include toluene-2,4-diisocyanate, toluene-2,6-diisocyanate, 1,5-naphthalene diisocyanate, triphenylmethane triisocyanate, Xylylene diisocyanate and methyl derivatives thereof, Polymethylene polyphenylisocyanate and chlorophenylene-2,4-diisocyanate.
  • Preferred polyisocyanates are aromatic polyisocyanates, especially preferred are polymethylene polyphenyl polyisocyanates, e.g. Diisocyanate.
  • polyisocyanate is by weight used the phenolic resin.
  • Liquid polyisocyanates can be undiluted Form while solid or viscous polyisocyanates in be dissolved organic solvents. Up to 80% by weight of the isocyanate component may consist of solvents.
  • a solvent for the Polyisocyanate will be either the above-mentioned fatty acid esters or a Mixture of fatty acid esters and up to 50% by weight of aromatic solvents used. Suitable aromatic solvents are naphthalene, alkyl-substituted Naphthalenes, alkyl-substituted benzenes and mixtures thereof.
  • aromatic solvents consisting of mixtures of consist of above-mentioned aromatic solvents and a Boiling point range between 140 ° C and 230 ° C have.
  • no aromatic solvent used Preferably no aromatic solvent used.
  • the binder systems conventional additives, such. B. silanes (US 4,540,724), drying oils (US 4,268,425) or complexing agents (WO 95/03903).
  • the Binder systems are preferred as two-component systems offered, wherein the solution of the phenolic resin is a component and the polyisocyanate, optionally in solution, is the other component.
  • the two components are combined and then sand or a similar aggregate mixed to produce a molding material.
  • the Molding composition contains an effective binding amount of up to 15 wt .-% of binder system according to the invention, based on the weight of Aggregates. It is also possible to use the components first with each Mixing of the sand or aggregate and then this to unite both mixtures. Method to a uniform mixture to achieve the components and the aggregate are those skilled in the art known.
  • the mixture may optionally contain other conventional Ingredients, such as iron oxide, ground flax fibers, wood pieces, and pitch refractory flours, included.
  • the aggregate should have enough have large particle size.
  • the mold part has a Sufficient porosity and volatile compounds may occur during the Casting escape.
  • at least 80% by weight and preferably 90% by weight of the aggregate an average Particle size ⁇ 290 microns on.
  • the average particle size of the Aggregates should be between 100 and 300 ⁇ m.
  • sand is preferred as aggregate material used, wherein at least 70 wt .-% and preferably more than 80 wt .-% of the sand are silica.
  • Zircon, olefin, aluminosilicate sand and Chromite sand are also suitable as aggregate materials.
  • the aggregate material is the main ingredient in molded parts.
  • In Molded sand moldings for standard applications account for the share of Binder generally up to 10 wt .-%, often between 0.5 and 7 Wt .-%, based on the weight of the aggregate. Especially preferred are 0.6 to 5 wt .-% of binder, based on the weight of Aggregates, used.
  • the aggregate is preferably dried, up to 0.1 wt .-%, based on the weight of the aggregate, tolerated by moisture become.
  • the mold part is hardened so that it conforms to its external shape the removal of the mold retains.
  • Conventional liquid or gaseous Hardening systems can be used to cure the invention
  • Binder system can be used.
  • a volatile one tertiary amine e.g. Triethylamine or dimethylethylamine as described in US-A-3,409,579 described, are passed through the mold part. It is furthermore possible to add a liquid amine to the molding compound for curing. After removal from the mold is in a conventional manner the Molded part converted by further hardening in the final state.
  • silanes of the general formula (R'O) 3 Si are added to the molding compound before curing.
  • R ' is a hydrocarbon radical, preferably an alkyl radical of 1-6 carbon atoms
  • R is an alkyl radical, an alkoxy-substituted alkyl radical or an alkylamine-substituted amine radical having alkyl groups having 1-6 carbon atoms.
  • silanes examples include Dow Corning Z6040 and Union Carbide A-187 ( ⁇ -glycidoxypropyltrimethoxysilane), Union Carbide A-1100 ( ⁇ -aminopropyltriethoxysilane), Union Carbide A-1120 (N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane) and Union Carbide A-1160 (ureidosilane).
  • additives including wetting agents and the use of the sand mixture extending additives (engl. Benchlife additives), as described in US 4,683,252 or US 4,540,724, be used.
  • Additional mold release agents such as e.g. fatty acids, Fatty alcohols and their derivatives can be used, but are used in usually not needed.
  • example 1 not according to the invention inventively phenol 2130.7 g 1770.6 g Paraformaldehyde 91% 865.3 g 984.3 g n-butanol - 279.6 g Zinc acetate dihydrate 1.0 g 1.5 g
  • the phenol resin solution 1A separates after cooling to room temperature in two phases and is therefore not used for further tests.
  • the viscosity of the phenol resin solutions 1B-1D is far outside the application-favorable range (up to approx. 400 mPa ⁇ s)
  • the flexural strengths of the specimens are determined by the GF method. The bending strength of the specimens immediately after their Production (immediate strength) as well as tested after 1, 2 and 24 hours.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mold Materials And Core Materials (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a binder system that comprises a phenolic-resin component and a polyisocyanate component. This system is characterised in that the phenolic-resin component includes an alkoxy-modified phenolic resin, wherein less than 25 mole % of the phenolic hydroxy groups are etherified with a primary or secondary aliphatic alcohol comprising between 1 and 10 carbon atoms.

Description

Die vorliegende Erfindung betrifft ein Bindemittelsystem zur Herstellung von Kernen und Gießformen auf Polyurethanbasis.The present invention relates to a binder system for the production of Cores and molds based on polyurethane.

Die unter der Bezeichnung "Cold-Box-Verfahren" oder "Ashland-Verfahren" bekannt gewordene Methode der Kernherstellung hat in der Gießereiindustrie eine Spitzenstellung erobert. Zur Bindung des Sandes werden bei diesem Verfahren Zwei-Komponenten-Polyurethan-Systeme eingesetzt. Die Komponente 1 besteht dabei aus der Lösung eines Polyols, das mindestens zwei OH-Gruppen pro Molekül enthält. Die Komponente 2 ist die Lösung eines Polyisocyanats mit mindestens zwei NCO-Gruppen pro Molekül. Die Aushärtung des Bindemittelsystems erfolgt mit Hilfe von basischen Katalysatoren. Flüssige Basen können dem Bindemittelsystem vor der Formgebung zugemischt werden, um die beiden Komponenten zur Reaktion zu bringen (US-A-3,676,392). Eine weitere Möglichkeit besteht nach US-A-3,409,579 darin, gasförmige tertiäre Amine nach der Formgebung durch das Formstoff-/Bindemittelsystem-Gemisch zu leiten.The named "cold box method" or "Ashland method" has become known in the foundry industry a top position conquered. To bind the sand are in this Method two-component polyurethane systems used. The Component 1 consists of the solution of a polyol that at least contains two OH groups per molecule. Component 2 is the solution of a Polyisocyanate with at least two NCO groups per molecule. The Curing of the binder system is carried out using basic Catalysts. Liquid bases can be added to the binder system before Shaping be added to the two components for the reaction to bring (US-A-3,676,392). Another possibility is according to US-A-3,409,579 therein, gaseous tertiary amines after shaping by the To pass molding material / binder system mixture.

In den beiden genannten Patenten werden Phenolharze als Polyole verwendet, die durch Kondensation von Phenol mit Aldehyden, vorzugsweise Formaldehyd, in flüssiger Phase bei Temperaturen bis ca. 130°C in Gegenwart katalytischer Mengen von Metallionen erhalten werden. In US-A-3,485,797 wird die Herstellung solcher Phenolharze detailliert beschrieben. Außer unsubstituiertem Phenol können substituierte Phenole, vorzugsweise o-Kresol und p-Nonylphenol, zum Einsatz kommen (z.B. EP-A-183 782). Als weitere Reaktionskomponente können nach EP-B-0 177 871 bei der Herstellung der Phenolharze aliphatische Monoalkohole mit ein bis acht Kohlenstoffatomen eingesetzt werden. Durch die Alkoxylierung sollen die Bindemittelsysteme eine erhöhte thermische Stabilität besitzen. Als Lösungsmittel für die Phenol-Komponente werden überwiegend Gemische aus hochsiedenden polaren Lösungsmitteln (z.B. Ester und Ketone) und hochsiedenden aromatischen Kohlenwasserstoffen eingesetzt. Die Polyisocyanate werden dagegen bevorzugt in hochsiedenden aromatischen Kohlenwasserstoffen gelöst. In der europäischen Patentanmeldung EP-A-0 771 599 werden Formulierungen beschrieben, bei denen durch Verwendung von Fettsäuremethylestern ganz oder zumindest weitgehend auf aromatische Lösungsmittel verzichtet wird. Die Fettsäuremethylester werden dabei entweder als Alleinlösungsmittel oder unter Zusatz von polaritätserhöhenden Lösungsmitteln (Phenol-Komponente) bzw. aromatischen Lösungsmitteln (Isocyanat-Komponente) eingesetzt. Die mit diesen Bindemittelsystemen hergestellten Kerne lassen sich besonders leicht aus den Formwerkzeugen entfernen. In the two patents mentioned, phenolic resins are used as polyols used by condensation of phenol with aldehydes, preferably Formaldehyde, in the liquid phase at temperatures up to approx. 130 ° C in Presence of catalytic amounts of metal ions can be obtained. In US-A-3,485,797 the preparation of such phenolic resins is described in detail. Besides unsubstituted phenol, substituted phenols, preferably o-cresol and p-nonylphenol (e.g., EP-A-183,782). When further reaction component can according to EP-B-0177771 in the Production of phenolic resins aliphatic monoalcohols with one to eight Carbon atoms are used. By the alkoxylation should the Binder systems have increased thermal stability. When Solvents for the phenolic component are predominantly mixtures from high boiling point polar solvents (e.g., esters and ketones) and high-boiling aromatic hydrocarbons used. The On the other hand, polyisocyanates are preferred in high-boiling aromatic Hydrocarbons dissolved. In European Patent Application EP-A-0 771 599 formulations are described in which by use of fatty acid methyl esters wholly or at least largely aromatic Solvent is omitted. The fatty acid methyl esters are included either as a sole solvent or with the addition of polarity increasing Solvents (phenol component) or aromatic solvents (Isocyanate component) used. The with these binder systems made cores can be particularly easily from the molds remove.

