EP1134712B1 - Method for the processing of the signal in a danger detector, and detector with means for the implementation of such method - Google Patents

Method for the processing of the signal in a danger detector, and detector with means for the implementation of such method Download PDF

Info

Publication number
EP1134712B1
EP1134712B1 EP00105438A EP00105438A EP1134712B1 EP 1134712 B1 EP1134712 B1 EP 1134712B1 EP 00105438 A EP00105438 A EP 00105438A EP 00105438 A EP00105438 A EP 00105438A EP 1134712 B1 EP1134712 B1 EP 1134712B1
Authority
EP
European Patent Office
Prior art keywords
signals
sensor
analysis
wavelets
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00105438A
Other languages
German (de)
French (fr)
Other versions
EP1134712A1 (en
Inventor
Marc Pierre Dr. Thuillard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US10/019,362 priority Critical patent/US6879253B1/en
Priority to DE50015145T priority patent/DE50015145D1/en
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT00105438T priority patent/ATE394767T1/en
Priority to ES00105438T priority patent/ES2304919T3/en
Priority to EP00105438A priority patent/EP1134712B1/en
Priority to KR1020017014423A priority patent/KR100776063B1/en
Priority to PL01350725A priority patent/PL350725A1/en
Priority to JP2001567562A priority patent/JP2003527702A/en
Priority to CNB018005322A priority patent/CN1187723C/en
Priority to AU35304/01A priority patent/AU776482B2/en
Priority to CZ20014105A priority patent/CZ20014105A3/en
Priority to HU0201180A priority patent/HUP0201180A2/en
Priority to PCT/CH2001/000136 priority patent/WO2001069566A1/en
Publication of EP1134712A1 publication Critical patent/EP1134712A1/en
Priority to NO20015566A priority patent/NO20015566L/en
Priority to HK02108442.5A priority patent/HK1046978B/en
Application granted granted Critical
Publication of EP1134712B1 publication Critical patent/EP1134712B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/20Calibration, including self-calibrating arrangements
    • G08B29/24Self-calibration, e.g. compensating for environmental drift or ageing of components
    • G08B29/26Self-calibration, e.g. compensating for environmental drift or ageing of components by updating and storing reference thresholds
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/185Signal analysis techniques for reducing or preventing false alarms or for enhancing the reliability of the system
    • G08B29/186Fuzzy logic; neural networks

Definitions

  • the present invention relates to a method for processing the signals of a hazard detector, which has at least one sensor for monitoring risk parameters and the at least one sensor associated evaluation, wherein the monitoring of the hazard parameters by comparing the signals of at least one sensor with predetermined parameters by means.
  • the hazard detector can be, for example, a smoke detector, a flame detector, a passive infrared detector, a microwave detector, a dual detector (passive infrared + microwave sensor), or a sound detector.
  • the US 6011464 describes how, in a method for frequency analysis of a signal of a hazard detector, a wavelet transformation is combined with a fuzzy logic evaluation.
  • the original signal is fed to a multi-level filter cascade of high / low pass filter pairs.
  • a membership function is generated from results of the high pass filter, wavelet coefficients and values of the original signal.
  • These functions are normalized and are used in this form for further evaluation according to fuzzy logic rules.
  • the method is particularly suitable for the evaluation of the output signal of hazard detectors such as flame detectors, noise detectors and the like.
  • the wavelet transformation and fuzzy logic evaluation is performed by a small number of lines of processor code, whereby the evaluation can be realized with a low-cost processor and accelerated at the same or increased accuracy.
  • fuzzy logic is well known. With regard to the evaluation of the signals from hazard detectors, it should be emphasized that signal values are assigned to so-called fuzzy sets, or fuzzy sets, according to a membership function, the value of the membership function, or the degree of belonging to a fuzzy set, being between zero and one. Importantly, the membership function is normalizable, i. the sum of all values of the membership function is equal to one, whereby the fuzzy logic evaluation allows a clear interpretation of the signal.
  • the inventive method is characterized in that the signals of the at least one sensor are analyzed as to whether they occur more frequently or regularly, and that increasingly or regularly occurring signals are classified as interference signals.
  • a first preferred development of the method according to the invention is characterized in that the classification of signals as interference signals triggers a corresponding adaptation of the parameters.
  • the method according to the invention is based on the new knowledge that, for example, a fire detector never "sees" more than a few real fires between two revisions or two power failures, and that increasingly or regularly occurring signals indicate the presence of sources of interference.
  • the interference caused by the sources of interference are recognized as such and the detector parameters are adjusted accordingly.
  • the detectors operated by the method according to the invention are capable of learning and can better distinguish between real danger signals and interference signals.
  • a second preferred embodiment of the method according to the invention is characterized in that the occurrence of interference signals before the adaptation of the parameters, the result of the analysis of the signals of the at least one sensor is checked for its validity, and that the adjustment of the parameters in dependence on the result of this validity check ,
  • a third preferred development is characterized in that the validity check is carried out by means of methods based on multiple resolution.
  • a fourth preferred development of the method according to the invention is characterized in that wavelets, preferably “biorthogonal” or “second generation” wavelets or “lifting scheme", are used for the validation.
  • the wavelet transformation is a transformation or mapping of a signal from the time domain into the frequency domain (see, for example, " The Fast Wavelet Transform "by MacA Cody in Dr. Dobb's Journal, April 1992 ); it is basically similar to Fourier transform and Fast Fourier transform. It differs from these, however, by the basic function of the transformation, after which the signal is developed.
  • a Fourier transform uses a sine and cosine function that is sharply localized in the frequency domain and indefinite in the time domain.
  • a so-called wavelet or wave packet is used. There are various types of these, such as a Gaussian, spline or hair wavelet, which can be arbitrarily shifted in the time domain by two parameters and stretched or compressed in the frequency domain. More recently, new wavelet methods have been introduced, often referred to as "second generation". Such wavelets are constructed with the so-called “lifting-scheme” (Sweldens).
  • the result is a series of approximations of the original signal, each of which has a coarser resolution than the previous one.
  • the number of operations required for the transformation is in each case proportional to the length of the original signal, while in the Fourier transformation this number is disproportionate to the signal length.
  • the fast wavelet transform can also be performed inversely by restoring the original signal from the approximated values and coefficients for reconstruction.
  • the algorithm for the decomposition and reconstruction of the signal and a table of the coefficients of decomposition and reconstruction are exemplified for a spline wavelet in " An Introduction to Wavelets "by Charles K. Chui (Academic Press, San Diego, 1992 ). See also on this topic “ A Wavelet Tour of Signal Processing "by S. Mallat (Academic Press, 1998 ).
  • a further preferred development of the method according to the invention is characterized in that the expected values for the approximation or the approximation and detail coefficients of the wavelets are determined and compared at different resolutions.
  • the determination of said coefficients preferably takes place in an estimator or by means of a neural network.
  • the invention further relates to a hazard detector with means for carrying out said method, with at least one sensor for a hazard parameter and with a microprocessor-containing evaluation for the evaluation and analysis of the signals of the at least one sensor.
  • the danger detector according to the invention is characterized in that the microprocessor contains a software program with a multi-resolution learning algorithm for the analysis of the signals of the at least one sensor.
  • a first preferred embodiment of the inventive hazard alarm is characterized in that the learning algorithm on the one hand, an analysis of said sensor signals on their repeated or regular occurrence and on the other hand, a validity check of the result of the analysis, and that the learning algorithm for validating wavelets, preferably "biorthogonal" or "second generation” wavelets.
  • a second preferred embodiment of the inventive hazard detector is characterized in that the learning algorithm uses neuro-fuzzy methods.
  • ⁇ m, n wavelet scaling functions, ⁇ m, n approximation coefficients and y k denote the k-th input point of the neural network
  • ⁇ m, n the dual function (definition see S. Mallat) of ⁇ m, n is.
  • the inventive method the signals of a hazard detector are processed so that typical noise signals are detected and characterized. If in the present description is mainly mentioned by Brandmeldem, this does not mean that the inventive method is limited to fire detectors. The method is rather suitable for hazard detectors of all kinds, especially for burglar and motion detectors.
  • the mentioned interference signals are analyzed with a simple and reliable method.
  • An important feature of this method is that it not only detects and characterizes the interfering signals, but verifies the result of the analysis.
  • wavelet theory and multiresolution analysis is used.
  • the parameters of the detector or the algorithms are adjusted. This means, for example, that the sensitivity is reduced or that certain automatic switching between different parameter sets is locked.
  • a fire detector which has a scattered light optical sensor, a temperature sensor and a fire gas sensor.
  • the evaluation electronics of the detector contains a fuzzy controller in which the signals of the individual sensors and a diagnosis of the respective type of fire are linked. For each type of fire, a special application-specific algorithm is provided and can be selected based on the diagnosis.
  • the detector contains various parameter sets for personal protection and property protection, between which an online switchover normally takes place. If interference signals are now diagnosed in the case of the temperature and / or the fire gas sensor, switching between these parameter sets is interlocked.
  • Fig. 1 a diagram of such a multiple resolution is shown.
  • Line a shows the course of a signal whose amplitude moves in the areas of small, medium and large.
  • the membership functions c1 are "fairly small", c2 "medium” and c3 "rather large”.
  • These membership functions form a multiple resolution, meaning that each membership function can be decomposed into a sum of membership functions of a higher resolution level.
  • the triangular spline function c2 can be decomposed into the sum of the translated triangular functions of the higher level of line c.
  • a i linguistic expressions x is the linguistic input variable and y is the output variable.
  • the value of the input linguistic variables can be sharp or fuzzy. For example, if x i is a linguistic variable for the temperature, then x may be a sharp number such as "30 (° C)" or a fuzzy size such as "about 25 (° C)", with "about 25” itself Fuzzy set is.
  • the output y is a linear sum of translated and extended spline functions.
  • the Tagaki-Sugeno model is equivalent to a multi-resolution spline model.
  • wavelet techniques can be used here.
  • Fig. 2 shows a block diagram of a equipped with a Neurofuzzy learning algorithm hazard detector.
  • the detector designated by the reference M is, for example, a fire detector and has three sensors 2 to 4 for fire parameters.
  • an optical sensor 2 for scattered light or transmitted light measurement, a temperature sensor 3 and a fire gas, such as a CO sensor 4 is provided.
  • the output signals of the sensors 2 to 4 are fed to a processing stage 1, which has suitable means for processing the signals, such as amplifiers, and passes from this to a microprocessor or microcontroller, hereinafter referred to as ⁇ P 6.
  • the sensor signals are compared with each other as well as individually with specific parameter sets for the individual fire parameters.
  • the number of sensors is not limited to three. Thus, only a single sensor can be provided, in which case various properties, for example the signal gradient or the signal fluctuation, are extracted and examined from the signal of the one sensor.
  • a neuro-fuzzy network 7 and a validity check (validation) 8 are integrated into the ⁇ P 6 by software. If the signal resulting from the neuro-fuzzy network 7 is evaluated as an alarm signal, a corresponding alarm signal is sent to an alarm output device 9 or an alarm center. If the validation 8 shows that interference signals occur repeatedly or regularly, then the parameter sets stored in ⁇ P 6 are corrected accordingly.
  • the scaling functions are such that ⁇ ( ⁇ m, n (x) ⁇ form a multiple resolution
  • Each neural network uses activation functions of a given resolution
  • the m th neural network optimizes the coefficients ⁇ m, n with f m (x) , the output of the mth neural network.
  • f m x ⁇ ⁇ c ⁇ m . n ⁇ ⁇ m . n x ⁇ over all n
  • the two equations (5) and (6) form the main algorithm of the neuro-fuzzy network.
  • the values of the various neural networks are cross checked (validated), including a property of the wavelet decomposition, namely that the approximation coefficients ⁇ m, n of a level m from the approximation and wavelet coefficients of the level m-1 can be obtained by using the reconstruction or decomposition algorithm.
  • ⁇ m, n (x) is a second-order spline function and ⁇ m, n (x) is an interpolation function.
  • ⁇ m, n (x) is a spline function and ⁇ m, n (x) is the dual function of ⁇ m, n (x).
  • ⁇ m , n (x) ⁇ m, n (x), where ⁇ m, n (x) is the hair function.
  • FIGS. 3a and 3b Two variants of a neuro-fuzzy network 7 and the associated validation stage 8 are shown.
  • the input signal is approximated in different resolution levels as a weighted sum of wavelets ⁇ m, n and scaling functions ⁇ m, n with a given resolution.
  • the validation stage 8 compares the approximation coefficients ⁇ m, n with the approximation and detail coefficients of the wavelets at the level of the next lower resolution level.
  • P and q denote wavelet reconstruction filter coefficients.
  • the input signal is approximated in different resolution levels as a weighted sum of scaling functions ⁇ m, n with a given resolution.
  • the validation stage 8 compares the approximation coefficients ⁇ m, n with the approximation coefficients at the level of the next lower resolution stage. With g, wavelet are called low-pass decomposition coefficients.
  • Wavelet spline estimators are used to adaptively determine the appropriate resolution to locally describe an underlying hypersurface in an online learning process.
  • Nadaraya-Watson estimators have two interesting properties, they are estimators of the local mean square deviation and it can be shown that in the case of a random design they are so-called Bayesian estimators of (x k , y k ), where (x k , y k ) are iid copies of a continuous random variable (X, Y).
  • the available data are indicated by a small square, their projection onto dual spline functions with a small circle and the estimation on a regular grid with a cross.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Automation & Control Theory (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Alarm Systems (AREA)
  • Fire Alarms (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Complex Calculations (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Pinball Game Machines (AREA)

