DE102015115167B4 - Shaped body comprising a functional layer, process for its preparation and its use - Google Patents

Shaped body comprising a functional layer, process for its preparation and its use Download PDF

Info

Publication number
DE102015115167B4
DE102015115167B4 DE102015115167.7A DE102015115167A DE102015115167B4 DE 102015115167 B4 DE102015115167 B4 DE 102015115167B4 DE 102015115167 A DE102015115167 A DE 102015115167A DE 102015115167 B4 DE102015115167 B4 DE 102015115167B4
Authority
DE
Germany
Prior art keywords
plasma
shaped body
precursor
body according
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102015115167.7A
Other languages
German (de)
Other versions
DE102015115167A1 (en
Inventor
Michael Scheinflug
Marek Maleika
Robert Magunia
Florian Eder
Nina Pogadl
Felix Ntourmas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lisa Draexlmaier GmbH
Original Assignee
Lisa Draexlmaier GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lisa Draexlmaier GmbH filed Critical Lisa Draexlmaier GmbH
Priority to DE102015115167.7A priority Critical patent/DE102015115167B4/en
Priority to CN201610816001.2A priority patent/CN107043925B/en
Publication of DE102015115167A1 publication Critical patent/DE102015115167A1/en
Application granted granted Critical
Publication of DE102015115167B4 publication Critical patent/DE102015115167B4/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/515Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using pulsed discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/62Plasma-deposition of organic layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

Die vorliegende Erfindung betrifft Formkörper, deren Oberfläche zumindest teilweise mit einer Funktionsschicht bedeckt ist, Verfahren zur Herstellung dieser Formkörper und ihre Verwendung; daneben betrifft die vorliegende Erfindung Systeme – insbesondere Werkzeuge – enthaltend den erfindungsgemäßen Formkörper, die eine verbesserte Stabilität gegenüber abrasiv-wirkenden Kräften aufweisen.The present invention relates to moldings whose surface is at least partially covered with a functional layer, to processes for producing these moldings and to their use; In addition, the present invention relates to systems - in particular tools - containing the shaped body according to the invention, which have improved stability against abrasive forces.

Description

Technisches Gebiet Technical area

Die vorliegende Erfindung betrifft Formkörper, deren Oberfläche zumindest teilweise mit einer Funktionsschicht bedeckt ist, Verfahren zur Herstellung dieser Formkörper und ihre Verwendung; insbesondere betrifft die vorliegende Erfindung Werkzeuge, die mit einer plasmapolymeren Funktionsschicht beschichtet sind, welche eine Antihaftwirkung bezüglich der Anhaftung von Klebstoffen – wie z.B. sog. Hotmelt- und Dispersionsklebstoffen. Ergänzend betrifft die vorliegende Erfindung Systeme – insbesondere Werkzeuge –, die eine verbesserte Stabilität gegenüber abrasiv-wirkenden Kräften aufweisen. The present invention relates to moldings whose surface is at least partially covered with a functional layer, to processes for producing these moldings and to their use; In particular, the present invention relates to tools coated with a plasma polymer functional layer which has a non-sticking effect with respect to the adhesion of adhesives, e.g. so-called hotmelt and dispersion adhesives. In addition, the present invention relates to systems - in particular tools - which have improved stability against abrasive forces.

Stand der Technik State of the art

Formkörper bzw. Gegenstände, die eine plasmapolymere Funktionsschicht aufweisen, sind aus dem Stand der Technik bekannt. So werden bereits in der Deutschen Offenlegungsschrift DE 42 16 999 A1 Gegenstände aus Silber beschrieben, die über eine sog. plasmapolymere Beschichtung verfügen. Shaped bodies or objects which have a plasma-polymer functional layer are known from the prior art. So are already in the German publication DE 42 16 999 A1 Objects made of silver which have a so-called plasma-polymer coating.

Infolge einer schrittweisen Variation der Verfahrensparameter weisen die Beschichtungen einen Schichtaufbau auf, der eine Kopplungsschicht, eine permeationsverhindernde Schicht und eine harte, kratzfeste Oberflächenversiegelung beinhaltet. Due to a gradual variation of the process parameters, the coatings have a layered structure that includes a coupling layer, a permeation-preventing layer and a hard, scratch-resistant surface seal.

Zur Herstellung der kratzfesten Schicht wird ein Gemisch aus Sauerstoff und Hexamethyldisiloxan (HMDSO) eingesetzt. To produce the scratch-resistant layer, a mixture of oxygen and hexamethyldisiloxane (HMDSO) is used.

Ferner wird in der in der Deutschen Offenlegungsschrift DE 195 43 133 A1 ein Verfahren zur Erzeugung dünner, stark hydrophober Polymerschichten mittels Plasmapolymerisation offenbart. Zur Plasmapolymerisation werden als Monomere Vinylmethylsilan und Vinyltrimethoxysilan angegeben, bei denen es sich um Monomere handelt, die mindestens eine Gruppe mit einer geringen Affinität zu Sauerstoff aufweisen und die sich unter weitgehendem Strukturerhalt plasmapolymerisieren lassen. Furthermore, in the German Offenlegungsschrift DE 195 43 133 A1 discloses a method for producing thin, highly hydrophobic polymer layers by plasma polymerization. For plasma polymerization, monomers are vinylmethylsilane and vinyltrimethoxysilane, which are monomers which have at least one group with a low affinity for oxygen and which can be plasma-polymerized with substantial retention of structure.

Den genannten Monomeren können nichtpolymerisierbare Gase wie z. B. Edelgase, Stickstoff oder Wasserstoff als Hilfs- oder Trägergase zugesetzt werden. Derartige Hilfs- bzw. Trägergase dienen dazu, die Homogenität des Plasmas zu verbessern und den Druck in der Gasphase zu erhöhen. The monomers mentioned can nichtpolymerisierbare gases such. As noble gases, nitrogen or hydrogen may be added as auxiliary or carrier gases. Such auxiliary or carrier gases serve to improve the homogeneity of the plasma and to increase the pressure in the gas phase.

Der Nachteil der in der DE 195 43 133 offenbarten Beschichtung besteht insbesondere darin, dass sich auch diese – wie die zuvor beschriebene – leicht von Substrat entfernen lässt. The disadvantage of in the DE 195 43 133 In particular, the coating disclosed herein can easily be removed from the substrate, as described above.

Des Weiteren werden der Deutschen Offenlegungsschrift DE 197 48 240 A1 Verfahren zur korrosionsfesten Beschichtung von Metallsubstraten auf dem Wege der Plasmapolymerisation beschrieben, wobei das Metallsubstrat zunächst in einem ersten Vorbehandlungsschritt einer mechanischen, chemischen und/oder elektrochemischen Glättung und in einem zweiten Verfahrensschritt einer Plasmaaktivierung unterzogen wird, bevor dann die eigentliche plasmapolymere Beschichtung appliziert wird. Furthermore, the German disclosure document DE 197 48 240 A1 Process for the corrosion-resistant coating of metal substrates described by way of plasma polymerization, wherein the metal substrate is first subjected in a first pretreatment step of a mechanical, chemical and / or electrochemical smoothing and in a second process step of plasma activation, before then the actual plasma polymer coating is applied.