In der Praxis zeigen die entsprechend EP-A-0 771 599 formulierten Bindemittelsysteme jedoch einen gravierenden Nachteil: Beim Abguß entwickeln sie vermehrt Qualm und Rauch, so daß sie in vielen Gießereien nicht über das Versuchsstadium hinaus eingesetzt wurden.In practice, those formulated according to EP-A-0 771 599 Binder systems, however, have a serious disadvantage: during casting They develop more smoke and smoke, so they found in many foundries were not used beyond the experimental stage.

Um die immer höheren Umweltstandards und Arbeitsschutzanforderungen zu erfüllen, besteht seit einigen Jahren ein wachsendes Interesse an Bindemittelsystemen, die keine oder nur wenig aromatische Kohlenwasserstoffe enthalten.To meet the ever higher environmental standards and health and safety requirements meet, there has been a growing interest for some years Binder systems that have little or no aromatic Contain hydrocarbons.

Es war daher die Aufgabe der vorliegenden Erfindung, ein aromatenarmes bzw. -freies Bindemittelsystem zu entwickeln. Es ist weiterhin eine Aufgabe der Erfindung, ein Bindemittelsystem zur Verfügung stellen, das beim Abgießen eine geringe Qualmbildung aufweist. Die mit Hilfe dieses Bindemittelsystems hergestellten Formkörper sollen zudem eine gute Biegefestigkeit, vor allem Sofortfestigkeit, aufweisen.It was therefore the object of the present invention, a low-aromatics or develop a free binder system. It is still a task of the invention to provide a binder system, which in the Casting has a low smoke formation. The with the help of this Binder system produced moldings should also have a good Bending strength, especially instant resistance, have.

Diese Aufgabe wurde gelöst durch ein Bindemittelsystem umfassend eine Phenolharzkomponente und eine Polyisocyanatkomponente gekennzeichnet dadurch, daß die Phenolharzkomponente und/oder die Polyisocyanat-Komponente einen Fettsäureester umfaßt und die Phenolharzkomponente ein alkoxy-modifiziertes Phenolharz umfaßt, wobei weniger als 25 mol-% der Hydroxymethylgruppen im Phenolharz durch einen primären oder sekundären aliphatischen Alkohol mit 1 bis 10 Kohlenstoffatomen verethert sind und wobei der Lösungsmittelanteil der Phenolharzkomponente höchstens 40 Gew.-% beträgt.This object has been achieved by a binder system comprising a Phenolic resin component and a polyisocyanate component in that the phenolic resin component and / or the polyisocyanate component comprises a fatty acid ester and the phenolic resin component comprises an alkoxy-modified phenolic resin wherein less than 25 mol% of the hydroxymethyl groups in the phenolic resin a primary or secondary aliphatic alcohol of 1 to 10 Are etherified carbon atoms and wherein the solvent content of the Phenolic resin component is at most 40 wt .-%.

Weiterhin betrifft die Erfindung Formmassen, die Aggregate und bis zu 15 Gew.-% bezogen auf das Gewicht der Aggregate eines erfindungsgemäßen Bindemittelsystems umfassen.Furthermore, the invention relates to molding compositions, the aggregates and up to 15 Wt .-% based on the weight of the aggregates of an inventive Binder system include.

Die Erfindung betrifft ebenfalls Verfahren zur Herstellung eines Gießformteils umfassend

  • a. Vermischen von Aggregaten mit dem erfindungsgemäßen Bindemittelsystem in einer bindenden Menge von bis zu 15 Gew.-%, bezogen auf die Menge der Aggregate;
  • b. Einbringen des in Schritt (a) erhaltenen Gießgemischs in eine Form;
  • c. Härten des Gießgemischs in der Form, um eine selbsttragende Form zu erhalten; und
  • d. anschließendes Entfernen des geformten Gießgemischs von Schritt (c) aus der Form und weiteres Härten, wodurch man ein hartes, festes, ausgehärtetes Gießformteil erhält.
  • The invention also relates to methods for producing a mold part comprising
  • a. Mixing aggregates with the binder system according to the invention in a binding amount of up to 15% by weight, based on the amount of the aggregates;
  • b. Introducing the casting mixture obtained in step (a) into a mold;
  • c. Curing the foundry mixture in the mold to obtain a self-supporting form; and
  • d. then removing the molded casting mix from step (c) from the mold and further curing, thereby obtaining a hard, solid, cured casting part.
  • Das so erhaltene Gießformteil kann erfindungsgemäß zum Gießen von Metall verwendet werden.The casting molding thus obtained can according to the invention for casting metal be used.

    Erfindungswesentlich ist die Wahl des alkoxy-modifizierten Phenolharzes, das eine niedrige Viskosität und günstige Polarität aufweist. Erfindungsgemäß ermöglicht das alkoxy-modifizierte Phenolharz, die benötigte Lösungsmittelmenge insgesamt sowohl in der Phenolharzkomponente als auch in der Isocyanatkomponente zu reduzieren. Ferner kann auf die Verwendung von aromatischen Kohlenwasserstoffen in einer oder beiden Bindemittelkomponenten verzichtet werden. Durch die Kombination des alkoxy-modifizierten Phenolharzes mit sauerstoffreichen, polaren, organischen Lösungsmitteln werden bei reduzierter Qualmbildung verbesserte Sofortfestigkeiten erzielt. Der Zusatz von Fettsäureester wirkt sich positiv auf die Trennwirkung und die Feuchtebeständigkeit aus.Essential to the invention is the choice of the alkoxy-modified phenolic resin, the has a low viscosity and favorable polarity. According to the invention allows the alkoxy-modified phenolic resin that needed Total solvent amount in both the phenolic resin component as also reduce in the isocyanate component. Furthermore, on the Use of aromatic hydrocarbons in one or both Binder components are dispensed with. By combining the alkoxy-modified phenolic resin with oxygen-rich, polar, organic Solvents are improved with reduced smoke formation Achieved instant strength. The addition of fatty acid ester has a positive effect the release effect and the moisture resistance.

    Phenolharze werden durch Kondensation von Phenolen und Aldehyden hergestellt (Ullmann's Encyclopedia of Industrial Chemistry, Bd. A19, page 371 ff, 5. Auflage, VCH Verlag, Weinheim). Im Rahmen dieser Erfindung können neben Phenol auch substituierte Phenole und Gemische hiervon eingesetzt werden. Geeignet sind alle herkömmlich verwendeten substituierten Phenole. Die Phenolverbindungen sind entweder in beiden ortho-Positionen oder in einer ortho- und in der para-Position nicht substituiert, um die Polymerisation zu ermöglichen. Die verbleibenden Ringkohlenstoffe können substituiert sein. Die Wahl des Substituenten ist nicht besonders beschränkt sofern der Substituent die Polymerisation des Phenols und des Aldehyds nicht nachteilig beeinflußt. Beispiele substituierter Phenole sind alkyl-substituierte Phenole, aryl-substituierte Phenole, cycloalkyl-substituierte Phenole, alkenyl-substituierte Phenole, alkoxy-substituierte Phenole, aryloxy-substituierte Phenole und halogen-substituierte Phenole.Phenolic resins are made by condensation of phenols and aldehydes (Ullmann's Encyclopedia of Industrial Chemistry, Vol. A19, page 371 ff, 5th edition, VCH Verlag, Weinheim). In the context of this invention Besides phenol, substituted phenols and mixtures thereof may also be used be used. Suitable are all conventionally used substituted phenols. The phenolic compounds are either in both ortho positions or unsubstituted in an ortho and in the para position, to allow the polymerization. The remaining ring carbons may be substituted. The choice of the substituent is not particular if the substituent limited the polymerization of the phenol and the Aldehyds are not adversely affected. Examples of substituted phenols are alkyl-substituted phenols, aryl-substituted phenols, cycloalkyl-substituted Phenols, alkenyl-substituted phenols, alkoxy-substituted phenols, aryloxy-substituted Phenols and halogen-substituted phenols.