Abstract

The signals from an alarm, comprising at least one sensor (2, 3, 4), for monitoring characteristic hazard values and an analytical electronic unit (1), connected to the at least one sensor (2, 3, 4), are compared with pre-set parameters. Furthermore, the signals are analysed for repeated or regular occurrence and repeated, or regularly occurring alarm signals are classed as error signals. The classification of signals as error signals gives rise to a corresponding adjustment of the parameter. When an error signal arises, before the parameter is adjusted, the validity of the signal analysis for the at least one sensor (2, 3, 4) is checked and the parameter adjustment is carried out, depending upon the result of said validity check. An alarm with the means for carrying out said method comprises at least one sensor (2, 3, 4), for a characteristic hazard value and an electronic analysis unit (1), containing a microprocessor (6), for the evaluation and analysis of the signal from the at least one sensor (2, 3, 4). The microprocessor (6) has a software programme with an adaptive algorithm based on multiple solutions for the analysis of the signals from the at least one sensor (2, 3, 4).

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Verarbeitung der Signale eines Gefahrenmelders, welcher mindestens einen Sensor zur Überwachung von Gefahrenkenngrössen und eine dem mindestens einen Sensor zugeordnete Auswerteelektronik aufweist, wobei die Überwachung der Gefahrenkenngrössen durch Vergleich der Signale des mindestens einen Sensors mit vorgegebenen Parametern mittels erfolgt. Der Gefahrenmelder kann beispielsweise ein Rauchmelder, ein Flammenmelder, ein Passiv-Infrarotmelder, ein Mikrowellenmelder, ein Dualmelder (Passiv-Infrarot- + Mikrowellensensor), oder ein Geräuschmelder sein.The present invention relates to a method for processing the signals of a hazard detector, which has at least one sensor for monitoring risk parameters and the at least one sensor associated evaluation, wherein the monitoring of the hazard parameters by comparing the signals of at least one sensor with predetermined parameters by means. The hazard detector can be, for example, a smoke detector, a flame detector, a passive infrared detector, a microwave detector, a dual detector (passive infrared + microwave sensor), or a sound detector.

Die US 6011464 beschreibt, wie in einem Verfahren zur Frequenzanalyse eines Signals eines Gefahrenmelders eine Wavelet-Transformation mit einer Fuzzy-Logik-Auswertung vereinigt wird. In der Transformation mittels eines orthonormalen oder semi-orthonormalen Wavelet wird das ursprüngliche Signal einer mehrstufigen Filterkaskade von Hoch-/Tiefpassfilterpaaren zugeführt. Bei jeder Filterstufe wird aus Resultaten des Hochpassfilters, Wavelet-Koeffizienten und Werten des ursprünglichen Signals eine Zugehörigkeitsfunktion erzeugt. Diese Funktionen sind normalisiert und werden in dieser Form für die weitere Auswertung nach Fuzzy-Logik-Regeln verwendet. Das Verfahren eignet sich insbesondere für die Auswertung des Ausgangssignales von Gefahrenmeldern wie Flammenmeldern, Geräuschmeldern und dergleichen. Die Wavelet-Transformation und Fuzzy-Logik-Auswertung erfolgt durch eine kleine Anzahl Zeilen von Prozessorcode, wodurch die Auswertung mit einem kostengünstigen Prozessor realisierbar ist und bei gleicher oder erhöhter Genauigkeit beschleunigt erfolgt.The US 6011464 describes how, in a method for frequency analysis of a signal of a hazard detector, a wavelet transformation is combined with a fuzzy logic evaluation. In the transformation by means of an orthonormal or semi-orthonormal wavelet, the original signal is fed to a multi-level filter cascade of high / low pass filter pairs. At each filter stage, a membership function is generated from results of the high pass filter, wavelet coefficients and values of the original signal. These functions are normalized and are used in this form for further evaluation according to fuzzy logic rules. The method is particularly suitable for the evaluation of the output signal of hazard detectors such as flame detectors, noise detectors and the like. The wavelet transformation and fuzzy logic evaluation is performed by a small number of lines of processor code, whereby the evaluation can be realized with a low-cost processor and accelerated at the same or increased accuracy.

