EP1137486A2 - Catalyst body and method for the degradation of nitrogen oxides - Google Patents

Catalyst body and method for the degradation of nitrogen oxides

Info

Publication number
EP1137486A2
EP1137486A2 EP99963228A EP99963228A EP1137486A2 EP 1137486 A2 EP1137486 A2 EP 1137486A2 EP 99963228 A EP99963228 A EP 99963228A EP 99963228 A EP99963228 A EP 99963228A EP 1137486 A2 EP1137486 A2 EP 1137486A2
Authority
EP
European Patent Office
Prior art keywords
catalyst body
zeolite
nitrogen oxides
gas stream
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99963228A
Other languages
German (de)
French (fr)
Inventor
Stefan Fischer
Frank Witzel
Günther PAJONK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1137486A2 publication Critical patent/EP1137486A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/166Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/7815Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9205Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9207Specific surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/063Surface coverings for exhaust purification, e.g. catalytic reaction zeolites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a catalyst body for breaking down nitrogen oxides in the presence of a reducing agent, with an active composition which comprises a zeolite and titanium dioxide.
  • the invention further relates to a process for the decomposition of nitrogen oxides in a gas stream, a gas stream containing nitrogen oxides being passed over the catalyst body.
  • the nitrogen oxides on the catalyst body are converted to molecular nitrogen and water using the reducing agent, even in the presence of oxygen, in accordance with the selective catalytic reduction process.
  • a catalyst body of the type mentioned is known from GB 2 193 655 A.
  • the active composition of the catalyst body specified there comprises a titanium dioxide with a low specific surface area and a zeolite containing copper obtained by ion exchange.
  • the zeolite has an average pore diameter of 10 ⁇ or less and a molar ratio of silicon oxide to aluminum oxide of 10 or more.
  • the stated catalyst body should have a high mechanical strength and a good resistance of its catalytic activity to volatile catalyst poisons such as arsenic, selenium or tellurium. Mordenite, ZSM-5 and Fer ⁇ erit are given as preferred zeolites.
  • EP 0 393 917 A2 discloses a catalyst body for breaking down nitrogen oxides, the active composition of which comprises a zeolite which contains copper and / or iron after ion exchange.
  • the zeolite has a molar ratio of silicon oxide to aluminum oxide of at least 10 and a pore structure, channels m in all three spatial directions having a diameter of at least 7 A.
  • the catalyst body is to decompose the nitrogen oxides in a temperature range from 250 to 600 ° C.
  • USY (Ultra Stabilized Y), Beta and ZSM-20 are stated as preferred zeolites.
  • a catalyst body for the degradation of nitrogen oxides is known, the active composition of which comprises a zeolite.
  • the zeolite is impregnated with cerium oxide or iron oxide.
  • the catalyst body is suitable for breaking down the nitrogen oxides according to the selective catalytic reduction process in a temperature range from 500 to
  • the specified catalyst body has a high resistance to sulfurous components contained in the exhaust gas.
  • a zeolite of the ZSM-5 type is specified as the preferred zeolite, the molar ratio of silicon oxide to aluminum oxide being 20 or more.
  • the object of the invention is to provide a catalyst body which, even in a temperature range from 400 to 750 ° C., is still suitable for breaking down nitrogen oxides in the presence of a reducing agent.
  • the catalyst body should have both a sufficient mechanical and a sufficient catalytic stability.
  • the first-mentioned object is achieved according to the invention by a catalyst body having an active composition which comprises a zeolite and titanium dioxide in that the zeolite is an acidic zeolite exchanged with hydrogen ion.
  • An acidic zeolite exchanged for hydrogen ion is understood to mean a zeolite in which the exchangeable cations are predominantly exchanged for hydrogen ions. This can be done, for example, by thermal reaction of ammonium (NH 4 + ) ions contained in synthetic zeolites, by hydrogen ion exchange or by hydrolysis of a zeolite containing multiply charged cations during dehydrogenation.
  • NH 4 + ammonium
  • the zeolite of the active composition is exchanged for metal cations, i.e. that the exchangeable cations of the zeolite are replaced by metal cations, e.g. of copper or iron.
  • a zeolite is also understood to mean a framework aluminosilicate, the ratio of the oxygen atoms to the sum of the aluminum and silicon atoms being 2: 1.
  • the framework or the framework structure By exchanging some silicon atoms of oxidation level IV with aluminum atoms of oxidation level III, the framework or the framework structure as a whole receives a negative charge. This negative charge is compensated for by cations in the structure. These cations are so-called interchangeable cations, which can easily be replaced by other cations, in particular metal cations, by ion exchange.
  • a zeolite is further characterized by the fact that the framework structure has continuous pores with a characteristic pore size having.
  • Zeolites are classified according to the molar ratio of - silicon oxide to aluminum oxide or according to the framework structure which is characteristic of this ratio. For the classification, reference is made to the article “Chemical Nominal and Formulation of Compositions of Synthetic and Natural Zeolites” by RM Barrer, Pure Appl. Che. 51 (1979), pages 1091 to 1100.
  • a natural zeolite is, for example, mordenite or chabazite.
  • Synthetic zeolites are, for example, A, X and Y zeolites, which are synthetic forms of mordenite, a ZSM-5 (brand name of a synthetic zeolite manufactured by Mobil Oil Company Ltd.), a USY (Ultra Stabilized Y) or a Beta -Zeolite.
  • the structure of the mordenite, the ZSM-5 and the Y zeolite will be discussed further on
  • a catalyst body with an active composition which contains titanium dioxide and a hydrogen ion-exchanged acidic zeolite is suitable up to temperatures of 750 ° C. for a catalytic reduction of the nitrogen oxides according to the SCR process.
  • Such a catalyst body is namely on the one hand catalytically active up to these high temperatures and on the other hand also has the necessary temperature stability.
  • the catalyst body has a high stability to moisture and a high resistance to sulfur-containing components in an exhaust gas to be treated.
  • the catalyst body opens up the possibility of reducing nitrogen oxides in the exhaust gases of an internal combustion engine or a gas turbine, it being possible for very high temperatures of the exhaust gas to occur without additional measures being taken Lowering the temperature to protect the catalyst body "must be taken.
  • the active composition of the catalyst body has 40 to 60% by weight of zeolite. With this composition, particularly good temperature stability and particularly low deactivation of the catalytic activity at high temperatures are achieved.
  • the catalyst body has a high catalytic activity with regard to the reduction of nitrogen oxides according to the SCR process, i.e. to break down nitrogen oxides in the presence of a reducing agent.
  • the active component comprises 8 to 12% by weight of tungsten trioxide.
  • a USY, a beta or a ZSM-5 zeolite is used as the zeolite.
  • Such a zeolite is particularly well suited for the desired catalytic use due to its framework structure.
  • the active mass has a BET surface area of 30 to 150 m 2 / g and a pore volume, measured by the mercury penetration method, of 100 to 1000 ml / g.
  • the active composition of the catalyst body can be produced as follows in a manner known per se.
  • the individual components or their components are mixed, ground and / or kneaded Precursor compounds (for the metal oxides specified, for example, water-soluble salts) and, if appropriate, with the addition of customary ceramic auxiliaries and fillers and / or glass fibers, a starting material.
  • the starting mass is then either further processed into full extrudates or applied as a coating to a ceramic or metallic carrier in honeycomb or plate form. Then the starting mass is dried at a temperature of 20 to 100 ° C. After the drying process, the starting mass is calcined to the active mass by calcining at temperatures between 400 and 700 ° C.
  • the calcined active composition can be pre-aged after the calcining process by a final heat treatment at a temperature higher than the calcining temperature.
  • a temperature is selected which is approximately 50 ° C. above the later maximum operating temperature of the catalyst body.
  • the final heat treatment is carried out over a period of 20 to 80 hours.
  • the catalyst body has an improved temperature resistance.
  • the object with regard to a process for the decomposition of nitrogen oxides in a gas stream is achieved according to the invention in that a gas stream containing nitrogen oxides is passed over the specified catalyst body in the presence of a reducing agent, the nitrogen oxides being converted to nitrogen and water.
  • ammonia or an aqueous urea solution is added to the gas stream as a reducing agent.
  • the gas stream is advantageously passed over the catalyst body at a temperature of 250 to 750 ° C. Within this specified temperature range there is a effective conversion of nitrogen oxides to nitrogen and water instead. A deactivation of the active mass of the catalyst body is not to be expected.
  • FIG. 1 shows a honeycomb-shaped catalyst body in an exhaust gas cleaning system of a diesel engine
  • Figure 1 shows an exhaust gas purification system for the catalytic removal of nitrogen oxides according to the SCR method from the exhaust gas of a diesel engine 1 not shown.
  • the exhaust gas of the diesel engine 1 flows as a gas stream 2 through an exhaust pipe 3 and a catalyst body 4 arranged in the exhaust pipe 3
  • Catalyst body 4 is designed as a honeycomb body through which flow can pass and has a number of parallel channels 5 through which flow can pass. After flowing through the catalyst body 4, the gas stream 2 freed from the nitrogen oxides is released into the environment via an outlet 6.
  • the catalyst body 4 is produced as a full extrudate from the active composition.
  • the active composition comprises 50% by weight of ZSM-5 zeolite and 50% by weight of an active component which 90% by weight of titanium dioxide and 10% by weight of tungsten trioxide. The proportions by weight of the usual auxiliaries and fillers are not included.
  • the catalyst body 4 was produced by mixing a titanium dioxide / tungsten oxide coprecipitate with an acidic, hydrogen ion-exchanged ZSM-5 zeolite.
  • a zeolite is available as a so-called ZSM-5 zeolite m H form from Alsi-Penta.
  • a kneadable mass is produced from the mixture, and this is further processed by extrusion to form the honeycomb body.
  • the honeycomb body is dried at 80 ° C and finally calcined at a temperature of 600 ° C.
  • an introduction device 7 for a reducing agent is arranged on the exhaust line 3 m in the flow direction in front of the catalyst body 4.
  • the introduction device 7 in this case comprises a reducing agent container 8 with a reducing agent line 9 connected to the exhaust line 3.
  • an aqueous urea solution 11 by means of a Compressor 12 introduced via the controllable valve 13, depending on requirements, the exhaust line 3.
  • the hot gas stream 2 is
  • Example A The high-temperature activity and high-temperature stability of the catalyst body according to the invention are demonstrated below using exemplary embodiments.
  • Example A The high-temperature activity and high-temperature stability of the catalyst body according to the invention are demonstrated below using exemplary embodiments.
  • a titanium dioxide / tungsten trioxide coprecipitate composed of 90% by weight of titanium dioxide and 10% by weight of tungsten trioxide is mixed with a ZSM-5 zeolite of the H form with the addition of customary ceramic auxiliaries and fillers, mixed and added processed from water to a so-called slip, ie a liquid ceramic mass.
  • the slip is then applied as a coating to a honeycomb-shaped carrier made of cordierite (a magnesium-alumino-silicate with the composition Mg 2 Al 4 Si5 ⁇ i8 with a rhombic-halohedral structure). With an inflow area of 150 x 150 mm 2, the cordierite carrier has 2 1225 continuous channels.
  • the coated cordierite support is further processed into the catalyst body with the active composition applied thereon.
  • the proportions of the starting materials are chosen so that the active composition of the finished catalyst body has equal proportions of the active component, including titanium dioxide and tungsten trioxide, and of the zeolite.
  • Example B In the same way as in Example A, a coated cordierite carrier is produced in such a way that the active composition of the finished catalyst body has a weight ratio of the active component, comprising titanium dioxide and tungsten trioxide, to the zeolite of 75 to 25.
  • the active component comprising titanium dioxide and tungsten trioxide
  • Example A a coated cordierite support is produced in such a way that the active composition of the finished catalyst body has a weight ratio of the active component, comprising titanium dioxide and tungsten trioxide, to the zeolite of 25 to 75.
  • Example D the active component, comprising titanium dioxide and tungsten trioxide, to the zeolite of 25 to 75.
  • the coprecipitate of titanium dioxide and tungsten trioxide given in Example A is mixed with a ZSM-5 zeolite in H form with the addition of ceramic auxiliaries and fillers, ground and processed to a kneadable, plastic mass with the addition of water.
  • the kneadable mass is then extruded into a honeycomb-shaped catalyst body.
  • the honeycomb-shaped catalyst body produced as a full extrudate again has 1225 parallel flow channels with an inflow area of 150 x 150 mm 2 .
  • the catalyst body is dried at 90 ° C and then calcined at 600 ° C. This final process gives the catalyst body its catalytic activity.
  • honeycomb-shaped catalyst body produced as a full extrudate according to Example D is subjected to a constant temperature load of 700 ° C. for a period of 500 hours.
  • a model exhaust gas is passed over the catalyst body according to Examples A to E at a space velocity of 15500 / h.
  • the model exhaust gas is nitrogen and comprises 200 ppm nitrogen monoxide NO, 200 ppm ammonia NH 3 as a reducing agent, 11% by volume oxygen 0 2 and 10% by volume water H 2 0.
  • the catalytic conversion of nitrogen monoxide NO to molecular nitrogen N is successively carried out on the catalyst body 2 measured.
  • the content of nitrogen monoxide NO before and after the catalyst body and the content of nitrogen N 2 after the catalyst body in the model exhaust gas are measured.
  • FIG. 2 shows the measured dependency of the NO / N 2 conversion in percent on the temperature of the model exhaust gas for the catalyst bodies according to Examples A, B and C.
  • FIG. 3 shows the dependence of the measured NO / N 2 conversion in percent on the temperature for the catalyst body according to Examples D and E.
  • the catalyst bodies according to Examples A, B and C show a catalytic conversion of between 40 and 60% in the range of high temperatures between 450 and 650 ° C. This means that between 40 and 60% of the NO contained in the model exhaust gas was converted to N 2 .
  • the catalyst body according to Example A shows a catalytic conversion of 50% and above over the entire temperature range from 450 to 650 ° C. The measured conversion of the catalyst body according to Example C even increases with higher temperatures.
  • the temperature resistance of the catalyst body is clear from Figure 3.
  • the model exhaust gas indicated is also passed over the catalyst bodies according to Examples D and E.
  • the catalytic conversion of nitrogen monoxide NO to molecular nitrogen N 2 is determined in succession.
  • the measured NO / N 2 conversion in percent as a function of the temperature is shown in FIG. 3. It can clearly be seen that the catalyst body according to Example E, which was exposed to a high temperature load, also experienced only a loss of its high catalytic activity of about 10% even after this load.

