EP1131549B1 - METHOD FOR ADAPTING THE NOx CONCENTRATION OF AN INTERNAL COMBUSTION ENGINE OPERATED WITH AN EXCESS OF AIR - Google Patents
METHOD FOR ADAPTING THE NOx CONCENTRATION OF AN INTERNAL COMBUSTION ENGINE OPERATED WITH AN EXCESS OF AIR Download PDFInfo
- Publication number
- EP1131549B1 EP1131549B1 EP99962044A EP99962044A EP1131549B1 EP 1131549 B1 EP1131549 B1 EP 1131549B1 EP 99962044 A EP99962044 A EP 99962044A EP 99962044 A EP99962044 A EP 99962044A EP 1131549 B1 EP1131549 B1 EP 1131549B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- nox
- nox concentration
- phase
- lean burn
- internal combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0842—Nitrogen oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
- F02D41/0275—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D41/1402—Adaptive control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/146—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
- F02D41/1461—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
- F02D41/1462—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine with determination means using an estimation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/146—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
- F02D41/1463—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
Definitions
- the invention relates to a method for adapting a NOx raw concentration value of an excess air Internal combustion engine according to the preamble of claim 1.
- NOx storage reduction catalysts hereinafter referred to simply as NOX storage catalysts. Due to their coating, these NOx storage catalysts are able, during a storage phase, also referred to as a loading phase, to adsorb NOx compounds from the exhaust gas which are produced during lean combustion. During a regeneration phase, the adsorbed or stored NOx compounds are converted into harmless compounds with the addition of a reducing agent.
- a reducing agent for lean-burn gasoline engines CO, H 2 and HC (hydrocarbons) can be used. These are generated by short-term operation of the internal combustion engine with a rich mixture and provided to the NOx storage catalytic converter as exhaust gas components, whereby the stored NOx compounds are degraded in the catalyst.
- the adsorption efficiency of such a NOx storage catalyst drops with higher NOx loading level.
- degree of loading is the quotient of the current, absolute NOx load and the maximum NOx storage capacity.
- the calculated degree of loading can be used to control the lean and Grease cycles of the internal combustion engine are used. It It can be seen that to determine the degree of loading a as accurate as possible knowledge of both the current load and also the maximum storage capacity is necessary.
- the maximum storage capacity can be on the engine test bench by measuring the amount of NOx stored per unit time until to reach a saturation state, while saturating the NOx storage catalyst in the motor vehicle for emission reasons is not possible. Indeed subject to this storage capacity an aging process, so that it is necessary to adapt them over the vehicle running distance. For this one needs either the value for the momentary Loading and / or a very accurate value for the NOx raw emissions the internal combustion engine. As raw emissions are generally referred to the emission without exhaust aftertreatment.
- NOx raw concentration values are the measurement of a reference internal combustion engine on a test bench and the filing of the data in suitable maps. The reading out of these maps provides only meaningful results, if the NOx raw concentration values of various internal combustion engines a series does not fluctuate too much. Exceed the Fluctuations in NOx raw concentration levels to a certain extent, is an adaptation of the NOx raw concentration values of the internal combustion engine necessary in the vehicle.
- the invention has for its object to provide a method with the NOx raw concentration values of an internal combustion engine of the type mentioned in a simple way can be adapted.
- the operating point dependent Values for the raw NOx concentration of the internal combustion engine read out of a map and the adaptation the concentration variations are based on the output signal one downstream of the NOx storage catalyst arranged NOx sensor either by modification of a Reduction factor used to calculate the corrected NOx raw concentration from the NOx raw concentration values, or by direct correction of the read out of the map Values for the NOx raw concentration with a raw concentration correction factor.
- Fig. 1 is a lean-burn engine in the form of a block diagram with a NOx exhaust aftertreatment system shown used in the inventive method becomes. Only the components are shown, which are for Understanding the invention are necessary.
- the lean-burn engine 10 is via an intake passage 11 supplied an air / fuel mixture.