Heutige Gefahrenmelder haben bezüglich der Detektion von Gefahrenkenngrössen eine solche Empfindlichkeit erreicht, dass das Hauptproblem nicht mehr darin besteht, eine Gefahrenkenngrösse möglichst frühzeitig zu detektieren, sondern darin, Störsignale von echten Gefahrensignalen sicher zu unterscheiden und dadurch Fehlalarme zu vermeiden. Die Unterscheidung zwischen Gefahren- und Störsignalen erfolgt dabei im wesentlichen durch die Verwendung mehrerer verschiedener Sensoren und Korrelation von deren Signalen oder durch die Analyse verschiedener Merkmale der Signale eines einzigen Sensors und/oder durch eine entsprechende Signalverarbeitung, wobei in jüngster Zeit durch die Verwendung von Fuzzy-Logik schon eine wesentliche Verbesserung der Störsicherheit erreicht worden ist.Today's hazard detectors have reached such a sensitivity with respect to the detection of hazard parameters that the main problem is no longer to detect a hazard parameter as early as possible, but to reliably distinguish interference signals from true danger signals and thereby avoid false alarms. The distinction between danger and interference signals is made essentially by the use of several different sensors and correlation of their signals or by the analysis various features of the signals of a single sensor and / or by a corresponding signal processing, which has already been achieved by the use of fuzzy logic already a significant improvement in noise immunity.

Die Fuzzy-Logik ist allgemein bekannt. In bezug auf die Auswertung der Signale von Gefahrenmeldern ist hervorzuheben, dass Signalwerte sogenannten Fuzzy sets, oder unscharfen Mengen, gemäss einer Zugehörigkeitsfunktion zugeteilt werden, wobei der Wert der Zugehörigkeitsfunktion, oder der Grad der Zugehörigkeit zu einer unscharfen Menge, zwischen null und eins beträgt. Wichtig dabei ist, dass die Zugehörigkeitsfunktion normalisierbar sind, d.h. die Summe aller Werte der Zugehörigkeitsfunktion gleich eins ist, wodurch die Fuzzy-Logik-Auswertung eine eindeutige Interpretation des Signals erlaubt.The fuzzy logic is well known. With regard to the evaluation of the signals from hazard detectors, it should be emphasized that signal values are assigned to so-called fuzzy sets, or fuzzy sets, according to a membership function, the value of the membership function, or the degree of belonging to a fuzzy set, being between zero and one. Importantly, the membership function is normalizable, i. the sum of all values of the membership function is equal to one, whereby the fuzzy logic evaluation allows a clear interpretation of the signal.

Durch die vorliegende Erfindung soll nun ein Verfahren der eingangs genannten Art zur Verarbeitung der Signale eines Gefahrenmelders angegeben werden, das bezüglich Störunempfindlichkeit und Störsicherheit weiter verbessert ist.By the present invention, a method of the type mentioned above for processing the signals of a hazard detector will now be given, which is further improved in terms of noise immunity and noise immunity.

Das erfindungsgemässe Verfahren ist dadurch gekennzeichnet, dass die Signale des mindestens einen Sensors daraufhin analysiert werden, ob sie vermehrt oder regelmässig auftreten, und dass vermehrt oder regelmässig auftretende Signale als Störsignale klassiert werden.The inventive method is characterized in that the signals of the at least one sensor are analyzed as to whether they occur more frequently or regularly, and that increasingly or regularly occurring signals are classified as interference signals.

Eine erste bevorzugte Weiterbildung des erfindungsgemässen Verfahrens ist dadurch gekennzeichnet, dass die Klassierung von Signalen als Störsignale eine entsprechende Anpassung der Parameter auslöst.A first preferred development of the method according to the invention is characterized in that the classification of signals as interference signals triggers a corresponding adaptation of the parameters.

Das erfindungsgemässe Verfahren beruht auf der neuen Erkenntnis, dass beispielsweise ein Brandmelder zwischen zwei Revisionen oder zwei Stromausfällen nie mehr als einige wenige echte Brände "sieht", und dass vermehrt oder regelmässig auftretende Signale auf das Vorhandensein von Störquellen hindeuten. Die durch die Störquellen verursachten Störsignale werden als solche erkannt und die Melderparameter werden entsprechend angepasst. Auf diese Weise sind die nach dem erfindungsgemässen Verfahren betriebenen Melder lernfähig und können zwischen echten Gefahrensignalen und Störsignalen besser unterscheiden.The method according to the invention is based on the new knowledge that, for example, a fire detector never "sees" more than a few real fires between two revisions or two power failures, and that increasingly or regularly occurring signals indicate the presence of sources of interference. The interference caused by the sources of interference are recognized as such and the detector parameters are adjusted accordingly. In this way, the detectors operated by the method according to the invention are capable of learning and can better distinguish between real danger signals and interference signals.

Eine zweite bevorzugte Weiterbildung des erfindungsgemässen Verfahrens ist dadurch gekennzeichnet, dass beim Auftreten von Störsignalen vor der Anpassung der Parameter das Ergebnis der Analyse der Signale des mindestens einen Sensors auf seine Gültigkeit überprüft wird, und dass die Anpassung der Parameter in Abhängigkeit vom Ergebnis dieser Gültigkeitsprüfung erfolgt.A second preferred embodiment of the method according to the invention is characterized in that the occurrence of interference signals before the adaptation of the parameters, the result of the analysis of the signals of the at least one sensor is checked for its validity, and that the adjustment of the parameters in dependence on the result of this validity check ,

Eine dritte bevorzugte Weiterbildung ist dadurch gekennzeichnet, dass die Gültigkeitsprüfung mittels Methoden erfolgt, welche auf Mehrfachauflösung beruhen.A third preferred development is characterized in that the validity check is carried out by means of methods based on multiple resolution.

Eine vierte bevorzugte Weiterbildung des erfindungsgemässen Verfahrens ist dadurch gekennzeichnet, dass für die Gültigkeitsprüfung Wavelets, vorzugsweise "biorthogonal" oder "second generation" wavelets oder "lifting scheme" verwendet werden.A fourth preferred development of the method according to the invention is characterized in that wavelets, preferably "biorthogonal" or "second generation" wavelets or "lifting scheme", are used for the validation.

Die Wavelet-Transformation ist eine Transformation oder Abbildung eines Signals vom Zeitbereich in den Frequenzbereich (siehe dazu beispielsweise " The Fast Wavelet-Transform" von Mac A. Cody in Dr. Dobb's Journal, April 1992 ); sie ist also grundsätzlich der Fourier-Transformation und Fast-Fourier-Transformation ähnlich. Sie unterscheidet sich von diesen aber durch die Basisfunktion der Transformation, nach der das Signal entwickelt wird. Bei einer Fourier-Transformation wird eine Sinus- und Cosinus-Funktion verwendet, die im Frequenzbereich scharf lokalisiert und im Zeitbereich unbestimmt ist. Bei einer Wavelet-Transformation wird ein sogenanntes Wavelet oder Wellenpaket verwendet. Hiervon gibt es verschiedene Typen wie zum Beispiel ein Gauss-, Spline- oder Haar-Wavelet, die jeweils durch zwei Parameter beliebig im Zeitbereich verschoben und im Frequenzbereich gedehnt oder komprimiert werden können. In jüngster Zeit wurden neue Wavelet-Methoden vorgestellt, die oft als "second generation" bezeichnet werden. Solche Wavelets sind mit den sogenannten "lifting-scheme" (Sweldens) konstruiert.The wavelet transformation is a transformation or mapping of a signal from the time domain into the frequency domain (see, for example, " The Fast Wavelet Transform "by MacA Cody in Dr. Dobb's Journal, April 1992 ); it is basically similar to Fourier transform and Fast Fourier transform. It differs from these, however, by the basic function of the transformation, after which the signal is developed. A Fourier transform uses a sine and cosine function that is sharply localized in the frequency domain and indefinite in the time domain. In a wavelet transformation, a so-called wavelet or wave packet is used. There are various types of these, such as a Gaussian, spline or hair wavelet, which can be arbitrarily shifted in the time domain by two parameters and stretched or compressed in the frequency domain. More recently, new wavelet methods have been introduced, often referred to as "second generation". Such wavelets are constructed with the so-called "lifting-scheme" (Sweldens).

Es resultiert eine Reihe von Approximationen des ursprünglichen Signals, wovon jede eine gröbere Auflösung besitzt als die vorhergehende. Die Anzahl Operationen, die für die Transformation erforderlich sind, ist jeweils proportional zur Länge des ursprünglichen Signals, während bei der Fourier-Transformation diese Anzahl überproportional zur Signallänge ist. Die schnelle Wavelet-Transformation kann auch invers durchgeführt werden, indem das ursprüngliche Signal aus den approximierten Werten und Koeffizienten für die Rekonstruktion wiederhergestellt wird. Der Algorithmus für die Zerlegung und Rekonstruktion des Signals und eine Tabelle der Koeffizienten der Zerlegung und Rekonstruktion sind am Beispiel für ein Spline Wavelet in " An Introduction to Wavelets" von Charles K. Chui (Academic Press, San Diego, 1992 ) angegeben. Siehe zu diesem Thema auch " A Wavelet Tour of Signal Processing" von S. Mallat (Academic Press, 1998 ).The result is a series of approximations of the original signal, each of which has a coarser resolution than the previous one. The number of operations required for the transformation is in each case proportional to the length of the original signal, while in the Fourier transformation this number is disproportionate to the signal length. The fast wavelet transform can also be performed inversely by restoring the original signal from the approximated values and coefficients for reconstruction. The algorithm for the decomposition and reconstruction of the signal and a table of the coefficients of decomposition and reconstruction are exemplified for a spline wavelet in " An Introduction to Wavelets "by Charles K. Chui (Academic Press, San Diego, 1992 ). See also on this topic " A Wavelet Tour of Signal Processing "by S. Mallat (Academic Press, 1998 ).