Abstract

A gas stream (2) containing nitrogen oxides is fed via a catalyst body (4) which comprises an active material in the presence of a reducing agent. Said active material comprises a zeolite and titanium dioxide. According to the invention, the zeolite is an acid zeolite with exchanged hydrogen ions. Even at temperatures higher than 450 °C, the nitrogen oxides contained in said gas stream are effectively transformed into nitrogen and water. In the examples, the active mass also contains tungsten trioxide.

Description

Beschreibungdescription
Katalysatorkorper und Verfahren zum Abbau von StickoxidenCatalyst body and process for breaking down nitrogen oxides
Die Erfindung bezieht sich auf einen Katalysatorkorper zum Abbau von Stickoxiden m Gegenwart eines Reduktionsmittels, mit einer Aktivmasse, welche einen Zeolithen und Titandioxid umfaßt. Weiter bezieht sich die Erfindung auf ein Verfahren zum Abbau von Stickoxiden in einem Gasstrom, wobei ein Stick- oxide enthaltender Gasstrom über den Katalysatorkorper geleitet wird. Insbesondere werden an dem Katalysatorkorper die Stickoxide mit Hilfe des Reduktionsmittels auch m Gegenwart von Sauerstoff gemäß dem Verfahren der selektiven katalyti- schen Reduktion zu molekularem Stickstoff und Wasser umge- setzt.The invention relates to a catalyst body for breaking down nitrogen oxides in the presence of a reducing agent, with an active composition which comprises a zeolite and titanium dioxide. The invention further relates to a process for the decomposition of nitrogen oxides in a gas stream, a gas stream containing nitrogen oxides being passed over the catalyst body. In particular, the nitrogen oxides on the catalyst body are converted to molecular nitrogen and water using the reducing agent, even in the presence of oxygen, in accordance with the selective catalytic reduction process.
Ein Katalysatorkorper der eingangs genannten Art ist aus der GB 2 193 655 A bekannt. Die Aktivmasse des dort angegebenen Katalysatorkorpers umfaßt ein Titandioxid mit niedriger spe- zifischer Oberflache sowie einen durch Ionenaustausch erhaltenen, Kupfer enthaltenden Zeolithen. Der Zeolith weist einen mittleren Porendurchmesser von 10 Ä oder weniger und ein Mol- verhaltnis von Siliziumoxid zu Aluminiumoxid von 10 oder mehr auf. Der angegebene Katalysatorkorper soll eine hohe mechani- sehe Festigkeit sowie eine gute Resistenz seiner katalyti- schen Aktivität gegenüber fluchtigen Katalysatorgiften wie Arsen, Selen oder Tellur aufweisen. Als bevorzugte Zeolithe werden Mordenit, ZSM-5 und Ferπerit angegeben.A catalyst body of the type mentioned is known from GB 2 193 655 A. The active composition of the catalyst body specified there comprises a titanium dioxide with a low specific surface area and a zeolite containing copper obtained by ion exchange. The zeolite has an average pore diameter of 10 Å or less and a molar ratio of silicon oxide to aluminum oxide of 10 or more. The stated catalyst body should have a high mechanical strength and a good resistance of its catalytic activity to volatile catalyst poisons such as arsenic, selenium or tellurium. Mordenite, ZSM-5 and Ferπerit are given as preferred zeolites.
Weiter ist aus der EP 0 393 917 A2 ein Katalysatorkorper zum Abbau von Stickoxiden bekannt, dessen Aktivmasse einen Zeolithen umfaßt, welcher nach Ionenaustausch Kupfer und/oder Eisen enthalt. Der Zeolith weist dabei ein Molverhaltnis von Siliziumoxid zu Aluminiumoxid von wenigstens 10 und eine Po- renstruktur auf, wobei Kanäle m allen drei Raumrichtungen einen Durchmesser von wenigstens 7 A haben. Der Katalysatorkorper soll sich zum Abbau der Stickoxide m einem Tempera- turbereich von 250 bis 600 °C eignen. Als bevorzugte Zeolithe werden USY (Ultra Stabilized Y) , Beta und ZSM-20 angegeben.Furthermore, EP 0 393 917 A2 discloses a catalyst body for breaking down nitrogen oxides, the active composition of which comprises a zeolite which contains copper and / or iron after ion exchange. The zeolite has a molar ratio of silicon oxide to aluminum oxide of at least 10 and a pore structure, channels m in all three spatial directions having a diameter of at least 7 A. The catalyst body is to decompose the nitrogen oxides in a temperature range from 250 to 600 ° C. USY (Ultra Stabilized Y), Beta and ZSM-20 are stated as preferred zeolites.
Hierhingegen eignen sich herkömmliche Katalysatorkörper mit einer Aktivmasse, welche Titandioxid sowie Beimengungen an Vanadiumoxid, Wolframoxid und/oder Molybdänoxid aufweist, zum Abbau von Stickoxiden nur bis zu einer Temperatur von etwa 450 °C. Da Stickoxide enthaltende Abgase einer Verbrennungsanlage, wie beispielsweise ein mit fossilem Brennstoff befeu- ertes Kraftwerk, eine Gasturbine oder ein Verbrennungsmotor, nicht selten Temperaturen bis zu 500 °C und auch darüber aufweisen, bietet der in der EP 0 393 917 A2 angegebene Katalysatorkörper einen großen Vorteil.In contrast, conventional catalyst bodies with an active composition which contains titanium dioxide and admixtures of vanadium oxide, tungsten oxide and / or molybdenum oxide are only suitable for decomposing nitrogen oxides up to a temperature of approximately 450 ° C. Since exhaust gases from a combustion plant containing nitrogen oxides, such as a power plant fired with fossil fuel, a gas turbine or an internal combustion engine, often have temperatures of up to 500 ° C. and above, the catalyst body specified in EP 0 393 917 A2 offers a large size Advantage.
Auch aus der US 5,271,913 A ist ein Katalysatorkörper zum Abbau von Stickoxiden bekannt, dessen Aktivmasse einen Zeolithen umfaßt. Der Zeolith ist hierbei mit Ceroxid oder Eisenoxid imprägniert. Der Katalysatorkörper eignet sich zum Abbau der Stickoxide gemäß dem Verfahren der selektiven katalyti- sehen Reduktion in einem Temperaturbereich von 500 bisFrom US 5,271,913 A a catalyst body for the degradation of nitrogen oxides is known, the active composition of which comprises a zeolite. The zeolite is impregnated with cerium oxide or iron oxide. The catalyst body is suitable for breaking down the nitrogen oxides according to the selective catalytic reduction process in a temperature range from 500 to
700 °C. Weiter weist der angegebene Katalysatorkörper eine hohe Beständigkeit hinsichtlich im Abgas enthaltener schwefeliger Komponenten auf. Als bevorzugter Zeolith wird ein Zeolith vom ZSM-5 Typ angegeben, wobei das Molverhältnis von Si- liziumoxid zu Aluminiumoxid 20 oder mehr beträgt.700 ° C. Furthermore, the specified catalyst body has a high resistance to sulfurous components contained in the exhaust gas. A zeolite of the ZSM-5 type is specified as the preferred zeolite, the molar ratio of silicon oxide to aluminum oxide being 20 or more.
Aufgabe der Erfindung ist es, einen Katalysatorkorper anzugeben, der sich auch in einem Temperaturbereich von 400 bis 750 °C noch zum Abbau von Stickoxiden in Gegenwart eines Re- duktionsmittels eignet. Hierzu soll der Katalysatorkorper sowohl eine genügende mechanische als auch eine genügende kata- lytische Stabilität aufweisen. Ferner ist es Aufgabe der Erfindung, ein Verfahren zum Abbau von Stickoxiden in einem Gasstrom anzugeben, mit dem sich auch bei Gastemperaturen zwischen 400 und 750 °C noch eine effektive Minderung der Stickoxide erzielen läßt. Die erstgenannte Aufgabe wird durch einen Katalysatorkörper - mit einer Aktivmasse, welche einen Zeolithen und Titandioxid umfaßt, erfindungsgemäß dadurch gelöst, daß der Zeolith ein Wasserstoff-Ion getauschter, saurer Zeolith ist.The object of the invention is to provide a catalyst body which, even in a temperature range from 400 to 750 ° C., is still suitable for breaking down nitrogen oxides in the presence of a reducing agent. For this purpose, the catalyst body should have both a sufficient mechanical and a sufficient catalytic stability. Furthermore, it is an object of the invention to provide a method for breaking down nitrogen oxides in a gas stream, with which an effective reduction in nitrogen oxides can be achieved even at gas temperatures between 400 and 750 ° C. The first-mentioned object is achieved according to the invention by a catalyst body having an active composition which comprises a zeolite and titanium dioxide in that the zeolite is an acidic zeolite exchanged with hydrogen ion.
