EP0865646B1 - Method for analyzing the signals of a danger alarm system and danger alarm system for implementing said method - Google Patents

Method for analyzing the signals of a danger alarm system and danger alarm system for implementing said method Download PDF

Info

Publication number
EP0865646B1
EP0865646B1 EP97939930A EP97939930A EP0865646B1 EP 0865646 B1 EP0865646 B1 EP 0865646B1 EP 97939930 A EP97939930 A EP 97939930A EP 97939930 A EP97939930 A EP 97939930A EP 0865646 B1 EP0865646 B1 EP 0865646B1
Authority
EP
European Patent Office
Prior art keywords
wavelet
signal
analysis
fuzzy
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97939930A
Other languages
German (de)
French (fr)
Other versions
EP0865646A1 (en
Inventor
Marc Pierre Thuillard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens Building Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Building Technologies AG filed Critical Siemens Building Technologies AG
Priority to EP97939930A priority Critical patent/EP0865646B1/en
Publication of EP0865646A1 publication Critical patent/EP0865646A1/en
Application granted granted Critical
Publication of EP0865646B1 publication Critical patent/EP0865646B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/185Signal analysis techniques for reducing or preventing false alarms or for enhancing the reliability of the system
    • G08B29/186Fuzzy logic; neural networks
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/02Mechanical actuation of the alarm, e.g. by the breaking of a wire

Definitions

  • the present invention relates to a method for analyzing the signal of a hazard detector using frequency analysis and fuzzy logic evaluation, as well as a hazard detector to carry out this procedure.
  • the hazard detector can, for example a flame detector, noise detector, fire detector, passive infrared detector or the like.
  • the output signals from hazard detectors are often due to their typical frequency spectra characterized. By analyzing these frequency spectra, the origin of the Signals are determined, and above all, real alarm signals from interference signals differentiate and avoid false alarms. Especially with flame detectors the typical low frequency flickering of a flame is analyzed to determine the Radiation from real flames from that of a source of interference, such as reflected Sunlight, or a flickering light source.
  • a source of interference such as reflected Sunlight, or a flickering light source.
  • the output signals from hazard detectors are analyzed, for example, using Fourier analysis, Fast Fourier analysis, zero crossing method or turning point method analyzed.
  • Fourier analysis Fast Fourier analysis
  • zero crossing method or turning point method analyzed.
  • the latter is used in GB-A 2 277 989 for flame detectors described, the time spans between radiation maxima measured and on their Regularities and irregularities checked and irregular ones Radiation maxima can be interpreted as a flame and regularly as a disturbance.
  • Fuzzy logic is well known.
  • fuzzy sets or unsharp quantities be assigned to a membership function, the value of the membership function, or the degree of belonging to a fuzzy set, between zero and is one. It is important that the membership function can be normalized, i.e. the sum of all values of the membership function is equal to one, which results in the fuzzy logic evaluation allows a clear interpretation of the signal.
  • the frequency of the detected radiation and analyzed between regular and irregular Differentiated signals in certain frequency ranges are based on several fuzzy logic rules. This procedure enables a more precise distinction between real flame signals and other interference signals and thus false alarm security allows.
  • the frequency spectrum is generated here, for example, by fast Fourier transform, which is what is required for the transformation Time, the necessary processor and the processor costs is expensive. For the Determination of a detected signal can take up to three seconds. For certain applications, however, a shorter evaluation time and response time is up to desired for alarming, using methods such as the zero crossing or turning point method or wavelet analysis accelerate the decision-making process, but are less accurate.
  • the object of the invention is a method for frequency analysis of a signal create a hazard detector that is combined with a fuzzy logic evaluation, and with a smaller number compared to prior art analysis methods is carried out by arithmetic steps, so that a result of same or higher accuracy is achieved. Furthermore, the method is intended with a simpler processor and therefore less expensive to carry out.
  • the object is achieved in that the original signal in the fast wavelet transform a multi-stage filter cascade of high / low pass filter pairs is carried out, and that at each filter stage of the wavelet transformation from the results of the high-pass filter a membership function is generated for further analysis of the frequency signal is used according to fuzzy logic rules.
  • the wavelet transform is a transformation or mapping of a signal from the Time domain in the frequency domain (see, for example, "The Fast Wavelet Transform” by Mac A. Cody in Dr. Dobb's Journal, April 1992); so it is fundamental similar to the Fourier transform and Fast Fourier transform. It makes a difference differ from these by the basic function of the transformation, according to which the Signal is developed.
  • a Fourier transform there is a sine and cosine function used, which is localized sharply in the frequency domain and indefinitely in the time domain is.
  • wavelet transformation a so-called wavelet or wave packet is used.
  • wavelet or wave packet is used used.
  • This such as a Gaussian, Spline or Haar wavelet, each with two parameters in the time domain can be shifted and stretched or compressed in the frequency range.
  • a wavelet transform can therefore be used in both the time and frequency domain localized signals are transformed.
  • a fast wavelet transformation is carried out by the Mallat pyramid algorithm, which is used repeatedly a low-pass and high-pass filter, through which the low-frequency be separated from the high-frequency signal components. In each case, the Output signal of the low-pass filter in turn fed to a pair of low / high-pass filters.
  • a series of approximations of the original signal results, each of which has a coarser resolution than the previous one.
  • the number of operations for The transformation required is proportional to the length of the original Signals, while in the Fourier transform this number is disproportionate to the signal length.
  • the fast wavelet transformation can also be carried out inversely by dividing the original signal from the approximated values and coefficients is restored for reconstruction.
  • the results of the fuzzy evaluation allow a decision as to whether there is an alarm or an interference signal.
  • the number of for The wavelet analysis required arithmetic steps compared to Fourier analyzes significantly reduced. This is the necessary computer time to identify the Signals are shortened and the processor costs are reduced.
  • the original digitized signal is initially replaced by a fast wavelet transformation analyzed.
  • the signal is based on the algorithm from Mallat through several stages of a cascade of high and low pass filter pairs guided.
  • the results of the high-pass filter then become one at each filter stage Affiliation function that generates the sum of the calculated values from the High pass filter contains and by the sum of the squares of the original signal values is divided.
  • the sum of membership functions here at each filter level generated is equal to or almost equal to one.
  • the high-pass filter of the wavelet transform first provide information about the high-frequency signals. This is particularly advantageous in the flame report, since with the information about the higher Frequencies speeds up the identification of the type of signal and its accuracy can be increased. For example, a high-frequency signal of over 15 Hz discovered, this is interpreted as an interference signal. The subsequent message, interference signal or alarm signal, occurs earlier and is more certain to be correct.
  • Wavelets are in often very simple in shape, such as a hair wavelet, and allow one Analysis with a few calculation steps, what the computing time and the decision time additionally shortened. The shortening of the decision time is not, however, with one Losses connected in the accuracy of the signal identification. Are fewer rows code is required, an inexpensive processor can also be used.
  • a first preferred embodiment of the method according to the invention is characterized in that that the wavelet used for the fast wavelet transformation orthonormal or semi-orthonormal wavelet or a wavelet packet basis is, and that the membership functions generated each by the wavelet coefficients weighted sum of the squared values of the high pass filter and the Sum of the squared values of the original signal included and in normalized Form used for further analysis of the frequency signal according to fuzzy logic rules become.
  • this is for fast wavelet transformation
  • Wavelet used an orthonormal or semi-orthonormal wavelet or contain a wavelet packet base and the membership functions generated the sum of the squared output values of the high-pass filter and the sum of the squared values of the original signal from the hazard detector and are given in normalized form for the evaluation of the frequency signal according to fuzzy logic rules used.
  • the hazard detector according to the invention for carrying out the method mentioned contains a sensor for a hazard parameter, evaluation electronics with means for processing the output signal of the sensor and a microprocessor with a Fuzzy controller.
  • This hazard detector is characterized in that the microprocessor has a software program according to which the fuzzy controller is part of a Fuzzy wavelet controller is, and that that processed by the evaluation electronics and the signal supplied to the fuzzy controller is wavelet-transformed.
  • the output signal x 0, k is first used to carry out a fast wavelet transformation 1 by means of any wavelet of the type known from the prior art.
  • An orthonormal or semi-orthonormal wavelet or a wavelet packet base is preferably used.
  • the signal values are denoted by x i, k and y i, k , where x is the original signal values and the values from the low-pass filters (LP) and y are the values from the high-pass filters (HP).
  • the index i denotes the level of the filter cascade in increasing numbers, the original signal being at level zero.
  • the index k denotes an individual value of a signal.
  • An original signal x 0, k at zero level is assumed, which is transformed by several filterings.
  • the output signal of the first high-pass filter gives the values y 1, k and the output signal of the first low-pass filter, which also forms the input signal for the second filter stage, gives the values x 1, k .
  • the output signal of the second high-pass filter gives the values y 2, k , that of the second low-pass filter x 2, k is fed to a third filter pair, etc. It should be noted here that the number of values which result from the filter stages in each stage is different. More specifically, the number of values decreases by a factor of two at each level. At stage i + 1, for example, the output values of a high-pass filter are checked and the output values of a low-pass filter expressed.
  • the original signal is reconstructed in stages by creating the values of each filter stage from the values of the previous stage, namely ,
  • the membership functions ⁇ i are then generated from the output values of the high-pass filter of the respective filter stage and the associated coefficients q for the wavelet reconstruction. It is and where N is the number of filter stages. The latter function ⁇ N + 1 is thus formed by the output values of the last low-pass filter.
  • the digitized raw values x 0 , k are subjected to a quick hair analysis.
  • Membership functions ⁇ i are formed from the values y i, k of each filter stage i, namely: and
  • membership functions ⁇ which have been generated from the results of a fast Haar wavelet transformation, are shown as a function of the frequency.
  • ⁇ N + 1 illustrate the degree of affiliation of very low frequencies
  • ⁇ N that of low frequencies
  • ⁇ 1 and ⁇ 2 the degree of affiliation of high and medium frequencies. It can be clearly seen here that the sum of the curve values is one for each selected frequency.
  • This method is suitable for differentiation when used in flame detectors between interference signals, such as periodic signals of over 15 Hz, and real flame signals, such as narrow-band, low-frequency signals or broadband signals in the low frequency range. Because of the fast Identification of high frequency signals are the interference signals of this frequency and whose resonance frequencies are eliminated from the signal, which the frequency analysis of the signal accelerated. By accelerating frequency analysis through the wavelet transformation can be the time required for a decision on the type of signal and the message to be submitted has been reduced from three seconds to one second, for example become.
  • the method described is also passive for noise detectors Infrared detector, for the spectral analysis of the signals of individual pixels in image processing as well as for various sensors such as gas and vibration sensors.
  • Figure 3 shows a diagram of a hazard detector 3 for performing the described Process.
  • the hazard detector 3 has a sensor 4 for detection a hazard parameter, evaluation electronics 5, a microprocessor 6 and the fuzzy controller 2.
  • the hazard parameter can be, for example, the intensity the radiation emitted by a flame, the acoustic signal of a noise, the infrared radiation emitted by a warm body or the output signal a CCD camera.
  • the output signal of the sensor 4 is fed to the evaluation electronics 5, which has suitable means for processing the signal, such as amplifiers, and passes from the evaluation electronics 5 into the microprocessor 6.
  • the fuzzy controller 2 (FIG. 1) is integrated here as software in the microprocessor 6.
  • the Fuzzy controller Part of a fuzzy wavelet controller based on fuzzy logic theory linked to the wavelet theory.
  • the microprocessor 6 contains, for example Software program of the type shown in Figure 4, which the input signal of a Undergoes wavelet transformation. The resulting transformed signal is then fed to the fuzzy controller 2. Should that result from the fuzzy controller 2 If the signal is evaluated as an alarm, this will be an alarm delivery device 7 or an alarm center.
  • FIG. 4 shows a block diagram for the implementation of the method according to the invention in the microprocessor of a hazard detector, this microprocessor having a fuzzy wavelet controller 8.
  • the evaluation electronics 5 FIG. 3
  • the output signal of the sensor 4 is fed to the fuzzy wavelet controller 8, in which the signal is first passed through a cascade of filters 9.
  • the membership functions ⁇ i are formed from the results 10 of each filter 9 according to equation 1. These functions are then fed to the fuzzy controller 2 for fuzzy analysis, which may send a signal to the alarm output device 7.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Automation & Control Theory (AREA)
  • Evolutionary Computation (AREA)
  • Computer Security & Cryptography (AREA)
  • Mathematical Physics (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Alarm Systems (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Feedback Control In General (AREA)
  • Complex Calculations (AREA)