- intake passage 11th are seen in the flow direction of the sucked air in succession a load sensor in the form of an air mass meter 12, a throttle block 13 with a throttle valve 14 and a not shown throttle valve sensor for detection the opening angle of the throttle valve 14 and according to the Number of cylinders a set injectors 15 provided by which only one is shown.
- the inventive method but is also applicable to a system in which the fuel injected directly into the respective cylinder (Direct injection).
- the internal combustion engine 10 On the output side, the internal combustion engine 10 with an exhaust passage 16 connected.
- this exhaust passage 16 is an exhaust aftertreatment system intended for lean exhaust gas.
- she consists arranged from a near the internal combustion engine 10 Pre-catalyst 17 (3-way catalyst) and one in the flow direction of the exhaust gas downstream of the primary catalytic converter 17 NOx storage catalyst 18.
- the sensor system for the exhaust aftertreatment system includes a Sauerstoffmeßauf disturbing 19 upstream of the pre-catalyst 17, a temperature sensor 20 in the connecting pipe between the pre-catalyst 17 and NOx storage catalyst 18 near the inlet region thereof and a further exhaust gas sensor 21 downstream of the NOx storage catalyst 18th
- the temperature sensor 20 which detects the exhaust gas temperature and from whose signal the temperature of the NOx storage catalytic converter 18 can be calculated by means of a temperature model
- such a temperature sensor 201 is shown with a dashed line, which measures the monolith temperature of the NOx storage catalyst 18 directly.
- the calculation or measurement of the temperature of the NOx storage catalytic converter 18 is optimized for consumption and emissions Control of the system required. Based on this measured, calculated or modeled temperature signal also become Katalysatorcream- or catalyst protection measures initiated.
- Sauerstoffmeßauf choir 19 is preferably a broadband lambda probe used, which depends on the oxygen content in the exhaust a steady, e.g. linear output signal emits.
- This function takes over a known lambda control device 22, preferably in a the operation of the internal combustion engine 10 controlling Control device 23 is integrated.
- Such electronic control devices include a microprocessor and in addition to the fuel injection and the ignition a lot more Control tasks, i.a. also the control of the exhaust aftertreatment system take over, are known per se, so that in the following only on the in connection with the invention relevant structure and its functioning received becomes.
- the control device 23 is provided with a Memory device 24 is connected, in the u.a. various Characteristic curves or maps KF1, KF2, as well as correction factors RFKF and RKKF are stored, their respective meaning the description of the following figures even closer is explained.
- a temperature sensor 29 detects a temperature of the internal combustion engine corresponding signal, for example via a Measurement of the coolant temperature.
- the speed of the internal combustion engine is using a mark the crankshaft or a sensor wheel connected to it Detected sensors 30.
- the output of the air mass meter 12 and the signals the throttle position sensor, the Sauerstoffmeßaufsacrificings 19, the exhaust gas probe 21, the temperature sensors 20, 29, and the Speed sensor 30 are via corresponding connecting lines the control device 23 is supplied.
- Control device 23 For controlling and regulating the internal combustion engine 10 is the Control device 23 except with an ignition device 27th for the air-fuel mixture over a only schematically illustrated Data and control line 28 with additional, not explicitly shown sensors and actuators connected.
- an exhaust gas sensor Downstream of the NOx storage catalyst 18 is in the exhaust passage an exhaust gas sensor arranged in the form of a NOx sensor 21, its output signal for controlling memory regeneration and for adapting model sizes, e.g. the oxygen- or NOx storage capacity of the NOx storage catalyst 18, and for detecting the aging state of the NOx storage catalyst is used. It also comes with the output signal of the NOx sensor 21, if necessary, the raw NOx emission adapted to the internal combustion engine.
- control device 23 by processing stored control routines et al the load state of the internal combustion engine detected, the NOx raw emissions determined and adapted the internal combustion engine, and determines the degree of loading of the NOx storage catalytic converter.
- the most accurate knowledge of the corrected NOx raw concentration KK is for catalyst control via the calculation the degree of loading and the aging adaptation of Storage capacity needed.
- FIG. 2 shows a diagram in which the abovementioned proportions that of the internal combustion engine during the lean phase emitted raw NOx emission are registered.