Unter einem Wasserstoff-Ion getauschten, sauren Zeolithen wird dabei ein solcher Zeolith verstanden, bei welchem die austauschbaren Kationen überwiegend durch Wasserstoff-Ionen ausgetauscht sind. Dies kann beispielsweise durch thermische Umsetzung von in synthetischen Zeolithen enthaltenen Ammonium (NH4 +) -Ionen, durch Wasserstoff-Ionenaustausch oder durch Hydrolyse eines mehrfach geladenen Kationen enthaltenden Zeolithen während einer Dehydrierung geschehen. Hierzu sei insbesondere auf Kirk-Othmer, „Encyclopedia of Chemical Techno- logy", 3. Auflage, Band 15, John Wiley & Sons, New York, 1981, Seiten 640 bis 669, verwiesen.An acidic zeolite exchanged for hydrogen ion is understood to mean a zeolite in which the exchangeable cations are predominantly exchanged for hydrogen ions. This can be done, for example, by thermal reaction of ammonium (NH 4 + ) ions contained in synthetic zeolites, by hydrogen ion exchange or by hydrolysis of a zeolite containing multiply charged cations during dehydrogenation. In this regard, reference is made in particular to Kirk-Othmer, “Encyclopedia of Chemical Technology”, 3rd edition, volume 15, John Wiley & Sons, New York, 1981, pages 640 to 669.
Im Gegensatz zum Stand der Technik ist es für den erfindungsgemäßen Katalysatorkörper nicht erforderlich, daß der Zeolith der Aktivmasse Metall-Kationen ausgetauscht ist, d.h. daß die austauschbaren Kationen des Zeoliths durch Metall-Kationen, z.B. von Kupfer oder Eisen, ausgetauscht sind.In contrast to the prior art, it is not necessary for the catalyst body according to the invention that the zeolite of the active composition is exchanged for metal cations, i.e. that the exchangeable cations of the zeolite are replaced by metal cations, e.g. of copper or iron.
Unter einem Zeolithen wird im übrigen ein Gerüst-Aluminosili- kat verstanden, wobei das Verhältnis der Sauerstoff-Atome zur Summe der Aluminium- und Silizium-Atome 2:1 beträgt. Durch Austausch von einigen Silizium-Atomen der Oxidationsstufe IV durch Aluminium-Atome der Oxidationsstufe III erhält das Gerüst oder die Gerüststruktur im Ganzen eine negative Ladung. Diese negative Ladung wird durch sich in der Gerüststruktur befindende Kationen ausgeglichen. Diese Kationen sind sogenannte austauschbare Kationen, die durch Ionenaustausch leicht durch andere Kationen, insbesondere Metall-Kationen, ersetzt werden können.A zeolite is also understood to mean a framework aluminosilicate, the ratio of the oxygen atoms to the sum of the aluminum and silicon atoms being 2: 1. By exchanging some silicon atoms of oxidation level IV with aluminum atoms of oxidation level III, the framework or the framework structure as a whole receives a negative charge. This negative charge is compensated for by cations in the structure. These cations are so-called interchangeable cations, which can easily be replaced by other cations, in particular metal cations, by ion exchange.
Ein Zeolith zeichnet sich weiter dadurch aus, daß die Gerüststruktur durchgängige Poren mit charakteristischer Porenweite aufweist. Zeolithe werden bezüglich des Molverhaltnisses von - Siliziumoxid zu Aluminiumoxid oder nach der aufgrund dieses Verhältnisses charakteristischen Geruststruktur klassifiziert. Zur Klassifizierung wird auf den Artikel „Chemical No- menclature and Formulation of Compositions of Synt etic and Natural Zeolites" von R. M. Barrer, Pure Appl. Che . 51 (1979), Seiten 1091 bis 1100, verwiesen.A zeolite is further characterized by the fact that the framework structure has continuous pores with a characteristic pore size having. Zeolites are classified according to the molar ratio of - silicon oxide to aluminum oxide or according to the framework structure which is characteristic of this ratio. For the classification, reference is made to the article “Chemical Nominal and Formulation of Compositions of Synthetic and Natural Zeolites” by RM Barrer, Pure Appl. Che. 51 (1979), pages 1091 to 1100.
Ein natürlicher Zeolith ist beispielsweise Mordenit oder ein Chabazit. Synthetische Zeolithe sind beispielsweise A, X und Y-Zeolithe, welche synthetische Formen von Mordenit darstellen, ein ZSM-5- (Markenname eines synthetischen Zeolithen, hergestellt durch Mobil Oil Company Ltd.), ein USY- (Ultra Stabilised Y) oder ein Beta-Zeolith. Zur Struktur des Morde- nits, des ZSM-5- und des Y-Zeolithen wird weiter auf denA natural zeolite is, for example, mordenite or chabazite. Synthetic zeolites are, for example, A, X and Y zeolites, which are synthetic forms of mordenite, a ZSM-5 (brand name of a synthetic zeolite manufactured by Mobil Oil Company Ltd.), a USY (Ultra Stabilized Y) or a Beta -Zeolite. The structure of the mordenite, the ZSM-5 and the Y zeolite will be discussed further on
Fachartikel „Aciditat der Lewis-Zentren m Zeolith-Katalysa- toren - NO als Sondenmolekul", Frank 0. Witzel, Fortschrittberichte VDI, Reihe 3: Verfahrenstechnik, Nr. 292, 1992, verwiesen.Technical article "Acidity of the Lewis Centers m Zeolite Catalysts - NO as a Probe Molecule", Frank 0. Witzel, Progress Reports VDI, Series 3: Process Engineering, No. 292, 1992.
Umfangreiche Untersuchungen haben ergeben, daß sich ein Katalysatorkorper mit einer Aktivmasse, welche Titandioxid und einen Wasserstoff-Ion getauschten, sauren Zeolithen enthalt, bis zu Temperaturen von 750 °C für eine katalytische Reduk- tion der Stickoxide gemäß dem SCR-Verfahren eignet. Ein derartiger Katalysatorkorper ist nämlich zum einen bis zu diesen hohen Temperaturen katalytisch aktiv und weist zum anderen auch die hierfür notwendige Temperaturstabilitat auf. Zusatzlich weist der Katalysatorkorper eine hohe Stabilität gegen- über Feuchte und eine hohe Resistenz gegenüber schwefelhaltigen Komponenten m einem zu behandelnden Abgas auf.Extensive studies have shown that a catalyst body with an active composition which contains titanium dioxide and a hydrogen ion-exchanged acidic zeolite is suitable up to temperatures of 750 ° C. for a catalytic reduction of the nitrogen oxides according to the SCR process. Such a catalyst body is namely on the one hand catalytically active up to these high temperatures and on the other hand also has the necessary temperature stability. In addition, the catalyst body has a high stability to moisture and a high resistance to sulfur-containing components in an exhaust gas to be treated.
Durch den Katalysatorkorper eröffnet sich die Möglichkeit zur Reduzierung von Stickoxiden m Abgasen eines Verbrennungsmo- tors oder einer Gasturbine, wobei sehr hohe Temperaturen des Abgases auftreten können, ohne daß zusatzliche Maßnahmen zur Herabsetzung der Temperatur zum Schutz des Katalysatorkörpers" ergriffen werden müssen.The catalyst body opens up the possibility of reducing nitrogen oxides in the exhaust gases of an internal combustion engine or a gas turbine, it being possible for very high temperatures of the exhaust gas to occur without additional measures being taken Lowering the temperature to protect the catalyst body "must be taken.
In einer bevorzugten Ausführungsform weist die Aktivmasse des Katalysatorkörpers 40 bis 60 Gew.-% an Zeolith auf. Mit dieser Zusammensetzung wird eine besonders gute Temperaturstabilität und eine besonders niedrige Desaktivierung der kataly- tischen Aktivität bei hohen Temperaturen erzielt.In a preferred embodiment, the active composition of the catalyst body has 40 to 60% by weight of zeolite. With this composition, particularly good temperature stability and particularly low deactivation of the catalytic activity at high temperatures are achieved.