Eine weitere bevorzugte Weiterbildung des erfindungsgemässen Verfahrens ist dadurch gekennzeichnet, dass die Erwartungswerte für die Approximations- oder die Approximations- und Detailkoeffizienten der Wavelets bestimmt und bei verschiedenen Auflösungen verglichen werden. Vorzugsweise erfolgt die Bestimmung der genannten Koeffizienten in einem Schätzer oder mittels eines neuronalen Netzes.A further preferred development of the method according to the invention is characterized in that the expected values for the approximation or the approximation and detail coefficients of the wavelets are determined and compared at different resolutions. The determination of said coefficients preferably takes place in an estimator or by means of a neural network.

Die Erfindung betrifft weiter einen Gefahrenmelder mit Mitteln zur Durchführung des genannten Verfahrens, mit mindestens einem Sensor für eine Gefahrenkenngrösse und mit einer einen Mikroprozessor enthaltenden Auswerteelektronik zur Auswertung und Analyse der Signale des mindestens einen Sensors.The invention further relates to a hazard detector with means for carrying out said method, with at least one sensor for a hazard parameter and with a microprocessor-containing evaluation for the evaluation and analysis of the signals of the at least one sensor.

Der erfindungsgemässe Gefahrenmelder ist dadurch gekennzeichnet, dass der Mikroprozessor ein Software-Programm mit einem auf Mehrfachauflösung beruhenden Lernalgorithmus für die Analyse der Signale des mindestens einen Sensors enthält.The danger detector according to the invention is characterized in that the microprocessor contains a software program with a multi-resolution learning algorithm for the analysis of the signals of the at least one sensor.

Eine erste bevorzugte Ausführungsform des erfindungsgemässen Gefahrenmelders ist dadurch gekennzeichnet, dass durch den Lernalgorithmus einerseits eine Analyse der genannten Sensorsignale auf deren wiederholtes oder regelmässiges Auftreten und andererseits eine Gültigkeitsprüfung des Ergebnisses der Analyse erfolgt, und dass der Lernalgorithmus für die Gültigkeitsprüfung Wavelets, vorzugsweise "biorthogonal" oder "second generation" wavelets, verwendet.A first preferred embodiment of the inventive hazard alarm is characterized in that the learning algorithm on the one hand, an analysis of said sensor signals on their repeated or regular occurrence and on the other hand, a validity check of the result of the analysis, and that the learning algorithm for validating wavelets, preferably "biorthogonal" or "second generation" wavelets.

Eine zweite bevorzugte Ausführungsform des erfindungsgemässen Gefahrenmelders ist dadurch gekennzeichnet, dass der Lernalgorithmus Neuro-Fuzzy-Methoden verwendet.A second preferred embodiment of the inventive hazard detector is characterized in that the learning algorithm uses neuro-fuzzy methods.

Eine dritte bevorzugte Ausführungsform des erfindungsgemässen Gefahrenmelders ist dadurch gekennzeichnet, dass der Lernalgorithmus die beiden Gleichungen f m x = Σ c ^ m , n ϕ m , n x Σ über alle n

Figure imgb0001
und c ^ m , n k = Σ ϕ ˜ m , n x i y i / Σ ϕ ˜ m , n x i Σ über alle i = 1 bis k
Figure imgb0002
enthält, in denen ϕm,n Wavelet Skalierfunktionen, ĉm,n Approximations-Koeffizienten und yk den k-ten Eingangspunkt des neuronalen Netzes bezeichnet, und ϕ̃m,n die duale Funktion (dual function, Definition siehe S. Mallat) von ϕm,n ist.A third preferred embodiment of the inventive hazard detector is characterized in that the learning algorithm the two equations f m x = Σ c ^ m . n φ m . n x Σ over all n
Figure imgb0001
and c ^ m . n k = Σ φ ~ m . n x i y i / Σ φ ~ m . n x i Σ over all i = 1 to k
Figure imgb0002
in which φ m, n wavelet scaling functions, ĉ m, n approximation coefficients and y k denote the k-th input point of the neural network, and φ m, n the dual function (definition see S. Mallat) of φ m, n is.

Im folgenden wird die Erfindung anhand von Ausführungsbeispielen und der Zeichnungen näher erläutert; es zeigt:

Fig. 1
ein Diagramm zur Funktionserläuterung,
Fig. 2
ein Blockschema eines mit Mitteln zur Durchführung des erfindungsgemässen Verfahrens ausgerüsteten Gefahrenmelders,
Fig. 3a, 3b
zwei Varianten eines Details des Gefahrenmelders von Fig. 2; und
Fig. 4
eine weitere Variante eines Details des Gefahrenmelders von Fig. 3.
In the following the invention will be explained in more detail with reference to embodiments and the drawings; it shows:
Fig. 1
a diagram to explain the function,
Fig. 2
1 is a block diagram of a hazard detector equipped with means for carrying out the method according to the invention;
Fig. 3a, 3b
two variants of a detail of the danger detector of Fig. 2 ; and
Fig. 4
another variant of a detail of the hazard detector of Fig. 3 ,

Durch das erfindungsgemässe Verfahren werden die Signale eines Gefahrenmelders so verarbeitet, dass typische Störsignale erfasst und charakterisiert werden. Wenn in der vorliegenden Beschreibung vorwiegend von Brandmeldem die Rede ist, bedeutet das nicht, dass das erfindungsgemässe Verfahren auf Brandmelder beschränkt ist. Das Verfahren ist vielmehr für Gefahrenmelder aller Art geeignet, insbesondere auch für Einbruch- und Bewegungsmelder.The inventive method, the signals of a hazard detector are processed so that typical noise signals are detected and characterized. If in the present description is mainly mentioned by Brandmeldem, this does not mean that the inventive method is limited to fire detectors. The method is rather suitable for hazard detectors of all kinds, especially for burglar and motion detectors.

Die erwähnten Störsignale werden mit einer einfachen und zuverlässigen Methode analysiert. Ein wichtiges Merkmal dieser Methode besteht darin, dass die Störsignale nicht nur erfasst und charakterisiert werden, sondern dass das Ergebnis der Analyse überprüft wird. Dazu wird Wavelet-Theorie und Mehrfachauflösungs-Analyse (multiresolution analysis) verwendet. Je nach dem Ergebnis der Überprüfung werden die Parameter des Melders oder die Algorithmen angepasst. Das bedeutet, dass bei-spielsweise die Empfindlichkeit verringert oder dass gewisse automatische Umschaltungen zwischen verschiedenen Parametersätzen verriegelt werden.The mentioned interference signals are analyzed with a simple and reliable method. An important feature of this method is that it not only detects and characterizes the interfering signals, but verifies the result of the analysis. For this purpose wavelet theory and multiresolution analysis is used. Depending on the result of the check, the parameters of the detector or the algorithms are adjusted. This means, for example, that the sensitivity is reduced or that certain automatic switching between different parameter sets is locked.

Letzteres sei an einem Beispiel erläutert: In der europäischen Patentanmeldung 99 122 975.8 ist ein Brandmelder beschrieben, der einen optischen Sensor für Streulicht, einen Temperatursensor und einen Brandgassensor aufweist. Die Auswerteelektronik des Melders enthält einen Fuzzy-Regler, in welchem eine Verknüpfung der Signale der einzelnen Sensoren und eine Diagnose der jeweiligen Brandart erfolgt. Für jede Brandart ist ein spezieller applikationsspezifischer Algorithmus bereitgestellt und anhand der Diagnose auswählbar. Ausserdem enthält der Melder verschiedenen Parametersätze für Personenschutz und Immobilienschutz, zwischen denen im Normalfall eine online-Umschaltung erfolgt. Wenn nun beim Temperatur- und/oder beim Brandgassensor Störsignale diagnostiziert werden, wird die Umschaltung zwischen diesen Parametersätzen verriegelt.The latter should be explained with an example: In the European patent application 99 122 975.8 a fire detector is described which has a scattered light optical sensor, a temperature sensor and a fire gas sensor. The evaluation electronics of the detector contains a fuzzy controller in which the signals of the individual sensors and a diagnosis of the respective type of fire are linked. For each type of fire, a special application-specific algorithm is provided and can be selected based on the diagnosis. In addition, the detector contains various parameter sets for personal protection and property protection, between which an online switchover normally takes place. If interference signals are now diagnosed in the case of the temperature and / or the fire gas sensor, switching between these parameter sets is interlocked.