    Die obengenannten Substituenten haben 1 bis 26, bevorzugt 1 bis 12, Kohlenstoffatome. Beispiele geeigneter Phenole neben den besonders bevorzugten nicht substituierten Phenolen sind o-Kresol, m-Kresol, p-Kresol, 3,5-Xylol, 3,4-Xylol, 3,4,5-Trimethylphenol, 3-Ethylphenol, 3,5-Diethylphenol, p-Butylphenol, 3,5-Dibutylphenol, p-Amylphenol, Cyclohexylphenol, p-Octylphenol, 3,5-Dicyclohexylphenol, p-Crotylphenol, p-Phenylphenol, 3,5-Dimethoxyphenol, 3,4,5-Trimethoxyphenol, p-Ethoxyphenol, p-Butoxyphenol, 3-Methyl-4-methoxyphenol und p-Phenoxyphenol. Besonders bevorzugt ist Phenol selbst. Die Phenole können ebenfalls durch die allgemeine Formel beschrieben werden:

    Figure 00050001
    wobei A, B und C Wasserstoff, Alkylradikale, Alkoxyradikale oder Halogen sein können.The abovementioned substituents have 1 to 26, preferably 1 to 12, carbon atoms. Examples of suitable phenols besides the most preferred unsubstituted phenols are o-cresol, m-cresol, p-cresol, 3,5-xylene, 3,4-xylene, 3,4,5-trimethylphenol, 3-ethylphenol, 3,5 Diethylphenol, p-butylphenol, 3,5-dibutylphenol, p-amylphenol, cyclohexylphenol, p-octylphenol, 3,5-dicyclohexylphenol, p-crotylphenol, p-phenylphenol, 3,5-dimethoxyphenol, 3,4,5-trimethoxyphenol , p-ethoxyphenol, p-butoxyphenol, 3-methyl-4-methoxyphenol and p-phenoxyphenol. Particularly preferred is phenol itself. The phenols can also be described by the general formula:
    Figure 00050001
    where A, B and C may be hydrogen, alkyl radicals, alkoxy radicals or halogen.

    Als Aldehyd wird erfindungsgemäß Formaldehyd eingesetzt. As aldehyde according to the invention Formaldehyde used.

    Besonders bevorzugt ist Formaldehyd entweder in seiner wäßrigen Form oder als Paraformaldehyd.Particularly preferred is formaldehyde either in its aqueous form or as paraformaldehyde.

    Um die erfindungsgemäßen Phenolharze zu erhalten, sollte eine mindestens äquivalente Molanzahl an Formaldehyd, bezogen auf die Molanzahl der Phenolkomponente, eingesetzt werden. Bevorzugt beträgt das Molverhältnis Formaldehyd:Phenol also mindestens 1:1,0, besonders bevorzugt mindestens 1:0,58.In order to obtain the phenolic resins according to the invention, an at least equivalent number of moles of formaldehyde, based on the number of moles of Phenol component, can be used. The molar ratio is preferably Formaldehyde: Phenol, therefore, at least 1: 1.0, more preferably at least 1: 0.58.

    Um alkoxy-modifizierte Phenolharze zu erhalten, werden primäre und sekundäre aliphatische Alkohole mit einer OH-Gruppe und mit 1 bis 10 Kohlenstoffatomen eingesetzt. Geeignete primäre oder sekundäre Alkohole umfassen z.B. Methanol, Ethanol, n-Propanol, iso-Propanol, n-Butanol und Hexanol. Bevorzugt sind Alkohole mit 1 bis 8 Kohlenstoffatomen, insbesondere Methanol und Butanol.To obtain alkoxy-modified phenolic resins, primary and secondary aliphatic alcohols having one OH group and from 1 to 10 Carbon atoms used. Suitable primary or secondary alcohols include e.g. Methanol, ethanol, n-propanol, iso-propanol, n-butanol and Hexanol. Preference is given to alcohols having 1 to 8 carbon atoms, especially methanol and butanol.

    Die Herstellung alkoxy-modifizierter Phenolharze ist in EP-B-0 177 871 beschrieben. Sie können entweder nach dem Ein-Stufen- oder Zwei-Stufen-Verfahren hergestellt werden.The preparation of alkoxy-modified phenolic resins is described in EP-B-0 177 871 described. You can either use the one-step or two-step process getting produced.

    Bei dem Ein-Stufen-Verfahren werden die Phenolkomponente, der Formaldehyd und der Alkohol in Gegenwart eines geeigneten Katalysators zur Reaktion gebracht. Bei dem Zwei-Stufen-Verfahren wird zuerst ein nicht-modifiziertes Harz hergestellt, das anschließend mit Alkohol behandelt wird. In the one-step process, the phenol component, the formaldehyde and the alcohol in the presence of a suitable catalyst for the reaction brought. In the two-step process, first, a non-modified Resin prepared, which is then treated with alcohol.

    Geeignete Katalysatoren sind Salze zweiwertiger lonen von Mn, Zn, Cd, Mg, Co, Ni, Fe, Pb, Ca und Ba. Bevorzugt wird Zinkacetat verwendet.Suitable catalysts are salts of divalent ions of Mn, Zn, Cd, Mg, Co, Ni, Fe, Pb, Ca and Ba. Preferably, zinc acetate is used.

    Die Alkoxylierung führt zu Harzen mit einer geringen Viskosität. Die Harze weisen hauptsächlich ortho-ortho Benzyletherbrücken auf und weisen zudem in ortho- und para-Stellung zur phenolischen OH-Gruppe Alkoxymethylengruppen der allgemeinen Formel -(CH2O)nR auf. Hierbei ist R die Alkylgruppe des Alkohols und n eine kleine ganze Zahl im Bereich von 1 bis 5.The alkoxylation leads to resins with a low viscosity. The resins have mainly ortho-ortho Benzyletherbrücken and also have ortho and para to the phenolic OH group alkoxymethylene groups of the general formula - (CH 2 O) n R on. Here, R is the alkyl group of the alcohol and n is a small integer in the range of 1 to 5.

    Alle Lösungsmittel, die konventionell in Bindemittelsystemen für die Gießereitechnik Verwendung finden, können in den erfindungsgemäßen Systemen eingesetzt werden. Es ist sogar möglich, in größeren Anteilen aromatische Kohlenwasserstoffe als Lösungsmittelbestandteil zu verwenden, nur werden damit die eingangs erwähnten, möglicherweise umwelt- und gesundheitsgefährdenden Lösungsmittel nicht vermieden. Als Lösungsmittel für die Phenolharzkomponente werden deshalb bevorzugt sauerstoffreiche, polare, organische Lösungsmittel verwendet. Geeignet sind vor allem Dicarbonsäureester, Glykoletherester, Glykoldiester, Glykoldiether, cyclische Ketone, cyclische Ester (Lactone) oder cyclische Carbonate. Bevorzugt werden Dicarbonsäureester, cyclische Ketone und cyclische Carbonate verwendet. Dicarbonsäureester weisen die Formel R1OOC-R2-COOR1 auf, wobei R1 jeweils unabhängig voneinander eine Alkylgruppe mit 1-12 (bevorzugt 1-6) Kohlenstoffatomen darstellen und R2 eine Alkylengruppe mit 1-4 Kohlenstoffatome ist. Beispiele sind Dimethylester von Carbonsäuren mit 4 bis 6 Kohlenstoffatomen, die z.B. unter der Bezeichnung Dibasic Ester von DuPont erhältlich sind. Glykoletherester sind Verbindungen der Formel R3-O-R4-OOCR5, wobei R3 eine Alkylgruppe mit 1-4 Kohlenstoffatomen darstellt, R4 eine Alkylengruppe mit 2-4 Kohlenstoffatomen ist und R5 eine Alkylgruppe mit 1-3 Kohlenstoffatomen ist (z.B. Butylglykolacetat), bevorzugt sind Glykoletheracetate. Glykoldiester weisen entsprechend die allgemeine Formel R5COO-R4-OOCR5 auf, wobei R4 und R5 wie oben definiert sind und die Reste R5 jeweils unabhängig voneinander ausgewählt werden (z.B. Propylenglykoldiacetat), bevorzugt sind Glykoldiacetate. Glykoldiether lassen sich durch die Formel R3-O-R4-O-R3 charakterisieren, in der R3 und R4 wie oben definiert sind und die Reste R3 jeweils unabhängig voneinander ausgewählt werden (z.B. Dipropylenglykoldimethylether). Cyclische Ketone, cyclische Ester und cyclische Carbonate mit 4-5 Kohlenstoffatome sind ebenfalls geeignet (z.B. Propylencarbonat). Die Alkyl- und Alkylengruppen können jeweils verzweigt oder unverzweigt sein. Diese organischen polaren Lösungsmittel werden bevorzugt entweder als Alleinlösungsmittel für das Phenolharz oder in Kombination mit Fettsäureestern verwendet, wobei der Gehalt an den sauerstoffreichen Lösungsmitteln im Lösungsmittelgemisch überwiegen sollte. Der Gehalt an sauerstoffreichen Lösungsmitteln sollte somit mehr als 50 Gew.-%, vorzugsweise mehr als 55 Gew.-% betragen.All solvents which are conventionally used in binder systems for foundry technology can be used in the systems according to the invention. It is even possible to use aromatic hydrocarbons as a solvent component in larger proportions, but this does not avoid the above-mentioned, potentially environmentally and health-endangering solvents. As solvents for the phenolic resin component therefore oxygen-rich, polar, organic solvents are preferably used. Particularly suitable are dicarboxylic acid esters, glycol ether esters, glycol diesters, glycol diethers, cyclic ketones, cyclic esters (lactones) or cyclic carbonates. Dicarboxylic acid esters, cyclic ketones and cyclic carbonates are preferably used. Dicarboxylic acid esters have the formula R 1 OOC-R 2 -COOR 1 , wherein each R 1 independently represents an alkyl group having 1-12 (preferably 1-6) carbon atoms and R 2 is an alkylene group having 1-4 carbon atoms. Examples are dimethyl esters of carboxylic acids having 4 to 6 carbon atoms which are obtainable, for example, under the name Dibasic Ester from DuPont. Glycol ether esters are compounds of the formula R 3 -OR 4 -OOCR 5 where R 3 is an alkyl group of 1-4 carbon atoms, R 4 is an alkylene group of 2-4 carbon atoms and R 5 is an alkyl group of 1-3 carbon atoms (eg butyl glycol acetate ), preferred are glycol ether acetates. Glycol diesters correspondingly have the general formula R 5 COO-R 4 -OOCR 5 , wherein R 4 and R 5 are as defined above and the radicals R 5 are each independently selected (eg propylene glycol diacetate), glycol diacetates are preferred. Glycol diethers can be characterized by the formula R 3 -OR 4 -OR 3 in which R 3 and R 4 are as defined above and the radicals R 3 are each independently selected (eg dipropylene glycol dimethyl ether). Cyclic ketones, cyclic esters and cyclic carbonates of 4-5 carbon atoms are also suitable (eg, propylene carbonate). The alkyl and alkylene groups may each be branched or unbranched. These organic polar solvents are preferably used either as a sole solvent for the phenolic resin or in combination with fatty acid esters, wherein the content of the oxygen-rich solvents in the solvent mixture should predominate. The content of oxygen-rich solvents should thus be more than 50% by weight, preferably more than 55% by weight.

