EP1132492A2 - Web-shaped plasma-processed materials - Google Patents
Web-shaped plasma-processed materials Download PDFInfo
- Publication number
- EP1132492A2 EP1132492A2 EP20010103655 EP01103655A EP1132492A2 EP 1132492 A2 EP1132492 A2 EP 1132492A2 EP 20010103655 EP20010103655 EP 20010103655 EP 01103655 A EP01103655 A EP 01103655A EP 1132492 A2 EP1132492 A2 EP 1132492A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- plasma
- gas
- obtainable
- material according
- atmospheric plasma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/36—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12431—Foil or filament smaller than 6 mils
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31—Surface property or characteristic of web, sheet or block
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
Definitions
- the present invention relates to sheet-like materials, in particular polymers or metallic foils using an atmospheric plasma are treated.
- finishing steps such as printing, coating, painting, Gluing, etc.
- plastic and metal foils if one sufficient wettability with solvent or water-based printing inks, Lacquers, primers, adhesives, etc. is given. In general, therefore, in or Corona treatment performed offline with the film processing.
- corona treatment has significant disadvantages. So it happens especially at higher ones Orbital velocities to a parasitic backside corona discharge if the sheet-like materials do not rest on the roller-shaped electrode. Furthermore, the corona treatment leads to a clear one electrostatic charge of the sheet-like materials that are winding the Materials difficult, the subsequent processing steps, such as painting, Printing or gluing hindered and especially in the manufacture of Packaging film is responsible for powdery materials such as Stick coffee or spices to the film and, in the worst case, leak Seal seams contribute. After all, corona treatment is always one Filament discharge that does not produce a homogeneously closed surface effect. It is also found over time that there is a loss of surface properties occurs due to the migration of film additives and aqueous a molecular Rearrangement based on minimizing surface energy takes place.
- corona treatment is limited to thin substrates such as Plastic films and papers. For thicker materials, the total resistance is too large between the electrodes to ignite the discharge. But then it can individual punctures also occur. Corona discharge should not be used for electrically conductive plastics. They also show dielectric Electrodes in metallic or metal-containing webs are often limited Effect. The dielectrics can easily due to the permanent stress run away. This is particularly the case with silicone-coated electrodes. Ceramic electrodes are very resistant to mechanical stress sensitive.
- surface treatments can also be caused by flames or light can be performed.
- the flame treatment is usually at Temperatures around 1700 ° C and intervals between 5 and 150 mm.
- the foils heat up briefly to high temperatures of around 140 ° C, effective cooling must be carried out.
- the treatment results are good compared to the chill roll be brought to an electrical potential that the ions of the flame towards treating web accelerates (polarized flame).
- a treatment intensity that is too low leads to minor, insufficient, effects. Too strong intensities lead to one Melting of the surfaces, the functional groups submerge inwards and are therefore inaccessible.
- the main disadvantage of the corona treatment the localized micro-discharges (Filaments) can be avoided by using a low pressure plasma become. These mostly “cold" plasmas are by means of equal, alternating or High frequency current or generated by microwaves. With only low thermal Loading of the - usually sensitive - material to be treated energetic and chemically active particles provided. These cause one targeted chemical reaction with the material surface, since the processes are in the gas phase at low pressure in a particularly effective manner and the Represents discharge as a homogeneous space discharge cloud. With microwave excitations whole reactor vessels can be used in the Giga-Hz range Fill in the plasma discharge. Compared to wet chemical processes are extreme small amounts of process agents are necessary.
- SiOx-based layers made of organosilicon Compounds such as tetramethylsilane (TMS), tetarethoxysilane (TEOS) or hexamethyldisiloxane (HMDSO), polymer-like hydrocarbon layers Hydrocarbons such as methane, acetylene or propargyl alcohol as well as fluorinated Carbon layers from fluorinated hydrocarbons such as Tetrafluoroethene.
- TMS tetramethylsilane
- TEOS tetarethoxysilane
- HMDSO hexamethyldisiloxane
- Hydrocarbons such as methane, acetylene or propargyl alcohol as well as fluorinated Carbon layers from fluorinated hydrocarbons such as Tetrafluoroethene.
- DE 29805999 U1 describes a device for the plasma treatment of surfaces described, which is characterized by a rotary head, the at least one Eccentrically arranged plasma nozzle for generating a parallel to the axis of rotation directed plasma beam. If the workpiece is relatively high Speed rotating rotating head is moved, the plasma jet sweeps a strip-like surface zone of the workpiece, the width of which corresponds to the diameter corresponds to the circle described by the plasma nozzle during rotation. In this way it is possible with a comparatively small apparatus A relatively large surface can be rationally pretreated. Yet the surface dimensions do not correspond to those, as usually with the Processing of film materials on an industrial scale.
- corona nozzles for the indirect treatment of workpiece surfaces is described.
- Corona nozzles oscillate or rotate between the electrodes guided air flow, so that you get a flat discharge zone in which the Surface of the workpiece to be treated with the corona discharge tufts can be painted over.
- the disadvantage of this process was that aqueous mechanical to equalize the electrical discharge Moving component must be provided, which has a high constructive Effort required.
- the cited documents also do not describe in what maximum widths such corona nozzles are manufactured and used can be.
- the object was plastic and metal foils To be made available, which are processed or modified homogeneously, so that subsequent finishing steps, such as printing, coating, Painting, gluing, etc. without wetting problems and with good ones Have adhesive properties carried out.
- the aim was to use a method that the through Low-pressure plasmas (batch operation, costs), corona (filament-shaped discharge, Backside treatment, electrostatic charging, etc.) and plasma nozzles (strip-like surface treatment) given disadvantages.
- this is achieved by treating the entire or part of the surface homogeneously sheet-like metallic materials with a thickness of less than 100 ⁇ m or sheet-like polymeric materials which are obtained by passing through an indirect plasmatron generates atmospheric plasma on the surface of the Material can act.
- An indirect plasmation suitable for the method according to the invention is e.g. described in EP-A-851 720 (incorporated by reference).
- the burner is characterized by two coaxially spaced apart Electrodes. A direct current arc burns between these, through an cascaded arrangement of freely adjustable length is wall stabilized. Through a Blowing transversely to the arc axis can be a band-shaped, laterally flowing Exit the plasma jet.
- This burner also called plasma broad-beam burner, is also characterized in that a magnetic field exerts a force on the arc that is exerted by the flow of the plasma gas on the arc Counteracts force.
- the burner can also be of various types Plasma gases are supplied.
- At least one neutrode with a permanent magnet pair to influence the shape and position of the plasma arc. Due to the number, placement and field strength of the magnets used, you can Operating parameters such as gas volume and gas speed be taken. Furthermore, at least individual neutrodes with one Possibility of supplying a gas to the plasma chamber, e.g. a channel be provided. This allows this plasma gas to target the arc in a particularly targeted manner and fed homogeneously. By blowing transversely to the arc axis a band-shaped plasma free jet flowing out to the side can emerge. Through the Applying a magnetic field becomes a deflection and the resulting one Preventing the arc from breaking.
- the sheet-like materials described according to the invention can be used both in Connection to a film production as well as before further processing, i.e. before the Treat printing, laminating, coating, etc. of foils.
- the thickness of the polymeric film materials is essentially irrelevant and moves in the thickness range of 0.5 ⁇ m and 2 cm, preferably in the range between 10 and 200 ⁇ m.
- the materials described according to the invention can be polymeric materials, but also metallic substrates, in particular also plastic and metal foils.
- the materials according to the invention also include polymeric sheet materials, which are optionally vapor-coated with metal, metal oxides or SiO x .
- plastic films are understood in particular to be those which consist of a thermoplastic material, in particular of polyolefins such as polyethylene (PE) or polypropylene (PP), of polyester such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT) or liquid-crystalline polyesters (LCP) , made of polyamides such as nylon 6,6; 4.6; 6; 6.10; 11; 12;
- PVC polyvinyl chloride
- PVDC polyvinyl dichloride
- PC polycarbonate
- PVOH polyvinyl alcohol
- EVOH polyacrylonitrile
- PAN polyacrylonitrile
- ABS polyacrylic butadiene styrene
- ABS polystyrene-acrylonitrile
- ASA polyacrylic ester-styrene-acrylonitrile
- PS made of polyacrylates
- Plastic films are also understood to mean those which consist of a thermoplastic material and with a metal of the 3rd main group or the 1st or 2nd subgroup or with SiO x or a metal oxide of the 2nd or 3rd main group or the 1st or 2nd subgroup are steamed.
- Metal foils are understood to be foils made of aluminum, copper, gold, Silver, iron (steel) or alloys of the metals mentioned.
- sheet-like materials according to the invention include such understood, which are so surface-treated by an atmospheric plasma, that by interacting with the plasma gas, an increase in surface tension the polymer surface takes place.
- plasma gas and / or aerosol a plasma graft or a Plasma coating (plasma polymerization) on or on the surface be performed.
- the extremely reactive species of plasma gas can do this have a cleaning and even disinfectant effect on the surface.
- Web-like materials according to the invention which are polarized, thus receive an increase in surface tension. This will ensure complete wetting with polar liquids such as alcohols or water.
- the Polarization occurs when atoms or molecular fragments - excited by the Plasma - react with surface molecules and consequently into the surface to be built in. Since these are mostly fragments containing oxygen or nitrogen, also speaks of surface oxidation.
- Sheet-like materials according to the invention are provided with a surface graft provided if a targeted incorporation of molecules, preferably by a reaction on the polymer surface.
- a surface graft provided if a targeted incorporation of molecules, preferably by a reaction on the polymer surface.
- molecules preferably by a reaction on the polymer surface.
- carbon dioxide reacts with hydrocarbon compounds to form carboxyl groups.
- Web-like materials according to the invention with a plasma coating are characterized in that a reactive plasma gas by a kind of polymerization is deposited more or less closed on the surface. That’s it among other things possible release, barrier, antifog or in general To create protective layers on the plastic and metal foils.
- Web-like materials according to the invention, for surface cleaning are characterized by being on the surface deposited impurities, additives or low molecular weight components are oxidized and be vaporized. Disinfection occurs when the number of germs in the Kind is reduced, watery it lies below the critical germ concentration.