Bei der Verwendung von Fuzzy-Logik besteht eines der zu lösenden Probleme in der Übersetzung des in einer Datenbank gespeicherten Wissens in linguistisch interpretierbare Fuzzy-Regeln. Zu diesem Zweck entwickelte Neurofuzzy-Methoden vermochten nicht zu überzeugen, weil sie teilweise nur sehr schwierig interpretierbare Fuzzy-Regeln liefern. Eine Möglichkeit zur Gewinnung interpretierbarer Fuzzy-Regeln bieten hingegen sogenannte Mehrfachauflösungs-Techniken. Deren Idee besteht darin, ein Wörterbuch von Zugehörigkeitsfunktionen zu verwenden, welche eine Mehrfachauflösung bilden, und zu bestimmen, welches die für die Beschreibung einer Steuerfläche geeigneten Zugehörigkeitsfunktionen sind.When using fuzzy logic, one of the problems to be solved in translating the knowledge stored in a database into linguistically interpretable fuzzy rules. Neurofuzzy methods developed for this purpose were not convincing because they sometimes provide very difficult to interpret fuzzy rules. One way to However, obtaining interpretable fuzzy rules offers so-called multi-resolution techniques. Their idea is to use a dictionary of membership functions which form a multi-resolution and to determine which are the membership functions suitable for the description of a control surface.

In Fig. 1 ist ein Diagramm einer solchen Mehrfachauflösung dargestellt. Zeile a zeigt den Verlauf eines Signals, dessen Amplitude sich in den Bereichen klein, mittel und gross bewegt. Entsprechend sind in Zeile b die Zugehörigkeitsfunktionen c1 "ziemlich klein", c2 "mittel" und c3 "ziemlich gross" eingezeichnet. Diese Zugehörigkeitsfunktionen bilden eine Mehrfachauflösung, was bedeutet, dass jede Zugehörigkeitsfunktion in eine Summe von Zugehörigkeitsfunktionen eines höheren Auflösungsniveaus zerlegt werden kann. Das ergibt die in Zeile c eingetragenen Zugehörigkeitsfunktionen c5 "sehr klein", c6 "klein bis sehr klein", c7 "sehr mittel", c8 "gross bis sehr gross" und c9 "sehr gross". Gemäss Zeile d kann also beispielsweise die dreieckige Spline-Funktion c2 in die Summe der übersetzten Dreiecksfunktionen des höheren Niveaus von Zeile c zerlegt werden.In Fig. 1 a diagram of such a multiple resolution is shown. Line a shows the course of a signal whose amplitude moves in the areas of small, medium and large. Correspondingly, in line b, the membership functions c1 are "fairly small", c2 "medium" and c3 "rather large". These membership functions form a multiple resolution, meaning that each membership function can be decomposed into a sum of membership functions of a higher resolution level. This results in the membership functions c5 entered in line c "very small", c6 "small to very small", c7 "very medium", c8 "large to very large" and c9 "very large". Thus, according to line d, for example, the triangular spline function c2 can be decomposed into the sum of the translated triangular functions of the higher level of line c.

Im Tagaki-Sugeno Modell werden die Fuzzy Regeln nach der Gleichung R i : wenn x ist A i dann y i = f i x i

Figure imgb0003
ausgedrückt. Hier sind Ai linguistische Ausdrücke, x ist die linguistische Eingangsvariable und y ist die Ausgangsvariable. Der Wert der linguistischen Eingangsvariablen kann scharf oder unscharf (fuzzy) sein. Wenn beispielsweise xi eine linguistische Variable für die Temperatur ist, dann kann der Wert eine scharfe Zahl wie "30(°C)" oder eine unscharfen Grösse wie "ungefähr 25 (°C)" sein, wobei "ungefähr 25" selbst ein Fuzzy-Set ist.In the Tagaki-Sugeno model, the fuzzy rules follow the equation R i : if x is A i then y i = f i x i
Figure imgb0003
expressed. Here A i linguistic expressions, x is the linguistic input variable and y is the output variable. The value of the input linguistic variables can be sharp or fuzzy. For example, if x i is a linguistic variable for the temperature, then x may be a sharp number such as "30 (° C)" or a fuzzy size such as "about 25 (° C)", with "about 25" itself Fuzzy set is.

Für einen scharfen Eingangswert ist der Ausgangswert des Fuzzy-Systems gegeben durch: y ^ = Σβ i f x ^ / Σβ i

Figure imgb0004
wobei der Grad der Erfüllung βi durch den Ausdruck βi = µAi() gegeben ist, in welchem µAi() die Zugehörigkeitsfunktion zum linguistischen Term Ai bezeichnet. Bei vielen Anwendungen wird eine lineare Funktion genommen: f() = aT+bi. wenn zur Beschreibung des scharfen Ausgangswerts y eine Konstante bi genommen wird, dann wird das System zu: R i : wenn x ist A i dann y i = b i
Figure imgb0005
For a sharp input value, the output value of the fuzzy system is given by: y ^ = Σβ i f x ^ / Σβ i
Figure imgb0004
wherein the degree of satisfaction β i is given by the expression β i = μ Ai ( x ), in which μ Ai ( x ) denotes the membership function to the linguistic term A i . In many applications a linear function is taken: f ( x ) = a T i x + b i . if a constant b i is taken to describe the sharp output value y, then the system becomes: R i : if x is A i then y i = b i
Figure imgb0005

Wenn Spline-Funktionen Nk genommen werden, beispielsweise als Zugehörigkeitsfunktion µAi(x̂) = Nk [2m(-n)], dann ist das System von Gleichung (3) äquivalent mit y t = Σb i N k 2 m x ^ - n

Figure imgb0006
If spline functions N k are taken, for example as a membership function μ Ai (x) = N k [2 m ( x -n)], then the system of Equation (3) is equivalent to y t = .sigma..sub.B i N k 2 m x ^ - n
Figure imgb0006

In diesem speziellen Fall ist der Ausgang y eine lineare Summe von übersetzten und ausgedehnten Splinefunktionen. Und das bedeutet, dass unter Gleichung (4) das Tagaki-Sugeno Modell einem Mehrfachauflösungs-Spline Modell äquivalent ist. Und daraus folgt, dass hier Wavelet-Techniken angewendet werden können.In this particular case, the output y is a linear sum of translated and extended spline functions. And that means that under equation (4) the Tagaki-Sugeno model is equivalent to a multi-resolution spline model. And it follows that wavelet techniques can be used here.

Fig. 2 zeigt ein Blockschema eines mit einem Neurofuzzy-Lernalgorithmus ausgerüsteten Gefahrenmelders. Der mit dem Bezugszeichen M bezeichnete Melder ist beispielsweise ein Brandmelder und weist drei Sensoren 2 bis 4 für Brandkenngrössen auf. Beispielsweise ist ein optischer Sensor 2 für Streulicht- oder Durchlichtmessung, ein Temperatursensor 3 und ein Brandgas-, beispielsweise ein CO-Sensor 4, vorgesehen. Die Ausgangssignale der Sensoren 2 bis 4 sind einer Verarbeitungsstufe 1 zugeführt, welche geeignete Mittel zur Verarbeitung der Signale, wie zum Beispiel Verstärker aufweist, und gelangen von dieser in einen nachfolgend als µP 6 bezeichneten Mikroprozessor oder Mikrokontroller. Fig. 2 shows a block diagram of a equipped with a Neurofuzzy learning algorithm hazard detector. The detector designated by the reference M is, for example, a fire detector and has three sensors 2 to 4 for fire parameters. For example, an optical sensor 2 for scattered light or transmitted light measurement, a temperature sensor 3 and a fire gas, such as a CO sensor 4, is provided. The output signals of the sensors 2 to 4 are fed to a processing stage 1, which has suitable means for processing the signals, such as amplifiers, and passes from this to a microprocessor or microcontroller, hereinafter referred to as μP 6.

Im µP 6 werden die Sensorsignale sowohl untereinander als auch einzeln mit bestimmten Parametersätzen für die einzelnen Brandkenngrössen verglichen. Selbstverständlich ist die Anzahl der Sensoren nicht auf drei beschränkt. So kann auch nur ein einziger Sensor vorgesehen sein, wobei in diesem Fall aus dem Signal des einen Sensors verschiedene Eigenschaften, beispielsweise der Signalgradient oder die Signalfluktuation, extrahiert und untersucht werden. In den µP 6 sind softwaremässig ein Neuro-Fuzzy-Netz 7 und eine Gültigkeitsprüfung (Validierung) 8 integriert. Wenn das aus dem Neuro-Fuzzy-Netz 7 resultierende Signal als Alarmsignal gewertet wird, wird einer Alarmabgabevorrichtung 9 oder einer Alarmzentrale ein entsprechendes Alarmsignal zugeführt. Sollte die Validierung 8 ergeben, dass wiederholt oder regelmässig Störsignale auftreten, dann werden die im µP 6 gespeicherten Parametersätze entsprechend korrigiert.In μP 6, the sensor signals are compared with each other as well as individually with specific parameter sets for the individual fire parameters. Of course, the number of sensors is not limited to three. Thus, only a single sensor can be provided, in which case various properties, for example the signal gradient or the signal fluctuation, are extracted and examined from the signal of the one sensor. A neuro-fuzzy network 7 and a validity check (validation) 8 are integrated into the μP 6 by software. If the signal resulting from the neuro-fuzzy network 7 is evaluated as an alarm signal, a corresponding alarm signal is sent to an alarm output device 9 or an alarm center. If the validation 8 shows that interference signals occur repeatedly or regularly, then the parameter sets stored in μP 6 are corrected accordingly.