Abstract

The method involves a rapid wavelet transformation and fuzzy logic. The original signal is passed through a cascade of high/low pass filter pairs during wavelet transformation. The rapid wavelet transformation is combined with a fuzzy logic evaluation, whereby a corresp. function is generated from the resultant of the high pass filter for each filter stage. The corresp. function is used for the further analysis of the frequency signal using fuzzy logic rules.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Analyse des Signals eines Gefahrenmelders mittels Frequenzanalyse und Fuzzy-Logik-Auswertung, sowie einen Gefahrenmelder zur Durchführung dieses Verfahrens. Der Gefahrenmelder kann beispielsweise ein Flammenmelder, Geräuschmelder, Brandmelder, passiver Infrarotmelder oder dergleichen sein.The present invention relates to a method for analyzing the signal of a hazard detector using frequency analysis and fuzzy logic evaluation, as well as a hazard detector to carry out this procedure. The hazard detector can, for example a flame detector, noise detector, fire detector, passive infrared detector or the like.

Die Ausgangssignale von Gefahrenmeldern sind häufig durch für sie typische Frequenzspektren gekennzeichnet. Durch Analyse dieser Frequenzspektren kann die Herkunft der Signale bestimmt werden, und es können vor allem echte Alarmsignale von Störsignalen unterschieden und dadurch Fehlalarme vermieden werden. Insbesondere bei Flammenmeldern wird das typische niederfrequente Flackern einer Flamme analysiert, um die Strahlung von echten Flammen von derjenigen einer Störquelle, wie zum Beispiel reflektiertem Sonnenlicht, oder einer flackernden Lichtquelle, unterscheiden zu können.The output signals from hazard detectors are often due to their typical frequency spectra characterized. By analyzing these frequency spectra, the origin of the Signals are determined, and above all, real alarm signals from interference signals differentiate and avoid false alarms. Especially with flame detectors the typical low frequency flickering of a flame is analyzed to determine the Radiation from real flames from that of a source of interference, such as reflected Sunlight, or a flickering light source.