- the plasma gas for the treatment of the web-shaped according to the invention Materials is used, is characterized in that it is made of Mixtures of reactive and inert gases and / or aerosols. Through the high energy in the arc leads to excitation, ionization, fragmentation or radical formation of the reactive gas and / or aerosols. Due to the Flow direction of the plasma gas are the active species from the Burner chamber carried out and can be used to interact with the Surface of plastic and metal foils are brought.
- the oxidizing process gas and / or aerosol can be used in concentrations of 0 to 100%, preferably between 5 and 95%.
- Oxygen-containing gases and / or aerosols such as oxygen (O 2 ), carbon dioxide (CO 2 ), carbon monoxide (CO), ozone (O 3 ), hydrogen peroxide gas (H 2 O 2 ), water vapor are preferably used as oxidizing plasma gases and / or aerosols (H 2 O), evaporated methanol (CH 3 OH), nitrogen-containing gases and / or aerosols such as nitrous gases (NO x ), nitrous oxide (N 2 O), nitrogen (N 2 ), ammonia (NH 3 ), hydrazine (H 2 N 4 ), sulfur-containing gases and / or aerosols such as sulfur dioxide (SO 2 ), sulfur trioxide (SO 3 ), fluorine-containing gases and / or aerosols such as terafluorocarbon (CF 4 ), sulfur hexafluoride (SF 6 ), xenon difluoride (XEF 2 ), nitrogen trifluoride (NF 3 ), boron trifluoride (BF 3 ),
- Crosslinkable plasma gases and / or aerosols are preferably unsaturated hydrocarbons such as ethylene, propylene, butene, acetylene; saturated hydrocarbons with the general composition C n H 2n + 2 , such as methane, ethane, propane, butane, pentane, iso-propane, iso-butane; Vinyl compounds such as vinyl acetate, methyl vinyl ether; Acrylates such as acrylic acid, methacrylic acid, methyl methacrylate; Silanes with the general composition Si n H 2n + 2 , halogenated silicon hydrides such as SiCl 4 , SiCl 3 H, SiCl 2 H 2 , SiClH 3 , alkoxysilanes such as teraethoxysilane; Hexamethyldisilazane; Hexamethyldisiloxane used.
- unsaturated hydrocarbons such as ethylene, propylene, butene, acetylene
- Maleic anhydride, acrylic acid compounds, vinyl compounds, carbon dioxide (CO 2 ) are preferably used as graftable process gases and / or aerosols.
- the active and the inert gas and / or aerosol is preferably used in a preliminary stage mixed and then introduced into the zone of the arc discharge.
- certain gas and / or aerosol mixtures such as, for example Oxygen and silanes immediately before introduction into the zone of the Arc discharge mixed.
- Plasmas are characterized in that their temperatures are in the range of Arc at several 10,000 Kelvin. Because the escaping plasma gas is still Having temperatures in the range of 1000 to 2000 Kelvin is sufficient Cooling of the temperature-sensitive polymeric materials necessary. This can generally done by an effectively working chill roll.
- the contact time of plasma gas and foil material is very important. This should preferably be reduced to a minimum so that a thermal No damage to the materials. A minimal contact time is always through reached an increased web speed.
- the web speeds of the foils is usually higher than 1 m per minute, it is preferably between 20 and 600 m per minute.
- the plastic and metal foils in very little Pass the distance past the burner opening (nozzle). This is preferably done at a distance of 0 to 40 mm, particularly preferably at a distance of 1 to 15 mm.
- Plastic and metal foils according to the invention succeeded in the atmospheric Plasma by using the described plasma broad-beam burner to produce treated surfaces. This was achieved with a - compared to other processes - only a small outlay on equipment, and at the same time low Litigation costs. Since in the example each neutrode of the plasma torch has an outlet opening for the plasma gas, this can target the arc and be fed homogeneously. The laterally flowing, band-shaped plasma free jet therefore leads to a particularly homogeneous processing of the surface.
- the relevant properties of the following film samples were as follows measured.
- the thermal damage to the film sections was visual or by Microscopic examinations assessed.
- the determination of the surface tension was carried out with commercially available test inks from Arcotec fatiguentechnik GmbH according to DIN 53364 or ASTM D 2587.
- the specification of the surface tension was done in mN / m.
- the measurements were carried out immediately after treatment. The measurement errors are ⁇ 2 mN / m.
- the element distribution on the film surface was determined by means of ESCA measurements (Photoelectron spectroscopy). The specification of the element distribution was done in percent.
- PE 1 No. 4 to 7, Table 1
- the materials listed in Table 1 were also pretreated by means of corona discharge and tested for their surface tension with test inks immediately after the treatment.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
- Printing Methods (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
Die vorliegende Erfindung betrifft bahnförmige Werkstoffe, insbesondere polymere oder metallische Folien, die unter Anwendung eines atmosphärischen Plasmas behandelt sind.The present invention relates to sheet-like materials, in particular polymers or metallic foils using an atmospheric plasma are treated.
Viele Veredlungsschritte, wie beispielsweise Bedrucken, Beschichten, Lackieren, Verkleben, etc., sind bei Kunststoff- und Metallfolien nur möglich, wenn eine ausreichende Benetzbarkeit mit lösungsmittel- oder wasserbasierten Druckfarben, Lacken, Primern, Klebstoffen, etc. gegeben ist. Im allgemeinen wird deshalb in- oder offline mit der Folienverarbeitung eine Corona-Behandlung vorgenommen.Many finishing steps, such as printing, coating, painting, Gluing, etc., is only possible with plastic and metal foils if one sufficient wettability with solvent or water-based printing inks, Lacquers, primers, adhesives, etc. is given. In general, therefore, in or Corona treatment performed offline with the film processing.
Wie z. B. in den Druckschriften DE-A 4212549, DE-A 3631584, DE-A 4438533, EP-A 497996 und DE-A 3219538 beschrieben, werden dabei die bahnförmigen Materialien einer gleichmäßig verteilten elektrischen Entladung ausgesetzt. Vorraussetzung sind zwei Arbeitselektroden, von der eine mit einem dielektrischen Material (Silikon, Keramik) ummantelt ist. Zwischen beiden Elektroden wird eine hohe Wechselspannung mit einer Frequenz typischerweise zwischen 10 und 100 kHz gelegt, so wässrige eine gleichmäßige Funkenentladung stattfindet. Das zu behandelnde Material wird zwischen den Elektoden durchgeführt und der Entladung ausgesetzt. Dabei kommt es zu einer "Bombardierung" der Polymeroberfläche mit Elektronen, wobei deren Energie ausreicht, um Bindungen zwischen Kohlenstoff-Wasserstoff und Kohlenstoff-Kohlenstoff aufzubrechen. Die gebildeten Radikale reagieren mit dem Coronagas und bilden dabei neue funktionelle Gruppen aus. Desweiteren findet eine Reinigung der Polymer- bzw. Metalloberfläche statt, da Folienadditive und Walzöle aufoxidiert und abdestilliert werden.Such as B. in the publications DE-A 4212549, DE-A 3631584, DE-A 4438533, EP-A 497996 and DE-A 3219538 describe the web-shaped Materials exposed to an evenly distributed electrical discharge. Prerequisite are two working electrodes, one with a dielectric Material (silicone, ceramic) is encased. One is between the two electrodes high AC voltage with a frequency typically between 10 and 100 kHz placed so watery a uniform spark discharge takes place. That too treating material is carried out between the electrodes and the discharge exposed. This results in "bombardment" of the polymer surface Electrons, whose energy is sufficient to create bonds between carbon-hydrogen and break up carbon-carbon. The radicals formed react with the corona gas and thereby form new functional groups. Furthermore, the polymer or metal surface is cleaned because Foil additives and rolling oils are oxidized and distilled off.
Trotz des breiten Anwendungsspektrums und der ständigen Weiterentwicklung hat die Corona-Behandlung deutliche Nachteile. So kommt es insbesondere bei höheren Bahngeschwindigkeiten zu einer parasitären Rückseitencoronaentladung, wenn die bahnförmigen Materialien nicht auf der walzenförmigen Elektrode aufliegen. Weiterhin kommt es durch die Corona-Behandlung zu einer deutlichen elektrostatischen Aufladung der bahnförmigen Materialien, die das Aufwickeln der Materialien erschwert, die nachfolgende Bearbeitungsschritte, wie Lackieren, Bedrucken oder Verkleben behindert und insbesondere bei der Herstellung von Verpackungsfolien dafür verantwortlich ist, dass pulverförmige Materialien wie Kaffee oder Gewürze an der Folie anhaften und im schlimmsten Fall zu undichten Siegelnähten beitragen. Schließlich ist die Corona-Behandlung immer eine Filamententladung, die keinen homogen geschlossenen Oberflächeneffekt erzeugt. Außerdem stellt man mit der Zeit fest, dass ein Verlust der Oberflächeneigenschaften aufgrund der Migration von Folienadditiven auftritt und wässrige eine molekularen Neuanordnung, die auf einer Minimierung der Oberflächenenergie beruht, stattfindet.Despite the wide range of applications and constant further development the corona treatment has significant disadvantages. So it happens especially at higher ones Orbital velocities to a parasitic backside corona discharge if the sheet-like materials do not rest on the roller-shaped electrode. Furthermore, the corona treatment leads to a clear one electrostatic charge of the sheet-like materials that are winding the Materials difficult, the subsequent processing steps, such as painting, Printing or gluing hindered and especially in the manufacture of Packaging film is responsible for powdery materials such as Stick coffee or spices to the film and, in the worst case, leak Seal seams contribute. After all, corona treatment is always one Filament discharge that does not produce a homogeneously closed surface effect. It is also found over time that there is a loss of surface properties occurs due to the migration of film additives and aqueous a molecular Rearrangement based on minimizing surface energy takes place.
Die Corona Behandlung beschränkt sich dabei auf dünne Substrate, wie Kunstofffolien und Papiere. Bei dickeren Materialien ist der Gesamtwiderstand zwischen den Elektroden zu groß, um die Entladung zu Zünden. Es kann dann aber auch zu einzelnen Durchschlägen kommen. Nicht anzuwenden ist die Corona-Entladung bei elektrisch leitfähigen Kunststoffen. Außerdem zeigen dielektrische Elektoden bei metallischen oder metallhaltigen Bahnen oft nur eine begrenzte Wirkung. Die Dielektrika können aufgrund der dauerhaften Beanspruchung leicht durchbrennen. Dies trifft insbesondere bei silikonbeschichteten Elektoden auf. Keramische Elektroden sind gegenüber mechanischen Beanspruchungen sehr empfindlich.The corona treatment is limited to thin substrates such as Plastic films and papers. For thicker materials, the total resistance is too large between the electrodes to ignite the discharge. But then it can individual punctures also occur. Corona discharge should not be used for electrically conductive plastics. They also show dielectric Electrodes in metallic or metal-containing webs are often limited Effect. The dielectrics can easily due to the permanent stress run away. This is particularly the case with silicone-coated electrodes. Ceramic electrodes are very resistant to mechanical stress sensitive.