Weiter von Vorteil ist es, wenn die Aktivmasse 40 bis 60It is also advantageous if the active composition 40 to 60
Gew.-% einer Aktivkomponente enthält, welche jeweils bezogen auf das Gewicht der Aktivkomponente 70 bis 95 Gew.-% Titandioxid, 2 bis 30 Gew.-% Wolframtrioxid, 0,1 bis 10 Gew.-% Aluminiumoxid und 0,1 bis 10 Gew.-% Siliziumdioxid umfaßt. Hier- durch weist der Katalysatorkörper eine hohe katalytische Aktivität hinsichtlich der Reduktion von Stickoxiden gemäß dem SCR-Verfahren, d.h. zum Abbau von Stickoxiden in Gegenwart eines Reduktionsmittels, auf.Wt .-% of an active component, each based on the weight of the active component 70 to 95 wt .-% titanium dioxide, 2 to 30 wt .-% tungsten trioxide, 0.1 to 10 wt .-% aluminum oxide and 0.1 to 10 % By weight of silicon dioxide. As a result, the catalyst body has a high catalytic activity with regard to the reduction of nitrogen oxides according to the SCR process, i.e. to break down nitrogen oxides in the presence of a reducing agent.
Besonders vorteilhaft ist es, wenn die Aktivkomponente 8 bis 12 Gew.-% an Wolframtrioxid umfaßt.It is particularly advantageous if the active component comprises 8 to 12% by weight of tungsten trioxide.
Weiter von Vorteil ist es, wenn als Zeolith ein USY-, ein Beta- oder ein ZSM-5-Zeolith verwendet wird. Ein solcher Zeo- lith eignet sich aufgrund seiner Gerüststruktur besonders gut für den gewünschten katalytischen Einsatz.It is also advantageous if a USY, a beta or a ZSM-5 zeolite is used as the zeolite. Such a zeolite is particularly well suited for the desired catalytic use due to its framework structure.
Für die katalytische Aktivität ist es weiter von Vorteil, wenn die Aktivmasse eine BET-Oberflache von 30 bis 150 m2/g und ein Porenvolumen, gemessen nach dem Hg-Eindringverfahren, von 100 bis 1000 ml/g aufweist.For the catalytic activity it is further advantageous if the active mass has a BET surface area of 30 to 150 m 2 / g and a pore volume, measured by the mercury penetration method, of 100 to 1000 ml / g.
Nach Bereitstellung des Wasserstoff-Ion getauschten, sauren Zeolithen kann die Aktivmasse des Katalysatorkörpers in an sich bekannter Art und Weise wie folgt hergestellt werden.After the hydrogen-ion-exchanged, acidic zeolite has been provided, the active composition of the catalyst body can be produced as follows in a manner known per se.
Unter Einbeziehung des Zeolithen wird durch Mischen, Vermählen und/oder Verkneten der einzelnen Komponenten oder ihrer Vorlauferverbindungen (für die angegebenen Metalloxide beispielsweise wasserlösliche Salze) und gegebenenfalls unter Zusatz von üblichen keramischen Hilfs- und Füllstoffen und/oder Glasfasern eine Ausgangsmasse hergestellt. Die Aus- gangsmasse wird dann entweder zu Vollextrudaten weiterverarbeitet oder als Beschichtung auf einen keramischen oder metallischen Trager in Waben- oder Plattenform aufgetragen. Anschließend wird die Ausgangsmasse bei einer Temperatur von 20 bis 100 °C getrocknet. Nach dem Trockenvorgang wird die Aus- gangsmasse durch Kalzinieren bei Temperaturen zwischen 400 und 700 °C zu der Aktivmasse kalziniert.Including the zeolite, the individual components or their components are mixed, ground and / or kneaded Precursor compounds (for the metal oxides specified, for example, water-soluble salts) and, if appropriate, with the addition of customary ceramic auxiliaries and fillers and / or glass fibers, a starting material. The starting mass is then either further processed into full extrudates or applied as a coating to a ceramic or metallic carrier in honeycomb or plate form. Then the starting mass is dried at a temperature of 20 to 100 ° C. After the drying process, the starting mass is calcined to the active mass by calcining at temperatures between 400 and 700 ° C.
Zusatzlich kann die kalzinierte Aktivmasse nach dem Kalzinierprozeß durch e ne abschließende Wärmebehandlung bei einer Temperatur hoher als die Kalziniertemperatur vorgealtert werden. Zum Voraltern wird eine Temperatur gewählt, welche etwa 50 °C oberhalb der spateren maximalen Einsatztemperatur des Katalysatorkorpers liegt. Die abschließende Wärmebehandlung wird über einen Zeitraum von 20 bis 80 Stunden durchgeführt.In addition, the calcined active composition can be pre-aged after the calcining process by a final heat treatment at a temperature higher than the calcining temperature. For pre-aging, a temperature is selected which is approximately 50 ° C. above the later maximum operating temperature of the catalyst body. The final heat treatment is carried out over a period of 20 to 80 hours.
Auf diese Weise weist der Katalysatorkorper eine verbesserte Temperaturbeständigkeit auf.In this way, the catalyst body has an improved temperature resistance.
Die Aufgabe bezuglich eines Verfahrens zum Abbau von Stick- oxiden in einem Gasstrom wird erfmdungsgemaß dadurch gelost, daß ein Stickoxide enthaltender Gasstrom m Gegenwart eines Reduktionsmittels über den angegebenen Katalysatorkorper geleitet wird, wobei die Stickoxide zu Stickstoff und Wasser umgesetzt werden.The object with regard to a process for the decomposition of nitrogen oxides in a gas stream is achieved according to the invention in that a gas stream containing nitrogen oxides is passed over the specified catalyst body in the presence of a reducing agent, the nitrogen oxides being converted to nitrogen and water.
Von Vorteil für das Verfahren und besonders kostengünstig ist es, wenn dem Gasstrom als Reduktionsmittel Ammoniak oder eine wäßrige Harnstofflosung zugegeben wird.It is advantageous for the process and particularly cost-effective if ammonia or an aqueous urea solution is added to the gas stream as a reducing agent.
In vorteilhafter Weise wird der Gasstrom mit einer Temperatur von 250 bis 750 °C über den Katalysatorkorper geleitet. Innerhalb dieses angegebenen Temperaturbereiches findet eine effektive Umsetzung der Stickoxide zu Stickstoff und Wasser statt. Eine Desaktivierung der Aktivmasse des Katalysatorkörpers ist nicht zu erwarten.The gas stream is advantageously passed over the catalyst body at a temperature of 250 to 750 ° C. Within this specified temperature range there is a effective conversion of nitrogen oxides to nitrogen and water instead. A deactivation of the active mass of the catalyst body is not to be expected.
Ausführungsbeispiele der Erfindung werden anhand einer Zeichnung und anhand von Beispielen näher erläutert.Exemplary embodiments of the invention are explained in more detail with reference to a drawing and examples.
Dabei zeigen:Show:
FIG 1 Einen wabenförmigen Katalysatorkörper in einer Abgasreinigungsanlage eines Dieselmotors,1 shows a honeycomb-shaped catalyst body in an exhaust gas cleaning system of a diesel engine,
FIG 2 in einem ersten Diagramm für Katalysatorkorper verschiedener Zusammensetzung den Verlauf des Umsatzes von NO zu N2 als Funktion der Temperatur des Abgasstromes;2 shows, in a first diagram for catalyst bodies of different composition, the course of the conversion from NO to N 2 as a function of the temperature of the exhaust gas stream;
FIG 3 in einem zweiten Diagramm für einen neuen und für einen einer Temperaturbelastung ausgesetzten Katalysa- torkörper den Verlauf des Umsatzes von NO zu N2 als3 shows, in a second diagram, the course of the conversion from NO to N 2 as for a new catalyst body exposed to a temperature load
Funktion der Temperatur des Abgasstromes.Function of the temperature of the exhaust gas flow.