    Positiv auf die Qualmentwicklung wirkte sich die Maßnahme aus, den Gesamtgehalt an Lösungsmitteln im Bindemittelsystem zu reduzieren. Während herkömmliche Phenolharze überwiegend ca. 45 Gew.-% und teilweise bis zu 55 Gew.-% Lösungsmittel enthalten, um eine verarbeitungsgerechte Viskosität (bis ca. 400 mPa·s) zu erreichen, kann durch Verwendung eines erfindungsgemäßen niedrigviskosen Phenolharzes der Lösungsmittelanteil in der Phenol-Komponente auf höchstens 40 Gew.-%, bevorzugt sogar auf höchstens 35 Gew.-% begrenzt werden. Die dynamische Viskosität wird z.B. nach dem Brookfield Drehspindel Verfahren bestimmt.The measure had a positive effect on the development of quality, the To reduce the total content of solvents in the binder system. While conventional phenolic resins predominantly about 45 wt .-% and partially up to 55 wt .-% solvent to a Processing-compatible viscosity (up to about 400 mPa · s) can be achieved by Use of a low-viscosity phenolic resin of the invention Solvent content in the phenol component to at most 40 wt .-%, preferably even limited to at most 35 wt .-%. The dynamic Viscosity is e.g. determined by the Brookfield rotary spindle method.

    Werden herkömmliche nicht alkoxy-modifizierte Phenolharze eingesetzt, so liegt die Viskosität bei reduziertem Lösungsmittelanteil weit außerhalb des anwendungstechnisch günstigen Bereichs von bis zu ca. 400 mPa·s. Teilweise ist auch die Löslichkeit so schlecht, daß bei Raumtemperatur Phasentrennung beobachtet wird. Gleichzeitig sinken die Sofortfestigkeiten der mit diesen Bindemittelsystemen hergestellten Kerne auf ein sehr niedriges Niveau. Geeignete Bindemittelsysteme weisen eine Sofortfestigkeit von mindestens 150 N/cm2 bei einer verwendeten Menge von je 0,8 Gewichtsteilen Phenolharzkomponente und Isocyanatkomponente, bezogen auf 100 Gewichtsteile Aggregat, wie z.B. Quarzsand H 32 auf (s. EP-A-0 771 599 oder DE-A-4 327 292).If conventional non-alkoxy-modified phenolic resins are used, the viscosity at a reduced solvent content is far outside the range of application-favorable ranges of up to about 400 mPa · s. Partly, the solubility is so poor that phase separation is observed at room temperature. At the same time, the instant strengths of the cores made with these binder systems are reduced to a very low level. Suitable binder systems have an instantaneous strength of at least 150 N / cm 2 at a used amount of each 0.8 parts by weight of phenolic resin component and isocyanate component, based on 100 parts by weight of aggregate, such as quartz sand H 32 (see EP-A-0 771 599 or DE -A-4 327 292).

    Der Zusatz von Fettsäureester zu dem Lösungsmittel der Phenolkomponente führt zu besonders guten Trenneigenschaften. Geeignet sind Fettsäuren z.B. mit 8 bis 22 Kohlenstoffen, die mit einem aliphatischen Alkohol verestert sind. Üblicherweise werden Fettsäuren natürlichen Ursprungs, wie z.B. aus Tallöl, Rapsöl, Sonnenblumenöl, Keimöl und Kokosöl, verwendet. Statt den natürlichen Ölen, die meist Gemische verschiedener Fettsäuren darstellen, können selbstverständlich auch einzelne Fettsäuren wie z.B. Palmitinfettsäure oder Myristinfettsäure eingesetzt werden.The addition of fatty acid ester to the solvent of the phenolic component leads to particularly good release properties. Suitable fatty acids are e.g. with 8 to 22 carbons esterified with an aliphatic alcohol. Usually fatty acids of natural origin, e.g. from tall oil, Rapeseed oil, sunflower oil, germ oil and coconut oil. Instead of the natural oils, which are mostly mixtures of different fatty acids, Of course, single fatty acids, e.g. palmitic or myristic fatty acid.

    Aliphatische Monoalkohole mit 1 bis 12 Kohlenstoffen eignen sich zur Veresterung der Fettsäuren. Bevorzugt sind Alkohole mit 1 bis 10 Kohlenstoffatomen, besonders bevorzugt sind Alkohole mit 4 bis 10 Kohlenstoffatomen. Aufgrund der geringeren Polarität der Fettsäureester, deren Alkoholkomponente 4 bis 10 Kohlenstoffatome aufweist, ist es möglich, den Fettsäureesteranteil zu verringern und die Qualmbildung zu vermindern. Eine Reihe von Fettsäureestern sind kommerziell erhältlich.Aliphatic monoalcohols with 1 to 12 carbons are suitable for Esterification of fatty acids. Preference is given to alcohols having 1 to 10 Carbon atoms, particularly preferred are alcohols having 4 to 10 Carbon atoms. Due to the lower polarity of the fatty acid esters, whose alcohol component has 4 to 10 carbon atoms, it is possible to reduce the fatty acid ester content and reduce the formation of smoke. A number of fatty acid esters are commercially available.

    Überraschenderweise zeigte es sich, daß Fettsäureester, deren Alkoholkomponente 4 bis 10 Kohlenstoffatome enthält, besonders vorteilhaft sind, da sie dem Bindemittelsystem auch dann ausgezeichnete Trenneigenschaften verleihen, wenn ihr Gehalt im Lösungsmittel der Phenolkomponente kleiner als 50 Gew.-% beträgt. Als Beispiele für Fettsäurester mit längeren Alkoholkomponenten seien die Butylester der Ölsäure und der Tallölfettsäure sowie der gemischte Octyl-/Decylester der Tallölfettsäure genannt. Surprisingly, it was found that fatty acid esters whose Alcohol component contains 4 to 10 carbon atoms, particularly advantageous because they are excellent for the binder system Impart release properties when their content in the solvent of the Phenol component is less than 50 wt .-% is. As examples of Fatty acid esters with longer alcohol components are the butyl esters of Oleic acid and tall oil fatty acid and the mixed octyl / decyl ester of Called tall oil fatty acid.

    Durch die Verwendung der erfindungsgemäßen alkoxy-modifizierten Phenolharze lassen sich aromatische Kohlenwasserstoffe als Lösungsmittel der Phenolkomponente vermeiden. Dies ist auf die ausgewogene Polarität der Verbindungen zurückzuführen, die die Verwendung von sauerstoffreichen, organischen, polaren Lösungsmitteln z.B. als Alleinlösungsmittel ermöglichen. Durch die Verwendung der erfindungsgemäßen alkoxy-modifizierten Phenolharze kann die Menge des benötigten Lösungsmittels auf weniger als 35 Gew.-% der Phenolkomponente begrenzt werden. Dies wird durch die geringe Viskosität des Harzes ermöglicht. Die Verwendung von aromatischen Kohlenwasserstoffen kann zudem vermieden werden. Die Verwendung des erfindungsgemäßen Bindemittelsystems mit mindestens 50 Gew.-% der obengenannten sauerstoffreichen, polaren, organischen Lösungsmittel als Bestandteil des Lösungsmittels der Phenolkomponente führt zudem zu einer deutlich verringerten Qualmentwicklung im Vergleich zu herkömmlichen Systemen mit einem hohen Anteil von Fettsäureestern im Lösungsmittel.By the use of the alkoxy-modified Phenolic resins can be aromatic hydrocarbons as a solvent avoid the phenol component. This is due to the balanced polarity of the Due to the use of oxygenated, organic, polar solvents e.g. as a sole solvent. By the use of the alkoxy-modified Phenolic resins can reduce the amount of solvent needed to less than 35 wt .-% of phenol component are limited. This is done by the low viscosity of the resin allows. The use of aromatic Hydrocarbons can also be avoided. The use of the binder system according to the invention with at least 50 wt .-% of above-mentioned oxygen-rich, polar, organic solvent as Part of the solvent of the phenol component also leads to a significantly reduced smoke development compared to conventional Systems with a high proportion of fatty acid esters in the solvent.

