EP1134712A1 - Method for the processing of the signal in a danger detector, and detector with means for the implementation of such method - Google Patents

Method for the processing of the signal in a danger detector, and detector with means for the implementation of such method Download PDF

Info

Publication number
EP1134712A1
EP1134712A1 EP00105438A EP00105438A EP1134712A1 EP 1134712 A1 EP1134712 A1 EP 1134712A1 EP 00105438 A EP00105438 A EP 00105438A EP 00105438 A EP00105438 A EP 00105438A EP 1134712 A1 EP1134712 A1 EP 1134712A1
Authority
EP
European Patent Office
Prior art keywords
signals
sensor
analysis
wavelets
parameters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00105438A
Other languages
German (de)
French (fr)
Other versions
EP1134712B1 (en
Inventor
Marc Pierre Dr. Thuillard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens Building Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US10/019,362 priority Critical patent/US6879253B1/en
Priority to EP00105438A priority patent/EP1134712B1/en
Application filed by Siemens Building Technologies AG filed Critical Siemens Building Technologies AG
Priority to AT00105438T priority patent/ATE394767T1/en
Priority to ES00105438T priority patent/ES2304919T3/en
Priority to DE50015145T priority patent/DE50015145D1/en
Priority to HU0201180A priority patent/HUP0201180A2/en
Priority to PCT/CH2001/000136 priority patent/WO2001069566A1/en
Priority to KR1020017014423A priority patent/KR100776063B1/en
Priority to PL01350725A priority patent/PL350725A1/en
Priority to CZ20014105A priority patent/CZ20014105A3/en
Priority to CNB018005322A priority patent/CN1187723C/en
Priority to JP2001567562A priority patent/JP2003527702A/en
Priority to AU35304/01A priority patent/AU776482B2/en
Publication of EP1134712A1 publication Critical patent/EP1134712A1/en
Priority to NO20015566A priority patent/NO20015566L/en
Priority to HK02108442.5A priority patent/HK1046978B/en
Application granted granted Critical
Publication of EP1134712B1 publication Critical patent/EP1134712B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/20Calibration, including self-calibrating arrangements
    • G08B29/24Self-calibration, e.g. compensating for environmental drift or ageing of components
    • G08B29/26Self-calibration, e.g. compensating for environmental drift or ageing of components by updating and storing reference thresholds
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/185Signal analysis techniques for reducing or preventing false alarms or for enhancing the reliability of the system
    • G08B29/186Fuzzy logic; neural networks

Definitions

  • the present invention relates to a method for processing the signals of a hazard detector, which has at least one sensor for monitoring hazard parameters and has evaluation electronics assigned to the at least one sensor, with the monitoring the hazard parameters by comparing the signals of the at least one sensor with predetermined parameters.
  • the hazard detector can, for example, be a Smoke detectors, a flame detector, a passive infrared detector, a microwave detector, a dual detector (Passive infrared + microwave sensor), or a noise detector.
  • Fuzzy logic is well known. With regard to the evaluation of signals from hazard detectors It should be emphasized that signal values known as fuzzy sets, or unsharp quantities, be assigned according to a membership function, whereby the value of the membership function, or the degree of belonging to a fuzzy set, between zero and one is. It is important that the membership function can be normalized, i.e. the sum all values of the membership function is equal to one, which results in the fuzzy logic evaluation allows a clear interpretation of the signal.
  • the present invention is now intended to be a method of the type mentioned at the outset for processing the signals of a hazard detector are given, which are insensitive to interference and immunity to interference is further improved.
  • the method according to the invention is characterized in that the signals of the at least a sensor is analyzed to determine whether they occur more frequently or regularly and that increasingly or regularly occurring signals are classified as interference signals.
  • a first preferred development of the method according to the invention is characterized in that that the classification of signals as interference signals a corresponding adaptation of the Parameter triggers.
  • the method according to the invention is based on the new finding that, for example, a Fire alarms between two revisions or two power failures never more than a few real fires "sees", and that increased or regular signals indicate the presence from sources of interference.
  • the interference signals caused by the interference sources are recognized as such and the detector parameters are adjusted accordingly. In this way the detectors operated according to the method of the invention are capable of learning differentiate better between real danger signals and interference signals.
  • a second preferred development of the method according to the invention is characterized in that that if interference signals occur before the parameters are adjusted, the result the analysis of the signals of the at least one sensor is checked for its validity, and that the parameters are adjusted depending on the result of this validity check.
  • a third preferred development is characterized in that the validity check using methods based on multiple resolution.
  • a fourth preferred development of the method according to the invention is characterized in that that for the validation check Wavelets, preferably “biorthogonal” or “second generation “wavelets or” lifting scheme "can be used.
  • the wavelet transform is a transformation or mapping of a signal from the time domain in the frequency domain (see, for example, "The Fast Wavelet Transform” by Mac A. Cody in Dr. Dobb's Journal, April 1992); it is basically the Fourier transform and Fast Fourier transform similar. However, it differs from these by the basic function of the transformation after which the signal is developed.
  • a Fourier transform a sine and cosine function is used in the frequency domain is sharply localized and undetermined in the time domain.
  • a wavelet transformation a so-called wavelet or wave packet used.
  • There are different types like this for example a Gaussian, Spline or Haar wavelet each with two parameters can be shifted in the time domain and stretched or compressed in the frequency domain.
  • new wavelet methods have been introduced, often as "second generation” be designated. Such wavelets can be used with the so-called “lifting scheme” (Sweldens) constructed.
  • Another preferred development of the method according to the invention is characterized in that that the expected values for the approximation or approximation and Detailed coefficients of the wavelets are determined and compared at different resolutions become.
  • the coefficients mentioned are preferably determined in an estimator or by means of a neural network.
  • the invention further relates to a hazard detector with means for performing the above Method, with at least one sensor for a hazard parameter and with one Microprocessor-containing evaluation electronics for evaluating and analyzing the signals of the at least one sensor.
  • the hazard detector according to the invention is characterized in that the microprocessor a software program with a multi-resolution learning algorithm for the Analysis of the signals of the at least one sensor contains.
  • the signals of a hazard detector are processed by the method according to the invention in such a way that that typical interference signals are recorded and characterized. If in the present Description primarily of fire detectors, it does not mean that the inventive Procedure is limited to fire detectors. The procedure is rather for hazard detectors suitable for all types, especially for intrusion and motion detectors.
  • the noise signals mentioned are analyzed using a simple and reliable method.
  • An important feature of this method is that the interference signals are not only recorded and be characterized, but that the result of the analysis is checked. This will Wavelet theory and multiresolution analysis are used. Each according to the result of the check, the parameters of the detector or the algorithms customized. This means that, for example, the sensitivity is reduced or that certain automatic switching between different parameter sets can be locked.
  • a fire detector which is an optical sensor for scattered light, a temperature sensor and has a fire gas sensor.
  • the evaluation electronics of the detector contains one Fuzzy controller, in which a link between the signals of the individual sensors and a The respective type of fire is diagnosed.
  • the Detector different parameter sets for personal protection and real estate protection, between which are normally switched online. If now with the temperature and / or If the fire gas sensor detects interference signals, the switchover between them Parameter sets locked.
  • fuzzy logic When using fuzzy logic, one of the problems to be solved is translation of the knowledge stored in a database in linguistically interpretable fuzzy rules. Neurofuzzy methods developed for this purpose were unable to convince because they sometimes provide fuzzy rules that are very difficult to interpret. A way to In contrast, obtaining interpretable fuzzy rules offers so-called multiple-resolution techniques. Their idea is to use a dictionary of membership functions which form a multiple resolution, and determine which one for the description membership functions suitable for a control surface.
  • Line a shows the course a signal whose amplitude is in the small, medium and large ranges.
  • the membership functions c1 are "fairly small", c2 "medium” and c3 marked “rather large”. These membership functions form a multiple resolution, which means that every membership function is a sum of membership functions a higher resolution level can be broken down. This results in those entered in line c Membership functions c5 "very small”, c6 “small to very small”, c7 “very medium”, c8 “large to very large "and c9" very large ".
  • the triangular one Spline function c2 in the sum of the translated triangular functions of the higher level of Row c can be disassembled.
  • a i are linguistic expressions
  • x is the input linguistic variable
  • y is the output variable.
  • the value of the linguistic input variables can be sharp or fuzzy. For example, if x i is a linguistic variable for temperature, the value x and can be a sharp number such as "30 (° C)" or a fuzzy quantity such as "about 25 (° C)", where "about 25" itself is a fuzzy set.
  • the output y is a linear sum of translated and expanded Spline functions.
  • the Tagaki-Sugeno Model is equivalent to a multi-resolution spline model.
  • Wavelet techniques can be applied.
  • the detector designated by the reference symbol M is, for example, a fire detector and has three sensors 2 to 4 for fire parameters.
  • an optical one Sensor 2 for scattered light or transmitted light measurement, a temperature sensor 3 and a fire gas, for example, a CO sensor 4 is provided.
  • the output signals of sensors 2 to 4 are fed to a processing stage 1 which contains suitable means for processing the signals, such as, for example, amplifiers, and pass from this into a subsequently as ⁇ P 6 designated microprocessor or microcontroller.
  • the sensor signals are interchangeable as well as individually with certain parameter sets compared for the individual fire parameters.
  • the number the sensors are not limited to three. In this way, only a single sensor can be provided, in this case different properties from the signal of one sensor, for example the signal gradient or the signal fluctuation are extracted and examined.
  • ⁇ P 6 are a neuro-fuzzy network 7 and a validation check (validation) 8 integrated. If the signal resulting from the neuro-fuzzy network 7 is evaluated as an alarm signal an alarm delivery device 9 or an alarm center becomes a corresponding one Alarm signal supplied. If the validation 8 shows that repeated or regular Interference signals occur, then the parameter sets stored in ⁇ P 6 become corresponding corrected.
  • the scaling functions are such that ⁇ ( ⁇ m, n (x) ⁇ form a multiple resolution.
  • Each neural network uses activation functions of a given resolution.
  • the mth neural network optimizes the coefficients c and m, n with f m (x ), the output of the mth neural network.
  • f m (x) ⁇ c m, n ⁇ m, n (x) ( ⁇ over all n)
  • the coefficients c m, n are calculated using the following equation: where y k (x) is the kth entry point and is the dual function of ⁇ m, n (x).
  • the two equations (5) and (6) form the main algorithm of the neuro-fuzzy network.
  • the values of the various neural networks are cross-checked (validated), which is a property of the wavelet decomposition, namely that the approximation coefficients c m, n of a level m from the approximation and wavelet coefficients of the level m-1 can be obtained using the reconstruction or decomposition algorithm.
  • a second order spline function and ⁇ m, n (x) an interpolation function.
  • ⁇ m, n (x) is a spline function and the dual function of ⁇ m, n (x).
  • ⁇ m, n (x) is the hair function.
  • FIGS. 3a and 3b show two variants of a neuro-fuzzy network 7 and the associated validation stage 8.
  • the input signal is approximated in different resolution levels as a weighted sum of wavelets ⁇ m, n and scaling functions ⁇ m, n with a given resolution.
  • the validation level 8 compares the approximation coefficients c and m, n with the approximation and detail coefficients of the wavelets at the level of the next lower resolution level.
  • P and q denote wavelet reconstruction filter coefficients.
  • the input signal is approximated in different resolution levels as a weighted sum of scaling functions ⁇ m, n with a given resolution.
  • the validation level 8 compares the approximation coefficients c and m, n with the approximation coefficients at the level of the next lower resolution level. With g, wavelet low-pass decomposition coefficients are designated.
  • the above-mentioned coefficients can be determined in an estimator of the type shown in FIG. 4.
  • Wavelet spline estimators are used to adaptively determine the appropriate resolution in order to locally describe an underlying hypersurface in an online learning process.
  • a well-known estimator is the Nadaraya-Watson estimator, with which the equation of the hypersurface f (x) is estimated by the following expression:
  • Nadaraya-Watson estimators have two interesting properties, they are estimators of the local mean square deviation and it can be shown that in the case of a random design they are so-called Bayesian estimators of (x k , y k ), where (x k , y k ) are iid copies of a continuous random variable (X, Y).
  • Equation (6) Using the symmetry of Equation (6) for the dual spline function is equivalent to using an estimator centered at x n :