Neben der Corona-Entladung können Oberflächenbehandlungen auch durch Flammen oder Licht durchgeführt werden. Die Flammbehandlung wird üblicherweise bei Temperaturen um 1700 °C und Abständen zwischen 5 und 150 mm durchgeführt. Da sich die Folien dabei kurzfristig auf hohe Temperaturen von etwa 140 °C aufheizen, muß eine effektive Kühlung vorgenommen werden. Zur weiteren Verbesserung der ohnehin guten Behandlungsergebnisse kann der Brenner gegenüber der Kühlwalze auf ein elektrisches Potential gebracht werden, dass die Ionen der Flamme auf die zu behandelnde Bahn beschleunigt (polarisierte Flamme). Als nachteilig für die Oberflächenbehandlung von Folien sind insbesondere die genau einzuhaltenden Verfahrensparameter anzusehen. Eine zu geringe Behandlungsintensität führt zu geringfügigen, nicht ausreichenden, Effekten. Zu starke Intensitäten führen zu einem Aufschmelzen der Oberflächen, die funktionellen Gruppen tauchen nach innen ab und sind somit unzugänglich. Ebenfalls als nachteilig sind die hohen Temperaturen und die notwendigen Sicherheitsvorkehrungen zu bewerten. Die geltenden Sicherheitsvorschriften lassen beispielsweise keinen gepulsten Betrieb einer Flammvorbehandlungsanlage zu. Es ist bekannt, dass die Auswahl des Brennergases nur bestimmte reaktive Spezies (Ionen und Radikale) zuläßt und dass die Kosten der Flammbehandlung deutlich höher sind als bei der Corona-Behandlung.In addition to the corona discharge, surface treatments can also be caused by flames or light can be performed. The flame treatment is usually at Temperatures around 1700 ° C and intervals between 5 and 150 mm. There the foils heat up briefly to high temperatures of around 140 ° C, effective cooling must be carried out. To further improve the anyway the treatment results are good compared to the chill roll be brought to an electrical potential that the ions of the flame towards treating web accelerates (polarized flame). As a disadvantage for the Surface treatment of foils are particularly those that must be strictly observed View process parameters. A treatment intensity that is too low leads to minor, insufficient, effects. Too strong intensities lead to one Melting of the surfaces, the functional groups submerge inwards and are therefore inaccessible. The high temperatures are also disadvantageous and evaluate the necessary safety precautions. The applicable ones Safety regulations, for example, do not allow pulsed operation of a Flame pretreatment plant too. It is known that the selection of the burner gas allows only certain reactive species (ions and radicals) and that the cost of Flame treatment are significantly higher than with corona treatment.
Der Hauptnachteil der Corona-Behandlung, die lokalisierten Mikroentladungen (Filamente), kann durch die Anwendung eines Niederdruckplasmas umgangen werden. Diese meist "kalten" Plasmen werden mittels Gleich-, Wechsel- oder Hochfrequenzstrom bzw. durch Mikrowellen erzeugt. Bei nur geringer thermischer Belastung des zu behandelnden - meist empfindlichen Materials - werden energiereiche und chemisch aktive Teilchen bereitgestellt. Diese bewirken eine gezielte chemische Reaktion mit der Materialoberfläche, da die Prozesse in der Gasphase bei niedrigem Druck in besonders effektiver Weise verlaufen und sich die Entladung als eine homogene Raumentladungswolke darstellt. Mit Mikrowellenanregungen im Giga-Hz-Bereich lassen sich ganze Reaktorgefäße mit Plasmaentladung ausfüllen. Im Vergleich zu naßchemischen Prozessen sind extrem geringe Mengen an Prozeßmitteln notwendig.The main disadvantage of the corona treatment, the localized micro-discharges (Filaments) can be avoided by using a low pressure plasma become. These mostly "cold" plasmas are by means of equal, alternating or High frequency current or generated by microwaves. With only low thermal Loading of the - usually sensitive - material to be treated energetic and chemically active particles provided. These cause one targeted chemical reaction with the material surface, since the processes are in the gas phase at low pressure in a particularly effective manner and the Represents discharge as a homogeneous space discharge cloud. With microwave excitations whole reactor vessels can be used in the Giga-Hz range Fill in the plasma discharge. Compared to wet chemical processes are extreme small amounts of process agents are necessary.
Neben der gezielten Aktivierung (Modifikation) von Oberflächen können in derartigen Prozessen auch Polymerisationen (Beschichten) und Pfropfungen vorgenommen werden. Als Folge der Plasmaeinwirkung können klassische Polymerisationsmonomere, wie Ethylen, Acetylen, Styrole, Acrylate oder Vinylverbindungen als auch solche Ausgangsstoffe zur Vernetzung und damit zur Polymer- bzw. Schichtbildung angeregt werden, die in klassischen chemischen Reaktionen nicht polymerisieren können. Dies sind beispielsweise gesättigte Kohlenwasserstoffe wie Methan, Siliciumverbindungen wie Tetramethylsilan oder Amine. Es entstehen dabei angeregte Moleküle, Radikale und Molekülbruchstücke, die aus der Gasphase auf den zu beschichtenden Materialien aufpolymerisieren. Die Reaktion findet normalerweise in einem inerten Trägergas wie Argon statt. Vorteilhaft können für verschiedene Zwecke gezielt Reaktivgase, wie Wasserstoff, Stickstoff, Sauerstoff, etc. zugesetzt werden.In addition to the targeted activation (modification) of surfaces, in Such processes also polymerizations (coating) and grafts become. As a result of exposure to plasma, classic polymerization monomers, such as ethylene, acetylene, styrenes, acrylates or vinyl compounds as well as such starting materials for crosslinking and thus for Polymer or layer formation are stimulated, which in classic chemical Cannot polymerize reactions. For example, these are saturated Hydrocarbons such as methane, silicon compounds such as tetramethylsilane or Amines. This creates excited molecules, radicals and molecular fragments, which polymerize from the gas phase onto the materials to be coated. The The reaction normally takes place in an inert carrier gas such as argon. Reactive gases, such as hydrogen, can advantageously be used for various purposes. Nitrogen, oxygen, etc. can be added.
Etablierte physikalische und chemische Plasmabeschichtungsverfahren wie das Kathodenzerstäuben (Sputtern) oder die plasma-aktivierte chemische Abscheidung aus der Gasphase (PACVD) finden in der Regel im Vakuum bei Drucken zwischen 1 und 10-5 mbar statt. Deshalb sind die Beschichtungsprozesse mit hohen Investitionskosten für die erforderliche Vakuumkammer und das zugehörige Pumpsystem verbunden. Zudem werden die Prozesse aufgrund der geometrischen Begrenzungen durch die Vakuumkammer und die notwendigen, zum Teil sehr langen Pumpzeiten in der Regel als Batch-Prozesse ausgeführt, so wässrige lange Prozeßzeiten und damit verbunden hohe Stückkosten entstehen.Established physical and chemical plasma coating processes such as cathode sputtering or plasma-activated chemical deposition from the gas phase ( PACVD ) usually take place in a vacuum at pressures between 1 and 10 -5 mbar. The coating processes are therefore associated with high investment costs for the required vacuum chamber and the associated pump system. In addition, due to the geometric limitations of the vacuum chamber and the necessary, sometimes very long pumping times, the processes are usually carried out as batch processes, resulting in long, watery process times and the associated high unit costs.
Beschichtungsprozesse mittels Corona-Entladung benötigen vorteilhafterweise überhaupt kein Vakuum, sie laufen bei Atmosphärendruck ab. Ein derartiges Verfahren (ALDYNE™) wird in DE 694 07 335 T 2 beschrieben. Im Unterschied zur konventionellen Corona, die mit der Umgebungsluft als Prozeßgas arbeitet, liegt bei der Corona-Beschichtung eine definierte Prozeßgasatmosphäre im Entladungsbereich vor. Durch ausgesuchte Precusoren können Schichtsysteme folgenden Aufbaus erhalten werden: Z.b. Schichten auf SiOx-Basis aus siliciumorganischen Verbindungen wie Tetramethylsilan (TMS), Tetarethoxysilan (TEOS) oder Hexamethyldisiloxan (HMDSO), polymerähnliche Kohlenwasserstoffschichten aus Kohlenwasserstoffen wie Methan, Acetylen oder Propargylalkohol sowie fluorierte Kohlenstoffschichten aus fluorierten Kohlenwasserstoffen wie beispielsweise Tetrafluorethen. Coating processes using corona discharge advantageously require no vacuum at all, they expire at atmospheric pressure. Such a thing Process (ALDYNE ™) is described in DE 694 07 335 T 2. The difference to the conventional corona, which works with the ambient air as a process gas with the corona coating, a defined process gas atmosphere in the discharge area in front. Layered systems of the following structure can be selected by selected precursors be obtained: e.g. SiOx-based layers made of organosilicon Compounds such as tetramethylsilane (TMS), tetarethoxysilane (TEOS) or hexamethyldisiloxane (HMDSO), polymer-like hydrocarbon layers Hydrocarbons such as methane, acetylene or propargyl alcohol as well as fluorinated Carbon layers from fluorinated hydrocarbons such as Tetrafluoroethene.
Ein gravierender Nachteil der bestehenden Verfahren ist jedoch die nicht geschlossene Oberflächenabscheidung, verursacht durch die filamentförmige Entladungscharakteristik der Corona. Dementsprechend ist das Verfahren zur Aufbringung von Barrierebeschichtungen ungeeignet. Für die Oberflächenpolarisierung durch Einführung funktioneller Gruppen im Vergleich zur einfachen Corona-Entladung ist das Verfahren zu teuer.However, this is not a serious disadvantage of the existing processes closed surface deposition, caused by the filament-shaped discharge characteristic the corona. Accordingly, the process for Application of barrier coatings unsuitable. For surface polarization by introducing functional groups compared to simple ones Corona discharge is too expensive.