Als Hauptbestandteile des Plasmapolymeren werden Kohlenwasserstoff- und/oder siliziumorganische Verbindungen genannt, wobei der Einsatz von Hexamethyldisiloxan und Hexamethylcyclotrisiloxan als besonders bevorzugt hervorgehoben wird. Hydrocarbon and / or organosilicon compounds are mentioned as main constituents of the plasma polymer, with the use of hexamethyldisiloxane and hexamethylcyclotrisiloxane being emphasized as being particularly preferred.

In den Beispielen der oben genannten Offenlegungsschrift wird Hexamethyldisiloxan verwandt, wobei als Zusatz- bzw. Hilfsgase Sauerstoff und Stickstoff beigemischt werden können. Hexamethyldisiloxane is used in the examples of the abovementioned publication, with oxygen and nitrogen being admixed as auxiliary or auxiliary gases.

Detailliertere Angaben – wie z.B. zum Verhältnis von Monomeren und Sauerstoff – sind diesem Dokument nicht zu entnehmen. Daneben offenbart diese Offenlegungsschrift auch nicht, wie und auf welchem Substrat eine plasmapolymere Beschichtung aufgetragen werden muss, um eine besonders leicht zu reinigende Oberfläche erhalten zu können. More detailed information - such as on the ratio of monomers and oxygen - can not be found in this document. In addition, this publication does not disclose how and on which substrate a plasma polymer coating must be applied in order to obtain a particularly easy-to-clean surface.

Daneben offenbart die U.S.-amerikanische Offenlegungsschrift US 2002/100420 A1 ein Verfahren zur Vakuumbeschichtung eines Substrats auf der Basis eines Plasma-CVD-Verfahrens, das die Herstellung einer verschleißfesten und reibungsmindernden Multilagenstruktur aus alternierenden Hartstoff- und Kohlenstoff- oder Silicium-Einzelschichten erlaubt. – Als Kohlenstoffquellen werden dabei für die Kohlenstoffschichten u.a. kohlenstoffhaltige Gase – wie Acetylen (Ethin) oder Methan – und als Siliciumquellen Silane, Siloxane und aus Metallsilicid bestehende Targets eingesetzt. Zur Erzeugung und Aufrechterhaltung des Plasmas werden gemäß der Lehre der US 2002/100420-A1 Edelgase – wie z.B. Argon, Neon oder Helium – eingesetzt. In addition, the published US patent publication US 2002/100420 A1 a method for vacuum coating a substrate on the basis of a plasma CVD method, which allows the production of a wear-resistant and friction-reducing multilayer structure of alternating hard material and carbon or silicon monolayers. Carbon sources, such as acetylene (ethyne) or methane, are used as carbon sources for the carbon layers, and silanes, siloxanes and metal silicides are used as silicon sources. To generate and maintain the plasma are taught in the teaching of US 2002/100420-A1 Noble gases - such as argon, neon or helium - used.

Als plasmaerzeugende Quellen kommen alle einschlägig bekannten Quellen in Betracht – wie beispielsweise Mikrowellenquellen, Hochfrequenzquellen, Hohlkathode oder Hochstrombogen. As plasma-generating sources are all relevant sources known - such as microwave sources, radio frequency sources, hollow cathode or high current arc.

Die so hergestellten Multilagenstrukturen sind beispielsweise als Korrosions- und Verschleißschutz für tribologisch hochbelastete Bauteile geeignet und dabei insbesondere als Verschleißschutz von Bauteilen im Trockenlauf- und Mangelschmierungsbereich vorgesehen. The multilayer structures produced in this way are suitable, for example, as corrosion and wear protection for tribologically highly stressed components, and in particular as wear protection of components in the dry-running and deficient lubrication area.

Des Weiteren beschreibt das Europäische Patent EP 1 506 063 B1 ebenfalls ein Verfahren zum Ablegen einer Beschichtung auf einem Substrat mittels eines Plasmas in einem atmosphärischen oder in einem sub-atmosphärischen Druckbereich oder im Niederdruckbereich mittels einer gepulsten Wechselstrom Lichtbogenentladung. Dabei setzt sich das zerstäubte Beschichtungsbildungsmaterial durch beliebige Kombinationen eines organischen, silicium-organischen, metallorganischen oder anorganischen Materials zusammen. Furthermore, the European patent describes EP 1 506 063 B1 also a method for Depositing a coating on a substrate by means of a plasma in an atmospheric or in a sub-atmospheric pressure range or in the low-pressure range by means of a pulsed AC arc discharge. In this case, the atomized coating formation material is composed by any combination of an organic, organosilicon, organometallic or inorganic material.

Beschreibung der Erfindung Description of the invention

Die Aufgabe der vorliegenden Erfindung besteht somit darin, Formkörper – insbesondere Werkzeuge – mit einer Funktionsschicht bzw. mit einer Funktionsbeschichtung sowie ein Verfahren Herstellung derartiger funktionsbeschichteter Formkörper bereitzustellen, deren Beschichtung Anti-Hafteigenschaften insbesondere gegenüber Klebstoffen – wie beispielsweise gegenüber sog. Hotmeltklebstoffen oder Dispersionsklebstoffen – besitzt und anti-abrasive Eigenschaften aufweist, um so die Ausfallzeiten, die in der industriellen Produktion für die Reinigung (Entfernung von Kleberresten) bzw. für den Ersatz schadhafter bzw. abgenutzter Werkzeuge entstehen, minimieren zu können. The object of the present invention is thus to provide shaped articles-in particular tools-having a functional layer or a functional coating and a method of producing such functionally coated molded articles whose coating has anti-adhesive properties, in particular with respect to adhesives, for example compared with hot-melt adhesives or dispersion adhesives and anti-abrasive properties, so as to be able to minimize the downtime that occurs in industrial production for cleaning (removal of adhesive residue) or for the replacement of defective or worn tools.

Gelöst wird die Aufgabe vom grundlegenden Prinzip her durch einen Formkörper, der nach dem folgenden Verfahren hergestellt werden kann:

  • i. Einbringen und Positionieren des Substrats bzw. Formkörpers in einer ADP-(Atmosphärendruckplasma-), NP-(Niederdruckplasma-) oder in eine PACVD-(Plasma Activated Chemical Vapore Deposition-)Anlage;
  • ii. Behandeln des Substrats unter Plasmabedingungen des jeweilig gewählten Plasmas, so dass eine Antihaftbeschichtung mit anti-abrasiven zumindest auf einem Teil der Oberfläche des Substrats/Formkörpers ausgebildet wird.
The object is achieved from the basic principle by a shaped body which can be produced by the following method:
  • i. Introducing and positioning the substrate in ADP (atmospheric pressure plasma), NP (low pressure plasma) or PACVD (Plasma Activated Chemical Vapor Deposition) equipment;
  • ii. Treating the substrate under plasma conditions of the respective selected plasma, so that an anti-adhesive coating with anti-abrasive at least on a part of the surface of the substrate / molded body is formed.