Figur 1 zeigt eine Abgasreinigungsanlage zur katalytischen Entfernung von Stickoxiden gemäß dem SCR-Verfahren aus dem Abgas eines nicht näher dargestellten Dieselmotors 1. Hierbei durchströmt das Abgas des Dieselmotors 1 als ein Gasstrom 2 eine Abgasleitung 3 und einen in der Abgasleitung 3 angeordneten Katalysatorkörper 4. Der Katalysatorkörper 4 ist als ein durchströmbarer Wabenkörper ausgebildet und weist eine Anzahl von parallelen, durchströmbaren Kanälen 5 auf. Nach Durchströmen des Katalysatorkörpers 4 wird der von den Stickoxiden befreite Gasstrom 2 über einen Auslaß 6 in die Umwelt abgegeben.Figure 1 shows an exhaust gas purification system for the catalytic removal of nitrogen oxides according to the SCR method from the exhaust gas of a diesel engine 1 not shown. In this case, the exhaust gas of the diesel engine 1 flows as a gas stream 2 through an exhaust pipe 3 and a catalyst body 4 arranged in the exhaust pipe 3 Catalyst body 4 is designed as a honeycomb body through which flow can pass and has a number of parallel channels 5 through which flow can pass. After flowing through the catalyst body 4, the gas stream 2 freed from the nitrogen oxides is released into the environment via an outlet 6.
Der Katalysatorkörper 4 ist als ein Vollextrudat aus der Aktivmasse hergestellt. Die Aktivmasse umfaßt hierbei 50 Gew.-% ZSM-5-Zeolith sowie 50 Gew.-% einer Aktivkomponente, welche 90 Gew.-% Titandioxid und 10 Gew.-% Wolframtrioxid umfaßt. Gewichtsanteile der üblichen Hilfs- und Füllstoffe sind nicht mitgezahlt .The catalyst body 4 is produced as a full extrudate from the active composition. The active composition comprises 50% by weight of ZSM-5 zeolite and 50% by weight of an active component which 90% by weight of titanium dioxide and 10% by weight of tungsten trioxide. The proportions by weight of the usual auxiliaries and fillers are not included.
Der Katalysatorkorper 4 wurde hergestellt durch Mischen eines Titandioxid/Wolframtπoxid-Coprazipitats mit einem sauren, Wasserstoff-Ion getauschten ZSM-5-Zeolιthen. Ein solcher Zeolith ist als ein sogenannter ZSM-5-Zeolιth m H-Form von Alsi-Penta erhältlich. Unter Zugabe von Wasser wird aus der Mischung eine knetbare Masse hergestellt, und diese durch Ex- trusion zu dem Wabenkorper weiterverarbeitet. Der Wabenkorper wird bei 80 °C getrocknet und abschließend bei einer Temperatur von 600 °C kalziniert.The catalyst body 4 was produced by mixing a titanium dioxide / tungsten oxide coprecipitate with an acidic, hydrogen ion-exchanged ZSM-5 zeolite. Such a zeolite is available as a so-called ZSM-5 zeolite m H form from Alsi-Penta. With the addition of water, a kneadable mass is produced from the mixture, and this is further processed by extrusion to form the honeycomb body. The honeycomb body is dried at 80 ° C and finally calcined at a temperature of 600 ° C.
Zum Abbau der Stickoxide gemäß dem SCR-Verfahren ist an die Abgasleitung 3 m Stromungsrichtung vor dem Katalysatorkorper 4 eine Einbringvorrichtung 7 für ein Reduktionsmittel angeordnet. Die Einbringvorrichtung 7 umfaßt hierbei einen Reduk- tionsmittelbehalter 8 mit einer an die Abgasleitung 3 ange- schlossenen Reduktionsmittelleitung 9. Die Reduktionsmittelleitung 9 mundet m der Abgasleitung 3 m eine Einspritzdüse 10. Zum Einbringen des Reduktionsmittels m den Gasstrom 2 wird eine wäßrige Harnstofflosung 11 mittels eines Verdichters 12 über das steuerbare Ventil 13 bedarfsabhangig m die Abgasleitung 3 eingebracht. In dem heißen Gasstrom 2 wirdTo reduce the nitrogen oxides according to the SCR process, an introduction device 7 for a reducing agent is arranged on the exhaust line 3 m in the flow direction in front of the catalyst body 4. The introduction device 7 in this case comprises a reducing agent container 8 with a reducing agent line 9 connected to the exhaust line 3. The reducing agent line 9 m m in the exhaust line 3 m an injection nozzle 10. To introduce the reducing agent m the gas stream 2, an aqueous urea solution 11 by means of a Compressor 12 introduced via the controllable valve 13, depending on requirements, the exhaust line 3. In the hot gas stream 2 is
Harnstoff durch Pyro- und/oder Thermolyse m das Reduktionsmittel Ammoniak umgesetzt. An dem Katalysatorkorper 4 werden dann gemäß dem SCR-Verfahren die m dem Gasstrom 2 enthaltenen Stickoxide m Anwesenheit von Ammoniak zu molekularem Stickstoff und Wasser umgesetzt.Urea reacted by pyro- and / or thermolysis m the reducing agent ammonia. The nitrogen oxides contained in the gas stream 2 in the presence of ammonia are then converted to molecular nitrogen and water on the catalyst body 4 in accordance with the SCR method.
Im folgenden wird die Hochtemperatur-Aktivitat und Hochtempe- ratur-Stabilitat des erfmdungsgemaßen Katalysatorkorpers anhand von Ausfuhrungsbeispielen belegt. Beispiel AThe high-temperature activity and high-temperature stability of the catalyst body according to the invention are demonstrated below using exemplary embodiments. Example A
Zur Herstellung wird zunächst ein Titandioxid/Wolframtrioxid- Copräzipitat aus 90 Gew.-% Titandioxid und 10 Gew.-% Wolframtrioxid mit einem ZSM-5-Zeolithen der H-Form unter Zugabe von üblichen keramischen Hilfs- und Füllstoffen vermischt, vermählen und unter Zugabe von Wasser zu einem sogenannten Schlicker, d.h. einer flüssigen keramischen Masse verarbeitet. Der Schlicker wird anschließend durch einen Tauchvorgang auf einen wabenförmigen Träger aus Cordierit (ein Magnesium- Alumino-Silikat der Zusammensetzung Mg2Al4Si5θi8 mit rhom- bisch-haloedrischer Struktur) als Beschichtung aufgebracht. Der Cordierit-Träger weist bei einer Anströmfläche von 150 x 150 mm2 1225 durchgehende Kanäle auf. Durch Trocknen bei einer Temperatur von 90 °C und anschließendem Kalzinieren bei einer Temperatur von 600 °C wird der beschichtete Cordierit-Träger zu dem Katalysatorkörper mit darauf aufgebrachter Aktivmasse weiterverarbeitet.For the preparation, a titanium dioxide / tungsten trioxide coprecipitate composed of 90% by weight of titanium dioxide and 10% by weight of tungsten trioxide is mixed with a ZSM-5 zeolite of the H form with the addition of customary ceramic auxiliaries and fillers, mixed and added processed from water to a so-called slip, ie a liquid ceramic mass. The slip is then applied as a coating to a honeycomb-shaped carrier made of cordierite (a magnesium-alumino-silicate with the composition Mg 2 Al 4 Si5θi8 with a rhombic-halohedral structure). With an inflow area of 150 x 150 mm 2, the cordierite carrier has 2 1225 continuous channels. By drying at a temperature of 90 ° C and then calcining at a temperature of 600 ° C, the coated cordierite support is further processed into the catalyst body with the active composition applied thereon.
Die Mengenanteile der Ausgangsmaterialien sind so gewählt, daß die Aktivmasse des fertigen Katalysatorkörpers gleiche Anteile der Aktivkomponente, umfassend Titandioxid und Wolframtrioxid, und des Zeolithen aufweist.The proportions of the starting materials are chosen so that the active composition of the finished catalyst body has equal proportions of the active component, including titanium dioxide and tungsten trioxide, and of the zeolite.
Beispiel B In gleicher Weise wie in Beispiel A wird ein beschichteter Cordierit-Träger derart hergestellt, daß die Aktivmasse des fertigen Katalysatorkörpers ein Gewichtsverhältnis der Aktivkomponente, umfassend Titandioxid und Wolframtrioxid, zu dem Zeolithen von 75 zu 25 aufweist.Example B In the same way as in Example A, a coated cordierite carrier is produced in such a way that the active composition of the finished catalyst body has a weight ratio of the active component, comprising titanium dioxide and tungsten trioxide, to the zeolite of 75 to 25.
Beispiel CExample C
Gemäß Beispiel A wird ein beschichteter Cordierit-Träger derart hergestellt, daß die Aktivmasse des fertigen Katalysatorkörpers ein Gewichtsverhältnis der Aktivkomponente, umfassend Titandioxid und Wolframtrioxid, zu dem Zeolithen von 25 zu 75 aufweist . Beispiel DAccording to Example A, a coated cordierite support is produced in such a way that the active composition of the finished catalyst body has a weight ratio of the active component, comprising titanium dioxide and tungsten trioxide, to the zeolite of 25 to 75. Example D