    Die zweite Komponente des Bindemittelsystems umfaßt ein aliphatisches, cycloaliphatisches oder aromatisches Polyisocyanat, bevorzugt mit 2 bis 5 Isocyanatgruppen. Je nach den gewünschten Eigenschaften können auch Gemische organischer Isocyanate eingesetzt werden. Geeignete Polyisocyanate umfassen aliphatische Polyisocyanate, wie z.B. Hexamethylendiisocyanat, alicyclische Polyisocyanate wie z.B. 4,4'-Dicyclohexylmethandiisocyanat und Dimethylderivate hiervon. Beispiele geeigneter aromatischer Polyisocyanate sind Toluol-2,4-diisocyanat, Toluol-2,6-diisocyanat, 1,5-Naphthalendiisocyanat, Triphenylmethantriisocyanat, Xylylendiisocyanat und Methylderivate hiervon, Polymethylenpolyphenylisocyanate und Chlorophenylen-2,4-diisocyanat. Bevorzugte Polyisocyanate sind aromatische Polyisocyanate, besonders bevorzugt sind Polymethylenpolyphenylpolyisocyanate wie z.B. Diphenylmethandiisocyanat. The second component of the binder system comprises an aliphatic, cycloaliphatic or aromatic polyisocyanate, preferably with 2 to 5 Isocyanate groups. Depending on the desired properties can also Mixtures of organic isocyanates are used. suitable Polyisocyanates include aliphatic polyisocyanates, e.g. Hexamethylene diisocyanate, alicyclic polyisocyanates such as e.g. 4,4'-dicyclohexylmethane and dimethyl derivatives thereof. Examples suitable aromatic polyisocyanates are toluene-2,4-diisocyanate, toluene-2,6-diisocyanate, 1,5-naphthalene diisocyanate, triphenylmethane triisocyanate, Xylylene diisocyanate and methyl derivatives thereof, Polymethylene polyphenylisocyanate and chlorophenylene-2,4-diisocyanate. Preferred polyisocyanates are aromatic polyisocyanates, especially preferred are polymethylene polyphenyl polyisocyanates, e.g. Diisocyanate.

    In allgemeinen wird 10 - 500 Gew.-% Polyisocyanat bezogen auf das Gewicht des Phenolharzes eingesetzt. Vorzugsweise werden 20 - 300 Gew.-% Polyisocyanat eingesetzt. Flüssige Polyisocyanate können in unverdünnter Form eingesetzt werden, während feste oder viskose Polyisocyanate in organischen Lösungsmitteln gelöst werden. Bis zu 80 Gew.-% der Isocyanat-Komponente können aus Lösungsmittel bestehen. Als Lösungsmittel für das Polyisocyanat werden entweder die oben genannten Fettsäureester oder ein Gemisch aus Fettsäureester und bis zu 50 Gew.-% aromatische Lösungsmittel verwendet. Geeignete aromatische Lösungsmittel sind Naphthalin, alkyl-substituierte Naphthaline, alkyl-substituierte Benzole und Gemische hiervon. Besonders bevorzugt sind aromatische Lösungsmittel, die aus Gemischen der oben genannten aromatischen Lösungsmittel bestehen und einen Siedepunktbereich zwischen 140°C und 230°C besitzen. Vorzugsweise wird kein aromatisches Lösungsmittel verwendet. Bevorzugt wird das Polyisocyanat in einer Menge eingesetzt, so daß die Anzahl der Isocyanatgruppen von 80 bis 120 %, bezogen auf die Anzahl der freien Hydroxylgruppen des Harzes, beträgt.In general, 10-500% by weight of polyisocyanate is by weight used the phenolic resin. Preferably, 20-300% by weight Polyisocyanate used. Liquid polyisocyanates can be undiluted Form while solid or viscous polyisocyanates in be dissolved organic solvents. Up to 80% by weight of the isocyanate component may consist of solvents. As a solvent for the Polyisocyanate will be either the above-mentioned fatty acid esters or a Mixture of fatty acid esters and up to 50% by weight of aromatic solvents used. Suitable aromatic solvents are naphthalene, alkyl-substituted Naphthalenes, alkyl-substituted benzenes and mixtures thereof. Particularly preferred are aromatic solvents consisting of mixtures of consist of above-mentioned aromatic solvents and a Boiling point range between 140 ° C and 230 ° C have. Preferably no aromatic solvent used. This is preferred Polyisocyanate used in an amount such that the number of Isocyanate groups from 80 to 120%, based on the number of free Hydroxyl groups of the resin.

    Neben den bereits erwähnten Bestandteilen können die Bindemittelsysteme konventionelle Zusätze, wie z. B. Silane (US 4,540,724), trocknende Öle (US 4,268,425) oder Komplexbildner (WO 95/03903), beinhalten. Die Bindemittelsysteme werden bevorzugt als Zwei-Komponenten-Systeme angeboten, wobei die Lösung des Phenolharzes eine Komponente darstellt und das Polyisocyanat, gegebenfalls in Lösung, die andere Komponente ist. Die beiden Komponenten werden vereinigt und anschließend mit Sand oder einem ähnlichen Aggregat gemischt, um eine Formmasse herzustellen. Die Formmasse enthält eine wirksam bindende Menge von bis zu 15 Gew.-% des erfindungsgemäßen Bindemittelsystems, bezogen auf das Gewicht der Aggregate. Es ist ebenfalls möglich, die Komponenten zunächst jeweils mit Teilen des Sandes oder Aggregates zu mischen und anschließend diese beiden Mischungen zu vereinigen. Verfahren, um eine gleichmäßige Mischung der Komponenten und des Aggregates zu erzielen, sind dem Fachmann bekannt. Die Mischung kann zusätzlich gegebenenfalls andere konventionelle Zutaten, wie Eisenoxid, gemahlene Flachsfasern, Holzteile, Pech und refraktäre Mehle, enthalten.In addition to the components already mentioned, the binder systems conventional additives, such. B. silanes (US 4,540,724), drying oils (US 4,268,425) or complexing agents (WO 95/03903). The Binder systems are preferred as two-component systems offered, wherein the solution of the phenolic resin is a component and the polyisocyanate, optionally in solution, is the other component. The two components are combined and then sand or a similar aggregate mixed to produce a molding material. The Molding composition contains an effective binding amount of up to 15 wt .-% of binder system according to the invention, based on the weight of Aggregates. It is also possible to use the components first with each Mixing of the sand or aggregate and then this to unite both mixtures. Method to a uniform mixture to achieve the components and the aggregate are those skilled in the art known. In addition, the mixture may optionally contain other conventional Ingredients, such as iron oxide, ground flax fibers, wood pieces, and pitch refractory flours, included.

    Um Gießformteile aus Sand herzustellen, sollte das Aggregat eine genügend große Partikelgröße aufweisen. Dadurch besitzt das Gießformteil eine ausreichende Porösität und flüchtige Verbindungen können während des Gießvorgangs entweichen. Im allgemeinen weisen mindestens 80 Gew.-% und bevorzugt 90 Gew.-% des Aggregates eine durchschnittliche Partikelgröße ≤ 290 µm auf. Die durchschnittliche Partikelgröße des Aggregates sollte zwischen 100 und 300 µm betragen.To make moldings from sand, the aggregate should have enough have large particle size. As a result, the mold part has a Sufficient porosity and volatile compounds may occur during the Casting escape. Generally, at least 80% by weight and preferably 90% by weight of the aggregate an average Particle size ≤ 290 microns on. The average particle size of the Aggregates should be between 100 and 300 μm.

    Für Standard-Gießformteile wird bevorzugt Sand als Aggregatmaterial verwendet, wobei zumindest 70 Gew.-% und bevorzugt mehr als 80 Gew.-% des Sandes Siliciumdioxid sind. Zirkon, Olevin, Aluminosilikatsand und Chromitsand eignen sich ebenfalls als Aggregatmaterialien.For standard molded parts sand is preferred as aggregate material used, wherein at least 70 wt .-% and preferably more than 80 wt .-% of the sand are silica. Zircon, olefin, aluminosilicate sand and Chromite sand are also suitable as aggregate materials.

    Das Aggregatmaterial stellt den Hauptbestandteil bei Gießformteilen. In Gießformteilen aus Sand für Standardanwendungen beträgt der Anteil des Bindemittels im allgemeinen bis zu 10 Gew.-%, häufig zwischen 0,5 und 7 Gew.-%, bezogen auf das Gewicht des Aggregates. Besonders bevorzugt werden 0,6 bis 5 Gew.-% Bindemittel, bezogen auf das Gewicht des Aggregates, verwendet.The aggregate material is the main ingredient in molded parts. In Molded sand moldings for standard applications account for the share of Binder generally up to 10 wt .-%, often between 0.5 and 7 Wt .-%, based on the weight of the aggregate. Especially preferred are 0.6 to 5 wt .-% of binder, based on the weight of Aggregates, used.

    Obwohl das Aggregat vorzugsweise getrocknet eingesetzt wird, können bis zu 0,1 Gew.-%, bezogen auf das Gewicht des Aggregates, an Feuchtigkeit toleriert werden. Das Gießformteil wird gehärtet, so daß es seine äußere Form nach der Entfernung der Gießform behält. Konventionelle flüssige oder gasförmige Härtungssysteme können zum Härten des erfindungsgemäßen Bindemittelsystems verwendet werden. So kann z.B. ein leicht flüchtiges tertiäres Amin wie z.B. Triethylamin oder Dimethylethylamin, wie in US-A-3,409,579 beschrieben, durch das Gießformteil geleitet werden. Es ist weiterhin möglich, ein flüssiges Amin der Formmasse zur Härtung zuzusetzen. Nach dem Entfernen aus der Form wird in an sich bekannter Weise das Gießformteil durch weiteres Härten in den Endzustand überführt.Although the aggregate is preferably dried, up to 0.1 wt .-%, based on the weight of the aggregate, tolerated by moisture become. The mold part is hardened so that it conforms to its external shape the removal of the mold retains. Conventional liquid or gaseous Hardening systems can be used to cure the invention Binder system can be used. Thus, e.g. a volatile one tertiary amine, e.g. Triethylamine or dimethylethylamine as described in US-A-3,409,579 described, are passed through the mold part. It is furthermore possible to add a liquid amine to the molding compound for curing. After removal from the mold is in a conventional manner the Molded part converted by further hardening in the final state.