Die vorliegende Erfindung betrifft somit einen Formkörper gemäß Anspruch 1, durch ein Verfahren des vorbezeichneten Formkörpers gemäß Anspruch 17 sowie durch ein Presskaschierwerkzeug oder durch eine Nähmaschine enthaltend den vorbezeichneten Formkörper gemäß Anspruch 31. Daneben betrifft die vorliegende Erfindung die Verwendung des vorbezeichneten Formkörpers als Mittel zur Presskaschierung oder zur Anfertigung von Nahtverbindungen gemäß Anspruch 32. The present invention thus relates to a shaped body according to claim 1, by a method of the aforementioned shaped body according to claim 17 and by a press laminating tool or by a sewing machine containing the aforementioned shaped body according to claim 31. In addition, the present invention relates to the use of the aforementioned shaped body as means for press lamination or for making seams according to claim 32.

Bevorzugte Ausführungsformen sind Gegenstände der den zugehörigen unabhängigen Ansprüchen zugeordneten Unteransprüche. Preferred embodiments are objects of the dependent claims associated with the accompanying independent claims.

Die Plasmatechnik hat sich in den letzten Jahren in nahezu allen technischen Bereichen etabliert. Entsprechend ist für die verschiedensten Ausführungsformen teilweise umfangreicher Stand Technik bekannt. Die Plasmatechnik eignet sich neben der Feinreinigung und der Aktivierung von Oberflächen insbesondere für das Modifizieren von Oberflächeneigenschaften sowie für die Beschichtung von Oberflächen – z.B. mit hydrophilen oder hydrophoben Schichten, reibungsreduzierenden Schichten oder Barriereschichten. Letztere Verwendung ist insbesondere für die Lösung der oben genannten Aufgaben, die der vorliegenden Erfindung zugrunde liegen, hinsichtlich der Beschichtung von Bauteilen oder Werkzeugen verschiedenster Art (Substrat)relevant. Plasma technology has established itself in almost all technical areas in recent years. Accordingly, for a variety of embodiments partially extensive state of the art known. In addition to the fine cleaning and the activation of surfaces, plasma technology is particularly suitable for modifying surface properties and for coating surfaces - e.g. with hydrophilic or hydrophobic layers, friction reducing layers or barrier layers. The latter use is particularly relevant for the solution of the above-mentioned objects underlying the present invention, in terms of the coating of components or tools of various kinds (substrate) relevant.

Das erfindungsgemäße plasmagestützte Beschichtungsverfahren kann insbesondere auf der Basis von drei unterschiedlichen Verfahrensvarianten durchgeführt werden wozu das Niederdruckverfahren (Niederdruckplasma NP), das Atmosphärendruckverfahren (Atmosphärendruckplasma ADP) sowie das sog. PACVD-(Plasma Activated Chemical Vapore Deposition)Verfahren gehören. The plasma-assisted coating method according to the invention can be carried out in particular on the basis of three different process variants, including the low-pressure method (low-pressure plasma NP), the atmospheric pressure method (atmospheric pressure plasma ADP) and the so-called PACVD (plasma-activated chemical vapor deposition) method.

Beim Niederdruck-Verfahren wird ein Gas im Vakuum durch Energiezufuhr – beispielsweise durch UV-Strahlung – angeregt. Hierdurch werden – neben Elektronen und anderen reaktiven Teilchen – energiereiche Ionen generiert, die das Plasma bilden. Zur Beschichtung kommen derartige Niederdruckplasmen vom Typ der Glimmentladung zum Einsatz. Hier werden in einem Druckbereich von 1–100 Pa diffuse Gasentladungen von 50–1000 mm Ausdehnung erzeugt. Bogenentladungen finden in einem weiten Druckbereich von Niederdruck bis hin zum Atmosphärendruck Anwendung und eignen sich ganz allgemein zur Erzeugung lokalisierter Plasmen von wenigen Millimetern Ausdehnung. Durch diese heißen Bereiche kann entweder für die Umsetzung von Gasen das zu behandelnde Gas geströmt werden oder es wird mittels eines Arbeitsgasstrahls die Energie aus dem Bogen zu der Behandlungszone transportiert (vgl. Atmosphärendruckvariante unten). Bei einer Zufuhr von reaktiven Gasen werden diese im Entladungsbereich zersetzt und an Oberflächen in der Umgebung, die zu Werkstücken gehören können, findet die Schichtdeposition statt. Das ionisierte Gas reagiert chemisch mit der Oberfläche des Substrats. Damit lassen sich Oberflächen wirkungsvoll modifizieren bzw. beschichten. In the low-pressure method, a gas is excited in a vacuum by supplying energy, for example by UV radiation. As a result, in addition to electrons and other reactive particles, high-energy ions are generated that form the plasma. For coating such low pressure plasmas of the glow discharge type are used. Here, in a pressure range of 1-100 Pa diffuse gas discharges of 50-1000 mm expansion are generated. Arc discharges are used in a wide pressure range from low pressure to atmospheric pressure and are generally suitable for producing localized plasmas of a few millimeters in size. By means of these hot regions, the gas to be treated can either be flowed for the conversion of gases or the energy is transported from the sheet to the treatment zone by means of a working gas jet (see atmospheric pressure variant below). With a supply of reactive gases they are decomposed in the discharge area and on surfaces in the environment that may belong to workpieces, the layer deposition takes place. The ionized gas chemically reacts with the surface of the substrate. This allows surfaces to be effectively modified or coated.

Bei der Atmosphärendruckvariante wird ein Gas mittels Hochspannung unter Umgebungsdruck derart angeregt, dass ein Plasma zündet. Das Plasma wird unter dem Einsatz von Druckluft aus der Düse herausgetrieben. In the atmospheric pressure variant, a gas is excited by means of high voltage under ambient pressure in such a way that a plasma ignites. The plasma is expelled from the nozzle using compressed air.

Durch die Variation der Prozessparameter – wie z.B. Behandlungsgeschwindigkeit und Abstand zur Substratoberfläche – können, wie beim Niederdruckverfahren, die Behandlungsergebnisse in unterschiedlicher Richtung beeinflusst werden. By varying the process parameters - e.g. Treatment speed and distance to the substrate surface - as with the low pressure method, the treatment results can be influenced in different directions.

Bei der Plasmaerzeugung im atmosphärischen Druckbereich kommen vor allem Barrierenentladungen oder Koronaentladungen zum Einsatz, die es erlauben, trotz der hohen Stoßfrequenz zwischen Elektronen und schweren Teilchen eine nichtthermische Energieverteilung einzustellen. Im Fall der Barrierenentladung wird durch ein Selbstabschalten der Entladung die Energie nur während eines kurzen Zeitfensters von etwa 5–50 ns eingebracht, während die Koronaentladung mittels spitzer oder kantiger Elektroden ein stark inhomogenes elektrisches Feld erzeugt. In beiden Fällen wird den Elektronen nur kurz Energie zugeführt, so dass nur wenige Stöße stattfinden können. In plasma generation in the atmospheric pressure range, mainly barrier discharges or corona discharges are used, which make it possible to set a non-thermal energy distribution despite the high impact frequency between electrons and heavy particles. In the case of barrier discharge, the self-turn-off of the discharge introduces energy only during a short time window of about 5-50 ns, while the corona discharge creates a highly inhomogeneous electric field by means of sharp or edged electrodes. In both cases, energy is supplied to the electrons only briefly so that only a few shocks can occur.