Um punktförmige, teilflächige Beschichtungen, wie sie bei der Corona-Beschichtung, auftreten zu vermeiden, können atmosphärische Plasmen auch durch Lichtbogenentladungen in einem Plasmabrenner erzeugt werden. Bei herkömmlichen Brennertypen sind aufgrund der Elektrodengeometrie mit stiftförmiger Kathode und konzentrischer Hohlanode nur nahezu kreisförmige Ansatzflächen des austretenden Plasmastrahls auf der zu bearbeitenden Oberfläche erreichbar. Bei größflächigen Anwendungen benötigt das Verfahren einen enormen Zeitbedarf und liefert wegen des relativ kleinen Ansatzpunktes sehr inhomogene Oberflächenstrukturen.For punctiform, partial surface coatings, such as those used for corona coating, Avoiding can also occur due to atmospheric plasmas Arc discharges are generated in a plasma torch. With conventional Torch types are based on the electrode geometry with a pin-shaped cathode and Concentric hollow anode only almost circular attachment surfaces of the emerging Plasma jets can be reached on the surface to be processed. With large-scale For applications, the process requires an enormous amount of time and delivers because of the relatively small starting point very inhomogeneous surface structures.
In DE 19532412 C2 wird eine Vorrichtung zum Vorbehandeln von Oberflächen mit Hilfe eines Plasmastrahls beschrieben. Durch eine besondere Gestaltung der Plasmadüse wird ein hochreaktiver Plasmastrahl erreicht, der etwa die Gestalt und die Abmessungen einer Kerzenflamme hat und somit auch die Behandlung von Profilteilen mit verhältnismäßig tiefem Relief gestattet. Aufgrund der hohen Reaktivität des Plasmastrahls genügt eine sehr kurzzeitige Vorbehandlung, so dass das Werkstück mit entsprechend hoher Geschwindigkeit an dem Plasmastrahl vorbeigeführt werden kann. Für eine Behandlung größerer Oberflächen ist in der genannten Veröffentlichung eine Batterie aus mehreren versetzt angeordneten Plasmadüsen vorgeschlagen worden. In diesem Fall ist jedoch ein sehr hoher apparativer Aufwand erforderlich. Da sich die Düsen zum Teil überschneiden, kann es bei der Behandlung bahnförmiger Materialien außerdem zu streifenförmigen Behandlungsmustern kommen. DE 19532412 C2 describes a device for pretreating surfaces Described with the help of a plasma jet. Through a special design of the A highly reactive plasma jet is obtained which approximately has the shape and has the dimensions of a candle flame and thus also the treatment of Profile parts with a relatively deep relief permitted. Because of the high Reactivity of the plasma jet is sufficient for a very short pretreatment, so that the workpiece at a correspondingly high speed on the plasma jet can be passed. For a treatment of larger surfaces is in the mentioned publication a battery of several staggered Plasma nozzles have been proposed. In this case, however, is a very high one apparatus expenditure required. Since the nozzles partially overlap, it also becomes strip-like in the treatment of sheet-like materials Treatment patterns are coming.
In DE 29805999 Ul wird eine Vorrichtung zur Plasmabehandlung von Oberflächen beschrieben, die durch einen Rotationskopf gekennzeichnet ist, der mindestens eine exzentrisch angeordnete Plasmadüse zur Erzeugung eines parallel zur Rotationsachse gerichteten Plasmastrahls trägt. Wenn das Werkstück relativ zu dem mit hoher Drehzahl rotierenden Rotationskopfes bewegt wird, überstreicht der Plasmastrahl eine streifenförmige Oberflächenzone des Werkstücks, deren Breite dem Durchmesser des bei der Rotation von der Plasmadüse beschriebenen Kreises entspricht. Auf diese Weise kann zwar mit einem vergleichsweise geringem apparativem Aufwand eine relativ große Oberfläche rationell vorbehandelt werden. Dennoch entsprechen die Oberflächenabmessungen nicht denen, wie sie üblicherweise bei der Verarbeitung von Folienmaterialien im industriellen Maßstab vorliegen.DE 29805999 U1 describes a device for the plasma treatment of surfaces described, which is characterized by a rotary head, the at least one Eccentrically arranged plasma nozzle for generating a parallel to the axis of rotation directed plasma beam. If the workpiece is relatively high Speed rotating rotating head is moved, the plasma jet sweeps a strip-like surface zone of the workpiece, the width of which corresponds to the diameter corresponds to the circle described by the plasma nozzle during rotation. In this way it is possible with a comparatively small apparatus A relatively large surface can be rationally pretreated. Yet the surface dimensions do not correspond to those, as usually with the Processing of film materials on an industrial scale.
In DE-A 19546930 und DE-A 4325939 sind sogenannte Coronadüsen für die indirekte Behandlung von Werkstückoberflächen beschrieben. In derartigen Coronadüsen tritt zwischen den Elektroden ein oszillierend oder umlaufend geführter Luftstrom aus, so dass man eine flächige Entladungszone erhält, in der die zu behandelnde Oberfläche des Werkstücks mit den Coronaentladungsbüscheln überstrichen werden kann. Als nachteilig stellte sich bei diesem Verfahren heraus, wässrige zur Vergleichmäßigung der elektrischen Entladung ein mechanisch bewegtes Bauteil vorgesehen werden muß, welches einen hohen konstruktiven Aufwand erfordert. In den genannten Schriften wird zudem nicht beschrieben in welchen maximalen Breiten derartige Coronadüsen hergestellt und angewendet werden können.In DE-A 19546930 and DE-A 4325939 there are so-called corona nozzles for the indirect treatment of workpiece surfaces is described. In such Corona nozzles oscillate or rotate between the electrodes guided air flow, so that you get a flat discharge zone in which the Surface of the workpiece to be treated with the corona discharge tufts can be painted over. The disadvantage of this process was that aqueous mechanical to equalize the electrical discharge Moving component must be provided, which has a high constructive Effort required. The cited documents also do not describe in what maximum widths such corona nozzles are manufactured and used can be.
Für die vorliegende Erfindung bestand die Aufgabe Kunststoff- und Metallfolien zur Verfügung zu stellen, die im homogen bearbeitet bzw. modifiziert werden, so dass sich anschließende Veredlungsschritte, wie beispielsweise Bedrucken, Beschichten, Lackieren, Verkleben, etc. ohne Benetzungsprobleme und mit guten Hafteigenschaften durchführen lassen. For the present invention, the object was plastic and metal foils To be made available, which are processed or modified homogeneously, so that subsequent finishing steps, such as printing, coating, Painting, gluing, etc. without wetting problems and with good ones Have adhesive properties carried out.
Dabei wurde das Ziel verfolgt ein Verfahren zu verwenden, welches die durch Niederdruckplasmen (Batchbetrieb, Kosten), Corona (filamentförmige Entladung, Rückseitenbehandlung, elektrostatische Aufladung, etc.) und Plasmadüsen (streifenförmige Oberflächenbehandlung) gegebenen Nachteile umgeht.The aim was to use a method that the through Low-pressure plasmas (batch operation, costs), corona (filament-shaped discharge, Backside treatment, electrostatic charging, etc.) and plasma nozzles (strip-like surface treatment) given disadvantages.
Erfindungsgemäß gelingt dies durch homogen voll- oder teilflächig behandelte bahnförmige metallische Werkstoffe mit einer Dicke kleiner als 100µm oder bahnförmige polymere Werkstoffe, die dadurch erhalten werden, dass man ein durch ein indirektes Plasmatrons erzeugtes atmosphärisches Plasma auf die Oberfläche des Werkstoffes einwirken läßt.According to the invention, this is achieved by treating the entire or part of the surface homogeneously sheet-like metallic materials with a thickness of less than 100 µm or sheet-like polymeric materials which are obtained by passing through an indirect plasmatron generates atmospheric plasma on the surface of the Material can act.
Ein für das erfindungsgemäße Verfahren geeignetes indirektes Plasmation wird z.B. in der EP-A-851 720 beschrieben (incorparated by reference).An indirect plasmation suitable for the method according to the invention is e.g. described in EP-A-851 720 (incorporated by reference).
Der Brenner zeichnet sich durch zwei koaxial in größerem Abstand angeordnete Elektroden aus. Zwischen diesen brennt ein Gleichstrombogen, der durch eine kaskadierte Anordnung frei einstellbarer Länge wandstabilisiert wird. Durch ein Anblasen transversal zur Bogenachse, kann ein seitlich abströmender, bandförmiger Plasmastrahl austreten. Dieser Brenner, auch Plasmabreitstrahlbrenner genannt, ist auch dadurch gekennzeichnet, dass ein Magnetfeld auf den Lichtbogen eine Kraft ausübt, die der durch die Strömung des Plasmagases auf den Lichtbogen ausgeübten Kraft entgegenwirkt. Dem Brenner können zudem verschiedene Arten an Plasmagasen zugeführt werden.The burner is characterized by two coaxially spaced apart Electrodes. A direct current arc burns between these, through an cascaded arrangement of freely adjustable length is wall stabilized. Through a Blowing transversely to the arc axis can be a band-shaped, laterally flowing Exit the plasma jet. This burner, also called plasma broad-beam burner, is also characterized in that a magnetic field exerts a force on the arc that is exerted by the flow of the plasma gas on the arc Counteracts force. The burner can also be of various types Plasma gases are supplied.
Diese Werkstoffe sind insbesondere dadurch zu erhalten, dass ein atmosphärische Plasma aus einem indirekten Plasmatron mit einer länglichen Plasmakammer, die in kaskadiertem Aufbau eine Mehrzahl von elektrisch gegeneinander isolierten Neutroden umfasst, wobei die zur Erzeugung des Plasma-Lichtgas erforderlichen Elektroden koaxial zur Längsachse der Plasmakammer angeordnet sind und die Plasmastrahl-Austrittsöffnung parallel zur Längsachse der Plasmakammer verläuft, verwendet wird. These materials can be obtained in particular by the fact that an atmospheric Plasma from an indirect plasmatron with an elongated plasma chamber, which in cascaded structure a plurality of electrically isolated from each other Neutrodes includes, which are required to generate the plasma light gas Electrodes are arranged coaxially to the longitudinal axis of the plasma chamber and the Plasma jet outlet opening runs parallel to the longitudinal axis of the plasma chamber, is used.