Das Neuro-Fuzzy-Netz 7 ist eine Serie neuronaler Netze, welche die symmetrischen Skalierfunktionen ϕm,n(x) = ϕm,n(x) = ϕ[(x-n)·2m] als Aktivierungsfunktion verwenden. Die Skalierfunktionen sind derart, dass {(ϕm,n(x)} eine Mehrfachauflösung bilden. Jedes neuronale Netz benutzt Aktivierungsfunktionen einer gegebenen Auflösung. Das m-te neuronale Netz optimiert die Koeffi-zienten ĉm,n mit fm(x), dem Ausgang des m-ten neuronalen Netzes. f m x = Σ c ^ m , n ϕ m , n x Σ über alle n

Figure imgb0007
The neuro-fuzzy network 7 is a series of neural networks using the symmetric scaling functions φ m, n (x) = φ m, n (x) = φ [(xn) * 2 m ] as the activation function. The scaling functions are such that {(φ m, n (x)} form a multiple resolution Each neural network uses activation functions of a given resolution The m th neural network optimizes the coefficients ĉ m, n with f m (x) , the output of the mth neural network. f m x = Σ c ^ m . n φ m . n x Σ over all n
Figure imgb0007

Die Koeffizienten ĉm,n werden mit der folgenden Gleichung berechnet: c ^ m , n k = Σ ϕ ˜ m , n x i y i / Σ ϕ ˜ m , n x i Σ über alle i = 1 bis k

Figure imgb0008

wobei yk(x) der k-te Eingangspunkt und ϕ̃m,n(x) die duale Funktion von ϕm,n(x) ist. Die beiden Gleichungen (5) und (6) bilden den Hauptalgorithmus des Neuro-Fuzzy-Netzes.The coefficients ĉ m, n are calculated using the following equation: c ^ m . n k = Σ φ ~ m . n x i y i / Σ φ ~ m . n x i Σ over all i = 1 to k
Figure imgb0008

where y k (x) is the k th entry point and φ m, n (x) is the dual function of φ m, n (x). The two equations (5) and (6) form the main algorithm of the neuro-fuzzy network.

Bei jedem Iterationsschritt werden die Werte der verschiedenen neuronalen Netze kreuzweise überprüft (validiert), wozu eine Eigenschaft der Wavelet-Zerlegung, nämlich diejenige, dass die Approximationskoeffizienten ĉm,n eines Niveaus m aus den Approximations- und Wavelet-Koeffizienten des Niveaus m-1 durch Verwendung des Rekonstruktions- oder Zerlegungsalgorithmus gewonnen werden können.At each iteration step, the values of the various neural networks are cross checked (validated), including a property of the wavelet decomposition, namely that the approximation coefficients ĉ m, n of a level m from the approximation and wavelet coefficients of the level m-1 can be obtained by using the reconstruction or decomposition algorithm.

Bei einer bevorzugten Ausführung ist ϕ̃m,n(x) eine Spline-Funktion zweiter Ordnung und ϕm,n(x) eine Interpolationsfunktion. Bei einer zweiten Ausführung ist ϕm,n(x) eine Spline-Funktion und ϕ̃m,n(x) die duale Funktion von ϕm,n(x). In einer dritten Ausführung ist ϕ̃m,n(x) = ϕm,n(x), wobei ϕm,n(x) die Haar-Funktion ist. In diesen Fällen ist die Implementierung des Lernalgorithmus in einen einfachen Mikroprozessor möglich.In a preferred embodiment, φ m, n (x) is a second-order spline function and φ m, n (x) is an interpolation function. In a second embodiment, φ m, n (x) is a spline function and φ m, n (x) is the dual function of φ m, n (x). In a third embodiment, φ m , n (x) = φ m, n (x), where φ m, n (x) is the hair function. In these cases, the implementation of the learning algorithm in a simple microprocessor is possible.

In den Figuren 3a und 3b sind zwei Varianten eines Neuro-Fuzzy-Netzes 7 und der zugehörigen Validierungsstufe 8 dargestellt. Beim Beispiel von Fig. 3a wird das Eingangssignal in verschiedenen Auflösungsstufen als gewichtete Summe von Wavelets ψm,n und Skalierfunktionen ϕm,n mit einer gegebenen Auflösung approximiert. Die Validierungsstufe 8 vergleicht die Approximationskoeffizienten ĉm,n mit den Approximations- und Detailkoeffizienten der Wavelets auf dem Niveau der nächsttieferen Auflösungsstufe. Mit p und q sind Wavelet Rekonstruktions-Filterkoeffizienten bezeichnet.In the FIGS. 3a and 3b Two variants of a neuro-fuzzy network 7 and the associated validation stage 8 are shown. In the example of Fig. 3a the input signal is approximated in different resolution levels as a weighted sum of wavelets ψ m, n and scaling functions φ m, n with a given resolution. The validation stage 8 compares the approximation coefficients ĉ m, n with the approximation and detail coefficients of the wavelets at the level of the next lower resolution level. P and q denote wavelet reconstruction filter coefficients.

Beim Beispiel von Fig. 3b wird das Eingangssignal in verschiedenen Auflösungsstufen als gewichtete Summe von Skalierfunktionen ϕm,n mit einer gegebenen Auflösung approximiert. Die Validierungsstufe 8 vergleicht die Approximationskoeffizienten ĉm,n mit den Approximationskoeffizienten auf dem Niveau der nächsttieferen Auflösungsstufe. Mit g sind Wavelet Tiefpass-Zerlegungskoeffizienten bezeichnet.In the example of Fig. 3b the input signal is approximated in different resolution levels as a weighted sum of scaling functions φ m, n with a given resolution. The validation stage 8 compares the approximation coefficients ĉ m, n with the approximation coefficients at the level of the next lower resolution stage. With g, wavelet are called low-pass decomposition coefficients.

Anstatt in einem Neuro-Fuzzy-Netz 7 kann die Bestimmung der genannten Koeffizienten in einem Schätzer (estimator) der in Fig. 4 dargestellten Art erfolgen. Dieser Schätzer ist ein sogenannter Mehrfachauflösungs-Spline-Estimator, welcher zur Abschätzung der Koeffizienten ĉm,n in der Gleichung fm(x) = ĉm,n · ϕm,n(x) auf den Funktionen ϕ̃m,n(x) basierende Dual-Spline-Estimatoren verwendet. Man verwendet Wavelet-Spline-Estimatoren zur adaptiven Bestimmung der geeigneten Auflösung, um eine zugrundeliegende Hyperfläche in einem online-Lernprozess lokal zu beschreiben. Ein bekannter Schätzer ist der Nadaraya-Watson-Estimator, mit welchem die Gleichung der Hyperfläche f(x) durch den folgenden Ausdruck abgeschätzt wird: f x = k = 1 k max K ( x - x k / λ ) y k / k = 1 k max K ( x - x k / λ ) .

Figure imgb0009
Instead of in a neuro-fuzzy network 7, the determination of said coefficients in a estimator of the in Fig. 4 shown type done. This estimator is a so-called multi-resolution spline estimator, which is used to estimate the coefficients ĉ m, n in the equation f m (x) = ĉm , n ·φ m, n (x) on the functions φ m, n (x ) based dual-spline estimators used. Wavelet spline estimators are used to adaptively determine the appropriate resolution to locally describe an underlying hypersurface in an online learning process. A well-known estimator is the Nadaraya-Watson estimator, which estimates the equation of the hypersurface f (x) by the following expression: f x = Σ k = 1 k Max K ( x - x k / λ ) y k / Σ k = 1 k Max K ( x - x k / λ ) ,
Figure imgb0009

Nadaraya-Watson-Estimatoren haben zwei interessante Eigenschaften, sie sind Schätzer der lokalen mittleren quadratischen Abweichung und es kann gezeigt werden, dass sie im Fall eines Zufallsdesigns sogenannten Bayes'sche-Schätzer von (xk,yk) sind, wobei (xk,yk) iid-Kopien einer kontinuierlichen Zufallsvariablen (X, Y) sind.Nadaraya-Watson estimators have two interesting properties, they are estimators of the local mean square deviation and it can be shown that in the case of a random design they are so-called Bayesian estimators of (x k , y k ), where (x k , y k ) are iid copies of a continuous random variable (X, Y).

Die Spline-Funktionen ϕ(x) und ihre Dualfunktion ϕ̃(x) können als Schätzer verwendet werden. Wir verwenden zuerst die Funktion ϕ̃(x)zur Abschätzung von f(x) mit λ = 2-m (m ist eine ganze Zahl) an xn mit xn · 2m ∈ Z:The spline functions φ (x) and their dual function φ (x) can be used as estimators. We first use the function φ (x) to estimate f (x) with λ = 2 -m (m is an integer) at x n with x n · 2 m ∈ Z:

Mit Verwendung der Symmetrie von ϕ̃(x) ist Gleichung (6) für die duale Spline-Funktion äqivalent zur Verwendung eines bei xn zentrierten Schätzers: f ^ x n = k = 1 k max ϕ ˜ ( x k - x n 2 m ) y k / k = 1 k max K ( x k - x n 2 m ) .