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Automation & Control Theory (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Alarm Systems (AREA)
  • Fire Alarms (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Complex Calculations (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Pinball Game Machines (AREA)
  • Fire-Detection Mechanisms (AREA)

Abstract

The signals from an alarm, comprising at least one sensor (2, 3, 4), for monitoring characteristic hazard values and an analytical electronic unit (1), connected to the at least one sensor (2, 3, 4), are compared with pre-set parameters. Furthermore, the signals are analysed for repeated or regular occurrence and repeated, or regularly occurring alarm signals are classed as error signals. The classification of signals as error signals gives rise to a corresponding adjustment of the parameter. When an error signal arises, before the parameter is adjusted, the validity of the signal analysis for the at least one sensor (2, 3, 4) is checked and the parameter adjustment is carried out, depending upon the result of said validity check. An alarm with the means for carrying out said method comprises at least one sensor (2, 3, 4), for a characteristic hazard value and an electronic analysis unit (1), containing a microprocessor (6), for the evaluation and analysis of the signal from the at least one sensor (2, 3, 4). The microprocessor (6) has a software programme with an adaptive algorithm based on multiple solutions for the analysis of the signals from the at least one sensor (2, 3, 4).

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Verarbeitung der Signale eines Gefahrenmelders, welcher mindestens einen Sensor zur Überwachung von Gefahrenkenngrössen und eine dem mindestens einen Sensor zugeordnete Auswerteelektronik aufweist, wobei die Überwachung der Gefahrenkenngrössen durch Vergleich der Signale des mindestens einen Sensors mit vorgegebenen Parametern mittels erfolgt. Der Gefahrenmelder kann beispielsweise ein Rauchmelder, ein Flammenmelder, ein Passiv-Infrarotmelder, ein Mikrowellenmelder, ein Dualmelder (Passiv-Infrarot- + Mikrowellensensor), oder ein Geräuschmelder sein.The present invention relates to a method for processing the signals of a hazard detector, which has at least one sensor for monitoring hazard parameters and has evaluation electronics assigned to the at least one sensor, with the monitoring the hazard parameters by comparing the signals of the at least one sensor with predetermined parameters. The hazard detector can, for example, be a Smoke detectors, a flame detector, a passive infrared detector, a microwave detector, a dual detector (Passive infrared + microwave sensor), or a noise detector.

Heutige Gefahrenmelder haben bezüglich der Detektion von Gefahrenkenngrössen eine solche Empfindlichkeit erreicht, dass das Hauptproblem nicht mehr darin besteht, eine Gefahrenkenngrösse möglichst frühzeitig zu detektieren, sondern darin, Störsignale von echten Gefahrensignalen sicher zu unterscheiden und dadurch Fehlalarme zu vermeiden. Die Unterscheidung zwischen Gefahren- und Störsignalen erfolgt dabei im wesentlichen durch die Verwendung mehrerer verschiedener Sensoren und Korrelation von deren Signalen oder durch die Analyse verschiedener Merkmale der Signale eines einzigen Sensors und/oder durch eine entsprechende Signalverarbeitung, wobei in jüngster Zeit durch die Verwendung von Fuzzy-Logik schon eine wesentliche Verbesserung der Störsicherheit erreicht worden ist.Today's hazard detectors have one with regard to the detection of hazard parameters Sensitivity achieved that the main problem is no longer a hazard parameter to detect as early as possible, but rather in the form of interference signals from real danger signals differentiate safely and thereby avoid false alarms. The distinction between danger and interference signals is essentially through the use several different sensors and correlation of their signals or by analysis different characteristics of the signals of a single sensor and / or by a corresponding one Signal processing, most recently through the use of fuzzy logic a significant improvement in interference immunity has been achieved.

Die Fuzzy-Logik ist allgemein bekannt. In bezug auf die Auswertung der Signale von Gefahrenmeldern ist hervorzuheben, dass Signalwerte sogenannten Fuzzy sets, oder unscharfen Mengen, gemäss einer Zugehörigkeitsfunktion zugeteilt werden, wobei der Wert der Zugehörigkeitsfunktion, oder der Grad der Zugehörigkeit zu einer unscharfen Menge, zwischen null und eins beträgt. Wichtig dabei ist, dass die Zugehörigkeitsfunktion normalisierbar sind, d.h. die Summe aller Werte der Zugehörigkeitsfunktion gleich eins ist, wodurch die Fuzzy-Logik-Auswertung eine eindeutige Interpretation des Signals erlaubt.Fuzzy logic is well known. With regard to the evaluation of signals from hazard detectors It should be emphasized that signal values known as fuzzy sets, or unsharp quantities, be assigned according to a membership function, whereby the value of the membership function, or the degree of belonging to a fuzzy set, between zero and one is. It is important that the membership function can be normalized, i.e. the sum all values of the membership function is equal to one, which results in the fuzzy logic evaluation allows a clear interpretation of the signal.

Durch die vorliegende Erfindung soll nun ein Verfahren der eingangs genannten Art zur Verarbeitung der Signale eines Gefahrenmelders angegeben werden, das bezüglich Störunempfindlichkeit und Störsicherheit weiter verbessert ist. The present invention is now intended to be a method of the type mentioned at the outset for processing the signals of a hazard detector are given, which are insensitive to interference and immunity to interference is further improved.

Das erfindungsgemässe Verfahren ist dadurch gekennzeichnet, dass die Signale des mindestens einen Sensors daraufhin analysiert werden, ob sie vermehrt oder regelmässig auftreten, und dass vermehrt oder regelmässig auftretende Signale als Störsignale klassiert werden.The method according to the invention is characterized in that the signals of the at least a sensor is analyzed to determine whether they occur more frequently or regularly and that increasingly or regularly occurring signals are classified as interference signals.