Die Ausgangssignale von Gefahrenmeldern werden beispielsweise mittels Fourier-Analyse, Fast-Fourier-Analyse, Zero-Crossing-Methode oder Turning-Point-Methode analysiert. Die letztere ist in der GB-A 2 277 989 in Anwendung an Flammenmeldern beschrieben, wobei die Zeitspannen zwischen Strahlungsmaxima gemessen und auf ihre Regelmässigkeiten und Unregelmässigkeiten überprüft und unregelmässig auftretende Strahlungsmaxima als Flamme und regelmässige als Störung interpretiert werden.The output signals from hazard detectors are analyzed, for example, using Fourier analysis, Fast Fourier analysis, zero crossing method or turning point method analyzed. The latter is used in GB-A 2 277 989 for flame detectors described, the time spans between radiation maxima measured and on their Regularities and irregularities checked and irregular ones Radiation maxima can be interpreted as a flame and regularly as a disturbance.

Die Fuzzy-Logik ist allgemein bekannt. In bezug auf die vorliegende Erfindung ist hervorzuheben, dass Signalwerte sogenannten Fuzzy sets, oder unscharfen Mengen, gemäss einer Zugehörigkeitsfunktion zugeteilt werden, wobei der Wert der Zugehörigkeitsfunktion, oder der Grad der Zugehörigkeit zu einer unscharfen Menge, zwischen null und eins beträgt. Wichtig dabei ist, dass die Zugehörigkeitsfunktion normalisierbar ist, d.h. die Summe aller Werte der Zugehörigkeitsfunktion gleich eins ist, wodurch die Fuzzy-Logik-Auswertung eine eindeutige Interpretation des Signals erlaubt.Fuzzy logic is well known. With regard to the present invention, it should be emphasized that that signal values according to so-called fuzzy sets, or unsharp quantities be assigned to a membership function, the value of the membership function, or the degree of belonging to a fuzzy set, between zero and is one. It is important that the membership function can be normalized, i.e. the sum of all values of the membership function is equal to one, which results in the fuzzy logic evaluation allows a clear interpretation of the signal.

Bei einem in der EP-A 0 718 814 beschriebenen Flammenmelder wird die Frequenz der delektierten Strahlung analysiert und dabei zwischen regelmässigen und unregelmässigen Signalen in bestimmten Frequenzbereichen unterschieden. Die Auswertung der verschiedenen Signale in den gegebenen Frequenzbereichen erfolgt nach mehreren Fuzzy-Logik-Regeln. Durch dieses Verfahren ist eine genauere Unterscheidung zwischen echten Flammensignalen und anderen Störsignalen und somit die Fehlalarmsicherheit ermöglicht. Die Erzeugung des Frequenzspektrums erfolgt hier zum Beispiel durch schnelle Fourier-Transformation, was bezüglich der für die Transformation erforderlichen Zeit, des notwendigen Prozessors und der Prozessorkosten aufwendig ist. Für die Bestimmung eines detektierten Signals sind zum Teil bis zu drei Sekunden erforderlich. Für bestimmte Anwendungen ist jedoch eine kürzere Auswertezeit und Reaktionszeit bis zur Alarmgebung erwünscht, wobei Verfahren wie die Zero-Crossing- oder Turning-Point-Methode oder Wavelet-Analyse zwar den Entscheidungsprozess beschleunigen, aber weniger genau sind.In a flame detector described in EP-A 0 718 814, the frequency of the detected radiation and analyzed between regular and irregular Differentiated signals in certain frequency ranges. The evaluation of the different Signals in the given frequency ranges are based on several fuzzy logic rules. This procedure enables a more precise distinction between real flame signals and other interference signals and thus false alarm security allows. The frequency spectrum is generated here, for example, by fast Fourier transform, which is what is required for the transformation Time, the necessary processor and the processor costs is expensive. For the Determination of a detected signal can take up to three seconds. For certain applications, however, a shorter evaluation time and response time is up to desired for alarming, using methods such as the zero crossing or turning point method or wavelet analysis accelerate the decision-making process, but are less accurate.

Der Erfindung ist die Aufgabe gestellt, ein Verfahren zur Frequenzanalyse eines Signals eines Gefahrenmelders zu schaffen, das mit einer Fuzzy-Logik-Auswertung vereinigt ist, und im Vergleich zu Analyseverfahren des Standes der Technik mit einer kleineren Anzahl von Rechenschritten durchgeführt wird, so dass in kürzerer Zeit ein Resultat von gleicher oder höherer Genauigkeit erzielt wird. Ferner soll das Verfahren mit einem einfacheren Prozessor und dadurch kostengünstiger durchführbar sein.The object of the invention is a method for frequency analysis of a signal create a hazard detector that is combined with a fuzzy logic evaluation, and with a smaller number compared to prior art analysis methods is carried out by arithmetic steps, so that a result of same or higher accuracy is achieved. Furthermore, the method is intended with a simpler processor and therefore less expensive to carry out.

Die Aufgabe wird erfindungsgemäss dadurch gelöst, dass das ursprüngliche Signal bei der schnellen Wavelet-Transformation durch eine mehrstufige Filterkaskade von Hoch/Tiefpassfilterpaaren geführt wird, und dass bei jeder Filterstufe der Wavelet-Transformation aus den Resultaten des Hochpassfilters jeweils eine Zugehörigkeitsfunktion erzeugt wird, die zur Weiteranalyse des Frequenzsignals nach Fuzzy-Logik-Regeln verwendet wird. According to the invention, the object is achieved in that the original signal in the fast wavelet transform a multi-stage filter cascade of high / low pass filter pairs is carried out, and that at each filter stage of the wavelet transformation from the results of the high-pass filter a membership function is generated for further analysis of the frequency signal is used according to fuzzy logic rules.

Die Wavelet-Transformation ist eine Transformation oder Abbildung eines Signals vom Zeitbereich in den Frequenzbereich (siehe dazu beispielsweise "The Fast Wavelet-Transform" von Mac A. Cody in Dr. Dobb's Journal, April 1992); sie ist also grundsätzlich der Fourier-Transformation und Fast-Fourier-Transformation ähnlich. Sie unterscheidet sich von diesen aber durch die Basisfunktion der Transformation, nach der das Signal entwickelt wird. Bei einer Fourier-Transformation wird eine Sinus- und Cosinus-Funktion verwendet, die im Frequenzbereich scharf lokalisiert und im Zeitbereich unbestimmt ist. Bei einer Wavelet-Transformation wird ein sogenanntes Wavelet oder Wellenpaket verwendet. Hiervon gibt es verschiedene Typen wie zum Beispiel ein Gauss-, Spline- oder Haar-Wavelet, die jeweils durch zwei Parameter beliebig im Zeitbereich verschoben und im Frequenzbereich gedehnt oder komprimiert werden können.The wavelet transform is a transformation or mapping of a signal from the Time domain in the frequency domain (see, for example, "The Fast Wavelet Transform" by Mac A. Cody in Dr. Dobb's Journal, April 1992); so it is fundamental similar to the Fourier transform and Fast Fourier transform. It makes a difference differ from these by the basic function of the transformation, according to which the Signal is developed. In a Fourier transform, there is a sine and cosine function used, which is localized sharply in the frequency domain and indefinitely in the time domain is. With a wavelet transformation, a so-called wavelet or wave packet is used used. There are different types of this, such as a Gaussian, Spline or Haar wavelet, each with two parameters in the time domain can be shifted and stretched or compressed in the frequency range.