Figure imgb0010
Using the symmetry of φ (x), equation (6) for the dual spline function is equivalent to using an estimator centered at x n : f ^ x n = Σ k = 1 k Max φ ~ ( x k - x n 2 m ) y k / Σ k = 1 k Max K ( x k - x n 2 m ) ,
Figure imgb0010

Der Erwartungswert des Zählers in Gleichung (7) ist proportional zum Approximationskoeffizienten cm,n. Gleichung (6) liefert eine Schätzung von ĉm,n in fm(x) = Σĉm,n ˙ ϕm,n(x): c ^ m , n = f ^ ( x n ) .

Figure imgb0011
The expected value of the counter in equation (7) is proportional to the approximation coefficient c m, n . Equation (6) gives an estimate of ĉ m, n in f m (x) = Σĉ m, n ˙ φ m, n (x): c ^ m . n = f ^ ( x n ) ,
Figure imgb0011

In der Figur 4 sind die zur Verfügung stehenden Daten (Werte) mit einem kleinen Quadrat bezeichnet, ihre Projektion auf duale Spline-Funktionen mit einem kleinen Kreis und die Abschätzung auf einem regelmässigen Gitter mit einem Kreuzchen.In the FIG. 4 the available data (values) are indicated by a small square, their projection onto dual spline functions with a small circle and the estimation on a regular grid with a cross.

Zur Validierung des Koeffizienten ĉm,n sind zwei Bedingungen notwendig: | c ^ m , n - p g p - 2 n c ^ m + 1 , p | < Δ

Figure imgb0012

wobei die Filterkoeffizienten g dem Tiefpass-Zerlegungs-Koeffizienten für Spline-Funktionen entsprechen. Ausserdem wird gefordert, dass | k = 1 k max ϕ ˜ x k - x n 2 m | > T
Figure imgb0013
damit Teilungen durch sehr kleine Werte verhindert werden.To validate the coefficient ĉ m, n two conditions are necessary: | c ^ m . n - Σ p G p - 2 n c ^ m + 1 . p | < Δ
Figure imgb0012

wherein the filter coefficients g correspond to the low-pass decomposition coefficient for spline functions. In addition, it is demanded that | Σ k = 1 k Max φ ~ x k - x n 2 m | > T
Figure imgb0013
so that divisions are prevented by very small values.

Die Stärke dieser Methode liegt darin, dass die Berechnung eines Koeffizienten ĉm,n die Speicherung von lediglich zwei Werten erfordert, des Zählers und des Nenners in Gleichung (7). Das Verfahren ist daher sehr gut für online-Lernen mit einem einfachen Mikroprozessor mit geringer Speicherkapazität geeignet.The strength of this method is that the calculation of a coefficient ĉ m, n requires the storage of only two values of the numerator and the denominator in equation (7). The method is therefore very well suited for online learning with a simple low memory microprocessor.

Das Verfahren ist leicht an Dichte-Abschätzung anpassbar, indem die Gleichung (7) und (8) durch die folgende Gleichung ersetzt werden: c ^ m , n = 1 / k max k = 1 k max ϕ ˜ m , n x k y k

Figure imgb0014
The method is easily adaptable to density estimation by replacing equations (7) and (8) with the following equation: c ^ m . n = 1 / k Max Σ k = 1 k Max φ ~ m . n x k y k
Figure imgb0014

Claims (10)

  1. Method for processing the signals of a danger detector, which features at least one sensor (2, 3, 4) for monitoring characteristic danger values and features evaluation electronics assigned to the at least one sensor (2, 3, 4), in which the signals of the at least one sensor (2, 3, 4) are compared with predetermined parameters, characterized in that the signals of the at least one sensor (2, 3, 4) are analysed to establish whether they are occurring more than once or regularly so that signals occurring more than once or regularly can be classed as interference signals and that the result of the analysis of the signals as to their validity is checked by methods which are based on multi-resolution.
  2. Method according to claim 1, characterised in that the classification of signals as interference signals triggers a corresponding adaptation of the parameters,
  3. Method according to claim 2, characterised in that, on occurrence of interference signals, before the parameters are adapted, the result of the analysis of the signals of the at least one sensor (2, 3, 4) is validated, and that the parameters are adapted depending on the result of this validation,
  4. Method according to claim 3, characterised in that wavelets, preferably "biorthogonal" or "second generation" wavelets or a "lifting scheme" are used for the validation.
  5. Method according to claim 4, characterised in that the expected values are determined for the approximation coefficients or the approximation and detailed coefficients of the wavelets and are compared at different resolutions.
  6. Method according to claim 5, characterised in that the said coefficients are determined in an estimator or by means of a neuronal network.
  7. Danger detector with means for executing the method as claimed in claim 1, with at least one sensor (2, 3, 4) for a characteristic danger value and with evaluation electronics (1) containing a microprocessor (6) for evaluation and analysis of the signals of the at least one sensor (2, 3, 4), characterized in that the microprocessor (6) contains a software program with a learning algorithm based on multi-resolution for the analysis of the signals of the at least one sensor (2, 3, 4).
  8. Danger detector according to claim 7, characterised in that, through the learning algorithm, on the one hand an analysis of the said sensor signal as to its repeated or regular occurrence and on the other hand a validation of the result of the analysis is undertaken, and that the learning uses wavelets, preferably "biorthogonal" or "second generation" wavelets for the validation.
  9. Danger detector according to claim 8, characterised in that the learning algorithm uses neuro-fuzzy methods.
  10. Danger detector according to claim 9, characterised in that the learning algorithm contains the two equations f m x = Σ c ^ m , n ϕ m , n x Σ over all n
    Figure imgb0017
    and c ^ m , n k = Σ ϕ m , n x i y i / Σ ϕ m , n x i Σ over all i = 1 to k
    Figure imgb0018
    in which ϕm,n designates scaling functions, ĉm,n approximation coefficients and yk the kth input point of the neuronal network and ϕm,n is the dual function of ϕm,n.
EP00105438A 2000-03-15 2000-03-15 Method for the processing of the signal in a danger detector, and detector with means for the implementation of such method Expired - Lifetime EP1134712B1 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
US10/019,362 US6879253B1 (en) 2000-03-15 2000-03-06 Method for the processing of a signal from an alarm and alarms with means for carrying out said method
AT00105438T ATE394767T1 (en) 2000-03-15 2000-03-15 METHOD FOR PROCESSING THE SIGNALS OF A HAZARD DETECTOR AND HAZARD DETECTOR WITH MEANS FOR IMPLEMENTING THE METHOD
ES00105438T ES2304919T3 (en) 2000-03-15 2000-03-15 PROCEDURE FOR PROCESSING THE SIGNS OF A DANGER AND DANGER NOTICE WITH MEANS TO PERFORM THE PROCEDURE.
EP00105438A EP1134712B1 (en) 2000-03-15 2000-03-15 Method for the processing of the signal in a danger detector, and detector with means for the implementation of such method
DE50015145T DE50015145D1 (en) 2000-03-15 2000-03-15 Method for processing the signals of a danger detector and danger detector with means for carrying out the method
PL01350725A PL350725A1 (en) 2000-03-15 2001-03-06 Method for the processing of a signal from an alarm and alarms with means for carrying out said method
JP2001567562A JP2003527702A (en) 2000-03-15 2001-03-06 Danger detector having a method of processing a signal of a danger detector and means for performing the method
CNB018005322A CN1187723C (en) 2000-03-15 2001-03-06 Method for processing of signal from alarm and alarms with means for carrying out said method
KR1020017014423A KR100776063B1 (en) 2000-03-15 2001-03-06 Method for the processing of a signal from an alarm and alarms with means for carrying out said method
AU35304/01A AU776482B2 (en) 2000-03-15 2001-03-06 Method for the processing of a signal from an alarm and alarms with means for carrying out said method
CZ20014105A CZ20014105A3 (en) 2000-03-15 2001-03-06 Method for the processing of the signal in a danger detector, and detector with means for the implementation of such method
HU0201180A HUP0201180A2 (en) 2000-03-15 2001-03-06 Method for the processing of a signal from an alarm and alarms with means for carrying out said method
PCT/CH2001/000136 WO2001069566A1 (en) 2000-03-15 2001-03-06 Method for the processing of a signal from an alarm and alarms with means for carrying out said method
NO20015566A NO20015566L (en) 2000-03-15 2001-11-14 Method of processing the signals from a risk alert, and risk alerts with means for carrying out the method
HK02108442.5A HK1046978B (en) 2000-03-15 2002-11-21 Method for processing the signal of a danger detector and danger detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP00105438A EP1134712B1 (en) 2000-03-15 2000-03-15 Method for the processing of the signal in a danger detector, and detector with means for the implementation of such method

Publications (2)

Publication Number Publication Date
EP1134712A1 EP1134712A1 (en) 2001-09-19
EP1134712B1 true EP1134712B1 (en) 2008-05-07

Family

ID=8168099

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00105438A Expired - Lifetime EP1134712B1 (en) 2000-03-15 2000-03-15 Method for the processing of the signal in a danger detector, and detector with means for the implementation of such method

Country Status (15)