Das in Beispiel A angegebene Copräzipitat aus Titandioxid und Wolframtrioxid wird mit einem ZSM-5-Zeolithen in H-Form unter Zugabe von keramischen Hilfs- und Füllstoffen vermischt, ver- mahlen und unter Zugabe von Wasser zu einer knetbaren, plastischen Masse verarbeitet. Die knetbare Masse wird dann zu einem wabenförmigen Katalysatorkörper extrudiert. Der als Vollextrudat hergestellte wabenförmige Katalysatorkörper weist wiederum bei einer Anströmfläche von 150 x 150 mm2 1225 parallele Strömungskanäle auf. Der Katalysatorkörper wird bei 90 °C getrocknet und anschließend bei 600 °C kalziniert. Durch diesen abschließenden Prozeß erhält der Katalysatorkörper seine katalytische Aktivität.The coprecipitate of titanium dioxide and tungsten trioxide given in Example A is mixed with a ZSM-5 zeolite in H form with the addition of ceramic auxiliaries and fillers, ground and processed to a kneadable, plastic mass with the addition of water. The kneadable mass is then extruded into a honeycomb-shaped catalyst body. The honeycomb-shaped catalyst body produced as a full extrudate again has 1225 parallel flow channels with an inflow area of 150 x 150 mm 2 . The catalyst body is dried at 90 ° C and then calcined at 600 ° C. This final process gives the catalyst body its catalytic activity.
Beispiel EExample E
Der gemäß Beispiel D als Vollextrudat hergestellte Katalysatorkörper in Wabenform wird für eine Dauer von 500 Stunden einer konstanten Temperaturbelastung von 700 °C ausgesetzt.The honeycomb-shaped catalyst body produced as a full extrudate according to Example D is subjected to a constant temperature load of 700 ° C. for a period of 500 hours.
Versuchattempt
Über die Katalysatorkorper gemäß der Beispiele A bis E wird mit einer Raumgeschwindigkeit von 15500/h ein Modellabgas geleitet. Das Modellabgas ist Stickstoff und umfaßt 200 ppm Stickstoffmonoxid NO, als Reduktionsmittel 200 ppm Ammoniak NH3, 11 Vol.-% Sauerstoff 02 und 10 Vol.-% Wasser H20.A model exhaust gas is passed over the catalyst body according to Examples A to E at a space velocity of 15500 / h. The model exhaust gas is nitrogen and comprises 200 ppm nitrogen monoxide NO, 200 ppm ammonia NH 3 as a reducing agent, 11% by volume oxygen 0 2 and 10% by volume water H 2 0.
Bei den Temperaturen des Modellabgases von 450 °C, 500 °C, 540 °C, 570 °C, 600 °C, 650 °C und 750 °C wird nacheinander an dem Katalysatorkörper der katalytische Umsatz von Stick- stoffmonoxid NO zu molekularem Stickstoff N2 gemessen. Hierzu wird der Gehalt an Stickstoffmonoxid NO vor und nach dem Katalysatorkόrper sowie der Gehalt an Stickstoff N2 nach dem Katalysatorkörper in dem Modellabgas gemessen.At the temperatures of the model exhaust gas of 450 ° C, 500 ° C, 540 ° C, 570 ° C, 600 ° C, 650 ° C and 750 ° C, the catalytic conversion of nitrogen monoxide NO to molecular nitrogen N is successively carried out on the catalyst body 2 measured. For this purpose, the content of nitrogen monoxide NO before and after the catalyst body and the content of nitrogen N 2 after the catalyst body in the model exhaust gas are measured.
Die Meßergebnisse sind in den Figuren 2 und 3 zusammengefaßt. Figur 2 zeigt die gemessene Abhängigkeit des NO/N2-Umsatzes in Prozent von der Temperatur des Modellabgases für die Katalysatorkörper gemäß der Beispiele A, B und C.The measurement results are summarized in FIGS. 2 and 3. FIG. 2 shows the measured dependency of the NO / N 2 conversion in percent on the temperature of the model exhaust gas for the catalyst bodies according to Examples A, B and C.
Figur 3 zeigt die Abhängigkeit des gemessenen NO/N2-Umsatzes in Prozent von der Temperatur für die Katalysatorkörper gemäß der Beispiele D und E.FIG. 3 shows the dependence of the measured NO / N 2 conversion in percent on the temperature for the catalyst body according to Examples D and E.
Wie aus Figur 2 ersichtlich, zeigen die Katalysatorkörper ge- maß der Beispiele A, B und C in dem Bereich hoher Temperaturen zwischen 450 und 650 °C einen katalytischen Umsatz zwischen 40 und 60 % . Dies bedeutet, daß zwischen 40 und 60 % des in dem Modellabgases enthaltenen NO zu N2 umgesetzt wurde. Der Katalysatorkörper gemäß Beispiel A zeigt über den gesamten Temperaturbereich von 450 bis 650 °C einen katalytischen Umsatz von 50 % und darüber. Der gemessene Umsatz des Katalysatorkörpers gemäß Beispiel C steigt mit höheren Temperaturen sogar an.As can be seen from FIG. 2, the catalyst bodies according to Examples A, B and C show a catalytic conversion of between 40 and 60% in the range of high temperatures between 450 and 650 ° C. This means that between 40 and 60% of the NO contained in the model exhaust gas was converted to N 2 . The catalyst body according to Example A shows a catalytic conversion of 50% and above over the entire temperature range from 450 to 650 ° C. The measured conversion of the catalyst body according to Example C even increases with higher temperatures.
Erst bei Temperaturen über 650 °C nimmt die katalytische Aktivität der Katalysatorkörper ab. Selbst bei einer Temperatur von 700 °C zeigen jedoch die Katalysator gemäß Beispiele A und C noch einen Umsatz von etwa 43 %.Only at temperatures above 650 ° C does the catalytic activity of the catalyst body decrease. Even at a temperature of 700 ° C, however, the catalysts according to Examples A and C still show a conversion of about 43%.
Dieses Ergebnis belegt eindeutig die Tauglichkeit der Katalysatorkorper gemäß Beispiele A bis C zum Abbau von Stickoxiden gemäß dem SCR-Verfahren im Hochtemperaturbereich von 450 bis über 700 °C. Ein vergleichbarer Katalysatorkörper mit einer Aktivmasse auf Basis von Titandioxid mit Beimengungen an Wolframtrioxid und/oder Vanadiumpentoxid zeigt hierhingegen ab einer Temperatur von 450 °C nur noch einen vernachlässigbaren Umsatz für Stickoxide gemäß dem SCR-Verfahren.This result clearly demonstrates the suitability of the catalyst bodies according to Examples A to C for the decomposition of nitrogen oxides according to the SCR process in the high temperature range from 450 to over 700 ° C. A comparable catalyst body with an active material based on titanium dioxide with admixtures of tungsten trioxide and / or vanadium pentoxide, on the other hand, only shows negligible conversion for nitrogen oxides according to the SCR process from a temperature of 450 ° C.
Die Temperaturbeständigkeit der Katalysatorkörper wird durch Figur 3 deutlich. Wie oben angegeben, wird auch über die Katalysatorkorper gemäß Beispiele D und E das angegebene Modellabgas geleitet. Für die Temperaturen 450 °C, 500 °C, 540 °C, 570 °C, 600 °C, 650 °C und 700 °C wird nacheinander ' jeweils der katalytische Umsatz von Stickstoffmonoxid NO zu molekularem Stickstoff N2 bestimmt. Als Ergebnis ist der gemessene NO/N2-Umsatz in Prozent als Funktion der Temperatur in Figur 3 dargestellt. Deutlich ist zu erkennen, daß der Katalysatorkörper gemäß Beispiel E, welcher einer hohen Temperaturbelastung ausgesetzt war, auch nach dieser Belastung nur eine Einbuße seiner hohen katalytischen Aktivität von etwa 10 % erfahren hat. The temperature resistance of the catalyst body is clear from Figure 3. As indicated above, the model exhaust gas indicated is also passed over the catalyst bodies according to Examples D and E. For the temperatures 450 ° C, 500 ° C, 540 ° C, 570 ° C, 600 ° C, 650 ° C and 700 ° C, the catalytic conversion of nitrogen monoxide NO to molecular nitrogen N 2 is determined in succession. As a result, the measured NO / N 2 conversion in percent as a function of the temperature is shown in FIG. 3. It can clearly be seen that the catalyst body according to Example E, which was exposed to a high temperature load, also experienced only a loss of its high catalytic activity of about 10% even after this load.