Dabei wird insbesondere zumindest eine Neutrode mit einem Permanentmagneten-Paar zur Beeinflussung der Form und der Position des Plasma-Lichtbogens versehen. Durch die Anzahl, Plazierung und Feldstärke der eingesetzten Magnete kann auf Betriebsparameter wie beispielsweise Gasmenge und Gasgeschwindigkeit Rücksicht genommen werden. Weiterhin können zumindest einzelne Neutroden mit einer Möglichkeit zur Zuführung eines Gases in die Plasmakammer, z.B. einem Kanal versehen werden. Dadurch kann dieses Plasmagas dem Lichtbogen besonders gezielt und homogen zugeführt werden. Durch ein Anblasen transversal zur Bogenachse kann ein seitlich abströmender, bandförmiger Plasmafreistrahl austreten. Durch die Anwendung eines Magnetfeldes wird eine Auslenkung und der daraus resultierende Abriß des Lichtbogens verhindert.In particular, at least one neutrode with a permanent magnet pair to influence the shape and position of the plasma arc. Due to the number, placement and field strength of the magnets used, you can Operating parameters such as gas volume and gas speed be taken. Furthermore, at least individual neutrodes with one Possibility of supplying a gas to the plasma chamber, e.g. a channel be provided. This allows this plasma gas to target the arc in a particularly targeted manner and fed homogeneously. By blowing transversely to the arc axis a band-shaped plasma free jet flowing out to the side can emerge. Through the Applying a magnetic field becomes a deflection and the resulting one Preventing the arc from breaking.
Die erfindungsgemäß beschriebenen bahnförmigen Werkstoffe lassen sich sowohl im Anschluß an eine Folienfertigung als auch vor der Weiterverarbeitung, d.h. vor dem Bedrucken, Laminieren, Beschichten, etc. von Folien behandeln. Die Dicke der polymeren Folienmaterialien ist im wesentlichen nicht maßgeblich und bewegt sich im Dickenbereich von 0,5 µm und 2 cm, vorzugsweise im Bereich zwischen 10 und 200 µm.The sheet-like materials described according to the invention can be used both in Connection to a film production as well as before further processing, i.e. before the Treat printing, laminating, coating, etc. of foils. The thickness of the polymeric film materials is essentially irrelevant and moves in the thickness range of 0.5 µm and 2 cm, preferably in the range between 10 and 200 µm.
Bei den erfindungsgemäß beschriebenen Werkstoffen kann es sich um polymere Werkstoffe, jedoch auch um metallische Substrate handeln, insbesondere auch um Kunstoff- und Metallfolien. Insbesondere gehören zu den erfindungsgemäßen Werkstoffen auch polymere bahnförmige Werkstoffe, die gegebenenfalls mit Metall, Metalloxiden oder SiOx bedampft sind.The materials described according to the invention can be polymeric materials, but also metallic substrates, in particular also plastic and metal foils. In particular, the materials according to the invention also include polymeric sheet materials, which are optionally vapor-coated with metal, metal oxides or SiO x .
Im Rahmen der vorliegenden Erfindung werden unter Kunststoffolien insbesondere
diejenigen verstanden, die aus einem thermoplastischen Material, inbesondere aus
Polyolefinen wie Polyethylen (PE) oder Polypropylen (PP), aus Polyester wie
Polyethylentherephthalat (PET), Polybutylenterephthalat (PBT) oder flüssigkristallinen
Polyestern (LCP), aus Polyamiden wie Nylon 6,6; 4,6; 6; 6,10; 11; 12;
aus Polyvinylchlorid (PVC), aus Polyvinyldichlorid (PVDC), aus Polycarbonat (PC),
aus Polyvinylalkohol (PVOH), aus Polyethylvinylalkohol (EVOH), aus Polyacrylnitril
(PAN), aus Polyacryl-Butadien-Styrol (ABS), aus Polystyrol-Acrylnitril
(SAN), aus Polyacrylester-Styrol-Acrylnitril (ASA), aus Polystyrol (PS), aus Polyacrylaten,
wie Poylmethylmetacrylat (PMMA), aus Zellglas, oder aus Hochleistungsthermoplasten
wie Fluorpolymeren, wie Polytetrafluorethylen (PTFE) und Polyvinyldifluorid
(PVDF), aus Polysulfonen (PSU), aus Polyethersulfonen (PES), aus Polyphenylsulfiden
(PPS), aus Polyimiden (PAI, PEI), aus Polyaryletherketonen (PAE)
bestehen,
insbesondere aber auch diejenigen die aus Mischungen oder aus Co- oder
Terpolymeren Materialien und diejenigen die durch Coextrusion von Homo-, Co-
oder Terpolymeren hergestellt werden.In the context of the present invention, plastic films are understood in particular to be those which consist of a thermoplastic material, in particular of polyolefins such as polyethylene (PE) or polypropylene (PP), of polyester such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT) or liquid-crystalline polyesters (LCP) , made of polyamides such as nylon 6,6; 4.6; 6; 6.10; 11; 12; Made of polyvinyl chloride (PVC), made of polyvinyl dichloride (PVDC), made of polycarbonate (PC), made of polyvinyl alcohol (PVOH), made of polyvinyl vinyl alcohol (EVOH), made of polyacrylonitrile (PAN), made of polyacrylic butadiene styrene (ABS), made of polystyrene-acrylonitrile (SAN), made of polyacrylic ester-styrene-acrylonitrile (ASA), made of polystyrene (PS), made of polyacrylates, such as polymethyl methacrylate (PMMA), made of cellophane, or made of high-performance thermoplastics, such as fluoropolymers, such as polytetrafluoroethylene (PTFE) and polyvinyl difluoride (PVDF) Polysulfones (PSU), polyether sulfones (PES), polyphenyl sulfides (PPS), polyimides (PAI, PEI), polyaryl ether ketones (PAE),
in particular, however, also those which are made from mixtures or from copolymers or terpolymers and those which are produced by coextruding homopolymers, copolymers or terpolymers.
Unter Kunststoffolien werden aber auch diejenigen verstanden, die aus einem thermoplastischen Material bestehen und mit einem Metall der 3. Hauptgruppe bzw. der 1. oder 2. Nebengruppe oder mit SiOx oder einem Metalloxid der 2. oder 3. Hauptgruppe bzw. der 1. oder 2. Nebengruppe bedampft sind.Plastic films are also understood to mean those which consist of a thermoplastic material and with a metal of the 3rd main group or the 1st or 2nd subgroup or with SiO x or a metal oxide of the 2nd or 3rd main group or the 1st or 2nd subgroup are steamed.
Unter Metallfolien werden verstanden Folien, die aus Aluminium, Kupfer, Gold, Silber, Eisen (Stahl) oder aus Legierungen der genannten Metalle bestehen.Metal foils are understood to be foils made of aluminum, copper, gold, Silver, iron (steel) or alloys of the metals mentioned.
Insbesondere werden unter erfindungsgemäßen bahnförmigen Werkstoffen solche verstanden, die so durch ein atmosphärisches Plasma oberflächenbehandelt werden, dass durch die Wechselwirkung mit dem Plasmagas eine Erhöhung der Oberflächenspannung der Polymeroberfläche stattfindet. Desweiteren kann durch bestimmte Plasmagas- und/oder Aerosolarten eine Plasmapfropfung bzw. eine Plasmabeschichtung (Plasmapolymerisation) an bzw. auf der Oberfläche durchgeführt werden. Die äußerst reaktiven Spezies des Plasmagases können darüber hinaus reinigend und sogar entkeimend auf der Oberfläche wirken. In particular, sheet-like materials according to the invention include such understood, which are so surface-treated by an atmospheric plasma, that by interacting with the plasma gas, an increase in surface tension the polymer surface takes place. Furthermore, by certain types of plasma gas and / or aerosol a plasma graft or a Plasma coating (plasma polymerization) on or on the surface be performed. The extremely reactive species of plasma gas can do this have a cleaning and even disinfectant effect on the surface.
Erfindungsgemäße bahnförmige Werkstoffe, die polarisiert werden, erhalten damit eine Erhöhung der Oberflächenspannung. Dadurch wird eine vollständige Benetzung mit polaren Flüssigkeiten wie beispielsweise Alkoholen oder Wasser ermöglicht. Die Polarisation tritt auf, wenn Atome oder Molekülfragmente - angeregt durch das Plasma - mit Oberflächenmolekülen reagieren und infolgedessen in die Oberfläche eingebaut werden. Da dies meist sauerstoff- oder stickstoffhaltige Fragmente sind, spricht auch von einer Oberflächenoxidation.Web-like materials according to the invention, which are polarized, thus receive an increase in surface tension. This will ensure complete wetting with polar liquids such as alcohols or water. The Polarization occurs when atoms or molecular fragments - excited by the Plasma - react with surface molecules and consequently into the surface to be built in. Since these are mostly fragments containing oxygen or nitrogen, also speaks of surface oxidation.
Erfindungsgemäße bahnförmige Werkstoffe sind mit einer Oberflächenpfropfung versehen, wenn durch eine Reaktion ein gezielter Einbau von Molekülen, vorzugsweise an der Polymeroberfläche, stattfindet. So reagiert beispielsweise Kohlendioxid mit Kohlenwasserstoffverbindungen unter Bildung von Carboxylgruppen.Sheet-like materials according to the invention are provided with a surface graft provided if a targeted incorporation of molecules, preferably by a reaction on the polymer surface. For example, carbon dioxide reacts with hydrocarbon compounds to form carboxyl groups.
Erfindungsgemäße bahnförmige Werkstoffe mit einer Plasmabeschichtung sind dadurch gekennzeichnet, dass ein reaktives Plasmagas durch eine Art Polymerisation auf der Oberfläche mehr oder weniger geschlossen abgeschieden wird. Dadurch ist es unter anderem möglich Release-, Barriere-, Antifog- oder ganz allgemein Schutzschichten auf den Kunstoff- und Metallfolien herzustellen.Web-like materials according to the invention with a plasma coating are characterized in that a reactive plasma gas by a kind of polymerization is deposited more or less closed on the surface. That’s it among other things possible release, barrier, antifog or in general To create protective layers on the plastic and metal foils.