Country Link
US (1) US6879253B1 (en)
EP (1) EP1134712B1 (en)
JP (1) JP2003527702A (en)
KR (1) KR100776063B1 (en)
CN (1) CN1187723C (en)
AT (1) ATE394767T1 (en)
AU (1) AU776482B2 (en)
CZ (1) CZ20014105A3 (en)
DE (1) DE50015145D1 (en)
ES (1) ES2304919T3 (en)
HK (1) HK1046978B (en)
HU (1) HUP0201180A2 (en)
NO (1) NO20015566L (en)
PL (1) PL350725A1 (en)
WO (1) WO2001069566A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107180521A (en) * 2017-04-19 2017-09-19 天津大学 Optical fiber perimeter security protection intrusion event recognition methods and device based on comprehensive characteristics

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7068177B2 (en) * 2002-09-19 2006-06-27 Honeywell International, Inc. Multi-sensor device and methods for fire detection
US7202794B2 (en) * 2004-07-20 2007-04-10 General Monitors, Inc. Flame detection system
FI117878B3 (en) * 2006-01-20 2019-01-31 Innohome Oy Alarm device for a kitchen range or range hood
US8819562B2 (en) 2010-09-30 2014-08-26 Honeywell International Inc. Quick connect and disconnect, base line configuration, and style configurator
US20110093493A1 (en) 2008-10-28 2011-04-21 Honeywell International Inc. Building management system site categories
US20100106543A1 (en) * 2008-10-28 2010-04-29 Honeywell International Inc. Building management configuration system
US8719385B2 (en) * 2008-10-28 2014-05-06 Honeywell International Inc. Site controller discovery and import system
US8850347B2 (en) 2010-09-30 2014-09-30 Honeywell International Inc. User interface list control system
US8572502B2 (en) * 2008-11-21 2013-10-29 Honeywell International Inc. Building control system user interface with docking feature
US9471202B2 (en) * 2008-11-21 2016-10-18 Honeywell International Inc. Building control system user interface with pinned display feature
US8224763B2 (en) 2009-05-11 2012-07-17 Honeywell International Inc. Signal management system for building systems
US8554714B2 (en) * 2009-05-11 2013-10-08 Honeywell International Inc. High volume alarm management system
US8352047B2 (en) 2009-12-21 2013-01-08 Honeywell International Inc. Approaches for shifting a schedule
US20110196539A1 (en) * 2010-02-10 2011-08-11 Honeywell International Inc. Multi-site controller batch update system
US8640098B2 (en) * 2010-03-11 2014-01-28 Honeywell International Inc. Offline configuration and download approach
US8890675B2 (en) 2010-06-02 2014-11-18 Honeywell International Inc. Site and alarm prioritization system
US8648706B2 (en) 2010-06-24 2014-02-11 Honeywell International Inc. Alarm management system having an escalation strategy
US9213539B2 (en) 2010-12-23 2015-12-15 Honeywell International Inc. System having a building control device with on-demand outside server functionality
US9223839B2 (en) 2012-02-22 2015-12-29 Honeywell International Inc. Supervisor history view wizard
US9529349B2 (en) 2012-10-22 2016-12-27 Honeywell International Inc. Supervisor user management system
US9971977B2 (en) 2013-10-21 2018-05-15 Honeywell International Inc. Opus enterprise report system
US9933762B2 (en) 2014-07-09 2018-04-03 Honeywell International Inc. Multisite version and upgrade management system
CN105067025A (en) * 2015-07-31 2015-11-18 西南科技大学 Method for utilizing monostable system stochastic resonance effect to detect weak signals
US10362104B2 (en) 2015-09-23 2019-07-23 Honeywell International Inc. Data manager
US10209689B2 (en) 2015-09-23 2019-02-19 Honeywell International Inc. Supervisor history service import manager
US10957176B2 (en) 2016-11-11 2021-03-23 Carrier Corporation High sensitivity fiber optic based detection
US11127270B2 (en) 2016-11-11 2021-09-21 Carrier Corporation High sensitivity fiber optic based detection
ES2919300T3 (en) 2016-11-11 2022-07-22 Carrier Corp High sensitivity fiber optic based detection
EP3539108B1 (en) 2016-11-11 2020-08-12 Carrier Corporation High sensitivity fiber optic based detection
US11151853B2 (en) 2016-11-11 2021-10-19 Carrier Corporation High sensitivity fiber optic based detection

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH686914A5 (en) * 1993-12-20 1996-07-31 Cerberus Ag Fire detection system for early detection of fires.
EP0718814B1 (en) * 1994-12-19 2001-07-11 Siemens Building Technologies AG Method and device for flame detection
JP3251799B2 (en) * 1995-02-13 2002-01-28 三菱電機株式会社 Equipment diagnostic equipment
EP0834845A1 (en) * 1996-10-04 1998-04-08 Cerberus Ag Method for frequency analysis of a signal
US6150935A (en) * 1997-05-09 2000-11-21 Pittway Corporation Fire alarm system with discrimination between smoke and non-smoke phenomena
JP3827426B2 (en) * 1997-11-06 2006-09-27 能美防災株式会社 Fire detection equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107180521A (en) * 2017-04-19 2017-09-19 天津大学 Optical fiber perimeter security protection intrusion event recognition methods and device based on comprehensive characteristics

Also Published As

Publication number Publication date
PL350725A1 (en) 2003-01-27
US6879253B1 (en) 2005-04-12
NO20015566D0 (en) 2001-11-14
KR20020042764A (en) 2002-06-07
NO20015566L (en) 2001-11-14
EP1134712A1 (en) 2001-09-19
CN1187723C (en) 2005-02-02
ES2304919T3 (en) 2008-11-01
DE50015145D1 (en) 2008-06-19
AU3530401A (en) 2001-09-24
HK1046978A1 (en) 2003-01-30
AU776482B2 (en) 2004-09-09
HUP0201180A2 (en) 2003-03-28
CZ20014105A3 (en) 2002-05-15
ATE394767T1 (en) 2008-05-15
WO2001069566A1 (en) 2001-09-20
HK1046978B (en) 2005-09-23
CN1364283A (en) 2002-08-14
KR100776063B1 (en) 2007-11-15
JP2003527702A (en) 2003-09-16

Similar Documents

Publication Publication Date Title
EP1134712B1 (en) Method for the processing of the signal in a danger detector, and detector with means for the implementation of such method
DE102019209565A1 (en) Method and device for checking the robustness of an artificial neural network
DE69309300T2 (en) METHOD AND DEVICE FOR ITEM CLASSIFICATION
EP0780002B1 (en) Process and apparatus for reconstructing raster-shaped line structures
EP0865646B1 (en) Method for analyzing the signals of a danger alarm system and danger alarm system for implementing said method
DE102019209566A1 (en) Method and device for training a machine learning system
EP3707496B1 (en) Identification of one or more spectral features in a spectrum of a sample for a constituent analysis
DE102018216078A1 (en) Method and device for operating a control system
DE102021204040A1 (en) Method, device and computer program for creating training data in the vehicle
DE102020208828A1 (en) Method and device for creating a machine learning system
EP3659887A1 (en) Method and device for estimating a load state of a vehicle
DE68925937T2 (en) Detection and processing of waveforms
EP1376286B1 (en) System and method for monitoring a process
AT507266B1 (en) METHOD FOR AUTOMATICALLY DETECTING A DEFECT IN AN ELECTRONIC REPRESENTATION
DE102016113310A1 (en) A method for evaluating statements of a plurality of sources about a plurality of facts
EP0863485B1 (en) Method of reconstruction of patterns
WO2023046653A1 (en) Method for determining whether a predetermined good to be transported is arranged in a monitoring region
DE102021210775A1 (en) Method and device for machine learning from a small number of training data samples
DE102020211714A1 (en) Method and device for creating a machine learning system
WO2022237930A1 (en) Component-classifying apparatus, method for classifying components, and method for training a component-classifying apparatus
AT413248B (en) METHOD FOR COMPARING A REQUEST FINGER PRINT WITH A REFERENCE FINGERPRINT
DE102021205897A1 (en) Examine a training data set
DE102022211293A1 (en) Method for identifying anomalies and thus also actual processing positions of a web and for classifying these anomalies, system and computer program product
WO2023156312A1 (en) Method and system for detecting a seat occupancy state of a seating arrangement on the basis of radar point clouds
DE102022204863A1 (en) Detection of anomalies in a technical system through monitoring with multiple sensors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020312

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS SCHWEIZ AG

17Q First examination report despatched

Effective date: 20070102

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50015145

Country of ref document: DE

Date of ref document: 20080619

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2304919

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081007

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080807

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

26N No opposition filed

Effective date: 20090210

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120207

Year of fee payment: 13

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 394767

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130315

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20150220 AND 20150225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150328

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50015145

Country of ref document: DE

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

Effective date: 20150407

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150311

Year of fee payment: 16

Ref country code: GB

Payment date: 20150312

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20150602

Year of fee payment: 16

Ref country code: ES

Payment date: 20150427

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: SIEMENS SCHWEIZ AG, CH

Effective date: 20150916

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: SIEMENS SCHWEIZ AG

Effective date: 20160406

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160315

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160315

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160315

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20170428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160316

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180518

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50015145

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191001