Claims

Patentansprüche claims
1. Katalysatorkörper (4) zum Abbau von Stickoxiden in Gegenwart eines Reduktionsmittels, mit einer Aktivmasse, welche einen Zeolithen und Titandioxid umfaßt, d a d u r c h g e k e n n z e i c h n e t , daß der Zeolith ein Wasserstoff-Ion getauschter, saurer Zeolith ist.1. catalyst body (4) for the decomposition of nitrogen oxides in the presence of a reducing agent, with an active composition which comprises a zeolite and titanium dioxide, so that the zeolite is a hydrogen ion-exchanged, acidic zeolite.
2. Katalysatorkörper (4) nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die Aktivmasse 40 - 60 Gew.-% an Zeolith enthält.2. Catalyst body (4) according to claim 1, d a d u r c h g e k e n n z e i c h n e t that the active composition contains 40 - 60 wt .-% of zeolite.
3. Katalysatorkörper (4) nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , daß die Aktiv- masse 40 - 60 Gew.-% einer Aktivkomponente enthält, welche jeweils bezogen auf das Gewicht der Aktivkomponente 70 - 95 Gew.-% Titandioxid, 2 - 30 Gew.-% Wolframtrioxid, 0.1 - 10 Gew.-% Aluminiumoxid und 0.1 - 10 Gew.-% Siliziumdioxid umfaßt.3. catalyst body (4) according to claim 1 or 2, characterized in that the active composition contains 40-60 wt .-% of an active component, each based on the weight of the active component 70-95 wt .-% titanium dioxide, 2-30 % By weight of tungsten trioxide, 0.1-10% by weight of aluminum oxide and 0.1-10% by weight of silicon dioxide.
4. Katalysatorkörper (4) nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t , daß die Aktivkomponente 8 - 12 Gew.-% an Wolframtrioxid umfaßt.4. A catalyst body (4) according to claim 3, d a d u r c h g e k e n n z e i c h n e t that the active component comprises 8 - 12 wt .-% of tungsten trioxide.
5. Katalysatorkörper (4) nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , daß der Zeolith ein USY-, ein Beta- oder ein ZSM5-Zeolith ist.5. Catalyst body (4) according to one of claims 1 to 4, that the zeolite is a USY, a beta or a ZSM5 zeolite.
6. Katalysatorkörper (4) nach einem der Ansprüche 1 bis 5, g e k e n n z e i c h n e t durch eine BET-Oberflache von 30 - 150 m2/g und ein Porenvolumen, gemessen nach dem Hg-Ein- dringverfahren, von 100 - 1000 ml/g.6. Catalyst body (4) according to one of claims 1 to 5, characterized by a BET surface area of 30-150 m 2 / g and a pore volume, measured by the mercury penetration method, of 100-1000 ml / g.
7. Verfahren zum Abbau von Stickoxiden in einem Gasstrom (1), wobei ein Stickoxide enthaltender Gasstrom (1) in Gegenwart eines Reduktionsmittels über einen Katalysatorkorper (4) ge- maß einem der Ansprüche 1 bis 6 geleitet wird, und wobei die Stickoxide zu Stickstoff und Wasser umgesetzt werden.7. Process for the decomposition of nitrogen oxides in a gas stream (1), wherein a gas stream (1) containing nitrogen oxides in the presence of a reducing agent over a catalyst body (4). measured is passed to one of claims 1 to 6, and wherein the nitrogen oxides are converted to nitrogen and water.
8. Verfahren nach Anspruch 7, wobei dem Gasstrom (1) als Reduktionsmittel eine wäßrige Harnstofflösung (11) zugegeben wird.8. The method according to claim 7, wherein the gas stream (1) as a reducing agent, an aqueous urea solution (11) is added.
9. Verfahren nach Anspruch 7 oder 8, wobei der Gasstrom (1) mit einer Temperatur von 250 - 750 °C über den Katalysatorkörper (4) geleitet wird. 9. The method according to claim 7 or 8, wherein the gas stream (1) at a temperature of 250-750 ° C is passed over the catalyst body (4).
EP99963228A 1998-11-25 1999-11-12 Catalyst body and method for the degradation of nitrogen oxides Withdrawn EP1137486A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19854502A DE19854502A1 (en) 1998-11-25 1998-11-25 Catalyst body and process for breaking down nitrogen oxides
DE19854502 1998-11-25
PCT/DE1999/003615 WO2000030746A2 (en) 1998-11-25 1999-11-12 Catalyst body and method for the degradation of nitrogen oxides

Publications (1)

Publication Number Publication Date
EP1137486A2 true EP1137486A2 (en) 2001-10-04

Family

ID=7889053

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99963228A Withdrawn EP1137486A2 (en) 1998-11-25 1999-11-12 Catalyst body and method for the degradation of nitrogen oxides

Country Status (8)