Eine erste bevorzugte Weiterbildung des erfindungsgemässen Verfahrens ist dadurch gekennzeichnet, dass die Klassierung von Signalen als Störsignale eine entsprechende Anpassung der Parameter auslöst.A first preferred development of the method according to the invention is characterized in that that the classification of signals as interference signals a corresponding adaptation of the Parameter triggers.

Das erfindungsgemässe Verfahren beruht auf der neuen Erkenntnis, dass beispielsweise ein Brandmelder zwischen zwei Revisionen oder zwei Stromausfällen nie mehr als einige wenige echte Brände "sieht", und dass vermehrt oder regelmässig auftretende Signale auf das Vorhandensein von Störquellen hindeuten. Die durch die Störquellen verursachten Störsignale werden als solche erkannt und die Melderparameter werden entsprechend angepasst. Auf diese Weise sind die nach dem erfindungsgemässen Verfahren betriebenen Melder lernfähig und können zwischen echten Gefahrensignalen und Störsignalen besser unterscheiden.The method according to the invention is based on the new finding that, for example, a Fire alarms between two revisions or two power failures never more than a few real fires "sees", and that increased or regular signals indicate the presence from sources of interference. The interference signals caused by the interference sources are recognized as such and the detector parameters are adjusted accordingly. In this way the detectors operated according to the method of the invention are capable of learning differentiate better between real danger signals and interference signals.

Eine zweite bevorzugte Weiterbildung des erfindungsgemässen Verfahrens ist dadurch gekennzeichnet, dass beim Auftreten von Störsignalen vor der Anpassung der Parameter das Ergebnis der Analyse der Signale des mindestens einen Sensors auf seine Gültigkeit überprüft wird, und dass die Anpassung der Parameter in Abhängigkeit vom Ergebnis dieser Gültigkeitsprüfung erfolgt.A second preferred development of the method according to the invention is characterized in that that if interference signals occur before the parameters are adjusted, the result the analysis of the signals of the at least one sensor is checked for its validity, and that the parameters are adjusted depending on the result of this validity check.

Eine dritte bevorzugte Weiterbildung ist dadurch gekennzeichnet, dass die Gültigkeitsprüfung mittels Methoden erfolgt, welche auf Mehrfachauflösung beruhen.A third preferred development is characterized in that the validity check using methods based on multiple resolution.

Eine vierte bevorzugte Weiterbildung des erfindungsgemässen Verfahrens ist dadurch gekennzeichnet, dass für die Gültigkeitsprüfung Wavelets, vorzugsweise "biorthogonal" oder "second generation" wavelets oder "lifting scheme" verwendet werden.A fourth preferred development of the method according to the invention is characterized in that that for the validation check Wavelets, preferably "biorthogonal" or "second generation "wavelets or" lifting scheme "can be used.

Die Wavelet-Transformation ist eine Transformation oder Abbildung eines Signals vom Zeitbereich in den Frequenzbereich (siehe dazu beispielsweise "The Fast Wavelet-Transform" von Mac A. Cody in Dr. Dobb's Journal, April 1992); sie ist also grundsätzlich der Fourier-Transformation und Fast-Fourier-Transformation ähnlich. Sie unterscheidet sich von diesen aber durch die Basisfunktion der Transformation, nach der das Signal entwickelt wird. Bei einer Fourier-Transformation wird eine Sinus- und Cosinus-Funktion verwendet, die im Frequenzbereich scharf lokalisiert und im Zeitbereich unbestimmt ist. Bei einer Wavelet-Transformation wird ein sogenanntes Wavelet oder Wellenpaket verwendet. Hiervon gibt es verschiedene Typen wie zum Beispiel ein Gauss-, Spline- oder Haar-Wavelet, die jeweils durch zwei Parameter beliebig im Zeitbereich verschoben und im Frequenzbereich gedehnt oder komprimiert werden können. In jüngster Zeit wurden neue Wavelet-Methoden vorgestellt, die oft als "second generation" bezeichnet werden. Solche Wavelets sind mit den sogenannten "lifting-scheme" (Sweldens) konstruiert. The wavelet transform is a transformation or mapping of a signal from the time domain in the frequency domain (see, for example, "The Fast Wavelet Transform" by Mac A. Cody in Dr. Dobb's Journal, April 1992); it is basically the Fourier transform and Fast Fourier transform similar. However, it differs from these by the basic function of the transformation after which the signal is developed. With a Fourier transform a sine and cosine function is used in the frequency domain is sharply localized and undetermined in the time domain. With a wavelet transformation a so-called wavelet or wave packet used. There are different types like this for example a Gaussian, Spline or Haar wavelet, each with two parameters can be shifted in the time domain and stretched or compressed in the frequency domain. Recently, new wavelet methods have been introduced, often as "second generation" be designated. Such wavelets can be used with the so-called "lifting scheme" (Sweldens) constructed.

Es resultiert eine Reihe von Approximationen des ursprünglichen Signals, wovon jede eine gröbere Auflösung besitzt als die vorhergehende. Die Anzahl Operationen, die für die Transformation erforderlich sind, ist jeweils proportional zur Länge des ursprünglichen Signals, während bei der Fourier-Transformation diese Anzahl überproportional zur Signallänge ist. Die schnelle Wavelet-Transformation kann auch invers durchgeführt werden, indem das ursprüngliche Signal aus den approximierten Werten und Koeffizienten für die Rekonstruktion wiederhergestellt wird. Der Algorithmus für die Zerlegung und Rekonstruktion des Signals und eine Tabelle der Koeffi-zienten der Zerlegung und Rekonstruktion sind am Beispiel für ein Spline Wavelet in "An Introduction to Wavelets" von Charles K. Chui (Academic Press, San Diego, 1992) angegeben. Siehe zu diesem Thema auch "A Wavelet Tour of Signal Processing" von S. Mallat (Academic Press, 1998).A series of approximations of the original signal results, each a coarser one Resolution than the previous one. The number of operations required for the transformation is proportional to the length of the original signal, while at the Fourier transform this number is disproportionate to the signal length. The fast Wavelet transformation can also be done inversely by the original signal from the approximated values and coefficients for the reconstruction. The algorithm for the decomposition and reconstruction of the signal and a table of the coefficients disassembly and reconstruction are exemplified for a spline wavelet in "An Introduction to Wavelets "by Charles K. Chui (Academic Press, San Diego, 1992). See also "A Wavelet Tour of Signal Processing" by S. Mallat (Academic Press, 1998).

Eine weitere bevorzugte Weiterbildung des erfindungsgemässen Verfahrens ist dadurch gekennzeichnet, dass die Erwartungswerte für die Approximations- oder die Approximations- und Detailkoeffizienten der Wavelets bestimmt und bei verschiedenen Auflösungen verglichen werden. Vorzugsweise erfolgt die Bestimmung der genannten Koeffizienten in einem Schätzer oder mittels eines neuronalen Netzes.Another preferred development of the method according to the invention is characterized in that that the expected values for the approximation or approximation and Detailed coefficients of the wavelets are determined and compared at different resolutions become. The coefficients mentioned are preferably determined in an estimator or by means of a neural network.

Die Erfindung betrifft weiter einen Gefahrenmelder mit Mitteln zur Durchführung des genannten Verfahrens, mit mindestens einem Sensor für eine Gefahrenkenngrösse und mit einer einen Mikroprozessor enthaltenden Auswerteelektronik zur Auswertung und Analyse der Signale des mindestens einen Sensors.The invention further relates to a hazard detector with means for performing the above Method, with at least one sensor for a hazard parameter and with one Microprocessor-containing evaluation electronics for evaluating and analyzing the signals of the at least one sensor.

Der erfindungsgemässe Gefahrenmelder ist dadurch gekennzeichnet, dass der Mikroprozessor ein Software-Programm mit einem auf Mehrfachauflösung beruhenden Lernalgorithmus für die Analyse der Signale des mindestens einen Sensors enthält.The hazard detector according to the invention is characterized in that the microprocessor a software program with a multi-resolution learning algorithm for the Analysis of the signals of the at least one sensor contains.

Eine erste bevorzugte Ausführungsform des erfindungsgemässen Gefahrenmelders ist dadurch gekennzeichnet, dass durch den Lernalgorithmus einerseits eine Analyse der genannten Sensorsignale auf deren wiederholtes oder regelmässiges Auftreten und andererseits eine Gültigkeitsprüfung des Ergebnisses der Analyse erfolgt, und dass der Lernalgorithmus für die Gültigkeitsprüfung Wavelets, vorzugsweise "biorthogonal" oder "second generation" wavelets, verwendet.This is a first preferred embodiment of the hazard detector according to the invention characterized in that on the one hand an analysis of the sensor signals mentioned by the learning algorithm on their repeated or regular occurrence and on the other hand a validity check the result of the analysis is done and that the learning algorithm for the validation Wavelets, preferably "biorthogonal" or "second generation" wavelets, are used.