Die Plasma-unterstützte chemische Gasphasenabscheidung – PACVD (englisch plasma-enhanced chemical vapour deposition, PECVD) – ist eine Sonderform der chemischen Gasphasenabscheidung (CVD), bei der die chemische Abscheidung durch ein Plasma unterstützt wird. Das Plasma kann direkt beim zu beschichtenden Substrat (Direktplasma-Methode) oder in einer getrennten Kammer (Remote-Plasma-Methode) brennen. Während bei der CVD die Dissoziation (das Aufbrechen) der Moleküle des Reaktionsgases durch externe Zufuhr von Wärme sowie die freigewordene Energie der folgenden chemischen Reaktionen geschieht, übernehmen diese Aufgabe bei der PECVD beschleunigte Elektronen im Plasma. Zusätzlich zu den auf diese Weise gebildeten Radikalen werden in einem Plasma auch Ionen erzeugt, die zusammen mit den Radikalen die Schichtabscheidung auf dem Substrat bewirken. Die Gastemperatur im Plasma erhöht sich dabei in der Regel nur um wenige hundert Grad Celsius, wodurch im Gegensatz zur CVD auch temperaturempfindlichere Materialien beschichtet werden können. Plasma Enhanced Chemical Vapor Deposition (PACVD) is a special form of chemical vapor deposition (CVD) that promotes chemical deposition by plasma. The plasma can burn directly on the substrate to be coated (direct plasma method) or in a separate chamber (remote plasma method). While in the CVD the dissociation (breaking up) of the molecules of the reaction gas by external supply of heat as well as the released energy of the following chemical reactions happens, take over this task in the PECVD accelerated electrons in the plasma. In addition to the radicals formed in this way, ions are also generated in a plasma which, together with the radicals, cause the layer deposition on the substrate. As a rule, the gas temperature in the plasma only increases by a few hundred degrees Celsius, which, in contrast to CVD, can also coat more temperature-sensitive materials.

Bei der Direktplasma-Methode wird zwischen dem zu beschichtenden Substrat und einer Gegenelektrode ein starkes elektrisches Feld angelegt, durch das ein Plasma gezündet wird. Bei der Remote-Plasma-Methode ist das Plasma so angeordnet, dass es keinen direkten Kontakt zum Substrat hat. Dadurch erzielt man Vorteile bzgl. einer selektiven Anregung von einzelnen Komponenten eines Prozessgasgemisches und verringert die Möglichkeit einer Plasmaschädigung der Substratoberfläche durch Ionen. Die Plasmen können auch induktiv/kapazitiv durch Einstrahlung eines elektromagnetischen Wechselfeldes erzeugt werden. In the direct plasma method, a strong electric field is applied between the substrate to be coated and a counter electrode, by which a plasma is ignited. In the remote plasma method, the plasma is arranged so that it has no direct contact with the substrate. This provides advantages with respect to selective excitation of individual components of a process gas mixture and reduces the possibility of plasma damage to the substrate surface by ions. The plasmas can also be produced inductively / capacitively by irradiation of an alternating electromagnetic field.

Im Rahmen der vorliegenden Erfindung wird unter den angegebenen Durchführungsvarianten die Anwendung eines Niederdruck- oder Atmosphärendruckplasmas bevorzugt, worunter das Atmosphärendruckplasma besonders bevorzugt wird. Ein derartiges Plasma ist mit kommerziell erhältlichen Geräten für die Plasmabehandlung – wie z.B. mit der Anlage Plasmatreater AS 400 des Herstellers Plasmatreat GmbH, Steinhagen (DE) – darstellbar. In the context of the present invention, the use of a low-pressure or atmospheric-pressure plasma is preferred among the specified embodiments, of which the atmospheric-pressure plasma is particularly preferred. Such a plasma is available with commercially available plasma treatment equipment - such as e.g. with the plant Plasmatreater AS 400 of the manufacturer Plasmatreat GmbH, Steinhagen (DE) - representable.

Bei der Plasmapolymerisation werden unter den dort herrschenden Bedingungen dampfförmige organische Vorläuferverbindungen (Precursor bzw. Precursor-Monomere) in der Prozesskammer durch ein Plasma zunächst aktiviert. Die durch die Aktivierung entstehenden ionisierten Moleküle bilden bereits in der Gasphase erste Molekülfragmente in Form von Clustern oder Ketten. Die anschließende Kondensation dieser Fragmente auf der Substratoberfläche bewirkt dann in Abhängigkeit von Substrattemperatur, Elektronen- und Ionenbeschuss eine Polymerisation und resultiert letztendlich in der Bildung einer geschlossenen Schicht. In the plasma polymerization, vapor-phase organic precursor compounds (precursors or precursor monomers) in the process chamber are first activated by a plasma under the conditions prevailing there. The ionized molecules produced by the activation form first molecular fragments already in the gas phase in the form of clusters or chains. The subsequent condensation of these fragments on the substrate surface then causes a polymerization depending on substrate temperature, electron and ion bombardment and ultimately results in the formation of a closed layer.

Überraschenderweise wurde gefunden, dass mittels der Plasmabehandlung von Formkörpern – vorzugsweise unter Verwendung von Kohlenwasserstoffen und/oder Siloxanen als Precursoren – Beschichtungen auf den eingesetzten Formkörpern erhalten werden können, die über die angestrebte Antihaftwirkung gegenüber Klebstoffen – insbesondere gegenüber Hotmelt- und Dispersions-klebstoffen – verfügen und die den beschichteten Werkzeugen einen verbesserten Schutz gegenüber abrasiven Kräften verleihen. Surprisingly, it has been found that by means of the plasma treatment of moldings - preferably using hydrocarbons and / or siloxanes as precursors - coatings can be obtained on the moldings used, which have the desired anti-adhesive effect against adhesives - especially against hotmelt and dispersion adhesives and give the coated tools improved protection against abrasive forces.

Dabei werden unter den oben genannten Kohlenwasserstoff-Precursoren kurzkettige (1 bis 10 Kohlenstoffatome) gesättigte oder ungesättigte Kohlenwasserstoffe verstanden, worunter Methan, Ethan und Ethin (Acetylen) bevorzugt werden. Here, the above-mentioned hydrocarbon precursors are short-chain (1 to 10 carbon atoms) saturated or unsaturated hydrocarbons, of which methane, ethane and ethyne (acetylene) are preferred.

Daneben werden unter den Kohlenwasserstoffen halogensubstituierte – insbesondere gesättigte oder ungesättigte, cyclische, Fluor-substituierte – Kohlenwasserstoffe – wie z.B. Hexafluorethan – bevorzugt. Des Weiteren werden unter den cyclischen Kohlenwasserstoffen Octafluorcyclobutan und Octafluorcyclopenten besonders bevorzugt. In addition, among the hydrocarbons, halo-substituted - especially saturated or unsaturated, cyclic, fluoro-substituted - hydrocarbons - e.g. Hexafluoroethane - preferred. Further, among the cyclic hydrocarbons, octafluorocyclobutane and octafluorocyclopentene are particularly preferable.