Es können also durch eine Wavelet-Transformation sowohl im Zeit- als auch im Frequenzbereich lokalisierte Signale transformiert werden. Eine schnelle Wavelet-Transformation erfolgt durch den Pyramiden-Algorithmus nach Mallat, der auf wiederholter Anwendung eines Tiefpass- und Hochpassfilters beruht, durch welche die niederfrequenten von den hochfrequenten Signalkomponenten getrennt werden. Dabei wird jeweils das Ausgangssignal des Tiefpassfilters wiederum einem Tief-/Hochpassfilterpaar zugeführt. Es resultiert eine Reihe von Approximationen des ursprünglichen Signals, wovon jede eine gröbere Auflösung besitzt als die vorhergehende. Die Anzahl Operationen, die für die Transformation erforderlich sind, ist jeweils proportional zur Länge des ursprünglichen Signals, während bei der Fourier-Transformation diese Anzahl überproportional zur Signallänge ist. Die schnelle Wavelet-Transformation kann auch invers durchgeführt werden, indem das ursprüngliche Signal aus den approximierten Werten und Koeffizienten für die Rekonstruktion wiederhergestellt wird. Der Algorithmus für die Zerlegung und Rekonstruktion des Signals und eine Tabelle der Koeffizienten der Zerlegung und Rekonstruktion sind am Beispiel für ein Spline Wavelet in "An Introduction to Wavelets" von Charles K. Chui (Academic Press, San Diego, 1992) angegeben.A wavelet transform can therefore be used in both the time and frequency domain localized signals are transformed. A fast wavelet transformation is carried out by the Mallat pyramid algorithm, which is used repeatedly a low-pass and high-pass filter, through which the low-frequency be separated from the high-frequency signal components. In each case, the Output signal of the low-pass filter in turn fed to a pair of low / high-pass filters. A series of approximations of the original signal results, each of which has a coarser resolution than the previous one. The number of operations for The transformation required is proportional to the length of the original Signals, while in the Fourier transform this number is disproportionate to the signal length. The fast wavelet transformation can also be carried out inversely by dividing the original signal from the approximated values and coefficients is restored for reconstruction. The decomposition algorithm and reconstruction of the signal and a table of the coefficients of the decomposition and Reconstruction using the example of a spline wavelet in "An Introduction to Wavelets" by Charles K. Chui (Academic Press, San Diego, 1992).

Bei Anwendung in einem Gefahrenmelder erlauben die Resultate der Fuzzy-Auswertung einen Entscheid darüber, ob ein Alarm- oder ein Störsignal vorliegt. Die Anzahl der für die Wavelet-Analyse erforderlichen Rechenschritte ist im Vergleich zu Fourier-Analysen bedeutend reduziert. Dadurch ist die notwendige Rechnerzeit zur Identifizierung des Signals verkürzt, und es verringern sich die Kosten für den Prozessor.When used in a hazard detector, the results of the fuzzy evaluation allow a decision as to whether there is an alarm or an interference signal. The number of for The wavelet analysis required arithmetic steps compared to Fourier analyzes significantly reduced. This is the necessary computer time to identify the Signals are shortened and the processor costs are reduced.

Gemäss der Erfindung wird das ursprüngliche digitalisierte Signal zunächst durch eine schnelle Wavelet-Transformation analysiert. Hierfür wird das Signal nach dem Algorithmus von Mallat durch mehrere Stufen einer Kaskade von Hoch- und Tiefpassfilterpaaren geführt. Aus den Resultaten der Hochpassfilter wird sodann bei jeder Filterstufe eine Zugehörigkeitsfunktion erzeugt, welche die Summe der gerechneten Werte aus dem Hochpassfilter enthält und durch die Summe der Quadrate der ursprünglichen Signalwerte dividiert ist. Die Summe der Zugehörigkeitsfunktionen, die hier bei jeder Filterstufe erzeugt werden, ist gleich oder nahezu gleich eins. Diese normalisierten Zugehörigkeitsfunktionen werden sodann in dieser Form für eine Weiterführung der Frequenzanalyse mit Fuzzy-Logik verwendet.According to the invention, the original digitized signal is initially replaced by a fast wavelet transformation analyzed. For this, the signal is based on the algorithm from Mallat through several stages of a cascade of high and low pass filter pairs guided. The results of the high-pass filter then become one at each filter stage Affiliation function that generates the sum of the calculated values from the High pass filter contains and by the sum of the squares of the original signal values is divided. The sum of membership functions here at each filter level generated is equal to or almost equal to one. These normalized membership functions are then in this form for a continuation of the frequency analysis used with fuzzy logic.

Eine Frequenzanalyse dieser Art ergibt folgende Vorteile: Die Hochpassfilter der Wavelet-Transformation ergeben zuerst Informationen über die hochfrequenten Signale. Dies ist insbesondere in der Flammenmeldung vorteilhaft, da mit der Information über die höheren Frequenzen die Identifizierung der Art des Signals beschleunigt und ihre Genauigkeit erhöht werden kann. Wird zum Beispiel ein hochfrequentes Signal von über 15 Hz entdeckt, wird dieses als Störsignal gedeutet. Die darauffolgende Meldung, Störsignal oder Alarmsignal, erfolgt früher und ist mit grösserer Sicherheit richtig. Wavelets sind in ihrer Form oft sehr einfach, wie zum Beispiel ein Haar-Wavelet, und ermöglichen eine Analyse mit wenigen Rechenschritten, was die Rechenzeit und die Entscheidungszeit zusätzlich verkürzt. Die Verkürzung der Entscheidungszeit ist jedoch nicht mit einer Einbusse in der Genauigkeit der Signalidentifizierung verbunden. Sind weniger Zeilen von Code erforderlich, kann auch ein kostengünstiger Prozessor eingesetzt werden.A frequency analysis of this type gives the following advantages: The high-pass filter of the wavelet transform first provide information about the high-frequency signals. This is particularly advantageous in the flame report, since with the information about the higher Frequencies speeds up the identification of the type of signal and its accuracy can be increased. For example, a high-frequency signal of over 15 Hz discovered, this is interpreted as an interference signal. The subsequent message, interference signal or alarm signal, occurs earlier and is more certain to be correct. Wavelets are in often very simple in shape, such as a hair wavelet, and allow one Analysis with a few calculation steps, what the computing time and the decision time additionally shortened. The shortening of the decision time is not, however, with one Losses connected in the accuracy of the signal identification. Are fewer rows code is required, an inexpensive processor can also be used.