Eine zweite bevorzugte Ausführungsform des erfindungsgemässen Gefahrenmelders ist dadurch gekennzeichnet, dass der Lernalgorithmus Neuro-Fuzzy-Methoden verwendet.This is a second preferred embodiment of the hazard detector according to the invention characterized that the learning algorithm uses neuro-fuzzy methods.

Eine dritte bevorzugte Ausführungsform des erfindungsgemässen Gefahrenmelders ist dadurch gekennzeichnet, dass der Lernalgorithmus die beiden Gleichungen fm(x) = Σc m,n · ϕm,n(x) (Σ über alle n) und

Figure 00030001
enthält, in denen ϕm,n Wavelet Skalierfunktionen, cm,n Approximations-Koeffizienten und yk den k-ten Eingangspunkt des neuronalen Netzes bezeichnet, und
Figure 00040001
die duale Funktion (dual function, Definition siehe S. Mallat) von ϕm,n ist.A third preferred embodiment of the hazard detector according to the invention is characterized in that the learning algorithm has the two equations f m (x) = Σ c m, n · Φ m, n (x) (Σ over all n) and
Figure 00030001
contains, in which ϕ m, n wavelet scaling functions, c m, n approximation coefficients and y k denotes the k-th entry point of the neural network, and
Figure 00040001
is the dual function (definition see S. Mallat) of ϕ m, n .

Im folgenden wird die Erfindung anhand von Ausführungsbeispielen und der Zeichnungen näher erläutert; es zeigt:

Fig. 1
ein Diagramm zur Funktionserläuterung,
Fig. 2
ein Blockschema eines mit Mitteln zur Durchführung des erfindungsgemässen Verfahrens ausgerüsteten Gefahrenmelders,
Fig. 3a, 3b
zwei Varianten eines Details des Gefahrenmelders von Fig. 2; und
Fig. 4
eine weitere Variante eines Details des Gefahrenmelders von Fig. 3.
The invention is explained in more detail below with the aid of exemplary embodiments and the drawings; it shows:
Fig. 1
a diagram to explain the function,
Fig. 2
2 shows a block diagram of a hazard detector equipped with means for carrying out the method according to the invention,
3a, 3b
two variants of a detail of the hazard detector of Fig. 2; and
Fig. 4
another variant of a detail of the hazard detector of FIG. 3.

Durch das erfindungsgemässe Verfahren werden die Signale eines Gefahrenmelders so verarbeitet, dass typische Störsignale erfasst und charakterisiert werden. Wenn in der vorliegenden Beschreibung vorwiegend von Brandmeldern die Rede ist, bedeutet das nicht, dass das erfindungsgemässe Verfahren auf Brandmelder beschränkt ist. Das Verfahren ist vielmehr für Gefahrenmelder aller Art geeignet, insbesondere auch für Einbruch- und Bewegungsmelder.The signals of a hazard detector are processed by the method according to the invention in such a way that that typical interference signals are recorded and characterized. If in the present Description primarily of fire detectors, it does not mean that the inventive Procedure is limited to fire detectors. The procedure is rather for hazard detectors suitable for all types, especially for intrusion and motion detectors.

Die erwähnten Störsignale werden mit einer einfachen und zuverlässigen Methode analysiert. Ein wichtiges Merkmal dieser Methode besteht darin, dass die Störsignale nicht nur erfasst und charakterisiert werden, sondern dass das Ergebnis der Analyse überprüft wird. Dazu wird Wavelet-Theorie und Mehrfachauflösungs-Analyse (multiresolution analysis) verwendet. Je nach dem Ergebnis der Überprüfung werden die Parameter des Melders oder die Algorithmen angepasst. Das bedeutet, dass bei-spielsweise die Empfindlichkeit verringert oder dass gewisse automatische Umschaltungen zwischen verschiedenen Parametersätzen verriegelt werden.The noise signals mentioned are analyzed using a simple and reliable method. An important feature of this method is that the interference signals are not only recorded and be characterized, but that the result of the analysis is checked. This will Wavelet theory and multiresolution analysis are used. Each according to the result of the check, the parameters of the detector or the algorithms customized. This means that, for example, the sensitivity is reduced or that certain automatic switching between different parameter sets can be locked.

Letzteres sei an einem Beispiel erläutert: In der europäischen Patentanmeldung 99 122 975.8 ist ein Brandmelder beschrieben, der einen optischen Sensor für Streulicht, einen Temperatursensor und einen Brandgassensor aufweist. Die Auswerteelektronik des Melders enthält einen Fuzzy-Regler, in welchem eine Verknüpfung der Signale der einzelnen Sensoren und eine Diagnose der jeweiligen Brandart erfolgt. Für jede Brandart ist ein spezieller applikationsspezifischer Algorithmus bereitgestellt und anhand der Diagnose auswählbar. Ausserdem enthält der Melder verschiedenen Parametersätze für Personenschutz und Immobilienschutz, zwischen denen im Normalfall eine online-Umschaltung erfolgt. Wenn nun beim Temperatur- und/oder beim Brandgassensor Störsignale diagnostiziert werden, wird die Umschaltung zwischen diesen Parametersätzen verriegelt.The latter is explained using an example: In European patent application 99 122 975.8 a fire detector is described, which is an optical sensor for scattered light, a temperature sensor and has a fire gas sensor. The evaluation electronics of the detector contains one Fuzzy controller, in which a link between the signals of the individual sensors and a The respective type of fire is diagnosed. There is a special application-specific for each type of fire Algorithm provided and selectable based on the diagnosis. In addition, the Detector different parameter sets for personal protection and real estate protection, between which are normally switched online. If now with the temperature and / or If the fire gas sensor detects interference signals, the switchover between them Parameter sets locked.

Bei der Verwendung von Fuzzy-Logik besteht eines der zu lösenden Probleme in der Übersetzung des in einer Datenbank gespeicherten Wissens in linguistisch interpretierbare Fuzzy-Regeln. Zu diesem Zweck entwickelte Neurofuzzy-Methoden vermochten nicht zu überzeugen, weil sie teilweise nur sehr schwierig interpretierbare Fuzzy-Regeln liefern. Eine Möglichkeit zur Gewinnung interpretierbarer Fuzzy-Regeln bieten hingegen sogenannte Mehrfachauflösungs-Techniken. Deren Idee besteht darin, ein Wörterbuch von Zugehörigkeitsfunktionen zu verwenden, welche eine Mehrfachauflösung bilden, und zu bestimmen, welches die für die Beschreibung einer Steuerfläche geeigneten Zugehörigkeitsfunktionen sind.When using fuzzy logic, one of the problems to be solved is translation of the knowledge stored in a database in linguistically interpretable fuzzy rules. Neurofuzzy methods developed for this purpose were unable to convince because they sometimes provide fuzzy rules that are very difficult to interpret. A way to In contrast, obtaining interpretable fuzzy rules offers so-called multiple-resolution techniques. Their idea is to use a dictionary of membership functions which form a multiple resolution, and determine which one for the description membership functions suitable for a control surface.

In Fig. 1 ist ein Diagramm einer solchen Mehrfachauflösung dargestellt. Zeile a zeigt den Verlauf eines Signals, dessen Amplitude sich in den Bereichen klein, mittel und gross bewegt. Entsprechend sind in Zeile b die Zugehörigkeitsfunktionen c1 "ziemlich klein", c2 "mittel" und c3 "ziemlich gross" eingezeichnet. Diese Zugehörigkeitsfunktionen bilden eine Mehrfachauflösung, was bedeutet, dass jede Zugehörigkeitsfunktion in eine Summe von Zugehörigkeitsfunktionen eines höheren Auflösungsniveaus zerlegt werden kann. Das ergibt die in Zeile c eingetragenen Zugehörigkeitsfunktionen c5 "sehr klein", c6 "klein bis sehr klein", c7 "sehr mittel", c8 "gross bis sehr gross" und c9 "sehr gross". Gemäss Zeile d kann also beispielsweise die dreieckige Spline-Funktion c2 in die Summe der übersetzten Dreiecksfunktionen des höheren Niveaus von Zeile c zerlegt werden.1 shows a diagram of such a multiple resolution. Line a shows the course a signal whose amplitude is in the small, medium and large ranges. Correspondingly, in line b, the membership functions c1 are "fairly small", c2 "medium" and c3 marked "rather large". These membership functions form a multiple resolution, which means that every membership function is a sum of membership functions a higher resolution level can be broken down. This results in those entered in line c Membership functions c5 "very small", c6 "small to very small", c7 "very medium", c8 "large to very large "and c9" very large ". According to line d, for example, the triangular one Spline function c2 in the sum of the translated triangular functions of the higher level of Row c can be disassembled.