Unter den Polysiloxanen werden Poly(dimethylsiloxane) bevorzugt, worunter auch cyclische Siloxane wie Hexamethylcyclotrisiloxan fallen. Unter den Poly(dimethylsiloxanen) wird Hexamethyldisiloxan besonders bevorzugt. Among the polysiloxanes, poly (dimethylsiloxanes) are preferred, including cyclic siloxanes such as hexamethylcyclotrisiloxane. Among the poly (dimethylsiloxanes), hexamethyldisiloxane is particularly preferred.

Des Weiteren können auch Mischungen der genannten Precursoren eingesetzt werden. Furthermore, it is also possible to use mixtures of the precursors mentioned.

In Abhängigkeit von den jeweils eingesetzten Precursoren kann es vorteilhaft sein, das Substrat – d.h. Formkörper bzw. Werkzeug – bei der Beschichtung zu erhitzen. Depending on the particular precursors used, it may be advantageous to use the substrate - i. Shaped body or tool - to heat during the coating.

Die als Prozess- bzw. Ionisierungsgase einzusetzenden Gase sind ebenfalls aus dem Stand der Technik bekannt. Sie umfassen Gase bzw. Edelgase – wie Argon, Sauerstoff und/oder Stickstoff –, oder Gasgemische – wie Luft bzw. Druckluft – oder Formiergas (ein Gasgemisch aus 95 % Stickstoff und 5 % Wasserstoff). The gases to be used as process or ionizing gases are also known from the prior art. They include gases or noble gases - such as argon, oxygen and / or nitrogen -, or gas mixtures - such as air or compressed air - or forming gas (a gas mixture of 95% nitrogen and 5% hydrogen).

Die Gasmoleküle werden in der (Vakuum-)Behandlungsanlage, in der durch ein elektrisches Feld ein Plasma erzeugt wird, ionisiert. Das Plasma zum Behandeln von Kunststoffen wird bevorzugt mittels Mikrowellenstrahlung und hochfrequenter Wechselspannung erzeugt, während bei der Plasmabeschichtung von Substraten aus Metall vorzugsweise ein gepulstes Gleichspannungsplasma eingesetzt wird. The gas molecules are ionized in the (vacuum) treatment plant, where a plasma is generated by an electric field. The plasma for treating plastics is preferably produced by means of microwave radiation and high-frequency alternating voltage, while in the plasma coating of substrates made of metal preferably a pulsed DC plasma is used.

Beispiele: Examples:

Die nachfolgenden beispielhaften Plasmaparameter geben die Plasmabedingungen jeweils für eine Kohlenstoff-basierte und für eine Siloxan basierte Beschichtung wieder: The following exemplary plasma parameters represent the plasma conditions for a carbon-based and a siloxane-based coating, respectively:

A) Apparate-Parameter A) Apparatus parameters

Freistrahldüse aus Wolfram und Kupfer, d ~4mm Free jet nozzle made of tungsten and copper, d ~ 4mm

Gepulste AC-Lichtbogenentladung (Wechselstrom-Lichtbogenentladung) mit Zielkorridor: Pulsed AC arc discharge (AC arc discharge) with target corridor:

  • – Wirkleistung ~300 W (Effektivspannung ~1 kV, Effektivstrom 0,3 A) - Active power ~ 300 W (RMS voltage ~ 1 kV, RMS current 0.3 A)
  • – ~2 Pulse pro Periode, Spitze ~3,8 kV, Pulsbreite ~1,4 µs - ~ 2 pulses per period, peak ~ 3.8 kV, pulse width ~ 1.4 μs
  • – Tolerante Abweichung ca. +/–25 % (erzielbar mit einer Plasmatreater AS 400 Anlage) - Tolerant deviation approx. +/- 25% (achievable with a Plasmatreater AS 400 system)
  • – Plasma-Spannung: 280 V Plasma voltage: 280V
  • – Plasma-Frequenz: 21 kHz - Plasma frequency: 21 kHz
  • – Plasma-Cycle-Time: 10–20 % Plasma Cycle Time: 10-20%

B) Exemplarische Schichtrezeptur für eine organische Kohlenstoff-basierte Schicht: B) Exemplary layer formulation for an organic carbon-based layer:

  • – Ionisierungsgas: Stickstoff (~1500 l/h) - Ionizing gas: nitrogen (~ 1500 l / h)
  • – Precursor: Acetylen (~38 l/h), 1-Punkt-Einspeisung Precursor: acetylene (~ 38 l / h), 1-point feed
  • – Abstand Düsenausgang-Substrat: 5–10 mm - Distance nozzle exit substrate: 5-10 mm
  • – Flächige (Mäanderförmige) Beschichtung mit Spurabstand: 1 4 mm (je Schichtdicke) - Surface (meandering) coating with track pitch: 1 4 mm (per layer thickness)
  • – Jetgeschwindigkeit: 5–10 m/min (je Schichtdicke) Jet speed: 5-10 m / min (per layer thickness)
  • – Optional: Temperung z.B. bei 200 °C für 1,5 h zur Verbesserung der Schichthaftung/Soforteinsatz. - Optional: tempering e.g. at 200 ° C for 1.5 h to improve the layer adhesion / immediate use.

C) Exemplarische Schichtrezeptur für Siloxan-basierte Schicht: C) Exemplary layer formulation for siloxane-based layer:

  • – Ionisierungsgas: Druckluft (~1500 l/h) - Ionizing gas: compressed air (~ 1500 l / h)
  • – Precursor: Hexamethyldisiloxan (~30 g/h), 1-Punkt-Einspeisung Precursor: hexamethyldisiloxane (~ 30 g / h), 1-point feed
  • – Abstand Düsenausgang-Substrat: 5–10 mm; - nozzle exit substrate distance: 5-10 mm;
  • – Flächige (Mäanderförmige) Beschichtung mit Spurabstand: 1–4 mm (je Schichtdicke) - Surface (meandering) coating with track pitch: 1-4 mm (per layer thickness)
  • – Jetgeschwindigkeit: 20–80 m/min (je Schichtdicke) Jet speed: 20-80 m / min (per layer thickness)
  • – Optional: Temperung z.B. bei 200 °C für 1,5 h zur Verbesserung der Schichthaftung/Soforteinsatz. - Optional: tempering e.g. at 200 ° C for 1.5 h to improve the layer adhesion / immediate use.