    In einer bevorzugten Ausführungsform werden Silane der allgemeinen Formel (R'O)3Si der Formmasse vor dem Aushärten zugesetzt. Dabei ist R' ein Kohlenwasserstoffradikal, bevorzugt ein Alkylradikal mit 1-6 Kohlenstoffatomen, und R ein Alkylradikal, ein alkoxy-substituiertes Alkylradikal oder ein Alkylamin-substituiertes Aminradikal mit Alkylgruppen, die 1-6 Kohlenstoffatome besitzen. Der Zusatz von 0,1 bis 2 Gew.-%, bezogen auf das Gewicht des Bindemittelsystems und des Härters, verringert die Feuchtigkeitsempfindlichkeit der Systeme. Beispiele von kommerziell erhältlichen Silanen sind Dow Corning Z6040 und Union Carbide A-187 (γ-Glycidoxypropyltrimethoxysilan), Union Carbide A-1100 (γ-Aminopropyltriethoxysilan), Union Carbide A-1120 (N-β-(Aminoethyl)-γ-aminopropyltrimethoxysilan) und Union Carbide A-1160 (Ureidosilan).In a preferred embodiment, silanes of the general formula (R'O) 3 Si are added to the molding compound before curing. Here, R 'is a hydrocarbon radical, preferably an alkyl radical of 1-6 carbon atoms, and R is an alkyl radical, an alkoxy-substituted alkyl radical or an alkylamine-substituted amine radical having alkyl groups having 1-6 carbon atoms. The addition of 0.1 to 2% by weight, based on the weight of the binder system and the hardener, reduces the moisture sensitivity of the systems. Examples of commercially available silanes are Dow Corning Z6040 and Union Carbide A-187 (γ-glycidoxypropyltrimethoxysilane), Union Carbide A-1100 (γ-aminopropyltriethoxysilane), Union Carbide A-1120 (N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane) and Union Carbide A-1160 (ureidosilane).

    Gegebenenfalls können andere Zusatzstoffe einschließlich Benetzungsmittel und die Verwendung der Sandmischung verlängernde Additive (engl. Benchlife-Additive), wie in US 4,683,252 oder US 4,540,724 beschrieben, verwendet werden. Zusätzliche Formtrennmittel wie z.B. Fettsäuren, Fettalkohole und deren Derivate können eingesetzt werden, werden aber in der Regel nicht benötigt.Optionally, other additives including wetting agents and the use of the sand mixture extending additives (engl. Benchlife additives), as described in US 4,683,252 or US 4,540,724, be used. Additional mold release agents such as e.g. fatty acids, Fatty alcohols and their derivatives can be used, but are used in usually not needed.

    Die Erfindung wird durch die folgenden Beispiele weiter erläutert. The invention is further illustrated by the following examples.

    BeispieleExamples

    Soweit nicht anders angegeben, verstehen sich alle Prozentangaben als Gew.-%.Unless otherwise stated, all percentages are understood as Wt .-%.

    1. Herstellung der Phenolharze1. Preparation of phenolic resins

    In einem mit Rückflußkühler, Thermometer und Rührer ausgestatteten Reaktionsgefäß werden die in Tabelle I aufgeführten Rohstoffe vorgelegt. Unter Rühren wird die Temperatur gleichmäßig auf 105 - 115°C erhöht und so lange gehalten, bis ein Brechungsindex von 1,5590 erreicht ist. Danach wird der Kühler auf Destillation umgestellt und die Temperatur innerhalb einer Stunde auf 124 - 126°C gebracht. Bei dieser Temperatur wird bis zum Erreichen eines Brechungsindex von 1,5940 weiterdestilliert. Danach wird Vakuum angelegt und bei vermindertem Druck bis zu einem Brechungsindex von 1,600 destilliert. Die Ausbeute beträgt ca. 83 % bei Beispiel 1 und ca. 78 % bei Beispiel 2. Beispiel 1 2 nicht erfindungsgemäß erfindungsgemäß Phenol 2130,7 g 1770,6 g Paraformaldehyd 91 % 865,3 g 984,3 g n-Butanol - 279,6 g Zinkacetat-Dihydrat 1,0 g 1,5 g In a reactor equipped with reflux condenser, thermometer and stirrer, the raw materials listed in Table I are presented. With stirring, the temperature is raised evenly to 105-115 ° C and held until a refractive index of 1.5590 is reached. Thereafter, the condenser is switched to distillation and the temperature within one hour at 124 - 126 ° C brought. At this temperature is further distilled until reaching a refractive index of 1.5940. Thereafter, vacuum is applied and distilled under reduced pressure to a refractive index of 1.600. The yield is about 83% in example 1 and about 78% in example 2. example 1 2 not according to the invention inventively phenol 2130.7 g 1770.6 g Paraformaldehyde 91% 865.3 g 984.3 g n-butanol - 279.6 g Zinc acetate dihydrate 1.0 g 1.5 g

    2. Herstellung der Phenolharzlösungen2. Preparation of phenolic resin solutions

    Mit den nach obiger Vorschrift hergestellten Phenolharzen werden die in Tabelle II aufgeführten Lösungen hergestellt. Handelsnamen sind durch (H) gekennzeichnet.

    Figure 00150001
    Figure 00160001
    The phenolic resins prepared according to the above specification are used to prepare the solutions listed in Table II. Trade names are indicated by (H).
    Figure 00150001
    Figure 00160001

    Die Phenolharzlösung 1A separiert nach dem Abkühlen auf Raumtemperatur in zwei Phasen und wird deshalb nicht zu weiteren Prüfungen herangezogen. Die Viskosität der Phenolharzlösungen 1B-1D liegt weit außerhalb des anwendungstechnisch günstigen Bereichs (bis ca. 400 mPa·s)The phenol resin solution 1A separates after cooling to room temperature in two phases and is therefore not used for further tests. The viscosity of the phenol resin solutions 1B-1D is far outside the application-favorable range (up to approx. 400 mPa · s)

    3. Herstellung der Polyisocyanatlösungen3. Preparation of the polyisocyanate solutions

    Als Komponente II der Polyurethan-Bindemittelsysteme werden die in Tabelle III aufgeführten Lösungen hergestellt. Beispiel 3A 3B 3C erfindungsgemäß Diphenylmethandiisocyanat
    (techn. MDI)
    80 % 80 % 80 %
    Forbiol 102 (H) 19,8 % 10 % Forbiol 152 (H) 19,8 % Solvesso 100 (H) 9,8 % Säurechlorid 0,2 % 0,2 % 0,2 %
    As component II of the polyurethane binder systems, the solutions listed in Table III are prepared. example 3A 3B 3C inventively diisocyanate
    (technical MDI)
    80% 80% 80%
    Forbiol 102 (H) 19.8% 10% Forbiol 152 (H) 19.8% Solvesso 100 (H) 9.8% acid chloride 0.2% 0.2% 0.2%

    4.) Herstellung und Prüfung der Formstoff-/Bindemittelsystem-Gemische4.) Preparation and testing of the molding material / binder system mixtures

    Bei der Herstellung der Formstoff-/Bindemittelsystem-Gemische wird wie folgt vorgegangen:In the preparation of the molding material / binder system mixtures, the following is done The procedure:

    Zu 100 Gewichtsteilen Quarzsand H 32 (Quarzwerke GmbH, Frechen) werden nacheinander jeweils 0,5 Gewichtsteile einer der in Tabelle II aufgeführten Phenolharzlösungen und 0,8 Gewichtsteile einer der in Tabelle III aufgeführten Polyisocyanatlösungen zugegeben und in einem Labormischer intensiv vermischt. Mit diesen Gemischen werden Prüfkörper nach DIN 52401 hergestellt, die durch Begasen mit Triethylamin (10 s bei 4 bar Druck, danach 10 s Spülen mit Luft) ausgehärtet werden.To 100 parts by weight of quartz sand H 32 (Quarzwerke GmbH, Frechen) in each case 0.5 parts by weight of one of those listed in Table II Phenolic resin solutions and 0.8 parts by weight of one of those listed in Table III Polyisocyanate added and intensively in a laboratory mixer mixed. With these mixtures are test specimens according to DIN 52401 prepared by gassing with triethylamine (10 s at 4 bar pressure, then 10 s rinsing with air) are cured.

    Die Biegefestigkeiten der Probekörper werden nach der GF-Methode ermittelt. Dabei wird die Biegefestigkeit der Prüfkörper unmittelbar nach ihrer Herstellung (Sofortfestigkeiten) sowie nach 1, 2 und 24 Std. geprüft.The flexural strengths of the specimens are determined by the GF method. The bending strength of the specimens immediately after their Production (immediate strength) as well as tested after 1, 2 and 24 hours.