Im Tagaki-Sugeno Modell werden die Fuzzy Regeln nach der Gleichung Ri : wenn x ist Ai dann yi = fi (xi) ausgedrückt. Hier sind Ai linguistische Ausdrücke, x ist die linguistische Eingangsvariable und y ist die Ausgangsvariable. Der Wert der linguistischen Eingangsvariablen kann scharf oder unscharf (fuzzy) sein. Wenn beispielsweise xi eine linguistische Variable für die Temperatur ist, dann kann der Wert x and eine scharfe Zahl wie "30(°C)" oder eine unscharfen Grösse wie "ungefähr 25 (°C)" sein, wobei "ungefähr 25" selbst ein Fuzzy-Set ist.In the Tagaki-Sugeno model, the fuzzy rules are based on the equation R i : if x is A i then y i = f i (x i ) expressed. Here, A i are linguistic expressions, x is the input linguistic variable and y is the output variable. The value of the linguistic input variables can be sharp or fuzzy. For example, if x i is a linguistic variable for temperature, the value x and can be a sharp number such as "30 (° C)" or a fuzzy quantity such as "about 25 (° C)", where "about 25" itself is a fuzzy set.

Für einen scharfen Eingangswert ist der Ausgangswert des Fuzzy-Systems gegeben durch: y=Σβi·f(x)/Σβi wobei der Grad der Erfüllung βi durch den Ausdruck βiAi(x and) gegeben ist, in welchem µAi(x and) die Zugehörigkeitsfunktion zum linguistischen Term Ai bezeichnet. Bei vielen Anwendungen wird eine lineare Funktion genommen: f(x and) = aTi·x and+bi. wenn zur Beschreibung des scharfen Ausgangswerts y eine Konstante bi genommen wird, dann wird das System zu: Ri : wenn x ist Ai dann yi = bi For a sharp input value, the output value of the fuzzy system is given by: y = Σβ i · F ( x ) / Σβ i where the degree of fulfillment β i is given by the expression β i = µ Ai (x and), in which µ Ai (x and) denotes the membership function for the linguistic term A i . In many applications a linear function is used: f (x and) = a T i · x and + b i . if a constant b i is used to describe the sharp output value y, then the system becomes: R i : if x is A i then y i = b i

Wenn Spline-Funktionen Nk genommen werden, beispielsweise als Zugehörigkeitsfunktion µAi(x and) = Nk [2m(x and-n)], dann ist das System von Gleichung (3) äquivalent mit yi = Σbi·Nk [2m(x-n)] If spline functions N k are taken, for example as membership function µ Ai (x and) = N k [2 m (x and-n)], then the system of equation (3) is equivalent to y i = Σb i · N k [2nd m ( x -n)]

In diesem speziellen Fall ist der Ausgang y eine lineare Summe von übersetzten und ausgedehnten Splinefunktionen. Und das bedeutet, dass unter Gleichung (4) das Tagaki-Sugeno Modell einem Mehrfachauflösungs-Spline Modell äquivalent ist. Und daraus folgt, dass hier Wavelet-Techniken angewendet werden können. In this particular case, the output y is a linear sum of translated and expanded Spline functions. And that means that under equation (4) the Tagaki-Sugeno Model is equivalent to a multi-resolution spline model. And it follows that here Wavelet techniques can be applied.

Fig. 2 zeigt ein Blockschema eines mit einem Neurofuzzy-Lernalgorithmus ausgerüsteten Gefahrenmelders. Der mit dem Bezugszeichen M bezeichnete Melder ist beispielsweise ein Brandmelder und weist drei Sensoren 2 bis 4 für Brandkenngrössen auf. Beispielsweise ist ein optischer Sensor 2 für Streulicht- oder Durchlichtmessung, ein Temperatursensor 3 und ein Brandgas-, beispielsweise ein CO-Sensor 4, vorgesehen. Die Ausgangssignale der Sensoren 2 bis 4 sind einer Verarbeitungsstufe 1 zugeführt, welche geeignete Mittel zur Verarbeitung der Signale, wie zum Beispiel Verstärker aufweist, und gelangen von dieser in einen nachfolgend als µP 6 bezeichneten Mikroprozessor oder Mikrokontroller.2 shows a block diagram of a danger detector equipped with a neurofuzzy learning algorithm. The detector designated by the reference symbol M is, for example, a fire detector and has three sensors 2 to 4 for fire parameters. For example, an optical one Sensor 2 for scattered light or transmitted light measurement, a temperature sensor 3 and a fire gas, for example, a CO sensor 4 is provided. The output signals of sensors 2 to 4 are fed to a processing stage 1 which contains suitable means for processing the signals, such as, for example, amplifiers, and pass from this into a subsequently as µP 6 designated microprocessor or microcontroller.

Im µP 6 werden die Sensorsignale sowohl untereinander als auch einzeln mit bestimmten Parametersätzen für die einzelnen Brandkenngrössen verglichen. Selbstverständlich ist die Anzahl der Sensoren nicht auf drei beschränkt. So kann auch nur ein einziger Sensor vorgesehen sein, wobei in diesem Fall aus dem Signal des einen Sensors verschiedene Eigenschaften, beispielsweise der Signalgradient oder die Signalfluktuation, extrahiert und untersucht werden. In denIn µP 6, the sensor signals are interchangeable as well as individually with certain parameter sets compared for the individual fire parameters. Of course, the number the sensors are not limited to three. In this way, only a single sensor can be provided, in this case different properties from the signal of one sensor, for example the signal gradient or the signal fluctuation are extracted and examined. In the

µP 6 sind softwaremässig ein Neuro-Fuzzy-Netz 7 und eine Gültigkeitsprüfung (Validierung) 8 integriert. Wenn das aus dem Neuro-Fuzzy-Netz 7 resultierende Signal als Alarmsignal gewertet wird, wird einer Alarmabgabevorrichtung 9 oder einer Alarmzentrale ein entsprechendes Alarmsignal zugeführt. Sollte die Validierung 8 ergeben, dass wiederholt oder regelmässig Störsignale auftreten, dann werden die im µP 6 gespeicherten Parametersätze entsprechend korrigiert.In terms of software, µP 6 are a neuro-fuzzy network 7 and a validation check (validation) 8 integrated. If the signal resulting from the neuro-fuzzy network 7 is evaluated as an alarm signal an alarm delivery device 9 or an alarm center becomes a corresponding one Alarm signal supplied. If the validation 8 shows that repeated or regular Interference signals occur, then the parameter sets stored in µP 6 become corresponding corrected.

Das Neuro-Fuzzy-Netz 7 ist eine Serie neuronaler Netze, welche die symmetrischen Skalierfunktionen ϕm,n (x) = ϕm,n(x) = ϕ[(x-n)2m] als Aktivierungsfunktion verwenden. Die Skalierfunktionen sind derart, dass {(ϕm,n(x)} eine Mehrfachauflösung bilden. Jedes neuronale Netz benutzt Aktivierungsfunktionen einer gegebenen Auflösung. Das m-te neuronale Netz optimiert die Koeffi-zienten c andm,n mit fm(x), dem Ausgang des m-ten neuronalen Netzes. fm(x) = Σc m,n ϕm,n(x) (Σ über alle n) The neuro-fuzzy network 7 is a series of neural networks which use the symmetrical scaling functions ϕ m, n (x) = ϕ m, n (x) = ϕ [(xn) 2 m ] as an activation function. The scaling functions are such that {(ϕ m, n (x)} form a multiple resolution. Each neural network uses activation functions of a given resolution. The mth neural network optimizes the coefficients c and m, n with f m (x ), the output of the mth neural network. f m (x) = Σ c m, n ϕ m, n (x) (Σ over all n)

Die Koeffizienten cm,n werden mit der folgenden Gleichung berechnet:

Figure 00060001
wobei yk(x) der k-te Eingangspunkt und
Figure 00060002
die duale Funktion von ϕm,n(x) ist. Die beiden Gleichungen (5) und (6) bilden den Hauptalgorithmus des Neuro-Fuzzy-Netzes.The coefficients c m, n are calculated using the following equation:
Figure 00060001
where y k (x) is the kth entry point and
Figure 00060002
is the dual function of ϕ m, n (x). The two equations (5) and (6) form the main algorithm of the neuro-fuzzy network.

Bei jedem Iterationsschritt werden die Werte der verschiedenen neuronalen Netze kreuzweise überprüft (validiert), wozu eine Eigenschaft der Wavelet-Zerlegung, nämlich diejenige, dass die Approximationskoeffizienten cm,n eines Niveaus m aus den Approximations- und Wavelet-Koeffizienten des Niveaus m-1 durch Verwendung des Rekonstruktions- oder Zerlegungsalgorithmus gewonnen werden können. At each iteration step, the values of the various neural networks are cross-checked (validated), which is a property of the wavelet decomposition, namely that the approximation coefficients c m, n of a level m from the approximation and wavelet coefficients of the level m-1 can be obtained using the reconstruction or decomposition algorithm.