- the lean phase is over and a regeneration phase for the NOx storage catalyst 18 is requested.
- the hatched Areas characterize the individual quantities of NOx stationary Sales volume SU, storage volume SM and breakthrough volume DB.
- KK (n-1) is the corrected raw NOx concentration before the current adaptation process
- KK (n) is the corrected NOx raw concentration after the current one Termed adaptation.
- the associated values for the stationary sales concentration SK (n-1) for an uncorrected reduction bomb and at a corrected reduction factor SK (n) are also drawn.
- FIG. 3 is a first block diagram Embodiment for the adaptation of the NOx concentration fluctuations by modification of the reduction factor RF, the for calculating the corrected raw NOx concentration from the NOx raw concentration is shown.
- the corrected NOx raw concentration KK is doing with the help of the signal of downstream of the NOx storage catalyst arranged NOx sensor 21 determined and adapted if necessary.
- the adaptation is during a cycle consisting of lean and Fat phase performed as follows. Be first Breakthrough amount DB and the storage amount SM determined.
- the Breakthrough amount DB is measured in the lean phase by measuring the After-Kat-NOx concentration with the NOx sensor 21 and its Integration detected over the lean phase duration.
- the amount of memory SM in the lean phase may be in the lean phase following Fat phase can be calculated. For this purpose it is assumed the additional, not to stoichiometric combustion required fuel mass flow is used to reduce the stored NOx mass and to exhaust the stored Used oxygen.
- the NOx raw concentration stored in the map KF1 RK and the filed in a map KF2 Reduction factor RF becomes the integral of the corrected NOx concentration calculated over the lean phase IKK.
- the NOx raw concentration For example, RK is dependent on some or all the following parameters: speed, load, Ignition angle, air ratio, exhaust gas recirculation rate, intake air temperature, Coolant temperature.
- the Correction factor RFKF for the reduction factor RF with which the Reduction factor RF is multiplied, in a suitable manner reduced or enlarged. He is downsized, though IKK ⁇ DB + SM is and it is increased if IKK> DB + SM.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Gas After Treatment (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Description
Verfahren zum Adaptieren eines NOx-Rohkonzentrationswertes einer mit Luftüberschuß arbeitenden BrennkraftmaschineMethod for adapting a NOx raw concentration value a working with excess air internal combustion engine
Die Erfindung betrifft ein Verfahren zum Adaptieren eines
NOx- Rohkonzentrationswertes einer mit Luftüberschuß arbeitenden
Brennkraftmaschine gemäß dem Oberbegriff des Patentanspruches
1.The invention relates to a method for adapting a
NOx raw concentration value of an excess air
Internal combustion engine according to the preamble of
Um den Kraftstoffverbrauch von Kraftfahrzeugen mit ottomotorischem Antrieb weiter zu reduzieren, kommen immer häufiger Brennkraftmaschinen zum Einsatz, die zumindest in ausgewählten Betriebsbereichen mit magerem Gemisch betrieben werden.To the fuel consumption of motor vehicles with Otto engine Drive to reduce further, come more often Internal combustion engines are used, at least in selected Operating areas are operated with a lean mixture.