Eine erste bevorzugte Ausführung des erfindungsgemässen Verfahrens ist dadurch gekennzeichnet, dass das für die schnelle Wavelet-Transformation verwendete Wavelet ein orthonormales oder semi-orthonormales Wavelet oder auch eine Wavelet-Paket-Basis ist, und dass die erzeugten Zugehörigkeitsfunktionen jeweils die durch die Wavelet-Koeffizienten gewichtete Summe der quadrierten Werte des Hochpassfilters und die Summe der quadrierten Werte des ursprünglichen Signals enthalten und in normalisierter Form für die Weiteranalyse des Frequenzsignals nach Fuzzy-Logik-Regeln verwendet werden.A first preferred embodiment of the method according to the invention is characterized in that that the wavelet used for the fast wavelet transformation orthonormal or semi-orthonormal wavelet or a wavelet packet basis is, and that the membership functions generated each by the wavelet coefficients weighted sum of the squared values of the high pass filter and the Sum of the squared values of the original signal included and in normalized Form used for further analysis of the frequency signal according to fuzzy logic rules become.

Bei einer zweiten bevorzugten Ausführungsform ist das für die schnelle Wavelet-Transformation verwendete Wavelet ein orthonormales oder semi-orthonormales Wavelet oder eine Wavelet-Paket-Basis und die erzeugten Zugehörigkeitsfunktionen enthalten jeweils die Summe der quadrierten Ausgangswerte des Hochpassfilters und die Summe der quadrierten Werte des ursprünglichen Signals des Gefahrenmelders und werden in normalisierter Form für die Auswertung des Frequenzsignals nach Fuzzy-Logik-Regeln verwendet.In a second preferred embodiment, this is for fast wavelet transformation Wavelet used an orthonormal or semi-orthonormal wavelet or contain a wavelet packet base and the membership functions generated the sum of the squared output values of the high-pass filter and the sum of the squared values of the original signal from the hazard detector and are given in normalized form for the evaluation of the frequency signal according to fuzzy logic rules used.

Der erfindungsgemässe Gefahrenmelder zur Durchführung des genannten Verfahrens enthält einen Sensor für eine Gefahrenkenngrösse, eine Auswerteelektronik mit Mitteln zur Verarbeitung des Ausgangssignals des Sensors und einen Mikroprozessor mit einem Fuzzy-Controller. Dieser Gefahrenmelder ist dadurch gekennzeichnet, dass der Mikroprozessor ein Software-Programm aufweist, nach dem der Fuzzy-Controller Teil eines Fuzzy-Wavelet-Controllers ist, und dass das durch die Auswertelektronik verarbeitete und dem Fuzzy-Controller zugeführte Signal wavelet-transformiert ist.The hazard detector according to the invention for carrying out the method mentioned contains a sensor for a hazard parameter, evaluation electronics with means for processing the output signal of the sensor and a microprocessor with a Fuzzy controller. This hazard detector is characterized in that the microprocessor has a software program according to which the fuzzy controller is part of a Fuzzy wavelet controller is, and that that processed by the evaluation electronics and the signal supplied to the fuzzy controller is wavelet-transformed.

Im folgenden wird die Erfindung anhand eines in den Zeichnungen dargestellten Ausführungsbeispiels näher erläutert; es zeigt:

Fig. 1
ein Blockschema eines Verfahrens mit einer schnellen Wavelet-Analyse durch mehrere Filterstufen und Weiteranalyse durch Fuzzy-Logik,
Fig. 2
Darstellungen von Zugehörigkeitsfunktionen am Beispiel einer Frequenzanalyse mittels einer schnellen Haar-Wavelet-Transformation,
Fig. 3
ein Blockschema eines Gefahrenmelders zur Durchführung des Verfahrens von Fig. 1; und
Fig. 4
ein Blockschema für die Implementierung des Verfahrens von Fig. 1 in einem Gefahrenmelder.
The invention is explained in more detail below on the basis of an exemplary embodiment illustrated in the drawings; it shows:
Fig. 1
1 shows a block diagram of a method with a fast wavelet analysis using several filter stages and further analysis using fuzzy logic,
Fig. 2
Representation of membership functions using the example of a frequency analysis using a fast Haar-Wavelet transformation,
Fig. 3
a block diagram of a hazard detector for performing the method of Fig. 1; and
Fig. 4
a block diagram for the implementation of the method of FIG. 1 in a hazard detector.

Gemäss Fig. 1 wird mit dem Ausgangssignal x0,k zunächst eine schnelle Wavelet-Transformation 1 mittels eines beliebigen Wavelet der aus dem Stand der Technik bekannten Art durchgeführt. Vorzugsweise wird ein orthonormales oder semi-orthonormales Wavelet oder eine Wavelet-Paket-Basis verwendet. In der Figur sind die Signalwerte mit xi,k und yi,k bezeichnet, wobei x die ursprünglichen Signalwerte und die Werte aus den Tiefpassfiltern (LP) und y die Werte aus den Hochpassfiltern (HP) bedeuten. Der Index i bezeichnet in steigender Zahl die Stufe der Filterkaskade, wobei das ursprüngliche Signal auf Stufe Null ist. Der Index k bezeichnet einen individuellen Wert eines Signals. Es wird von einem ursprünglichen Signal x0,k auf der Stufe Null ausgegangen, das durch mehrere Filterungen transformiert wird. Das Ausgangssignal des ersten Hochpassfilters ergibt die Werte y1,k und das Ausgangssignal des ersten Tiefpassfilters, das zugleich das Eingangssignal für die zweite Filterstufe bildet, die Werte x1,k. Das Ausgangssignal des zweiten Hochpassfilters ergibt die Werte y2,k, das des zweiten Tiefpassfilters x2,k wird einem dritten Filterpaar zugeführt, usw. Es ist hier zu bemerken, dass die Anzahl Werte, die aus den Filterstufen hervorgehen, jeweils bei jeder Stufe verschieden ist. Genauer gesagt, bei jeder Stufe verkleinert sich die Anzahl der Werte um den Faktor zwei. Bei der Stufe i+1 werden beispielsweise die Ausgangswerte eines Hochpassfilters durch

Figure 00060001
und die Ausgangswerte eines Tiefpassfilters durch
Figure 00060002
ausgedrückt.1, the output signal x 0, k is first used to carry out a fast wavelet transformation 1 by means of any wavelet of the type known from the prior art. An orthonormal or semi-orthonormal wavelet or a wavelet packet base is preferably used. In the figure, the signal values are denoted by x i, k and y i, k , where x is the original signal values and the values from the low-pass filters (LP) and y are the values from the high-pass filters (HP). The index i denotes the level of the filter cascade in increasing numbers, the original signal being at level zero. The index k denotes an individual value of a signal. An original signal x 0, k at zero level is assumed, which is transformed by several filterings. The output signal of the first high-pass filter gives the values y 1, k and the output signal of the first low-pass filter, which also forms the input signal for the second filter stage, gives the values x 1, k . The output signal of the second high-pass filter gives the values y 2, k , that of the second low-pass filter x 2, k is fed to a third filter pair, etc. It should be noted here that the number of values which result from the filter stages in each stage is different. More specifically, the number of values decreases by a factor of two at each level. At stage i + 1, for example, the output values of a high-pass filter are checked
Figure 00060001
and the output values of a low-pass filter
Figure 00060002
expressed.