Bei einer bevorzugten Ausführung ist

Figure 00070001
eine Spline-Funktion zweiter Ordnung und ϕm,n(x) eine Interpolationsfunktion. Bei einer zweiten Ausführung ist ϕm,n(x) eine Spline-Funktion und
Figure 00070002
die duale Funktion von ϕm,n(x). In einer dritten Ausführung ist
Figure 00070003
= ϕm,n(x), wobei ϕm,n(x) die Haar-Funktion ist. In diesen Fällen ist die Implementierung des Lernalgorithmus in einen einfachen Mikroprozessor möglich.In a preferred embodiment
Figure 00070001
a second order spline function and ϕ m, n (x) an interpolation function. In a second embodiment, ϕ m, n (x) is a spline function and
Figure 00070002
the dual function of ϕ m, n (x). In a third execution
Figure 00070003
= ϕ m, n (x), where ϕ m, n (x) is the hair function. In these cases, the implementation of the learning algorithm in a simple microprocessor is possible.

In den Figuren 3a und 3b sind zwei Varianten eines Neuro-Fuzzy-Netzes 7 und der zugehörigen Validierungsstufe 8 dargestellt. Beim Beispiel von Fig. 3a wird das Eingangssignal in verschiedenen Auflösungsstufen als gewichtete Summe von Wavelets ψm,n und Skalierfunktionen ϕm,n mit einer gegebenen Auflösung approximiert. Die Validierungsstufe 8 vergleicht die Approximationskoeffizienten c andm,n mit den Approximations- und Detailkoeffizienten der Wavelets auf dem Niveau der nächsttieferen Auflösungsstufe. Mit p und q sind Wavelet Rekonstruktions-Filterkoeffizienten bezeichnet.FIGS. 3a and 3b show two variants of a neuro-fuzzy network 7 and the associated validation stage 8. In the example of FIG. 3a, the input signal is approximated in different resolution levels as a weighted sum of wavelets ψ m, n and scaling functions ϕ m, n with a given resolution. The validation level 8 compares the approximation coefficients c and m, n with the approximation and detail coefficients of the wavelets at the level of the next lower resolution level. P and q denote wavelet reconstruction filter coefficients.

Beim Beispiel von Fig. 3b wird das Eingangssignal in verschiedenen Auflösungsstufen als gewichtete Summe von Skalierfunktionen ϕm,n mit einer gegebenen Auflösung approximiert. Die Validierungsstufe 8 vergleicht die Approximationskoeffizienten c andm,n mit den Approximationskoeffizienten auf dem Niveau der nächsttieferen Auflösungsstufe. Mit g sind Wavelet Tiefpass-Zerlegungskoeffizienten bezeichnet.In the example of FIG. 3b, the input signal is approximated in different resolution levels as a weighted sum of scaling functions ϕ m, n with a given resolution. The validation level 8 compares the approximation coefficients c and m, n with the approximation coefficients at the level of the next lower resolution level. With g, wavelet low-pass decomposition coefficients are designated.

Anstatt in einem Neuro-Fuzzy-Netz 7 kann die Bestimmung der genannten Koeffizienten in einem Schätzer (estimator) der in Fig. 4 dargestellten Art erfolgen. Dieser Schätzer ist ein sogenannter Mehrfachauflösungs-Spline-Estimator, welcher zur Abschätzung der Koeffizienten c andm,n in der Gleichung fm(x) = c andm,n ϕm,n(x) auf den Funktionen

Figure 00070004
basierende Dual-Spline-Estimatoren verwendet. Man verwendet Wavelet-Spline-Estimatoren zur adaptiven Bestimmung der geeigneten Auflösung, um eine zugrundeliegende Hyperfläche in einem online-Lernprozess lokal zu beschreiben. Ein bekannter Schätzer ist der Nadaraya-Watson-Estimator, mit welchem die Gleichung der Hyperfläche f(x) durch den folgenden Ausdruck abgeschätzt wird:
Figure 00070005
Instead of in a neuro-fuzzy network 7, the above-mentioned coefficients can be determined in an estimator of the type shown in FIG. 4. This estimator is a so-called multiple-resolution spline estimator, which is used to estimate the coefficients c and m, n in the equation f m (x) = c and m, n ϕ m, n (x) on the functions
Figure 00070004
based dual spline estimators. Wavelet spline estimators are used to adaptively determine the appropriate resolution in order to locally describe an underlying hypersurface in an online learning process. A well-known estimator is the Nadaraya-Watson estimator, with which the equation of the hypersurface f (x) is estimated by the following expression:
Figure 00070005

Nadaraya-Watson-Estimatoren haben zwei interessante Eigenschaften, sie sind Schätzer der lokalen mittleren quadratischen Abweichung und es kann gezeigt werden, dass sie im Fall eines Zufallsdesigns sogenannten Bayes'sche-Schätzer von (xk,yk) sind, wobei (xk,yk) iid-Kopien einer kontinuierlichen Zufallsvariablen (X, Y) sind.Nadaraya-Watson estimators have two interesting properties, they are estimators of the local mean square deviation and it can be shown that in the case of a random design they are so-called Bayesian estimators of (x k , y k ), where (x k , y k ) are iid copies of a continuous random variable (X, Y).

Die Spline-Funktionen ϕ(x) und ihre Dualfunktion

Figure 00070006
können als Schätzer verwendet werden. Wir verwenden zuerst die Funktion
Figure 00070007
zur Abschätzung von f(x) mit λ = 2-m (m ist eine ganze Zahl) an xn mit xn·2m ∈ Z: The spline functions ϕ (x) and their dual function
Figure 00070006
can be used as estimators. We use the function first
Figure 00070007
to estimate f (x) with λ = 2 -m (m is an integer) at x n with x n · 2 m ∈ Z:

Mit Verwendung der Symmetrie von

Figure 00080001
ist Gleichung (6) für die duale Spline-Funktion äqivalent zur Verwendung eines bei xn zentrierten Schätzers:
Figure 00080002
Using the symmetry of
Figure 00080001
Equation (6) for the dual spline function is equivalent to using an estimator centered at x n :
Figure 00080002

Der Erwartungswert des Zählers in Gleichung (7) ist proportional zum Approximationskoeffizienten cm,n. Gleichung (6) liefert eine Schätzung von c andm,n in fm(x) =Σc andm,n ϕm,n(x): c m,n = f(xn). The expected value of the counter in equation (7) is proportional to the approximation coefficient c m, n . Equation (6) gives an estimate of c and m, n in f m (x) = Σc and m, n ϕ m, n (x): c m, n = f (x n ).

In der Figur 4 sind die zur Verfügung stehenden Daten (Werte) mit einem kleinen Quadrat bezeichnet, ihre Projektion auf duale Spline-Funktionen mit einem kleinen Kreis und die Abschätzung auf einem regelmässigen Gitter mit einem Kreuzchen.In Figure 4, the available data (values) are with a small square referred to, their projection onto dual spline functions with a small circle and the estimate on a regular grid with a cross.

Zur Validierung des Koeffizienten c andm,n sind zwei Bedingungen notwendig:

Figure 00080003
wobei die Filterkoeffizienten g dem Tiefpass-Zerlegungs-Koeffizienten für Spline-Funktionen entsprechen. Ausserdem wird gefordert, dass
Figure 00080004
damit Teilungen durch sehr kleine Werte verhindert werden.Two conditions are necessary to validate the coefficient c and m, n :
Figure 00080003
where the filter coefficients g correspond to the low-pass decomposition coefficient for spline functions. It is also required that
Figure 00080004
so that divisions are prevented by very small values.

Die Stärke dieser Methode liegt darin, dass die Berechnung eines Koeffizienten c andm,n die Speicherung von lediglich zwei Werten erfordert, des Zählers und des Nenners in Gleichung (7). Das Verfahren ist daher sehr gut für online-Lernen mit einem einfachen Mikroprozessor mit geringer Speicherkapazität geeignet.The strength of this method is that the calculation of a coefficient c and m, n requires only two values to be stored, the numerator and the denominator in equation (7). The method is therefore very well suited for online learning with a simple microprocessor with a small memory capacity.