Claims (32)

Formkörper mit einer antiabrasiven Antihaftbeschichtung gegenüber Hotmeltklebstoffen und/oder Dispersionsklebstoffen herstellbar durch Behandeln des unbeschichteten Formkörpers mit einem Plasma in einem Plasmabehandlungsgerät aufweisend eine Wolfram-Kupfer-Freistrahldüse, mit einem Durchmesser von ~4mm, mit einer gepulsten Wechselstrom-Lichtbogenentladung in einem Zielkorridor mit einer Wirkleistung von ~300 W bei einer Effektivspannung von ~1 kV und einem Effektivstrom 0,3 A mit ~2 Pulsen pro Periode bei einer Spitzenspannung von ~3,8 kV und einer Pulsbreite von ~1,4 µs mit einer toleranten Abweichung von +/–25 % und einer Plasma-Spannung von 280 V mit einer Plasma-Frequenz von 21 kHz und einer Plasmazyklenzeit von 10–20 % in Gegenwart eines organischen oder silicium-organischen Precursors ausgewählt aus einer Gruppe umfassend kurzkettige Kohlenwasserstoffe mit 1 bis 10 Kohlenstoffatomen und Polysiloxane in Gegenwart eines Prozess- und/oder Ionisierungsgases.  Shaped body with an antiabrasive non-stick coating against hot melt adhesives and / or dispersion adhesives producible by Treating the uncoated molded product with a plasma in a plasma treatment apparatus comprising a tungsten-copper free jet nozzle, with a diameter of ~ 4mm, with a pulsed AC arc discharge in a target corridor with an active power of ~ 300 W at an effective voltage of ~ 1 kV and a RMS current 0.3 A with ~ 2 pulses per period with a peak voltage of ~ 3.8 kV and a pulse width of ~ 1.4 μs with a tolerant deviation of +/- 25% and a plasma voltage of 280 V with a plasma Frequency of 21 kHz and a plasma cycle time of 10-20% in the presence of an organic or silicon-organic precursor selected from a group comprising short-chain hydrocarbons having 1 to 10 carbon atoms and polysiloxanes in the presence of a process and / or ionizing gas. Formkörper nach Anspruch 1, dadurch gekennzeichnet, dass der Formkörper ein Werkzeug ist. Shaped body according to claim 1, characterized in that the shaped body is a tool. Formkörper nach Anspruch 2, dadurch gekennzeichnet, dass das Werkzeug eine Abdeckungsvorrichtung oder ein Nähmesser ist. Shaped body according to claim 2, characterized in that the tool is a cover device or a sewing knife. Formkörper nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Plasma ein Niederdruckplasma oder ein Atmosphärendruckplasma ist oder die Behandlung mit einer Plasma-unterstützten chemischen Gasphasenabscheidung erfolgt. Shaped body according to one of claims 1 to 3, characterized in that the plasma is a low-pressure plasma or an atmospheric pressure plasma or the treatment is carried out with a plasma-assisted chemical vapor deposition. Formkörper nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der organische Precursor ein kurzkettiger gesättigter oder ungesättigter aliphatischer Kohlenwasserstoff-Precursor ist. Shaped body according to one of claims 1 to 4, characterized in that the organic precursor is a short-chain saturated or unsaturated aliphatic hydrocarbon precursor. Formkörper nach Anspruch 5, dadurch gekennzeichnet, dass der Kohlenwasserstoff-Precursor ausgewählt ist aus der Gruppe umfassend Methan, Ethan und Ethin. Shaped body according to claim 5, characterized in that the hydrocarbon precursor is selected from the group comprising methane, ethane and ethyne. Formkörper nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der organische Precursor ein gesättigter oder ungesättigter Halogenkohlenwasserstoff ist. Shaped body according to one of claims 1 to 4, characterized in that the organic precursor is a saturated or unsaturated halogenated hydrocarbon. Formkörper nach Anspruch 7, dadurch gekennzeichnet, dass der Precursor ausgewählt ist aus der Gruppe umfassend Hexafluorethan, Octafluorcyclobutan und Octafluorcyclopenten. Shaped body according to claim 7, characterized in that the precursor is selected from the group comprising hexafluoroethane, octafluorocyclobutane and octafluorocyclopentene. Formkörper nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der silicium-organische Precursor ein Poly(dimethylsiloxan) ist. Shaped body according to one of claims 1 to 4, characterized in that the silicon-organic precursor is a poly (dimethylsiloxane). Formkörper nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der silicium-organische Precursor ausgewählt ist aus der Gruppe Hexamethylcyclotrisiloxan oder Hexamethyldisiloxan. Shaped body according to one of claims 1 to 4, characterized in that the silicon-organic precursor is selected from the group hexamethylcyclotrisiloxane or hexamethyldisiloxane. Formkörper nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Ionisierungsgas ausgewählt ist aus der Gruppe umfassend Sauerstoff, Stickstoff sowie Gasgemische und Edelgase. Shaped body according to one of claims 1 to 10, characterized in that the ionizing gas is selected from the group comprising oxygen, nitrogen and gas mixtures and noble gases. Formkörper nach Anspruch 11, dadurch gekennzeichnet, dass das Gasgemisch ausgewählt ist aus der Gruppe umfassend Luft, Druckluft und Formiergas. Shaped body according to claim 11, characterized in that the gas mixture is selected from the group comprising air, compressed air and forming gas. Formkörper nach Anspruch 11, dadurch gekennzeichnet, dass das Edelgas Argon ist. Shaped body according to claim 11, characterized in that the noble gas is argon. Formkörper nach Anspruch 1 und 11, dadurch gekennzeichnet, dass das Ionisierungsgas Stickstoff ist und mit einer Rate von ~1500 l/h in den Plasmaraum eingespeist wird und der Precursor Ethin ist, das mit einer Rate von ~38 l/h in den Plasmaraum eingespeist wird, wobei der Abstand vom Düsenausgang zum Substrat in einem Bereich von 5 bis 10 mm liegt und eine flächige, mäanderförmige Beschichtung mit einer Schichtdicke in einem Bereich von 1 bis 4 mm bei einer Jetgeschwindigkeit in einem Bereich von 5 bis 10 m/min erfolgt. Shaped body according to claim 1 and 11, characterized in that the ionizing gas is nitrogen and is fed into the plasma chamber at a rate of ~ 1500 l / h and the precursor is ethyne, which is fed into the plasma chamber at a rate of ~ 38 l / h is, wherein the distance from the nozzle exit to the substrate in a range of 5 to 10 mm and a flat, meandering coating having a layer thickness in a range of 1 to 4 mm at a jet speed in a range of 5 to 10 m / min. Formkörper nach einem der Ansprüche 1 und 12, dadurch gekennzeichnet, dass das Ionisierungsgas Druckluft ist und mit einer Rate von ~1500 l/h in den Plasmaraum eigespeist wird und der Precursor Hexamethyldisiloxan ist, das mit einer Rate von ~30 g/h in den Plasmaraum eingespeist wird, wobei der Abstand vom Düsenausgang zum Substrat in einem Bereich von 5 bis 10 mm liegt und eine flächige, mäanderförmige Beschichtung mit einer Schichtdicke in einem Bereich von 1 bis 4 mm bei einer Jetgeschwindigkeit in einem Bereich von 20 bis 80 m/min erfolgt. Shaped body according to one of claims 1 and 12, characterized in that the ionizing gas is compressed air and is fed into the plasma chamber at a rate of ~ 1500 l / h and the precursor is hexamethyldisiloxane, which is introduced at a rate of ~30 g / h into the plasma space Plasma space is fed, wherein the distance from the nozzle exit to the substrate in a range of 5 to 10 mm and a flat, meandering coating with a layer thickness in a range of 1 to 4 mm at a jet speed in a range of 20 to 80 m / min he follows. Formkörper nach Anspruch 1, dadurch gekennzeichnet, dass in einem weiteren Reaktionsschritt eine Temperung bei 200 °C über einen Zeitraum von 1,5 h erfolgt. Shaped body according to claim 1, characterized in that in a further reaction step, a heat treatment at 200 ° C over a period of 1.5 h. Verfahren zur Herstellung eines Formkörpers mit einer anti-abrasiven Antihaftbeschichtung gegenüber Hotmeltklebstoffen und/oder Dispersionsklebstoffen nach einem der Ansprüche 1 bis 16, umfassend folgende Verfahrensschritte Behandeln des unbeschichteten Formkörpers mit einem Plasma in einem Plasmabehandlungsgerät aufweisend eine Wolfram-Kupfer-Freistrahldüse, mit einem Durchmesser von ~4mm mit einer gepulsten Wechselstrom-Lichtbogenentladung) in einem Zielkorridor mit einer Wirkleistung von ~300 W bei einer Effektivspannung von ~1 kV und einem Effektivstrom 0,3 A mit ~2 Pulsen pro Periode bei einer Spitzenspannung von ~3,8 kV und einer Pulsbreite von ~1,4 µs mit einer toleranten Abweichung von +/–25 % und einer Plasma-Spannung von 280 V mit einer Plasma-Frequenz von 21 kHz und einer Plasmazyklenzeit von 10–20 % in Gegenwart eines organischen oder silicium-organischen Precursors ausgewählt aus einer Gruppe umfassend kurzkettige Kohlenwasserstoffe mit 1 bis 10 Kohlenstoffatomen und Polysiloxane in Gegenwart eines Prozess- und/oder Ionisierungsgases.  