Erfindungsgemäße bahnförmige Werkstoffe, die einer Oberflächenreinigung unterzogen werden, sind dadurch gekennzeichnet, dass auf der Oberfläche abgelagerte Verunreinigungen, Additive oder niedermolekulare Bestandteile oxidiert und verdampft werden. Eine Entkeimung tritt auf, wenn die Zahl der Keime in der Art verringert wird, wässrige sie unterhalb der kritischen Keimkonzentration liegt.Web-like materials according to the invention, for surface cleaning are characterized by being on the surface deposited impurities, additives or low molecular weight components are oxidized and be vaporized. Disinfection occurs when the number of germs in the Kind is reduced, watery it lies below the critical germ concentration.
Das Plasmagas das zur Behandlung der erfindungsgemäßen bahnförmigen Werkstoffe eingesetzt wird, ist dabei dadurch gekennzeichnet, dass dieses aus Mischungen aus reaktiven und inerten Gasen und/oder Aerosolen besteht. Durch die hohe Energie im Lichtbogen kommt es zur Anregung, Ionisation, Fragmentierung oder Radikalbildung des reaktiven Gases und/oder Aerosoles. Aufgrund der Strömungsrichtung des Plasmagases werden die aktiven Spezies aus dem Brennerraum herausgetragen und können gezielt zur Wechselwirkung mit der Oberfläche von Kunststoff- und Metallfolien gebracht werden.The plasma gas for the treatment of the web-shaped according to the invention Materials is used, is characterized in that it is made of Mixtures of reactive and inert gases and / or aerosols. Through the high energy in the arc leads to excitation, ionization, fragmentation or radical formation of the reactive gas and / or aerosols. Due to the Flow direction of the plasma gas are the active species from the Burner chamber carried out and can be used to interact with the Surface of plastic and metal foils are brought.
Das oxidierend wirksame Prozeßgas und /oder Aerosol kann in Konzentrationen von 0 bis 100 %, vorzugsweise zwischen 5 und 95 % zugegen sein.The oxidizing process gas and / or aerosol can be used in concentrations of 0 to 100%, preferably between 5 and 95%.
Als oxidierende Plasmagase und/oder Aerosole werden vorzugsweise sauerstoffhaltige Gase und/oder Aerosole wie Sauerstoff (O2), Kohlendioxid (CO2), Kohlenmonoxid (CO), Ozon (O3), Wasserstoffperoxid-Gas (H2O2), Wasserdampf (H2O), verdampftes Methanol (CH3OH), stickstoffhaltige Gase und/oder Aerosole wie nitrose Gase (NOx), Distickstoffoxid (N2O), Stickstoff (N2), Ammoniak (NH3), Hydrazin (H2N4), schwefelhaltige Gase und/oder Aerosole wie Schwefeldioxid (SO2), Schwefeltrioxid (SO3), fluorhaltige Gase und/oder Aerosole wie Terafluorkohlenstoff (CF4), Schwefelhexafluorid (SF6), Xenondifluorid (XEF2), Stickstofftrifluorid (NF3), Bortrifluorid (BF3), Siliciumtetrafluorid (SiF4), Wasserstoff (H2) oder Mischungen aus diesen Gasenund/oder Aerosolen eingesetzt. Inertgase sind vorzugsweise Edelgase, besonders bevorzugt ist Argon (Ar).Oxygen-containing gases and / or aerosols such as oxygen (O 2 ), carbon dioxide (CO 2 ), carbon monoxide (CO), ozone (O 3 ), hydrogen peroxide gas (H 2 O 2 ), water vapor are preferably used as oxidizing plasma gases and / or aerosols (H 2 O), evaporated methanol (CH 3 OH), nitrogen-containing gases and / or aerosols such as nitrous gases (NO x ), nitrous oxide (N 2 O), nitrogen (N 2 ), ammonia (NH 3 ), hydrazine (H 2 N 4 ), sulfur-containing gases and / or aerosols such as sulfur dioxide (SO 2 ), sulfur trioxide (SO 3 ), fluorine-containing gases and / or aerosols such as terafluorocarbon (CF 4 ), sulfur hexafluoride (SF 6 ), xenon difluoride (XEF 2 ), nitrogen trifluoride (NF 3 ), boron trifluoride (BF 3 ), silicon tetrafluoride (SiF 4 ), hydrogen (H 2 ) or mixtures of these gases and / or aerosols. Inert gases are preferably noble gases, and argon (Ar) is particularly preferred.
Als vernetzbare Plasmagase und/oder Aerosole werden vorzugsweise ungesättigte Kohlenwasserstoffe wie Ethylen, Propylen, Buten, Acetylen; gesättigte Kohlenwasserstoffe mit der allgemeinen Zusammensetzung CnH2n+2, wie Methan, Ethan, Propan, Butan, Pentan, iso-Propan, iso-Butan; Vinylverbindungen wie Vinylacetat, Methylvinylether; Acrylate wie Acrylsäure, Methacrylsäure, Methacrylsäuremethylester; Silane mit der allgemeinen Zusammensetzung SinH2n+2, halogenierte Siliziumhydride wie SiCl4, SiCl3H, SiCl2H2, SiClH3, Alkoxysilane wie Teraethoxysilan; Hexamethyldisilazan; Hexamethyldisiloxan eingesetzt.Crosslinkable plasma gases and / or aerosols are preferably unsaturated hydrocarbons such as ethylene, propylene, butene, acetylene; saturated hydrocarbons with the general composition C n H 2n + 2 , such as methane, ethane, propane, butane, pentane, iso-propane, iso-butane; Vinyl compounds such as vinyl acetate, methyl vinyl ether; Acrylates such as acrylic acid, methacrylic acid, methyl methacrylate; Silanes with the general composition Si n H 2n + 2 , halogenated silicon hydrides such as SiCl 4 , SiCl 3 H, SiCl 2 H 2 , SiClH 3 , alkoxysilanes such as teraethoxysilane; Hexamethyldisilazane; Hexamethyldisiloxane used.
Als pfropfbare Prozeßgase und/oder Aerosole werden vorzugsweise Maleinsäureanhydrid, Acrylsäureverbindungen, Vinylverbindungen, Kohlendioxid (CO2) eingesetzt. Maleic anhydride, acrylic acid compounds, vinyl compounds, carbon dioxide (CO 2 ) are preferably used as graftable process gases and / or aerosols.
Vorzugsweise wird in einer Vorstufe das aktive und das inerte Gas und/oder Aerosol gemischt und anschließend in die Zone der Bogenentladung eingebracht. Aus Sicherheitsgründen werden bestimmte Gas- und/oder Aerosolmischungen wie beispielsweise Sauerstoff und Silane unmittelbar vor dem Einbringen in die Zone der Bogenentladung gemischt.The active and the inert gas and / or aerosol is preferably used in a preliminary stage mixed and then introduced into the zone of the arc discharge. Out For safety reasons, certain gas and / or aerosol mixtures such as, for example Oxygen and silanes immediately before introduction into the zone of the Arc discharge mixed.
Derartige zur Behandlung der erfindungsgemäßen bahnförmigen Werkstoffe verwendete Plasmen sind dadurch gekennzeichnet, dass ihre Temperaturen im Bereich des Bogens bei mehreren 10.000 Kelvin liegen. Da das austretende Plasmagas noch Temperaturen im Bereich von 1000 bis 2000 Kelvin aufweist, ist eine ausreichende Kühlung der temperaturempfindlichen polymeren Materialien notwendig. Dies kann im allgemeinen durch eine effektiv arbeitende Kühlwalze erfolgen.Such used for the treatment of the sheet-like materials according to the invention Plasmas are characterized in that their temperatures are in the range of Arc at several 10,000 Kelvin. Because the escaping plasma gas is still Having temperatures in the range of 1000 to 2000 Kelvin is sufficient Cooling of the temperature-sensitive polymeric materials necessary. This can generally done by an effectively working chill roll.
Die Kontaktzeit von Plasmagas und Folienmaterial hat eine große Bedeutung. Vorzugsweise sollte diese auf ein Minimum reduziert werden, damit eine thermische Schädigung der Materialien ausbleibt. Eine minimale Kontaktzeit wird stets durch eine erhöhte Bahngeschwindigkeit erreicht. Die Bahngeschwindigkeiten der Folien ist üblicherweise höher als 1 m pro Minute, sie liegt vorzugsweise zwischen 20 und 600 m pro Minute.The contact time of plasma gas and foil material is very important. This should preferably be reduced to a minimum so that a thermal No damage to the materials. A minimal contact time is always through reached an increased web speed. The web speeds of the foils is usually higher than 1 m per minute, it is preferably between 20 and 600 m per minute.
Da die Lebenszeit der aktiven Spezies (Radikale und Ionen) unter Atmosphärendruck eingeschränkt ist, ist es vorteilhaft die Kunststoff- und Metallfolien in sehr geringem Abstand an der Brenneröffnung (Düse) vorbeizuführen. Vorzugsweise geschieht dies im Abstand von 0 bis 40 mm, besonders bevorzugt im Abstand von 1 bis 15 mm.Because the lifetime of the active species (radicals and ions) under atmospheric pressure is limited, it is advantageous the plastic and metal foils in very little Pass the distance past the burner opening (nozzle). This is preferably done at a distance of 0 to 40 mm, particularly preferably at a distance of 1 to 15 mm.
Die folgenden Beispiele sollen die Erfindung näher erläutern: Beispiele The following examples are intended to illustrate the invention: Examples
Es gelang erfindungsgemäße Kunststoff- und Metallfolien im atmosphärischen Plasma durch den Einsatz des beschriebenen Plasmabreitstrahlbrenners mit behandelten Oberflächen zu erzeugen. Dies gelang mit einem - verglichen mit anderen Verfahren - nur geringem apparativem Aufwand, bei gleichzeitig niedrigen Prozesskosten. Da im Beispiel jede Neutrode des Plasmabrenners eine Austrittsöffnung für das Plasmagas vorsieht kann dieses dem Lichtbogen gezielt und homogen zugeführt werden. Der seitlich abströmende, bandförmiger Plasmafreistrahl führt deshalb zu einer besonders homogenen Bearbeitung der Oberfläche.Plastic and metal foils according to the invention succeeded in the atmospheric Plasma by using the described plasma broad-beam burner to produce treated surfaces. This was achieved with a - compared to other processes - only a small outlay on equipment, and at the same time low Litigation costs. Since in the example each neutrode of the plasma torch has an outlet opening for the plasma gas, this can target the arc and be fed homogeneously. The laterally flowing, band-shaped plasma free jet therefore leads to a particularly homogeneous processing of the surface.