Das Verfahren ist leicht an Dichte-Abschätzung anpassbar, indem die Gleichung (7) und (8) durch die folgende Gleichung ersetzt werden:

Figure 00080005
The method is easily adaptable to density estimation by replacing equations (7) and (8) with the following equation:
Figure 00080005

Claims (11)

Verfahren zur Verarbeitung der Signale eines Gefahrenmelders, welcher mindestens einen Sensor (2, 3, 4) zur Überwachung von Gefahrenkenngrössen und eine dem mindestens einen Sensor (2, 3, 4) zugeordnete Auswerteelektronik (1) aufweist, in welcher ein Vergleich der Signale des mindestens einen Sensors (2, 3, 4) mit vorgegebenen Parametern erfolgt, dadurch gekennzeichnet, dass die Signale des mindestens einen Sensors (2, 3, 4) daraufhin analysiert werden, ob sie vermehrt oder regelmässig auftreten, und dass vermehrt oder regelmässig auftretende Signale als Störsignale klassiert werden.Method for processing the signals of a hazard detector, which has at least one sensor (2, 3, 4) for monitoring hazard parameters and evaluation electronics (1) assigned to the at least one sensor (2, 3, 4), in which a comparison of the signals of the at least one sensor (2, 3, 4) takes place with predetermined parameters, characterized in that the signals of the at least one sensor (2, 3, 4) are analyzed to determine whether they occur more or more regularly, and that more or more frequently occurring signals are classified as interference signals. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Klassierung von Signalen als Störsignale eine entsprechende Anpassung der Parameter auslöst.A method according to claim 1, characterized in that the classification of signals as interference signals triggers a corresponding adjustment of the parameters. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass beim Auftreten von Störsignalen vor der Anpassung der Parameter das Ergebnis der Analyse der Signale des mindestens einen Sensors (2, 3, 4) auf seine Gültigkeit überprüft wird, und dass die Anpassung der Parameter in Abhängigkeit vom Ergebnis dieser Gültigkeitsprüfung erfolgt.Method according to claim 2, characterized in that when interference signals occur before the adjustment of the parameters, the result of the analysis of the signals of the at least one sensor (2, 3, 4) is checked for its validity, and that the adjustment of the parameters as a function of The result of this validity check is carried out. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Gültigkeitsprüfung mittels Methoden erfolgt, welche auf Mehrfachauflösung beruhen.Method according to claim 3, characterized in that the validity check is carried out by means of methods which are based on multiple resolution. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass für die Gültigkeitsprüfung Wavelets, vorzugsweise "biorthogonal" oder "second generation" wavelets oder "lifting scheme" verwendet werden.Method according to claim 4, characterized in that wavelets, preferably "biorthogonal" or "second generation" wavelets or "lifting scheme" are used for the validity check. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Erwartungswerte für die Approximations- oder die Approximations- und Detailkoeffizienten der Wavelets bestimmt und bei verschiedenen Auflösungen verglichen werden.A method according to claim 5, characterized in that the expected values for the approximation or the approximation and detail coefficients of the wavelets are determined and compared at different resolutions. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Bestimmung der genannten Koeffizienten in einem Schätzer oder mittels eines neuronalen Netzes erfolgt.Method according to claim 6, characterized in that the said coefficients are determined in an estimator or by means of a neural network. Gefahrenmelder mit Mitteln zur Durchführung des Verfahrens nach Anspruch 1, mitmindestens einem Sensor (2, 3, 4) für eine Gefahrenkenngrösse und mit einer einen Mikroprozessor (6) enthaltenden Auswerteelektronik (1) zur Auswertung und Analyse der Signale des mindestens einen Sensors (2, 3, 4), dadurch gekennzeichnet, dass der Mikroprozessor (6) ein Software-Programm mit einem auf Mehrfachauflösung beruhenden Lernalgorithmus für die Analyse der Signale des mindestens einen Sensors (2, 3, 4) enthält.Hazard detector with means for carrying out the method according to claim 1, with at least one sensor (2, 3, 4) for a hazard parameter and with evaluation electronics (1) containing a microprocessor (6) for evaluating and analyzing the signals of the at least one sensor (2, 3, 4), characterized in that the microprocessor (6) contains a software program with a learning algorithm based on multiple resolution for the analysis of the signals of the at least one sensor (2, 3, 4). Gefahrenmelder nach Anspruch 9, dadurch gekennzeichnet, dass durch den Lernalgorithmus einerseits eine Analyse der genannten Sensorsignale auf deren wiederholtes oder regelmässiges Auftreten und andererseits eine Gültigkeitsprüfung des Ergebnisses der Analyse erfolgt, und dass der Lernalgorithmus für die Gültigkeitsprüfung Wavelets, vorzugsweise "biorthogonal" oder "second generation" wavelets, verwendet.Hazard detector according to claim 9, characterized in that the learning algorithm on the one hand analyzes the said sensor signals for their repeated or regular occurrence and on the other hand checks the validity of the result of the analysis, and that the learning algorithm for the validity check Wavelets, preferably "biorthogonal" or "second generation "wavelets. Gefahrenmelder nach Anspruch 9, dadurch gekennzeichnet, dass der Lernalgorithmus Neuro-Fuzzy-Methoden verwendet.Hazard detector according to claim 9, characterized in that the learning algorithm uses neuro-fuzzy methods. Gefahrenmelder nach Anspruch 10, dadurch gekennzeichnet, dass der Lernalgorithmus die beiden Gleichungen fm(x) = Σc m,n · ϕm,n(x) (Σ über alle n) und
Figure 00100001
enthält, in denen ϕm,n Skalierfunktionen, c andm,n Approximations-Koeffizienten und yk den k-ten Eingangspunkt des neuronalen Netzes bezeichnet und
Figure 00100002
die duale Funktion von ϕm,n ist.
Hazard detector according to claim 10, characterized in that the learning algorithm the two equations f m (x) = Σ c m, n · Φ m, n (x) (Σ over all n) and
Figure 00100001
contains, in which ϕ m, n scaling functions, c and m, n approximation coefficients and y k denotes the k-th entry point of the neural network and
Figure 00100002
is the dual function of ϕ m, n .
EP00105438A 2000-03-15 2000-03-15 Method for the processing of the signal in a danger detector, and detector with means for the implementation of such method Expired - Lifetime EP1134712B1 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
US10/019,362 US6879253B1 (en) 2000-03-15 2000-03-06 Method for the processing of a signal from an alarm and alarms with means for carrying out said method
AT00105438T ATE394767T1 (en) 2000-03-15 2000-03-15 METHOD FOR PROCESSING THE SIGNALS OF A HAZARD DETECTOR AND HAZARD DETECTOR WITH MEANS FOR IMPLEMENTING THE METHOD
ES00105438T ES2304919T3 (en) 2000-03-15 2000-03-15 PROCEDURE FOR PROCESSING THE SIGNS OF A DANGER AND DANGER NOTICE WITH MEANS TO PERFORM THE PROCEDURE.
DE50015145T DE50015145D1 (en) 2000-03-15 2000-03-15 Method for processing the signals of a danger detector and danger detector with means for carrying out the method
EP00105438A EP1134712B1 (en) 2000-03-15 2000-03-15 Method for the processing of the signal in a danger detector, and detector with means for the implementation of such method
PCT/CH2001/000136 WO2001069566A1 (en) 2000-03-15 2001-03-06 Method for the processing of a signal from an alarm and alarms with means for carrying out said method
KR1020017014423A KR100776063B1 (en) 2000-03-15 2001-03-06 Method for the processing of a signal from an alarm and alarms with means for carrying out said method
PL01350725A PL350725A1 (en) 2000-03-15 2001-03-06 Method for the processing of a signal from an alarm and alarms with means for carrying out said method
HU0201180A HUP0201180A2 (en) 2000-03-15 2001-03-06 Method for the processing of a signal from an alarm and alarms with means for carrying out said method
CZ20014105A CZ20014105A3 (en) 2000-03-15 2001-03-06 Method for the processing of the signal in a danger detector, and detector with means for the implementation of such method
CNB018005322A CN1187723C (en) 2000-03-15 2001-03-06 Method for processing of signal from alarm and alarms with means for carrying out said method
JP2001567562A JP2003527702A (en) 2000-03-15 2001-03-06 Danger detector having a method of processing a signal of a danger detector and means for performing the method
AU35304/01A AU776482B2 (en) 2000-03-15 2001-03-06 Method for the processing of a signal from an alarm and alarms with means for carrying out said method
NO20015566A NO20015566L (en) 2000-03-15 2001-11-14 Method of processing the signals from a risk alert, and risk alerts with means for carrying out the method
HK02108442.5A HK1046978B (en) 2000-03-15 2002-11-21 Method for processing the signal of a danger detector and danger detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP00105438A EP1134712B1 (en) 2000-03-15 2000-03-15 Method for the processing of the signal in a danger detector, and detector with means for the implementation of such method

Publications (2)

Publication Number Publication Date
EP1134712A1 true EP1134712A1 (en) 2001-09-19
EP1134712B1 EP1134712B1 (en) 2008-05-07

Family

ID=8168099

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00105438A Expired - Lifetime EP1134712B1 (en) 2000-03-15 2000-03-15 Method for the processing of the signal in a danger detector, and detector with means for the implementation of such method

Country Status (15)