    Die Ergebnisse sind in Tabelle IV aufgeführt. Versuch 1 2 3 4 5 6 7 8 9 10 11 12 13 Komponente 1 1B 1 C 1D 2A 2B 2C 2D 2E 2F 2G 2H 2D 2D Komponente 2 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3B 3C nicht erfindungsgemäß erfindungsgemäß Festigkeiten (N/cm2) sofort 105 120 140 205 235 225 205 225 200 230 180 190 210 1 h 380 355 390 555 575 565 580 560 555 530 430 580 500 2 h 400 405 400 555 575 565 580 560 570 590 440 585 530 24 h 555 540 530 590 630 610 590 570 570 600 550 590 570 The results are listed in Table IV. attempt 1 2 3 4 5 6 7 8th 9 10 11 12 13 Component 1 1B 1 C 1D 2A 2 B 2C 2D 2E 2F 2G 2H 2D 2D Component 2 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3B 3C not according to the invention inventively Strengths (N / cm 2 ) immediately 105 120 140 205 235 225 205 225 200 230 180 190 210 1 h 380 355 390 555 575 565 580 560 555 530 430 580 500 2 h 400 405 400 555 575 565 580 560 570 590 440 585 530 24 hours 555 540 530 590 630 610 590 570 570 600 550 590 570

    Aus Tabelle III erkennt man:

    • die mit dem herkömmlichen Phenolharz formulierten Bindemittelsysteme (Versuch 1-3) besitzen wesentlich geringere Anfangsfestigkeiten als die erfindungsgemäßen Bindemittelsysteme (Versuche 4-13). Auch der Festigkeitsanstieg ist deutlich langsamer.
    • die Festigkeiten, vor allem die Sofortfestigkeiten, aller erfindungsgemäß formulierten Bindemittelsysteme (Versuche 4-13) sind innerhalb der Genauigkeit der Prüfmethode gleich. Eine Abhängigkeit vom Verhältnis - Fettsäureester/polares Lösungsmittel ist nicht erkennbar.
    • sowohl der Fettsäurebutylester als auch der Fettsäureoctyl-/decylester sind für die Formulierung der erfindungsgemäßen Bindemittelsysteme gleichermaßen geeignet (Versuche 7 und 12)
    • die Kombination mit aromatischen Lösungsmitteln ist ebenso möglich (Versuche 7 und 13)
    From Table III it can be seen:
    • the binder systems formulated with the conventional phenolic resin (Tests 1-3) have significantly lower initial strengths than the binder systems according to the invention (Experiments 4-13). The strength increase is also much slower.
    • the strengths, especially the immediate strengths, of all binder systems formulated according to the invention (Tests 4-13) are the same within the accuracy of the test method. A dependence on the ratio - fatty acid ester / polar solvent is not recognizable.
    • Both the fatty acid butyl ester and the fatty acid octyl / decyl ester are equally suitable for the formulation of the binder systems according to the invention (experiments 7 and 12).
    • the combination with aromatic solvents is also possible (experiments 7 and 13)

    5. Beobachtung der Qualmentwicklung5. Observation of the development of quality

    GF-Prüfriegel werden 1 Minute lang bei 650°C im Ofen gelagert. Nach der Entnahme wird die Qualmentwicklung gegen einen dunklen Hintergrund beobachtet und mit den Noten 10 (sehr stark) - 1 (kaum wahrnehmbar) bewertet.GF test bars are stored in the oven for 1 minute at 650 ° C. After Withdrawal becomes the smoke development against a dark background observed and with the grades 10 (very strong) - 1 (barely perceptible) rated.

    Das Ergebnis ist in Tabelle V aufgelistet. Kerne aus Versuch (Tab. IV) 4 5 6 7 8 9 10 11 12 Komponente 1 2A 2B 2C 2D 2E 2F 2G 2H 2D Komponente 2 3A 3A 3A 3A 3A 3A 3A 3A 3B Bewertung 10 8 8 5 5 5 5 5 5 The result is listed in Table V. Cores from experiment (Tab. IV) 4 5 6 7 8th 9 10 11 12 Component 1 2A 2 B 2C 2D 2E 2F 2G 2H 2D Component 2 3A 3A 3A 3A 3A 3A 3A 3A 3B rating 10 8th 8th 5 5 5 5 5 5

    Aus Tabelle V geht hervor, daß die Qualmentwicklung nachläßt, wenn man die Fettsäureester zugunsten von sauerstoffreichen Lösungsmittel reduziert.From Table V shows that the development of smoke subsides, if the Fatty acid ester reduced in favor of oxygen-rich solvent.

    Gußversuche mit Kernen, die der Zusammensetzung aus den Versuchen 4 und 7 entsprachen, bestätigten das obige Ergebnis.Casting experiments with cores containing the composition of experiments 4 and 7, confirmed the above result.

    Claims (8)

    1. Binder system comprising one phenol resin component and one polyisocyanate component, characterised in that the phenol resin component and/ or the polyisocyanate component comprises a fatty acid ester and the phenol resin component comprises an alkoxy-modified phenol resin, less than 25% by mol of the hydroxymethyl groups in the phenol resin being etherified by means of a primary or secondary aliphatic monoalcohol with 1 to 10 carbon atoms, and the solvent component of the phenol resin component being at most 40% by weight.
    2. Binder system according to claim 1, the phenol resin component comprising a polar, organic solvent, the polar organic solvent being selected from dicarbonic acid ester, glycol ether ester, glycol diester, glycol diether, cyclic ketones, cyclic esters and cyclic carbonates.
    3. Binder system according to claim 2, the phenol resin component comprising a fatty acid ester.
    4. Binder system according to claim 3, the radical of the fatty acid ester, which is derived from the alcohol, containing 1 to 12 carbon atoms.
    5. Moulding compound comprising aggregates and an effective binding quantity of up to 15% by weight relative to the weight of the aggregates of a binder system according to one of the claims 1 to 4.
    6. Method for producing a casting mould part comprising
      a. mixing of aggregates with the binder system according to one of the claims 1 to 4 in a binding quantity of up to 15% by weight relative to the quantity of aggregates;
      b. introduction of the casting mixture obtained in step (a) into a mould;
      c. hardening of the casting mixture in the mould in order to obtain a self-supporting mould; and
      d. subsequent removal of the moulded casting mixture of step (c) from the mould and further hardening, as a result of which a hard, solid, cured casting mould part is obtained.
    7. Method according to claim 6, in which the casting mixture is hardened by means of treatment of the casting mixture with an amine.
    8. Method for casting a metal, comprising:
      a. production of a casting mould part according to one of the claims 6 or 7;
      b. casting of metal in the fluid state in or around this mould;
      c. cooling and setting of the metal; and
      d. subsequent separation of the cast object.
    EP99957988A 1998-11-04 1999-11-04 Binder system for producing polyurethane-based cores and moulds Expired - Lifetime EP1137500B9 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19850833 1998-11-04
    DE19850833A DE19850833C2 (en) 1998-11-04 1998-11-04 Binder system for the production of cores and molds based on polyurethane, their use and method for producing a mold part based on polyurethane
    PCT/EP1999/008419 WO2000025957A1 (en) 1998-11-04 1999-11-04 Binder system for producing polyurethane-based cores and melting moulds

    Publications (3)

    Publication Number Publication Date
    EP1137500A1 EP1137500A1 (en) 2001-10-04
    EP1137500B1 EP1137500B1 (en) 2004-03-24
    EP1137500B9 true EP1137500B9 (en) 2005-12-14

    Family

    ID=7886667

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99957988A Expired - Lifetime EP1137500B9 (en) 1998-11-04 1999-11-04 Binder system for producing polyurethane-based cores and moulds

    Country Status (16)

    Country Link
    EP (1) EP1137500B9 (en)
    KR (1) KR100871534B1 (en)
    AT (1) ATE262387T1 (en)
    AU (1) AU757432B2 (en)
    BG (1) BG64942B1 (en)
    BR (1) BR9915076A (en)
    CA (1) CA2349878C (en)
    CZ (1) CZ296809B6 (en)
    DE (2) DE19850833C2 (en)
    DK (1) DK1137500T3 (en)
    ES (1) ES2217841T3 (en)
    HU (1) HU223611B1 (en)
    NO (1) NO20012166L (en)
    PL (1) PL191929B1 (en)
    TR (1) TR200101240T2 (en)
    WO (1) WO2000025957A1 (en)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102013004663B4 (en) 2013-03-18 2024-05-02 Ask Chemicals Gmbh Binder system, molding material mixture containing the same, process for producing the molding material mixture, process for producing a mold part or casting core, mold part or casting core and use of the mold part or casting core thus obtainable for metal casting