Die Koeffizienten a und b für die Transformation sind im allgemeinen bekannt und können mit Hilfe des genannten Buches von Chui berechnet werden. Beispielsweise sind für ein Haar-Wavelet a0=a1=1/2, b0=1/2 und b1=-1/2. Der Index 1 nimmt jeweils ganzzahlige Werte an, für die die Koeffizienten ungleich null sind. Die Rekonstruktion des ursprünglichen Signals erfolgt stufenweise, indem die Werte jeder Filterstufe aus den Werten der vorherigen Stufe erstellt werden, nämlich

Figure 00060003
.The coefficients a and b for the transformation are generally known and can be calculated using the Chui book mentioned. For example, for a Haar wavelet, a 0 = a 1 = 1/2, b 0 = 1/2 and b 1 = -1 / 2. Index 1 takes integer values for which the coefficients are not equal to zero. The original signal is reconstructed in stages by creating the values of each filter stage from the values of the previous stage, namely
Figure 00060003
,

Die Koeffizienten p und q für die Wavelet-Rekonstruktion sind in dem schon genannten Buch zu finden. The coefficients p and q for the wavelet reconstruction are in the already mentioned To find book.

Anschliessend werden aus den Ausgangswerten des Hochpassfilters der jeweiligen Filterstufe und den dazugehörigen Koeffizienten q für die Wavelet-Rekonstruktion die Zugehörigkeitsfunktionen µi erzeugt. Dabei ist

Figure 00070001
und
Figure 00070002
wobei N die Anzahl der Filterstufen ist. Die letztere Funktion µN+1 wird also durch die Ausgangswerte des letzten Tiefpassfilters gebildet. Diese Zugehörigkeitsfunktionen sind normalisiert, indem
Figure 00070003
.The membership functions µ i are then generated from the output values of the high-pass filter of the respective filter stage and the associated coefficients q for the wavelet reconstruction. It is
Figure 00070001
and
Figure 00070002
where N is the number of filter stages. The latter function µ N + 1 is thus formed by the output values of the last low-pass filter. These membership functions are normalized by
Figure 00070003
,

Eine oft gute Annäherung dieser Zugehörigkeitsfunktionen ist durch folgende Gleichung gegeben:

Figure 00070004
und
Figure 00070005
An often good approximation of these membership functions is given by the following equation:
Figure 00070004
and
Figure 00070005

Bei dieser Annäherung ist die Funktion nahezu normalisiert, indem

Figure 00070006
.With this approach, the function is almost normalized by
Figure 00070006
,

Bei einer besonderen Ausführung des Verfahrens werden die digitalisierten Rohwerte x0, k einer schnellen Haar-Analyse unterworfen. Aus den Werten yi,k jeder Filterstufe i werden Zugehörigkeitsfunktionen µi gebildet, nämlich:

Figure 00070007
und
Figure 00070008
In a special embodiment of the method, the digitized raw values x 0 , k are subjected to a quick hair analysis. Membership functions µ i are formed from the values y i, k of each filter stage i, namely:
Figure 00070007
and
Figure 00070008

Diese Zugehörigkeitsfunktionen sind in diesem Fall normalisiert, indem

Figure 00070009
ist. In this case, these membership functions are normalized by
Figure 00070009
is.

In Figur 2 sind Zugehörigkeitsfunktionen µ, die aus den Resultaten einer schnellen Haar-Wavelet-Transformation erzeugt worden sind, als Funktion der Frequenz gezeigt. Von den verschiedenen Kurven illustrieren µN+1 den Grad der Zugehörigkeit von sehr tiefen Frequenzen, µN den von tiefen Frequenzen, und µ1 und µ2 den Grad der Zugehörigkeit von hohen beziehungsweise mittleren Frequenzen. Es ist hier klar ersichtlich, dass bei jeder gewählten Frequenz die Summe der Kurvenwerte eins beträgt.In FIG. 2, membership functions μ, which have been generated from the results of a fast Haar wavelet transformation, are shown as a function of the frequency. Of the various curves, µ N + 1 illustrate the degree of affiliation of very low frequencies, µ N that of low frequencies, and µ 1 and µ 2 the degree of affiliation of high and medium frequencies. It can be clearly seen here that the sum of the curve values is one for each selected frequency.

Bei allen Ausführungen des Verfahrens werden diese Zugehörigkeitsfunktionen einem Fuzzy-Logik-Controller 2 (Fig. 1) für.die Auswertung nach Fuzzy-Logik-Regeln zugeführt, worauf eine Entscheidung gefällt wird, ob ein Alarmsignal ausgelöst oder das Signal als Störung bewertet wird.In all of the executions of the method, these membership functions become one Fuzzy logic controller 2 (FIG. 1) for evaluation according to fuzzy logic rules, whereupon a decision is made as to whether an alarm signal is triggered or that Signal is evaluated as a disturbance.

Bei der Anwendung in Flammenmeldern eignet sich dieses Verfahren zur Unterscheidung zwischen Störsignalen, wie zum Beispiel periodischen Signalen von über 15 Hz, und echten Flammensignalen, wie zum Beispiel schmalbandigen Signalen niederer Frequenz oder breitbandigen Signalen in niederem Frequenzbereich. Durch die schnelle Identifizierung von hochfrequenten Signalen werden die Störsignale dieser Frequenz und deren Resonanzfrequenzen vom Signal eliminiert, was die Frequenzanalyse des Signals beschleunigt. Durch die Beschleunigung der Frequenzanalyse durch die Wavelet-Transformation kann die erforderliche Zeit für eine Entscheidung über die Art des Signals und die abzugebende Meldung von zum Beispiel bisher drei Sekunden auf eine Sekunde verringert werden. Das beschriebene Verfahren ist weiter auch für Geräuschmelder, passive Infrarotmelder, für die Spektralanalyse der Signale einzelner Pixel in der Bildverarbeitung sowie für verschiedene Sensoren wie Gas- und Vibrationssensoren geeignet.This method is suitable for differentiation when used in flame detectors between interference signals, such as periodic signals of over 15 Hz, and real flame signals, such as narrow-band, low-frequency signals or broadband signals in the low frequency range. Because of the fast Identification of high frequency signals are the interference signals of this frequency and whose resonance frequencies are eliminated from the signal, which the frequency analysis of the signal accelerated. By accelerating frequency analysis through the wavelet transformation can be the time required for a decision on the type of signal and the message to be submitted has been reduced from three seconds to one second, for example become. The method described is also passive for noise detectors Infrared detector, for the spectral analysis of the signals of individual pixels in image processing as well as for various sensors such as gas and vibration sensors.

Figur 3 zeigt ein Schema eines Gefahrenmelders 3 zur Durchführung des beschriebenen Verfahrens. Darstellungsgemäss weist der Gefahrenmelder 3 einen Sensor 4 zur Detektion einer Gefahrenkenngrösse, eine Auswerteelektronik 5, einen Mikroprozessor 6 und den Fuzzy-Controller 2 auf. Die Gefahrenkenngrösse kann zum Beispiel die Intensität der von einer Flamme abgegebenen Strahlung, das akustische Signal eines Geräusches, die von einem warmen Körper abgegebenen Infrarotstrahlung oder das Ausgangssignal einer CCD-Kamera sein. Figure 3 shows a diagram of a hazard detector 3 for performing the described Process. According to the illustration, the hazard detector 3 has a sensor 4 for detection a hazard parameter, evaluation electronics 5, a microprocessor 6 and the fuzzy controller 2. The hazard parameter can be, for example, the intensity the radiation emitted by a flame, the acoustic signal of a noise, the infrared radiation emitted by a warm body or the output signal a CCD camera.