Country Link
US (1) US6569394B2 (en)
EP (1) EP1137486A2 (en)
JP (1) JP2002530190A (en)
KR (1) KR20010080539A (en)
DE (1) DE19854502A1 (en)
NO (1) NO20012588L (en)
TW (1) TW546165B (en)
WO (1) WO2000030746A2 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6391090B1 (en) * 2001-04-02 2002-05-21 Aeronex, Inc. Method for purification of lens gases used in photolithography
US6759358B2 (en) * 2001-08-21 2004-07-06 Sud-Chemie Inc. Method for washcoating a catalytic material onto a monolithic structure
JP3994862B2 (en) * 2002-06-17 2007-10-24 住友金属鉱山株式会社 Exhaust gas purification catalyst and purification method
US20050100494A1 (en) * 2003-11-06 2005-05-12 George Yaluris Ferrierite compositions for reducing NOx emissions during fluid catalytic cracking
FR2874075B1 (en) * 2004-08-03 2007-11-09 Espa Sarl FLUID TRANSPORT TUBE
DE102006020158B4 (en) 2006-05-02 2009-04-09 Argillon Gmbh Extruded full catalyst and process for its preparation
JP5076192B2 (en) * 2007-01-12 2012-11-21 国立大学法人 岡山大学 Catalyst and method for purifying nitrogen oxides in diesel engine exhaust gas using unburned carbon
KR101358482B1 (en) * 2007-02-27 2014-02-05 바스프 카탈리스트 엘엘씨 Copper cha zeolite catalysts
US7998423B2 (en) 2007-02-27 2011-08-16 Basf Corporation SCR on low thermal mass filter substrates
KR20170089936A (en) * 2007-02-27 2017-08-04 바스프 카탈리스트 엘엘씨 Bifunctional catalysts for selective ammonia oxidation
CN102974390A (en) 2007-04-26 2013-03-20 约翰逊马西有限公司 Transition metal/zeolite scr catalysts
GB2457651A (en) * 2008-01-23 2009-08-26 Johnson Matthey Plc Catalysed wall-flow filter
US20090196812A1 (en) 2008-01-31 2009-08-06 Basf Catalysts Llc Catalysts, Systems and Methods Utilizing Non-Zeolitic Metal-Containing Molecular Sieves Having the CHA Crystal Structure
US10583424B2 (en) 2008-11-06 2020-03-10 Basf Corporation Chabazite zeolite catalysts having low silica to alumina ratios
FR2945962B1 (en) * 2009-05-29 2012-06-08 Peugeot Citroen Automobiles Sa DEVICE, VEHICLE COMPRISING THIS DEVICE AND METHOD FOR TREATING EXHAUST GASES
US8207084B2 (en) * 2009-06-23 2012-06-26 Ford Global Technologies, Llc Urea-resistant catalytic units and methods of using the same
DE102009040352A1 (en) * 2009-09-05 2011-03-17 Johnson Matthey Catalysts (Germany) Gmbh Process for the preparation of an SCR active zeolite catalyst and SCR active zeolite catalyst
US8293198B2 (en) * 2009-12-18 2012-10-23 Basf Corporation Process of direct copper exchange into Na+-form of chabazite molecular sieve, and catalysts, systems and methods
US8293199B2 (en) * 2009-12-18 2012-10-23 Basf Corporation Process for preparation of copper containing molecular sieves with the CHA structure, catalysts, systems and methods
US8529853B2 (en) 2010-03-26 2013-09-10 Umicore Ag & Co. Kg ZrOx, Ce-ZrOx, Ce-Zr-REOx as host matrices for redox active cations for low temperature, hydrothermally durable and poison resistant SCR catalysts
US8017097B1 (en) 2010-03-26 2011-09-13 Umicore Ag & Co. Kg ZrOx, Ce-ZrOx, Ce-Zr-REOx as host matrices for redox active cations for low temperature, hydrothermally durable and poison resistant SCR catalysts
EP2726180A4 (en) 2011-06-29 2015-01-07 Pq Corp Zeolite impregnated with titanium dioxide
CN107335425B (en) 2012-08-17 2020-12-01 庄信万丰股份有限公司 Zeolite promoted V/Ti/W catalyst
WO2018116172A1 (en) * 2016-12-19 2018-06-28 Khalifa University of Science and Technology Fibrous zeolite catalyst for hydrocracking
GB201716063D0 (en) 2017-03-30 2017-11-15 Johnson Matthey Plc A catalyst for treating an exhaust gas, an exhaust system and a method
GB201705279D0 (en) 2017-03-31 2017-05-17 Johnson Matthey Plc Selective catalytic reduction catalyst
GB201705289D0 (en) 2017-03-31 2017-05-17 Johnson Matthey Catalysts (Germany) Gmbh Selective catalytic reduction catalyst
DE112020000444T5 (en) * 2019-01-18 2021-09-30 Cummins Emission Solutions Inc. Treated SCR catalysts with improved sulfur resistance
CN112156630B (en) * 2020-10-10 2022-02-08 清华大学 Denitration synergistic method for 500-DEG C and 900 DEG C

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3639271A (en) * 1969-12-03 1972-02-01 Chevron Res Method for making multicomponent catalysts
US3617487A (en) * 1969-12-09 1971-11-02 Chevron Res Jet fuel production
US3928233A (en) * 1972-08-16 1975-12-23 Union Oil Co Hydrogenative conversion catalysts
US3951864A (en) * 1972-12-11 1976-04-20 Chevron Research Company Hydrocarbon conversion catalyst
US4495061A (en) * 1980-06-16 1985-01-22 Chevron Research Company Hydrocarbon conversion catalyst and process using said catalyst
JPS60106535A (en) * 1983-11-16 1985-06-12 Mitsubishi Heavy Ind Ltd Catalyst for treating waste gas
NO167130C (en) * 1985-10-22 1991-10-09 Norton Co CATALYST FOR SELECTIVE REDUCTION OF NITROGEN OXIDES.
US4663300A (en) * 1985-12-23 1987-05-05 Uop Inc. Pollution control catalyst
US4798813A (en) * 1986-07-04 1989-01-17 Babcock-Hitachi Kabushiki Kaisha Catalyst for removing nitrogen oxide and process for producing the catalyst
DE3635284A1 (en) * 1986-10-16 1988-04-28 Steuler Industriewerke Gmbh CATALYST FOR REMOVING NITROGEN OXIDS FROM EXHAUST GAS
US4961917A (en) 1989-04-20 1990-10-09 Engelhard Corporation Method for reduction of nitrogen oxides with ammonia using promoted zeolite catalysts
US5071805A (en) * 1989-05-10 1991-12-10 Chevron Research And Technology Company Catalyst system for hydrotreating hydrocarbons
US5271913A (en) 1989-12-28 1993-12-21 Mitsubishi Jukogyo Kabushiki Kaisha Denitration catalyst for high-temperature exhaust gas
JP3246757B2 (en) * 1991-11-06 2002-01-15 三菱化学株式会社 Nitrogen oxide removal catalyst
US5417949A (en) * 1993-08-25 1995-05-23 Mobil Oil Corporation NOx abatement process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0030746A2 *

Also Published As

Publication number Publication date
TW546165B (en) 2003-08-11
NO20012588L (en) 2001-07-24
NO20012588D0 (en) 2001-05-25
JP2002530190A (en) 2002-09-17
WO2000030746A2 (en) 2000-06-02
DE19854502A1 (en) 2000-05-31
US6569394B2 (en) 2003-05-27
KR20010080539A (en) 2001-08-22
WO2000030746A3 (en) 2000-08-10
US20020004446A1 (en) 2002-01-10

Similar Documents

Publication Publication Date Title
EP1137486A2 (en) Catalyst body and method for the degradation of nitrogen oxides
EP2116293B1 (en) Exhaust gas cleaning system for treating motor exhaust gases with an SCR catalytic converter
EP2335810B1 (en) Selective catalytic reduction of nitrogen oxides in the exhaust gas of diesel engines
EP2428659B1 (en) Catalytic convertor for removing nitrogen oxides from the exhaust gas of diesel motors
DE102015112465B4 (en) SYSTEM AND METHOD FOR TREATMENT OF EXHAUST GAS
DE102006020158B4 (en) Extruded full catalyst and process for its preparation
DE69729670T2 (en) Catalyst and process for purifying exhaust gases
EP1128906B1 (en) Method for producing a catalyst body
EP0800856B1 (en) Catalyst for treating exhaust gases from diesel engines
DE3841990C2 (en)
EP2654928B1 (en) Method for transforming nitrogen-containing compounds
EP1153648A1 (en) Structured catalyst for the selective reduction of nitrogen oxides by ammonia using a hydrolisable compound
WO2011131324A1 (en) Novel mixed oxide materials for the selective catalytic reduction of nitrogen oxides in exhaust gases
EP2091635A1 (en) Vanadium-free catalyst for selective catalytic reduction and process for its preparation
WO2012059423A1 (en) Ammonia oxidation catalyst having low n2o by-product formation
DE102011012799A1 (en) Catalyst useful for removing nitrogen oxide from an exhaust gas of diesel engine comprises a carrier body of length (L) and a catalytically active coating made of at least one material zone
EP3442687A1 (en) Particle filter having scr-active coating
WO1999041000A1 (en) Catalyst and method for purifying exhaust gases
EP3558493A1 (en) Scr catalyst device containing vanadium oxide and molecular sieve containing iron
DE102017112718A1 (en) NOx adsorber catalyst
EP3623047B1 (en) Catalyst for reducing nitrogen oxides
EP3695902B1 (en) Catalyst for reducing nitrogen oxides
WO2018115045A1 (en) Scr catalyst device containing vanadium oxide and molecular sieve containing iron
EP4221871A1 (en) Bismut containing dieseloxidation catalyst
EP3694643A1 (en) Active scr catalyst

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010419

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20040816

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20041027