    Families Citing this family (26)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102004057671B4 (en) * 2004-11-29 2007-04-26 Hüttenes-Albertus Chemische Werke GmbH Phenol-formaldehyde resins and process for their preparation
    DE102006037288B4 (en) * 2006-08-09 2019-06-13 Ask Chemicals Gmbh Molding material mixture containing Cardol and / or Cardanol in foundry binders based on polyurethane, process for the preparation of a molded article and use thereof
    PL1955792T3 (en) 2007-01-22 2019-11-29 Arkema France Process for making foundry shaped cores and for casting metals
    DE102007031376A1 (en) 2007-07-05 2009-01-08 GTP Schäfer Gießtechnische Produkte GmbH Cold-box process to produce e.g. molds, comprises contacting a composition comprising molding mixture and binder system in a tool, contacting the unhardened molds with a hardening catalyst containing water or mixture of water and amine
    DE102008007181A1 (en) 2008-02-01 2009-08-06 Ashland-Südchemie-Kernfest GmbH Use of branched alkanediolcarboxylic diesters in polyurethane-based foundry binders
    DE102008025311A1 (en) 2008-05-27 2009-12-03 Ashland-Südchemie-Kernfest GmbH Odor and pollutant-absorbing coating material for box-bonded metal casting
    DE102010032734A1 (en) 2010-07-30 2012-02-02 Ashland-Südchemie-Kernfest GmbH Polyurethane-based binder system for the production of cores and molds using cyclic formals, molding mix and process
    DE102010046981A1 (en) 2010-09-30 2012-04-05 Ashland-Südchemie-Kernfest GmbH Binder containing substituted benzenes and naphthalenes for the production of cores and molds for metal casting, molding mix and process
    DE102010051567A1 (en) 2010-11-18 2012-05-24 Ashland-Südchemie-Kernfest GmbH Binder, useful e.g. to produce molding mixtures, comprises polyol compounds having at least two hydroxy groups per molecule containing at least one phenolic resin and isocyanate compounds having at least two isocyanate groups per molecule
    DE102013004662A1 (en) 2013-03-18 2014-09-18 Ask Chemicals Gmbh Use of monoesters of epoxidized fatty acids in PU binders for the production of cores and molds for metal casting
    DE102013004661A1 (en) 2013-03-18 2014-09-18 Ask Chemicals Gmbh Use of carboxylic acids and fatty amines in PU binders for the production of cores and molds for metal casting
    DE102014110189A1 (en) 2014-07-18 2016-01-21 Ask Chemicals Gmbh CO catalysts for polyurethane cold box binders
    DE102014117284A1 (en) 2014-11-25 2016-05-25 Ask Chemicals Gmbh Polyurethane binder system for producing cores and casting molds, molding material mixture containing the binder and a method using the binder
    DE102015102952A1 (en) 2015-03-02 2016-09-08 Ask Chemicals Gmbh Process for curing polyurethane binders in molding material mixtures by introducing tertiary amines and solvents and kit for carrying out the process
    DE102015107016A1 (en) 2015-05-05 2016-06-23 Ask Chemicals Gmbh Process for reducing free formaldehyde in benzyl ether resins
    BR112018008817B1 (en) 2015-10-30 2022-06-21 ASK Chemicals LLC Binder system for mixing molding material, as well as mixing molding material and method for producing mold or core for molten metal casting
    DE102016115947A1 (en) 2016-08-26 2018-03-01 Ask Chemicals Gmbh Process for the layered construction of moldings with a phenolic resin-polyurethane-based binder system
    DE102016123621A1 (en) 2016-12-06 2018-06-07 Ask Chemicals Gmbh Polyurethane binder with improved flowability
    DE102016125702A1 (en) 2016-12-23 2018-06-28 Ask Chemicals Gmbh Component system for the production of cores and molds
    DE102016125700A1 (en) 2016-12-23 2018-06-28 Ask Chemicals Gmbh Benzyl ether-type phenol resin-based binder containing free phenol and hydroxybenzyl free alcohols
    DE102017112681A1 (en) 2017-06-08 2018-12-13 Ask Chemicals Gmbh Process for the preparation of three-dimensionally layered shaped bodies
    DE102018100694A1 (en) 2018-01-12 2019-07-18 Ask Chemicals Gmbh Formaldehyde-reduced phenolic resin binder
    DE102020003562A1 (en) 2020-06-15 2021-12-16 Ask Chemicals Gmbh Method for building up a cured three-dimensional shaped body in layers, shaped body which can be obtained thereby, and its use
    DE102020118314A1 (en) 2020-07-10 2022-01-13 Ask Chemicals Gmbh Means for reducing sand adhesions
    DE102021003265A1 (en) 2021-06-24 2022-12-29 Ask Chemicals Gmbh COATED GRANULAR SUBSTANCE, METHOD OF COATING A GRANULAR SUBSTANCE, AND USE OF A BINDING AGENT TO COATING A GRANULAR SUBSTANCE
    DE102021003264A1 (en) 2021-06-24 2022-12-29 Ask Chemicals Gmbh TWO-COMPONENT POLYURETHANE COMPOSITIONS

    Family Cites Families (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4657950A (en) * 1984-10-12 1987-04-14 Acme Resin Corporation Refractory binders
    US4546124A (en) * 1984-10-12 1985-10-08 Acme Resin Corporation Polyurethane binder compositions
    US4848442A (en) * 1984-10-12 1989-07-18 Acme Resin Corporation Resin binders for foundry sand cores and molds
    US5101001A (en) * 1989-12-21 1992-03-31 Ashland Oil, Inc. Polyurethane-forming foundry binders and their use
    DE4135572A1 (en) * 1991-10-29 1993-05-06 Bayer Ag, 5090 Leverkusen, De HYDROPHOBIC POLYURETHANE SYSTEMS
    GB2267524B (en) * 1992-06-04 1995-07-12 Chas Braithwaite Cycle parking fixture
    DE4327292C2 (en) * 1993-08-13 1996-04-25 Ashland Suedchemie Kernfest Binder for the production of foundry cores and molds and their use
    AU717143B2 (en) * 1996-07-17 2000-03-16 Ashland Licensing And Intellectual Property Llc Benzylic ether phenolic resole resins, their preparation, and uses

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102013004663B4 (en) 2013-03-18 2024-05-02 Ask Chemicals Gmbh Binder system, molding material mixture containing the same, process for producing the molding material mixture, process for producing a mold part or casting core, mold part or casting core and use of the mold part or casting core thus obtainable for metal casting

    Also Published As

    Publication number Publication date
    DK1137500T3 (en) 2004-05-10
    TR200101240T2 (en) 2001-10-22
    KR20010113634A (en) 2001-12-28
    BG64942B1 (en) 2006-10-31
    PL191929B1 (en) 2006-07-31
    ES2217841T3 (en) 2004-11-01
    NO20012166L (en) 2001-06-11
    HUP0104315A2 (en) 2002-03-28
    KR100871534B1 (en) 2008-12-05
    CZ296809B6 (en) 2006-06-14
    WO2000025957A1 (en) 2000-05-11
    AU1550900A (en) 2000-05-22
    CA2349878A1 (en) 2000-05-11
    DE19850833C2 (en) 2001-06-13
    EP1137500A1 (en) 2001-10-04
    BR9915076A (en) 2001-10-23
    DE19850833A1 (en) 2000-05-11
    CA2349878C (en) 2009-06-09
    DE59908972D1 (en) 2004-04-29
    HU223611B1 (en) 2004-10-28
    PL348642A1 (en) 2002-06-03
    BG105554A (en) 2001-12-29
    ATE262387T1 (en) 2004-04-15
    HUP0104315A3 (en) 2002-05-28
    NO20012166D0 (en) 2001-05-02
    EP1137500B1 (en) 2004-03-24
    AU757432B2 (en) 2003-02-20
    CZ20011334A3 (en) 2002-05-15

    Similar Documents

    Publication Publication Date Title
    EP1137500B1 (en) Binder system for producing polyurethane-based cores and moulds
    EP2640764B2 (en) Binder based on polyurethane for producing cores and moulds using isocyanates containing a urethonimine and/or carbodiimide group, a mould material mixture containing said binder, and a method for using said binder
    EP2598550B1 (en) Binder system based on polyurethane for producing cores and casting molds using cyclic formaldehydes, molding material mixture, and method
    EP2249982B1 (en) Use of branched alkane diol carboxylic acid diesters in polyurethane-based foundry binders
    EP3558560B1 (en) Binder based on phenolic resins of the benzyl ether type, containing free phenol and free hydroxybenzyl alcohols
    EP3737707A1 (en) Phenolic resin binder with reduced formadehyde content
    DE102006037288B4 (en) Molding material mixture containing Cardol and / or Cardanol in foundry binders based on polyurethane, process for the preparation of a molded article and use thereof
    DE102015107016A1 (en) Process for reducing free formaldehyde in benzyl ether resins
    DE102013004663B4 (en) Binder system, molding material mixture containing the same, process for producing the molding material mixture, process for producing a mold part or casting core, mold part or casting core and use of the mold part or casting core thus obtainable for metal casting
    EP0713500B1 (en) Materials for producing foundry cores and moulds
    EP3333205B1 (en) Polyurethane binder with improved flowability
    US6772820B2 (en) Polyurethane based binder system for the manufacture of foundry cores and molds
    EP0362486A2 (en) Moulding materials
    EP1012197B1 (en) Phenolic resin and binding agent for producing moulds and cores according to the phenolic resin-polyurethane method
    DE102014117284A1 (en) Polyurethane binder system for producing cores and casting molds, molding material mixture containing the binder and a method using the binder

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20010601

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: RO PAYMENT 20010601;SI PAYMENT 20010601

    17Q First examination report despatched

    Effective date: 20020726

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    RTI1 Title (correction)

    Free format text: BINDER SYSTEM FOR PRODUCING POLYURETHANE-BASED CORES AND MOULDS

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Extension state: RO SI

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040324

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040324

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: E. BLUM & CO. PATENTANWAELTE

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 59908972

    Country of ref document: DE

    Date of ref document: 20040429

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040624

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040712

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2217841

    Country of ref document: ES

    Kind code of ref document: T3

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041130

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20041228

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PFA

    Owner name: ASHLAND-SUEDCHEMIE-KERNFEST GMBH

    Free format text: ASHLAND-SUEDCHEMIE-KERNFEST GMBH#POSTFACH 440#40721 HILDEN (DE) -TRANSFER TO- ASHLAND-SUEDCHEMIE-KERNFEST GMBH#POSTFACH 440#40721 HILDEN (DE)

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040824

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: LU

    Payment date: 20111123

    Year of fee payment: 13

    Ref country code: FI

    Payment date: 20111121

    Year of fee payment: 13

    Ref country code: DK

    Payment date: 20111124

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20111122

    Year of fee payment: 13

    BERE Be: lapsed

    Owner name: *ASHLAND-SUDCHEMIE-KERNFEST G.M.B.H.

    Effective date: 20121130

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121130

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121104

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121104

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59908972

    Country of ref document: DE

    Owner name: ASK CHEMICALS GMBH, DE

    Free format text: FORMER OWNER: ASHLAND-SUEDCHEMIE-KERNFEST GMBH, 40721 HILDEN, DE

    Effective date: 20140903

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20141120

    Year of fee payment: 16

    Ref country code: GB

    Payment date: 20141120

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20141119

    Year of fee payment: 16

    Ref country code: NL

    Payment date: 20141120

    Year of fee payment: 16

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 17

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 262387

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20151104

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20151104

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20151130

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20151130

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MM

    Effective date: 20151201

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20151104

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20151201

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20151104

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20161124

    Year of fee payment: 18

    Ref country code: ES

    Payment date: 20161124

    Year of fee payment: 18

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20171124

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20171124

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20180130

    Year of fee payment: 19

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20171104

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20181226

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20171105

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59908972

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20181105

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20190601

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20181130