Das Ausgangssignal des Sensors 4 wird der Auswerteelektronik 5 zugeführt, welche geeignete Mittel zur Verarbeitung des Signals, wie zum Beispiel Verstärker, aufweist, und gelangt von der Auswerteelektronik 5 in den Mikroprozessor 6. Der Fuzzy-Controller 2 (Fig. 1) ist hier als Software im Mikroprozessor 6 integriert. Insbesondere ist der Fuzzy-Controller Teil eines Fuzzy-Wavelet-Controllers, der die Fuzzy-Logik-Theorie mit der Wavelet-Theorie verknüpft. Der Mikroprozessor 6 enthält beispielsweise ein Software-Programm der in Figur 4 gezeigten Art, welches das Eingangs-Signal einer Wavelet-Transformation unterzieht. Das resultierende, transformierte Signal wird sodann dem Fuzzy-Controller 2 zugeführt. Sollte das aus dem Fuzzy-Controller 2 resultierende Signal als Alarm gewertet werden, wird dieses einer Alarmabgabevorrichtung 7 oder einer Alarmzentrale zugeführt.The output signal of the sensor 4 is fed to the evaluation electronics 5, which has suitable means for processing the signal, such as amplifiers, and passes from the evaluation electronics 5 into the microprocessor 6. The fuzzy controller 2 (FIG. 1) is integrated here as software in the microprocessor 6. In particular, the Fuzzy controller Part of a fuzzy wavelet controller based on fuzzy logic theory linked to the wavelet theory. The microprocessor 6 contains, for example Software program of the type shown in Figure 4, which the input signal of a Undergoes wavelet transformation. The resulting transformed signal is then fed to the fuzzy controller 2. Should that result from the fuzzy controller 2 If the signal is evaluated as an alarm, this will be an alarm delivery device 7 or an alarm center.

Figur 4 zeigt ein Blockschema für die Implementierung des erfindungsgemässen Verfahrens im Mikroprozessor eines Gefahrenmelders, wobei dieser Mikroprozessor einen Fuzzy-Wavelet Controller 8 aufweist. Das Ausgangssignal des Sensors 4 wird nach Auswertung durch die Auswerteelektronik 5 (Fig. 3) dem Fuzzy-Wavelet Controller 8 zugeführt, in dem zunächst das Signal durch eine Kaskade von Filtern 9 geführt wird. Aus den Resultaten 10 jedes Filters 9 werden nach Gleichung 1 die Zugehörigkeitsfunktionen µi gebildet. Diese Funktionen werden sodann dem Fuzzy-Controller 2 zur Fuzzy-Analyse zugeführt, der gegebenenfalls ein Signal an die Alarmabgabevorrichtung 7 sendet.FIG. 4 shows a block diagram for the implementation of the method according to the invention in the microprocessor of a hazard detector, this microprocessor having a fuzzy wavelet controller 8. After evaluation by the evaluation electronics 5 (FIG. 3), the output signal of the sensor 4 is fed to the fuzzy wavelet controller 8, in which the signal is first passed through a cascade of filters 9. The membership functions μ i are formed from the results 10 of each filter 9 according to equation 1. These functions are then fed to the fuzzy controller 2 for fuzzy analysis, which may send a signal to the alarm output device 7.

Claims (5)

  1. A method of analyzing the signal of a hazard detector (3) by frequency analysis and fuzzy logic analysis, wherein a fast wavelet transformation (1) is performed as frequency analysis, characterised in that the original signal (x0,k) in the fast wavelet transformation is conducted through a multi-stage filter cascade of pairs of high-pass/low-pass filters (HP, LP), and that in each filter stage of the wavelet transformation an association function (µi) is in each case produced from the results of the high-pass filter (HP), which association function (µi) is used for the further analysis of the frequency signal in accordance with fuzzy logic rules.
  2. A method according to Claim 1, characterised in that the wavelet used for the fast wavelet transformation (1) is an orthonormal or semi-orthonormal wavelet or a wavelet packet base, and that the produced association functions (µi) in each case contain the sum, weighted by the wavelet coefficients, of the squared values of the high-pass filter (HP) and the sum of the squared values of the original signal (x0,k) of the hazard detector (3) and are used in normalised form for the further analysis of the frequency signal in accordance with fuzzy logic rules.
  3. A method according to Claim 1, characterised in that the wavelet used for the fast wavelet transformation (1) is an orthonormal or semi-orthonormal wavelet or a wavelet packet base, and that the produced association functions(µi) in each case contain the sum of the squared output values of the high-pass filter (HP) and the sum of the squared values of the original signal (x0,k) of the hazard detector (3) and are used in normalised form for the analysis of the frequency signal in accordance with fuzzy logic rules.
  4. A method according to one of Claims 1 to 3, characterised in that the output signals are those of a flame detector and the frequency analysis and the analysis of the output signals of the flame detector has a duration of 100 ms to 10 s.
  5. A hazard detector (3) for the implementation of the method according to one of Claims 1 to 3 with a sensor (4) for a hazard characteristic variable, an analysis electronics unit (5) with means for processing the output signal of the sensor (4) and a microprocessor (6) with a fuzzy controller (2), characterised in that the microprocessor (6) has a software program in accordance with which the fuzzy controller (2) is part of a fuzzy wavelet controller (8), and that the signal processed by the analysis electronics unit (5) and fed to the fuzzy controller (2) is wavelet-transformed.
EP97939930A 1996-10-04 1997-09-19 Method for analyzing the signals of a danger alarm system and danger alarm system for implementing said method Expired - Lifetime EP0865646B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP97939930A EP0865646B1 (en) 1996-10-04 1997-09-19 Method for analyzing the signals of a danger alarm system and danger alarm system for implementing said method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP96115952 1996-10-04
EP96115952A EP0834845A1 (en) 1996-10-04 1996-10-04 Method for frequency analysis of a signal
PCT/CH1997/000354 WO1998015931A1 (en) 1996-10-04 1997-09-19 Method for analyzing the signals of a danger alarm system and danger alarm system for implementing said method
EP97939930A EP0865646B1 (en) 1996-10-04 1997-09-19 Method for analyzing the signals of a danger alarm system and danger alarm system for implementing said method

Publications (2)

Publication Number Publication Date
EP0865646A1 EP0865646A1 (en) 1998-09-23
EP0865646B1 true EP0865646B1 (en) 2002-03-13

Family

ID=8223268

Family Applications (2)

Application Number Title Priority Date Filing Date
EP96115952A Withdrawn EP0834845A1 (en) 1996-10-04 1996-10-04 Method for frequency analysis of a signal
EP97939930A Expired - Lifetime EP0865646B1 (en) 1996-10-04 1997-09-19 Method for analyzing the signals of a danger alarm system and danger alarm system for implementing said method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP96115952A Withdrawn EP0834845A1 (en) 1996-10-04 1996-10-04 Method for frequency analysis of a signal

Country Status (9)