A process for producing a shaped article having an anti-abrasive non-stick coating against hot melt adhesives and / or dispersion adhesives according to one of claims 1 to 16, comprising the following method steps treating the uncoated molded article with a plasma in a plasma treatment apparatus comprising a tungsten-copper free jet nozzle having a diameter of ~ 4mm with a pulsed AC arc discharge) in a target corridor with an active power of ~ 300W at an RMS voltage of ~ 1kV and an RMS current of 0.3A with ~ 2 pulses per period at a peak voltage of ~ 3.8kV and one Pulse width of ~ 1.4 μs with a tolerant deviation of +/- 25% and a plasma voltage of 280 V with a plasma frequency of 21 kHz and a plasma cycle time of 10-20% in the presence of an organic or silicon-organic precursor selected from a group comprising short-chain hydrocarbons having 1 to 10 carbon atoms and polysiloxanes in the presence of a process and / or ionizing gas. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass das im Verfahren eingesetzte Plasma ein Niederdruckplasma oder ein Atmosphärendruckplasma ist oder die Beschichtung mit einer Plasma-unterstützten chemischen Gasphasenabscheidung erfolgt. A method according to claim 17, characterized in that the plasma used in the method is a low pressure plasma or an atmospheric pressure plasma or the coating is carried out with a plasma-assisted chemical vapor deposition. Verfahren nach einem der Ansprüche 17 oder 18, dadurch gekennzeichnet, dass der organische Precursor ein kurzkettiger gesättigter oder ungesättigter aliphatischer Kohlenwasserstoff-Precursor mit 1 bis 10 Kohlenstoffatomen ist. Method according to one of claims 17 or 18, characterized in that the organic precursor is a short-chain saturated or unsaturated aliphatic hydrocarbon precursor having 1 to 10 carbon atoms. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass der Kohlenwasserstoff-Precursor ausgewählt ist aus der Gruppe umfassend Methan, Ethan und Ethin. A method according to claim 19, characterized in that the hydrocarbon precursor is selected from the group comprising methane, ethane and ethyne. Verfahren nach einem der Ansprüche 17 oder 18, dadurch gekennzeichnet, dass der organische Precursor ein gesättigter oder ungesättigter Halogenkohlenwasserstoff ist. Method according to one of claims 17 or 18, characterized in that the organic precursor is a saturated or unsaturated halogenated hydrocarbon. Verfahren nach Anspruch 21, dadurch gekennzeichnet, dass der Precursor ausgewählt ist aus der Gruppe umfassend Hexafluorethan, Octafluorcyclobutan und Octafluorcyclopenten. A method according to claim 21, characterized in that the precursor is selected from the group comprising hexafluoroethane, octafluorocyclobutane and octafluorocyclopentene. Verfahren nach einem der Ansprüche 17 oder 18, dadurch gekennzeichnet, dass der silicium-organische Precursor ein Poly(dimethylsiloxan) ist. Method according to one of claims 17 or 18, characterized in that the silicon-organic precursor is a poly (dimethylsiloxane). Verfahren nach Anspruch 17 oder 18, dadurch gekennzeichnet, dass der silicium-organische Precursor Hexamethylcyclotrisiloxan oder Hexamethyldisiloxan ist. A method according to claim 17 or 18, characterized in that the silicon-organic precursor is hexamethylcyclotrisiloxane or hexamethyldisiloxane. Verfahren nach einem der Ansprüche 17 bis 24, dadurch gekennzeichnet, dass das Ionisierungsgas ausgewählt ist aus der Gruppe umfassend Sauerstoff, Stickstoff sowie Gasgemische und Edelgase. Method according to one of claims 17 to 24, characterized in that the ionizing gas is selected from the group comprising oxygen, nitrogen and gas mixtures and noble gases. Verfahren nach Anspruch 25, dadurch gekennzeichnet, dass das Gasgemisch ausgewählt ist aus der Gruppe umfassend Luft, Druckluft und Formiergas. A method according to claim 25, characterized in that the gas mixture is selected from the group comprising air, compressed air and forming gas. Verfahren nach Anspruch 25, dadurch gekennzeichnet, dass das Edelgas Argon ist. A method according to claim 25, characterized in that the noble gas is argon. Verfahren nach Anspruch 17, 20 und 25, dadurch gekennzeichnet, dass das Ionisierungsgas Stickstoff ist und mit einer Rate von ~1500 l/h in den Plasmaraum eigespeist wird und der Precursor Ethin ist, das mit einer Rate von ~38 l/h in den Plasmaraum eingespeist wird, wobei der Abstand vom Düsenausgang zum Substrat in einem Bereich von 5 bis 10 mm liegt und eine flächige, mäanderförmige Beschichtung mit einer Schichtdicke in einem Bereich von 1 bis 4 mm bei einer Jetgeschwindigkeit in einem Bereich von 5 bis 10 m/min erfolgt. A method according to claim 17, 20 and 25, characterized in that the ionizing gas is nitrogen and is fed into the plasma chamber at a rate of ~ 1500 l / h and the precursor is ethyne, which at a rate of ~ 38 l / h in the Plasma space is fed, wherein the distance from the nozzle exit to the substrate in a range of 5 to 10 mm and a flat, meandering coating with a layer thickness in a range of 1 to 4 mm at a jet speed in a range of 5 to 10 m / min he follows. Verfahren nach Anspruch 17, 24 und 26, dadurch gekennzeichnet, dass das Ionisierungsgas Druckluft ist und mit einer Rate von ~1500 l/h in den Plasmaraum eingespeist wird und der Precursor Hexamethyldisiloxan ist, das mit einer Rate von ~30 g/h in den Plasmaraum eingespeist wird, wobei der Abstand vom Düsenausgang zum Substrat in einem Bereich von 5 bis 10 mm liegt und eine flächige, mäanderförmige Beschichtung mit einer Schichtdicke in einem Bereich von 1 bis 4 mm bei einer Jetgeschwindigkeit in einem Bereich von 20 bis 80 m/min erfolgt. A method according to claim 17, 24 and 26, characterized in that the ionizing gas is compressed air and is fed into the plasma chamber at a rate of ~ 1500 l / h and the precursor is hexamethyldisiloxane which is introduced at a rate of ~30 g / h into the plasma space Plasma space is fed, wherein the distance from the nozzle exit to the substrate in a range of 5 to 10 mm and a flat, meandering coating with a layer thickness in a range of 1 to 4 mm at a jet speed in a range of 20 to 80 m / min he follows. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass in einem weiteren Reaktionsschritt eine Temperung bei 200 °C über einen Zeitraum von 1,5 h erfolgt. A method according to claim 17, characterized in that in a further reaction step, a heat treatment at 200 ° C over a period of 1.5 h. Presskaschierwerkzeug oder Nähmaschine enthaltend einen Formkörper nach einem der Ansprüche 1 bis 16.  Press laminating tool or sewing machine containing a shaped body according to one of claims 1 to 16. Verwendung eines Formkörpers nach einem der Ansprüche 1 bis 16 als Mittel zur Presskaschierung oder zur Anfertigung von Nahtverbindungen.  Use of a shaped article according to one of Claims 1 to 16 as a means for press lamination or for the production of seam connections.
DE102015115167.7A 2015-09-09 2015-09-09 Shaped body comprising a functional layer, process for its preparation and its use Active DE102015115167B4 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102015115167.7A DE102015115167B4 (en) 2015-09-09 2015-09-09 Shaped body comprising a functional layer, process for its preparation and its use
CN201610816001.2A CN107043925B (en) 2015-09-09 2016-09-09 Molded article having functional layer, method for producing same, and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015115167.7A DE102015115167B4 (en) 2015-09-09 2015-09-09 Shaped body comprising a functional layer, process for its preparation and its use