Überraschenderweise konnten mittels des oben beschriebenen Brenners bei Atmosphärendruck auf verschiedenen Substraten Oberflächenspannungen erreicht werden, die sonst nur im Niederdruckplasma möglich sind.Surprisingly, by means of the burner described above Atmospheric pressure on various substrates reached surface tensions that are otherwise only possible in low-pressure plasma.
Überraschenderweise zeigte sich auch, dass trotz der Anwendung eines durch eine Lichtbogenentladung erzeugten "heißen" Plasmas bei ausreichender Kühlung und angemessener Kontaktzeit keine thermische Schädigung der bearbeiteten Kunststoff- und Metallfolien auftrat.Surprisingly, it was also found that despite the use of one by one Arc discharge generated "hot" plasma with sufficient cooling and reasonable contact time no thermal damage to the processed plastic and metal foils appeared.
Dazu wurden die relevanten Eigenschaften der nachfolgenden Folienmuster wie folgt gemessen. Die thermische Schädigung der Folienabschnitte wurde visuell bzw. durch Mikroskopische Untersuchungen beurteilt. Die Bestimmung der Oberflächenspannung erfolgte mit handelsüblichen Testtinten der Fa. Arcotec Oberflächentechnik GmbH nach DIN 53364 bzw. ASTM D 2587. Die Angabe der Oberflächenspannung erfolgte in mN/m. Die Durchführung der Messungen erfolgte unmittelbar nach der Behandlung. Die Meßfehler betragen ± 2 mN/m. Die Bestimmung der Elementverteilung auf der Folienoberfläche erfolgte mittels ESCA-Messungen (Photoelektronen-Spektroskopie). Die Angabe der Elementverteilung erfolgte dabei in Prozent. For this purpose, the relevant properties of the following film samples were as follows measured. The thermal damage to the film sections was visual or by Microscopic examinations assessed. The determination of the surface tension was carried out with commercially available test inks from Arcotec Oberflächentechnik GmbH according to DIN 53364 or ASTM D 2587. The specification of the surface tension was done in mN / m. The measurements were carried out immediately after treatment. The measurement errors are ± 2 mN / m. The The element distribution on the film surface was determined by means of ESCA measurements (Photoelectron spectroscopy). The specification of the element distribution was done in percent.
Folgende Folienmaterialien wurden in unterschiedlichen Beispielen unter Anwendung des beschriebenen Verfahrens behandelt und auf ihre Oberflächeneigenschaften hin untersucht:The following film materials were used in different examples Application of the method described and treated on their surface properties examined:
- PE 1: PE 1 :
- Einschichtige, 50 µ Dicke, einseitig corona-vorbehandelte, transparente Blasfolie aus einem Ethylen-Buten-Copolymeren (LLDPE, < 10 % Buten) mit einer Dichte von 0,935 g/cm3 und einem Melt-Flow-Index (MFI) von 0,5 g/10 min (DIN ISO 1133 Bed. D).Single-layer, 50 µ thick, one-sided corona-pretreated, transparent blown film made of an ethylene-butene copolymer (LLDPE, <10% butene) with a density of 0.935 g / cm 3 and a melt flow index (MFI) of 0, 5 g / 10 min (DIN ISO 1133 Condition D).
- PE 2: PE 2 :
- Einschichtige, 50 µ Dicke, einseitig corona-vorbehandelte, transparente Blasfolie aus einem Ethylen-Vinylacetat-Copolymeren (3,5 % Vinylacetat) mit ca. 600 ppm Gleitmittel (Erucasäureamid (ESA)) und ca. 1000 ppm Antiblockmittel (SiO2), mit einer Dichte von 0,93 g/cm3 und einem Melt-Flow-Index (MFI) von 2 g/10 min (DIN ISO 1133 Bed. D).Single-layer, 50 µ thick, one-sided corona-pretreated, transparent blown film made of an ethylene-vinyl acetate copolymer (3.5% vinyl acetate) with approx. 600 ppm lubricant (erucic acid amide (ESA)) and approx. 1000 ppm antiblocking agent (SiO 2 ), with a density of 0.93 g / cm 3 and a melt flow index (MFI) of 2 g / 10 min (DIN ISO 1133 Condition D).
- BOPP 1:BOPP 1:
- Einschichtige, 20 µ Dicke, einseitig corona-vorbehandelte, transparente, biaxial orientierte Folie aus Polypropylen mit ca. 80 ppm Antiblockmittel (SiO2), mit einer Dichte von 0,91 g/cm3 und einem Melt-Flow-Index (MFI) von 3 g/10 min bei 230°C.Single-layer, 20 µ thick, one-sided corona-pretreated, transparent, biaxially oriented film made of polypropylene with approx. 80 ppm antiblocking agent (SiO 2 ), with a density of 0.91 g / cm 3 and a melt flow index (MFI) of 3 g / 10 min at 230 ° C.
- BOPP 2:BOPP 2:
- Coextrudierte, dreischichtige, 20 µ Dicke, einseitig corona-vorbehandelte, transparente, biaxial orientierte Folie aus Polypropylen mit ca. 2500 ppm Antiblockmittel (SiO2) in den Außenschichten), mit einer Dichte von 0,91 g/cm3 und einem Melt-Flow-Index (MFI) von 3 g/10 min bei 230°C.Co-extruded, three-layer, 20 µ thick, one-sided corona-pretreated, transparent, biaxially oriented film made of polypropylene with approx. 2500 ppm antiblocking agent (SiO 2 ) in the outer layers), with a density of 0.91 g / cm 3 and a melt Flow index (MFI) of 3 g / 10 min at 230 ° C.
- PET:PET:
- Handelsübliche, einschichtige, 12 µ Dicke, einseitig corona-vorbehandelte, biaxial orientierte Folie aus Polyethylenterephthalat.Commercial, single-layer, 12 µ thick, corona-pretreated on one side, biaxially oriented film made of polyethylene terephthalate.
- PA: PA :
- Handelsübliche, einschichtige, 15 µ Dicke, einseitig corona-vorbehandelte, biaxial orientierte Folie aus Nylon 6.Commercially available, single-layer, 15 µ thick, corona-pretreated on one side, biaxially oriented film made of nylon 6.
Der Plasmabehandlung wurden nur die unbehandelten Folienseiten unterzogen. Zum Einsatz kamen die Plasmagase Sauerstoff, Stickstoff und Kohlendioxid, jeweils in Verbindung mit Argon als inertem Trägergas. Innerhalb der Versuchsreihen wurde die Gaskonzentration und der Abstand zum Plasmabrenner variiert. Die Folien wurden visuell auf ihre thermische Schädigung hin untersucht. Die Oberflächenspannungen wurden mittels Testtinten, die Elementverteilung an der Oberfläche wurde mittels ESCA-Messung bestimmt. Eine zusammenfassende Übersicht über die Ergebnisse gibt Tabelle 1.Only the untreated film sides were subjected to the plasma treatment. To the The plasma gases oxygen, nitrogen and carbon dioxide were used, each in Connection with argon as an inert carrier gas. Within the test series the gas concentration and the distance to the plasma torch vary. The slides were visually examined for their thermal damage. The surface tensions were determined using test inks, the element distribution on the Surface was determined using an ESCA measurement. A summary overview Table 1 gives the results.
Am Beispiel des PE 1 (Nr. 4 bis 7, Tabelle 1) konnte gezeigt werden, dass bis zu einem Abstand (Folie - Brenneröffnung) von 10 mm vergleichbare Vorbehandlungseffekte erzielt werden. Erst oberhalb von 15 mm Abstand fällt das Vorbehandlungsniveau deutlich ab. Using the example of PE 1 (No. 4 to 7, Table 1) it could be shown that up to a distance (film - burner opening) of 10 mm comparable pretreatment effects be achieved. This only falls above a distance of 15 mm Pretreatment level significantly.
Die in Tabelle 1 aufgeführten Materialien wurden darüber hinaus auch mittels Corona-Entladung vorbehandelt und unmittelbar nach der Behandlung auf ihre Oberflächenspannung hin mit Testtinten untersucht. Dabei wurden Energiedosen im Bereich von 0,1 bis 10 J/m2 - wie sie in industriell eingesetzten Coronaanlagen üblich sind - verwendet.The materials listed in Table 1 were also pretreated by means of corona discharge and tested for their surface tension with test inks immediately after the treatment. Energy cans in the range from 0.1 to 10 J / m 2 - as are common in industrial corona systems - were used.
Die Ergebnisse der Coronaentladung und der Plasmabehandlung sind in Tabelle 2 gegenübergestellt.The results of the corona discharge and the plasma treatment are in Table 2 juxtaposed.
Insbesondere beim Polypropylen wurde eine deutlich höhere Oberflächenspannung bei Anwendung des atmosphärischen Plasmas erzeugt. Aber auch beim PE wurden im Vergleich zur Coronavorbehandlung höhere Werte ermittelt. Polypropylene in particular produced a significantly higher surface tension when using atmospheric plasma. However, higher values were also determined for PE compared to corona pretreatment.