Country Link
US (1) US6879253B1 (en)
EP (1) EP1134712B1 (en)
JP (1) JP2003527702A (en)
KR (1) KR100776063B1 (en)
CN (1) CN1187723C (en)
AT (1) ATE394767T1 (en)
AU (1) AU776482B2 (en)
CZ (1) CZ20014105A3 (en)
DE (1) DE50015145D1 (en)
ES (1) ES2304919T3 (en)
HK (1) HK1046978B (en)
HU (1) HUP0201180A2 (en)
NO (1) NO20015566L (en)
PL (1) PL350725A1 (en)
WO (1) WO2001069566A1 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7068177B2 (en) * 2002-09-19 2006-06-27 Honeywell International, Inc. Multi-sensor device and methods for fire detection
US7202794B2 (en) * 2004-07-20 2007-04-10 General Monitors, Inc. Flame detection system
FI117878B3 (en) * 2006-01-20 2019-01-31 Innohome Oy Alarm device for a kitchen range or range hood
US8819562B2 (en) 2010-09-30 2014-08-26 Honeywell International Inc. Quick connect and disconnect, base line configuration, and style configurator
US8719385B2 (en) * 2008-10-28 2014-05-06 Honeywell International Inc. Site controller discovery and import system
US20110093493A1 (en) 2008-10-28 2011-04-21 Honeywell International Inc. Building management system site categories
US20100106543A1 (en) * 2008-10-28 2010-04-29 Honeywell International Inc. Building management configuration system
US8850347B2 (en) 2010-09-30 2014-09-30 Honeywell International Inc. User interface list control system
US9471202B2 (en) * 2008-11-21 2016-10-18 Honeywell International Inc. Building control system user interface with pinned display feature
US8572502B2 (en) * 2008-11-21 2013-10-29 Honeywell International Inc. Building control system user interface with docking feature
US8554714B2 (en) * 2009-05-11 2013-10-08 Honeywell International Inc. High volume alarm management system
US8224763B2 (en) 2009-05-11 2012-07-17 Honeywell International Inc. Signal management system for building systems
US8352047B2 (en) 2009-12-21 2013-01-08 Honeywell International Inc. Approaches for shifting a schedule
US20110196539A1 (en) * 2010-02-10 2011-08-11 Honeywell International Inc. Multi-site controller batch update system
US8640098B2 (en) * 2010-03-11 2014-01-28 Honeywell International Inc. Offline configuration and download approach
US8890675B2 (en) 2010-06-02 2014-11-18 Honeywell International Inc. Site and alarm prioritization system
US8648706B2 (en) 2010-06-24 2014-02-11 Honeywell International Inc. Alarm management system having an escalation strategy
US9213539B2 (en) 2010-12-23 2015-12-15 Honeywell International Inc. System having a building control device with on-demand outside server functionality
US9223839B2 (en) 2012-02-22 2015-12-29 Honeywell International Inc. Supervisor history view wizard
US9529349B2 (en) 2012-10-22 2016-12-27 Honeywell International Inc. Supervisor user management system
US9971977B2 (en) 2013-10-21 2018-05-15 Honeywell International Inc. Opus enterprise report system
US9933762B2 (en) 2014-07-09 2018-04-03 Honeywell International Inc. Multisite version and upgrade management system
CN105067025A (en) * 2015-07-31 2015-11-18 西南科技大学 Method for utilizing monostable system stochastic resonance effect to detect weak signals
US10362104B2 (en) 2015-09-23 2019-07-23 Honeywell International Inc. Data manager
US10209689B2 (en) 2015-09-23 2019-02-19 Honeywell International Inc. Supervisor history service import manager
CA3043583A1 (en) 2016-11-11 2018-05-17 Carrier Corporation High sensitivity fiber optic based detection
EP3539108B1 (en) 2016-11-11 2020-08-12 Carrier Corporation High sensitivity fiber optic based detection
US11151853B2 (en) 2016-11-11 2021-10-19 Carrier Corporation High sensitivity fiber optic based detection
ES2968291T3 (en) * 2016-11-11 2024-05-08 Carrier Corp High sensitivity fiber optic based detection
EP3539104B1 (en) 2016-11-11 2022-06-08 Carrier Corporation High sensitivity fiber optic based detection
CN107180521A (en) * 2017-04-19 2017-09-19 天津大学 Optical fiber perimeter security protection intrusion event recognition methods and device based on comprehensive characteristics

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6011464A (en) * 1996-10-04 2000-01-04 Cerberus Ag Method for analyzing the signals of a danger alarm system and danger alarm system for implementing said method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH686914A5 (en) * 1993-12-20 1996-07-31 Cerberus Ag Fire detection system for early detection of fires.
ATE203118T1 (en) * 1994-12-19 2001-07-15 Siemens Building Tech Ag METHOD AND ARRANGEMENT FOR DETECTING A FLAME
JP3251799B2 (en) * 1995-02-13 2002-01-28 三菱電機株式会社 Equipment diagnostic equipment
US6150935A (en) * 1997-05-09 2000-11-21 Pittway Corporation Fire alarm system with discrimination between smoke and non-smoke phenomena
JP3827426B2 (en) * 1997-11-06 2006-09-27 能美防災株式会社 Fire detection equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6011464A (en) * 1996-10-04 2000-01-04 Cerberus Ag Method for analyzing the signals of a danger alarm system and danger alarm system for implementing said method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JACOB, P.J. AND BALL, A.D.: "Empirical validation of the performance of a class of transient detector", 1996, IEE. SAVOY PLACE LONDON WC2R OBL, UK, XP002144057 *
MA, J. , ZHANG, J.Q. AND YAN, Y.: "Wavelet Transform based sensor validation", 1999, IEE. SAVOY PLACE, LONDON WC2R OBL, UK, XP002144056 *
THUILLARD, M.: "Fuzzy-wavelets: theory and applications", 10 September 1998, EUFIT' 98, GERMANY, XP000934368 *

Also Published As

Publication number Publication date
HK1046978B (en) 2005-09-23
ES2304919T3 (en) 2008-11-01
WO2001069566A1 (en) 2001-09-20
US6879253B1 (en) 2005-04-12
JP2003527702A (en) 2003-09-16
NO20015566D0 (en) 2001-11-14
AU3530401A (en) 2001-09-24
AU776482B2 (en) 2004-09-09
KR20020042764A (en) 2002-06-07
CZ20014105A3 (en) 2002-05-15
PL350725A1 (en) 2003-01-27
HK1046978A1 (en) 2003-01-30
DE50015145D1 (en) 2008-06-19
KR100776063B1 (en) 2007-11-15
CN1187723C (en) 2005-02-02
CN1364283A (en) 2002-08-14
EP1134712B1 (en) 2008-05-07
HUP0201180A2 (en) 2003-03-28
NO20015566L (en) 2001-11-14
ATE394767T1 (en) 2008-05-15

Similar Documents

Publication Publication Date Title
EP1134712B1 (en) Method for the processing of the signal in a danger detector, and detector with means for the implementation of such method
DE19934171B4 (en) Filter system and method
EP0780002B1 (en) Process and apparatus for reconstructing raster-shaped line structures
DE69309300T2 (en) METHOD AND DEVICE FOR ITEM CLASSIFICATION
DE19629275A1 (en) Method and device for distinguishing different types of fire
EP0865646B1 (en) Method for analyzing the signals of a danger alarm system and danger alarm system for implementing said method
DE60002290T2 (en) Method of detecting anomalies in a signal
EP1496483B1 (en) Method and apparatus for the detection of flames
EP0718814A1 (en) Method and device for flame detection
DE69811088T2 (en) CLASSIFICATION SYSTEM AND CLASSIFICATION METHOD USING A COMBINATION OF WARMABILITY METHODS AND NEURONAL NETWORKS
DE2924605C2 (en) Process for the optical differentiation of test objects
EP3707496A1 (en) Identification of one or more spectral features in a spectrum of a sample for a constituent analysis
EP2635882A1 (en) Method for determining chemical constituents of solid or liquid substances with the aid of thz spectroscopy
DE3855783T2 (en) Device for the analysis of partial molecular structures
EP0646901B1 (en) Method for processing passive infrared detector signals and infrared detector for carrying out the method
DE69704201T2 (en) PATTERN RECOGNITION BY MEANS OF NEURONAL NETWORK
DE19549300C1 (en) Evaluation variable determination system for Bayesian network graph
EP1376286B1 (en) System and method for monitoring a process
AT507266B1 (en) METHOD FOR AUTOMATICALLY DETECTING A DEFECT IN AN ELECTRONIC REPRESENTATION
EP2154529B1 (en) Method for evaluating gas sensor signals
EP4405908A1 (en) Method for determining whether a predetermined good to be transported is arranged in a monitoring region
EP1309939B1 (en) Method for fingerprint analysis and device
DE102016113310A1 (en) A method for evaluating statements of a plurality of sources about a plurality of facts
DE102021205897A1 (en) Examine a training data set
EP0863485B1 (en) Method of reconstruction of patterns

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020312

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS SCHWEIZ AG

17Q First examination report despatched

Effective date: 20070102

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50015145

Country of ref document: DE

Date of ref document: 20080619

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2304919

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081007

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080807

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

26N No opposition filed

Effective date: 20090210

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120207

Year of fee payment: 13

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 394767

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130315

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20150220 AND 20150225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150328

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50015145

Country of ref document: DE

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

Effective date: 20150407

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150311

Year of fee payment: 16

Ref country code: GB

Payment date: 20150312

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20150602

Year of fee payment: 16

Ref country code: ES

Payment date: 20150427

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: SIEMENS SCHWEIZ AG, CH

Effective date: 20150916

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: SIEMENS SCHWEIZ AG

Effective date: 20160406

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160315

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160315

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160315

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20170428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160316

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180518

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50015145

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191001