Publications (2)

Publication Number Publication Date
DE102015115167A1 DE102015115167A1 (en) 2017-03-09
DE102015115167B4 true DE102015115167B4 (en) 2017-03-30

Family

ID=58054934

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102015115167.7A Active DE102015115167B4 (en) 2015-09-09 2015-09-09 Shaped body comprising a functional layer, process for its preparation and its use

Country Status (2)

Country Link
CN (1) CN107043925B (en)
DE (1) DE102015115167B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016226191A1 (en) * 2016-12-23 2018-06-28 Hilberg & Partner Gmbh Method and device for producing a substrate coated with a barrier layer and a protective layer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11432869B2 (en) * 2017-09-22 2022-09-06 Covidien Lp Method for coating electrosurgical tissue sealing device with non-stick coating

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4216999A1 (en) 1992-05-22 1993-11-25 Fraunhofer Ges Forschung Process for the surface coating of silver objects
DE19543133A1 (en) 1995-11-18 1997-05-22 Fraunhofer Ges Forschung Highly hydrophobic films plasma polymerisation
DE19748240A1 (en) 1997-10-31 1999-05-06 Fraunhofer Ges Forschung Process for the corrosion-resistant coating of metal substrates by means of plasma polymerization
US20020100420A1 (en) 1997-06-16 2002-08-01 Kurt Burger Method and device for vacuum-coating a substrate
EP1506063B1 (en) 2002-05-17 2006-12-27 Surface Innovations Limited Atomisation of a precursor into an excitation medium for coating a remote substrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW347363B (en) * 1996-11-12 1998-12-11 Bae-Hyeock Chun Method for improving demolding effect of a mold by a low temperature plasma process
US6110544A (en) * 1997-06-26 2000-08-29 General Electric Company Protective coating by high rate arc plasma deposition
DE102014100385A1 (en) * 2014-01-15 2015-07-16 Plasma Innovations GmbH Plasma coating method for depositing a functional layer and separator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4216999A1 (en) 1992-05-22 1993-11-25 Fraunhofer Ges Forschung Process for the surface coating of silver objects
DE19543133A1 (en) 1995-11-18 1997-05-22 Fraunhofer Ges Forschung Highly hydrophobic films plasma polymerisation
US20020100420A1 (en) 1997-06-16 2002-08-01 Kurt Burger Method and device for vacuum-coating a substrate
DE19748240A1 (en) 1997-10-31 1999-05-06 Fraunhofer Ges Forschung Process for the corrosion-resistant coating of metal substrates by means of plasma polymerization
EP1506063B1 (en) 2002-05-17 2006-12-27 Surface Innovations Limited Atomisation of a precursor into an excitation medium for coating a remote substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016226191A1 (en) * 2016-12-23 2018-06-28 Hilberg & Partner Gmbh Method and device for producing a substrate coated with a barrier layer and a protective layer
DE102016226191B4 (en) 2016-12-23 2018-12-13 HS-Group GmbH Method and device for producing a substrate coated with a barrier layer and a protective layer

Also Published As

Publication number Publication date
CN107043925A (en) 2017-08-15
CN107043925B (en) 2021-08-27
DE102015115167A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
EP1894449B1 (en) Method for treating plasma under continuous atmospheric pressure of work pieces, in particular, material plates or strips
EP3094761B1 (en) Plasma coating method for depositing a functional layer, and depositing device
US8865264B2 (en) Plasma coatings and method of making the same
EP1132195A2 (en) Surface treatment or coating of strips using an atmospheric, non-transferred arc plasmatron
EP2041332A1 (en) Method and device for plasma-assisted chemical vapour deposition on the inner wall of a hollow body
EP2054166B1 (en) Method and device for producing a coating
EP1132492A2 (en) Web-shaped plasma-processed materials
WO1999014787A2 (en) Method for producing plasma by microwave irradiation
DE102015115167B4 (en) Shaped body comprising a functional layer, process for its preparation and its use
DE19953667B4 (en) Layer with selectively functionalized surface, process for the preparation and their use
DE102008064134B4 (en) Process for coating objects by means of a low-pressure plasma
DE10223865B4 (en) Process for the plasma coating of workpieces
DE10115241A1 (en) Plasma torch for treating surfaces at atmospheric pressure includes a jet pump within torch to provide low pressure region
EP1273676A2 (en) Process for producing gas- and liquid-impermeable layers on a substrate
Liu et al. Plasma enhanced CVD of fluorocarbon films by low-pressure dielectric barrier discharge
EP0815283A1 (en) Plasma chamber
DE19851579B4 (en) Metallised plastic and process for its production
DE102018202438B4 (en) Process for connecting a carrier material to another material
WO2002062115A1 (en) Plasma installation and method for producing a functional coating
DE102016204447A1 (en) Metallic component with friction-reducing surface coating, method for the production and apparatus for carrying out the method
Sentek et al. Organo-silicon coating deposition on polyethylene films by pulsed dielectric-barrier discharges
WO2012164050A1 (en) Apparatus and method for coating and/or for removing material by means of pecvd/cde
PL194799B1 (en) Method of depositing on surfaces of dielectric materials a layer containing siliceous compounds

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final