Claims (7)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10011274 | 2000-03-08 | ||
DE2000111274 DE10011274A1 (en) | 2000-03-08 | 2000-03-08 | Plasma-treated sheet materials |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1132492A2 true EP1132492A2 (en) | 2001-09-12 |
EP1132492A3 EP1132492A3 (en) | 2002-07-17 |
Family
ID=7633969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20010103655 Withdrawn EP1132492A3 (en) | 2000-03-08 | 2001-02-23 | Web-shaped plasma-processed materials |
Country Status (10)
Country | Link |
---|---|
US (1) | US20020018897A1 (en) |
EP (1) | EP1132492A3 (en) |
JP (1) | JP2001329083A (en) |
BR (1) | BR0100936A (en) |
CA (1) | CA2339675A1 (en) |
DE (1) | DE10011274A1 (en) |
MX (1) | MXPA01002048A (en) |
NO (1) | NO20011153L (en) |
PL (1) | PL346290A1 (en) |
RU (1) | RU2001106186A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002059391A1 (en) * | 2001-01-25 | 2002-08-01 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Ultra-thin outer layers on metal substrates, method for the production and use thereof |
EP1274873B1 (en) * | 2000-04-19 | 2005-08-10 | Nitruvid | Method for treating the surface of a part and resulting part |
EP2760922B1 (en) | 2011-09-27 | 2018-03-21 | Innovia Films Limited | Printable film |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10146295A1 (en) * | 2001-09-19 | 2003-04-03 | Wipak Walsrode Gmbh & Co Kg | Process for joining materials using atmospheric plasma |
WO2005041328A1 (en) * | 2003-10-16 | 2005-05-06 | Future Carbon Gmbh | Method and plasmatron for the production of a modified material and corresponding modified material |
US8575045B1 (en) * | 2004-06-10 | 2013-11-05 | The United States Of America As Represented By The Secretary Of The Army | Fiber modified with particulate through a coupling agent |
US7819981B2 (en) * | 2004-10-26 | 2010-10-26 | Advanced Technology Materials, Inc. | Methods for cleaning ion implanter components |
KR101241922B1 (en) * | 2005-06-22 | 2013-03-11 | 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 | Apparatus and process for integrated gas blending |
SG165321A1 (en) | 2005-08-30 | 2010-10-28 | Advanced Tech Materials | Boron ion implantation using alternative fluorinated boron precursors, and formation of large boron hydrides for implantation |
FR2922478B1 (en) * | 2007-10-22 | 2014-12-12 | Arkema France | PROCESS FOR PRODUCING POLYMERIC LAMINATE COMPRISING AN ACTIVATION STEP BY PLASMA TREATMENT |
JP2011512015A (en) | 2008-02-11 | 2011-04-14 | アドバンスド テクノロジー マテリアルズ,インコーポレイテッド | Ion source cleaning in semiconductor processing systems. |
US20110021011A1 (en) * | 2009-07-23 | 2011-01-27 | Advanced Technology Materials, Inc. | Carbon materials for carbon implantation |
KR102114534B1 (en) * | 2009-10-21 | 2020-05-22 | 미츠비시 가스 가가쿠 가부시키가이샤 | Functional sheet and lens using same |
US8598022B2 (en) | 2009-10-27 | 2013-12-03 | Advanced Technology Materials, Inc. | Isotopically-enriched boron-containing compounds, and methods of making and using same |
JP2013144766A (en) * | 2011-12-16 | 2013-07-25 | Meiritsu Component Kk | Surface modifier |
CN104272433B (en) | 2012-02-14 | 2018-06-05 | 恩特格里斯公司 | For improving the carbon dopant gas of injected beam and source performance life and coflow |
DE102014222724A1 (en) * | 2014-11-06 | 2016-05-12 | Tesa Se | Plasma treatment of release layers |
DE102014222723A1 (en) * | 2014-11-06 | 2016-05-12 | Tesa Se | Process for the indirect plasma treatment of release layers |
FR3043679B1 (en) * | 2015-11-12 | 2021-07-23 | Aptar Stelmi Sas | PROCESS FOR TREATING AN ELASTOMERIC PACKAGING ELEMENT, AND PACKAGING ELEMENT THUS TREATED. |
DE102016000223A1 (en) | 2016-01-14 | 2017-07-20 | Reifenhäuser GmbH & Co. KG Maschinenfabrik | Method and plant for producing a web-shaped or tubular material and material |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5239161A (en) * | 1991-03-26 | 1993-08-24 | Agence Spatiale Europeenne | Plasma flux spraying method of treating the surface of a substrate, for example, and apparatus for implementing the method |
WO1994028568A1 (en) * | 1993-05-28 | 1994-12-08 | The University Of Tennessee | Method and apparatus for glow discharge plasma treatment of polymer materials at atmospheric pressure |
EP0753314A1 (en) * | 1995-07-12 | 1997-01-15 | bvba VANDERSTRAETEN E | Process for the preparation of prostheses for skeletal reconstruction |
US5759329A (en) * | 1992-01-06 | 1998-06-02 | Pilot Industries, Inc. | Fluoropolymer composite tube and method of preparation |
DE19807086A1 (en) * | 1998-02-20 | 1999-08-26 | Fraunhofer Ges Forschung | Atmospheric pressure plasma deposition for adhesion promoting, corrosion protective, surface energy modification or mechanical, electrical or optical layers |
US5944901A (en) * | 1996-12-23 | 1999-08-31 | Sulzer Metco Ag | Indirect plasmatron |
JP2000063548A (en) * | 1998-08-25 | 2000-02-29 | Konica Corp | Surface treatment of plastic base material, magnetic recording medium and silver halide photosensitive material |
-
2000
- 2000-03-08 DE DE2000111274 patent/DE10011274A1/en not_active Withdrawn
-
2001
- 2001-02-23 EP EP20010103655 patent/EP1132492A3/en not_active Withdrawn
- 2001-02-26 MX MXPA01002048A patent/MXPA01002048A/en not_active Application Discontinuation
- 2001-03-01 JP JP2001056823A patent/JP2001329083A/en active Pending
- 2001-03-06 PL PL34629001A patent/PL346290A1/en not_active Application Discontinuation
- 2001-03-06 CA CA 2339675 patent/CA2339675A1/en not_active Abandoned
- 2001-03-06 US US09/800,370 patent/US20020018897A1/en not_active Abandoned
- 2001-03-07 NO NO20011153A patent/NO20011153L/en unknown
- 2001-03-07 RU RU2001106186/02A patent/RU2001106186A/en not_active Application Discontinuation
- 2001-03-08 BR BR0100936A patent/BR0100936A/en not_active Application Discontinuation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5239161A (en) * | 1991-03-26 | 1993-08-24 | Agence Spatiale Europeenne | Plasma flux spraying method of treating the surface of a substrate, for example, and apparatus for implementing the method |
US5759329A (en) * | 1992-01-06 | 1998-06-02 | Pilot Industries, Inc. | Fluoropolymer composite tube and method of preparation |
WO1994028568A1 (en) * | 1993-05-28 | 1994-12-08 | The University Of Tennessee | Method and apparatus for glow discharge plasma treatment of polymer materials at atmospheric pressure |
EP0753314A1 (en) * | 1995-07-12 | 1997-01-15 | bvba VANDERSTRAETEN E | Process for the preparation of prostheses for skeletal reconstruction |
US5944901A (en) * | 1996-12-23 | 1999-08-31 | Sulzer Metco Ag | Indirect plasmatron |
DE19807086A1 (en) * | 1998-02-20 | 1999-08-26 | Fraunhofer Ges Forschung | Atmospheric pressure plasma deposition for adhesion promoting, corrosion protective, surface energy modification or mechanical, electrical or optical layers |
JP2000063548A (en) * | 1998-08-25 | 2000-02-29 | Konica Corp | Surface treatment of plastic base material, magnetic recording medium and silver halide photosensitive material |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 05, 14. September 2000 (2000-09-14) & JP 2000 063548 A (KONICA CORP), 29. Februar 2000 (2000-02-29) * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1274873B1 (en) * | 2000-04-19 | 2005-08-10 | Nitruvid | Method for treating the surface of a part and resulting part |
WO2002059391A1 (en) * | 2001-01-25 | 2002-08-01 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Ultra-thin outer layers on metal substrates, method for the production and use thereof |
DE10103463B4 (en) * | 2001-01-25 | 2009-10-08 | Thyssenkrupp Steel Ag | Composite of metallic substrates and methods of manufacture and use thereof |
EP2760922B1 (en) | 2011-09-27 | 2018-03-21 | Innovia Films Limited | Printable film |
Also Published As
Publication number | Publication date |
---|---|
US20020018897A1 (en) | 2002-02-14 |
NO20011153D0 (en) | 2001-03-07 |
JP2001329083A (en) | 2001-11-27 |
PL346290A1 (en) | 2001-09-10 |
MXPA01002048A (en) | 2004-07-30 |
CA2339675A1 (en) | 2001-09-08 |
NO20011153L (en) | 2001-09-09 |
RU2001106186A (en) | 2003-03-27 |
BR0100936A (en) | 2001-10-30 |
EP1132492A3 (en) | 2002-07-17 |
DE10011274A1 (en) | 2001-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1132195B1 (en) | Surface treatment or coating of strips using an atmospheric, non-transferred arc plasmatron | |
EP1132148B1 (en) | Process for activating the surface of a web-like material | |
EP1132492A2 (en) | Web-shaped plasma-processed materials | |
Wolf et al. | Role of plasma surface treatments on wetting and adhesion | |
DE102005029360B4 (en) | Two methods for continuous atmospheric pressure Plasma treatment of workpieces, in particular material plates or sheets | |
DE60305468T2 (en) | PROTECTIVE COVER DIMENSIONS | |
Borcia et al. | Surface treatment of polymers by plasma and UV radiation | |
DE69503175T2 (en) | Product and process for the production of plastic articles with improved surface properties | |
Maroofi et al. | Atmospheric air plasma jet for improvement of paint adhesion to aluminium surface in industrial applications | |
CH694949A5 (en) | Method and apparatus for the treatment of surfaces by means of a glow discharge plasma. | |
EP2054166B1 (en) | Method and device for producing a coating | |
Tsuchiya et al. | Surface modification of polymeric materials by atmospheric plasma treatment | |
DE102007003766B4 (en) | Transparent barrier films for the packaging industry | |
JP2018513237A (en) | Low temperature plasma treatment | |
EP2960054B1 (en) | Surface-treated films with polypropylene base | |
DE10035177C2 (en) | Process for the plasma-assisted treatment of the inner surface of a hollow body and use of the same | |
Choi et al. | Analysis of polymer surface treated by dielectric barrier discharge | |
DE102015115167B4 (en) | Shaped body comprising a functional layer, process for its preparation and its use | |
Chen et al. | Atmospheric pressure DBD gun and its application in ink printability | |
WO1996028587A1 (en) | Plasma chamber | |
DE10146295A1 (en) | Process for joining materials using atmospheric plasma | |
DE19953433A1 (en) | Coating, useful as a barrier layer, is prepared by irradiation of a metal, semi-metal or metal oxide deposit on a treated substrate, precoated with an ethylenically unsaturated photoinitiator. | |
EP0949013A2 (en) | Process for manufacturing an adhesion promoting layer | |
Klemberg-Sapieha et al. | Control and modification of surfaces and interfaces by corona and low pressure plasma | |
Rogosin et al. | Compact plasmatron with diverging rod electrodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: WIPAK WALSRODE GMBH & CO. KG |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RIC1 | Information provided on ipc code assigned before grant |
Free format text: 7C 23C 4/12 A, 7C 23C 4/14 B, 7B 05B 7/22 B, 7C 23C 16/02 B, 7C 23C 16/503 B |
|
AKX | Designation fees paid | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20030118 |