Country Link
US (1) US6011464A (en)
EP (2) EP0834845A1 (en)
JP (1) JP2000503438A (en)
KR (1) KR19990071873A (en)
CN (1) CN1129879C (en)
AT (1) ATE214504T1 (en)
DE (1) DE59706608D1 (en)
PL (1) PL327070A1 (en)
WO (1) WO1998015931A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6742183B1 (en) 1998-05-15 2004-05-25 United Video Properties, Inc. Systems and methods for advertising television networks, channels, and programs
US6219373B1 (en) * 1998-06-15 2001-04-17 The United States Of America As Represented By The Secretary Of The Navy Wavelet-based interference filtering for spread-spectrum signal
US6879253B1 (en) * 2000-03-15 2005-04-12 Siemens Building Technologies Ag Method for the processing of a signal from an alarm and alarms with means for carrying out said method
US6184792B1 (en) * 2000-04-19 2001-02-06 George Privalov Early fire detection method and apparatus
BR0209543A (en) * 2001-05-11 2005-04-26 Detector Electronics Flame detection and fire detection method and apparatus
FR2841424A1 (en) * 2002-06-25 2003-12-26 Koninkl Philips Electronics Nv METHOD FOR DETECTING BLOCK ARTEFACTS
US7202794B2 (en) * 2004-07-20 2007-04-10 General Monitors, Inc. Flame detection system
MX2008001357A (en) 2005-07-29 2008-04-16 V&M Deutschland Gmbh Method for error-free checking of tubes for surface faults.
CA2675705A1 (en) * 2007-01-16 2008-07-24 Utc Fire & Security Corporation System and method for video based fire detection
US8094015B2 (en) * 2009-01-22 2012-01-10 International Business Machines Corporation Wavelet based hard disk analysis
US8941734B2 (en) * 2009-07-23 2015-01-27 International Electronic Machines Corp. Area monitoring for detection of leaks and/or flames
US8359616B2 (en) 2009-09-30 2013-01-22 United Video Properties, Inc. Systems and methods for automatically generating advertisements using a media guidance application
US8949901B2 (en) 2011-06-29 2015-02-03 Rovi Guides, Inc. Methods and systems for customizing viewing environment preferences in a viewing environment control application
CN103501205B (en) * 2013-10-11 2016-05-11 北京理工大学 Target Frequency Hopping Signal recognition methods based on fuzzy comprehensive evoluation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4866420A (en) * 1988-04-26 1989-09-12 Systron Donner Corp. Method of detecting a fire of open uncontrolled flames
US5453733A (en) * 1992-07-20 1995-09-26 Digital Security Controls Ltd. Intrusion alarm with independent trouble evaluation
US6310963B1 (en) * 1994-09-30 2001-10-30 Sensormatic Electronics Corp Method and apparatus for detecting an EAS (electronic article surveillance) marker using wavelet transform signal processing
EP0718814B1 (en) * 1994-12-19 2001-07-11 Siemens Building Technologies AG Method and device for flame detection
US5815198A (en) * 1996-05-31 1998-09-29 Vachtsevanos; George J. Method and apparatus for analyzing an image to detect and identify defects

Also Published As

Publication number Publication date
EP0834845A1 (en) 1998-04-08
ATE214504T1 (en) 2002-03-15
KR19990071873A (en) 1999-09-27
WO1998015931A1 (en) 1998-04-16
CN1129879C (en) 2003-12-03
US6011464A (en) 2000-01-04
EP0865646A1 (en) 1998-09-23
CN1205094A (en) 1999-01-13
DE59706608D1 (en) 2002-04-18
PL327070A1 (en) 1998-11-23
JP2000503438A (en) 2000-03-21

Similar Documents

Publication Publication Date Title
EP0865646B1 (en) Method for analyzing the signals of a danger alarm system and danger alarm system for implementing said method
EP1134712B1 (en) Method for the processing of the signal in a danger detector, and detector with means for the implementation of such method
DE69410604T2 (en) BIOMETRIC IDENTIFICATION OF PERSONS
DE69708352T2 (en) Method and device for detecting the presence of a particular living being in an environment monitored by a Doppler detector
DE69327558T2 (en) Fire detection method
DE19828409A1 (en) Accident sound detector circuit at road junctions
DE69605559T2 (en) Glass breakage detector
DE10239801A1 (en) Process for extracting texture features from a multi-channel image
DE69726854T2 (en) METHOD AND DEVICE FOR DETECTING HEARTBEAT
DE60306285T2 (en) Fingerprint test with validation of the input image by analyzing the spatial frequency
EP0718814B1 (en) Method and device for flame detection
DE19535094B4 (en) A method of detecting misfire on one or more continuously-deploying cylinders
DE2924605C2 (en) Process for the optical differentiation of test objects
WO1992015171A1 (en) Process and device for filtering signals
DE4002829A1 (en) METHOD FOR DETECTING METAL OBJECTS
DE69626666T2 (en) ELECTRONIC GOODS MONITORING SYSTEM WITH COMB FILTERING AND FALSE ALARM SUPPRESSION
DE4015992A1 (en) Detecting and measuring internal combustion engine knocking - by evaluating sensor signals w.r.t. combination of characteristics to achieve improved knock detection eliminating faulty decisions
EP1209458B1 (en) Procedure for determining the noise level of an internal combustion engine
DE68910625T2 (en) Method for recognizing a pattern in a field with a value-added amplitude, arrangement for carrying out such a method.
DE3855783T2 (en) Device for the analysis of partial molecular structures
DE19906118C2 (en) Method and device for comparing acoustic input signals fed into an input device with acoustic reference signals stored in a memory
DE69726458T2 (en) DEVICE AND METHOD FOR ANALYZING AND FILTERING NOISE
DE68925937T2 (en) Detection and processing of waveforms
DE19929671C2 (en) Method of recognizing an image as a fingerprint
EP0943130B1 (en) Method for non-stationary separation of signals of various sources

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FI FR GB IT LI NL PT SE

17P Request for examination filed

Effective date: 19980929

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS BUILDING TECHNOLOGIES AG

17Q First examination report despatched

Effective date: 20001020

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS BUILDING TECHNOLOGIES AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FI FR GB IT LI NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020313

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020313

REF Corresponds to:

Ref document number: 214504

Country of ref document: AT

Date of ref document: 20020315

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020314

REF Corresponds to:

Ref document number: 59706608

Country of ref document: DE

Date of ref document: 20020418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020614

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020925

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20021216

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: SIEMENS BUILDING TECHNOLOGIES AG C-IPR

Free format text: SIEMENS BUILDING TECHNOLOGIES AG#BELLERIVESTRASSE 36#8034 ZUERICH (CH) -TRANSFER TO- SIEMENS BUILDING TECHNOLOGIES AG C-IPR#GUBELSTRASSE 22#6300 ZUG (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SIEMENS AKTIENGESELLSCHAFT

Free format text: SIEMENS BUILDING TECHNOLOGIES AG C-IPR#GUBELSTRASSE 22#6300 ZUG (CH) -TRANSFER TO- SIEMENS AKTIENGESELLSCHAFT#WITTELSBACHERPLATZ 2#80333 MUENCHEN (DE)

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20090514 AND 20090520

BECA Be: change of holder's address

Owner name: SIEMENS A.G.WITTELSBACHERPLATZ 2, DE-80333 MUENCHE

Effective date: 20100423

BECH Be: change of holder

Owner name: SIEMENS A.G.

Effective date: 20100423

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101119

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20101019

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20111213

Year of fee payment: 15

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20110930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120917

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121002

Year of fee payment: 16

Ref country code: IT

Payment date: 20120927

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120810

Year of fee payment: 16

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130403

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59706608

Country of ref document: DE

Effective date: 20130403

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 214504

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130919

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130919

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130919

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130919