Zur Erfüllung der geforderten Abgasemissionsgrenzwerte ist bei solchen Brennkraftmaschinen eine spezielle Abgasnachbehandlung notwendig. Dazu werden NOx-Speicherreduktionskatalysatoren, im folgenden vereinfacht als NOX-Speicherkatalysatoren bezeichnet, verwendet. Diese NOx-Speicherkatalysatoren sind aufgrund ihrer Beschichtung in der Lage, während einer Speicherphase, auch als Beladungsphase bezeichnet, NOx-Verbindungen aus dem Abgas zu adsorbieren, die bei magerer Verbrennung entstehen. Während einer Regenerationsphase werden die adsorbierten bzw. gespeicherten NOx-Verbindungen unter Zugabe eines Reduktionsmittels in unschädliche Verbindungen umgewandelt. Als Reduktionsmittel für magerbetriebene Otto-Brennkraftmaschinen können CO, H2 und HC (Kohlenwasserstoffe) verwendet werden. Diese werden durch kurzzeitigen Betrieb der Brennkraftmaschine mit einem fetten Gemisch erzeugt und dem NOx-Speicherkataly-sator als Abgaskomponenten zur Verfügung gestellt, wodurch die gespeicherten NOx-Verbindungen im Katalysator abgebaut werden.In order to meet the required exhaust emission limit values, a special exhaust aftertreatment is necessary in such internal combustion engines. For this purpose, NOx storage reduction catalysts, hereinafter referred to simply as NOX storage catalysts, are used. Due to their coating, these NOx storage catalysts are able, during a storage phase, also referred to as a loading phase, to adsorb NOx compounds from the exhaust gas which are produced during lean combustion. During a regeneration phase, the adsorbed or stored NOx compounds are converted into harmless compounds with the addition of a reducing agent. As a reducing agent for lean-burn gasoline engines CO, H 2 and HC (hydrocarbons) can be used. These are generated by short-term operation of the internal combustion engine with a rich mixture and provided to the NOx storage catalytic converter as exhaust gas components, whereby the stored NOx compounds are degraded in the catalyst.
Der Adsorptions-Wirkungsgrad eines solchen NOx-Speicherkatalysators fällt mit höherem NOx-Beladungsgrad ab. Als Beladungsgrad ist der Quotient aus der momentanen, absoluten NOx-Beladung und der maximalen NOx-Speicherkapazität bezeichnet. Der errechnete Beladungsgrad kann zur Steuerung der Magerund Fettzyklen der Brennkraftmaschine herangezogen werden. Es ist ersichtlich, daß zur Ermittlung des Beladungsgrades eine möglichst genaue Kenntnis sowohl der momentanen Beladung als auch der maximalen Speicherkapazität nötig ist.The adsorption efficiency of such a NOx storage catalyst drops with higher NOx loading level. As degree of loading is the quotient of the current, absolute NOx load and the maximum NOx storage capacity. The calculated degree of loading can be used to control the lean and Grease cycles of the internal combustion engine are used. It It can be seen that to determine the degree of loading a as accurate as possible knowledge of both the current load and also the maximum storage capacity is necessary.
Die maximale Speicherkapazität kann auf dem Motorprüfstand durch Messung der eingelagerten NOx-Menge pro Zeiteinheit bis zum Erreichen eines Sättigungszustandes ermittelt werden, während das Sättigen des NOx-Speicherkatalysators im Kraftfahrzeug aus Emissionsgründen nicht möglich ist. Allerdings unterliegt diese Speicherfähigkeit einem Alterungsprozeß, so daß es nötig ist, sie über der Fahrzeuglaufstrecke zu adaptieren. Hierzu benötigt man entweder den Wert für die momentane Beladung und/oder einen sehr genauen Wert für die NOx-Rohemission der Brennkraftmaschine. Als Rohemissionen werden dabei allgemein die Emission ohne Abgasnachbehandlung bezeichnet.The maximum storage capacity can be on the engine test bench by measuring the amount of NOx stored per unit time until to reach a saturation state, while saturating the NOx storage catalyst in the motor vehicle for emission reasons is not possible. Indeed subject to this storage capacity an aging process, so that it is necessary to adapt them over the vehicle running distance. For this one needs either the value for the momentary Loading and / or a very accurate value for the NOx raw emissions the internal combustion engine. As raw emissions are generally referred to the emission without exhaust aftertreatment.
Eine Möglichkeit der Ermittlung der NOx-Rohkonzentrationswerte ist das Vermessen einer Referenz-Brennkraftmaschine auf einem Prüfstand und die Ablage der Daten in geeigneten Kennfeldern. Das Auslesen dieser Kennfelder liefert allerdings nur dann sinnvolle Ergebnisse, wenn die NOx-Rohkonzentrationswerte verschiedener Brennkraftmaschinen einer Serie nicht allzu stark schwanken. Überschreiten die Schwankungen der NOx-Rohkonzentrationswerte ein gewisses Maß, ist eine Adaption der NOx-Rohkonzentrationswerte der Brennkraftmaschine im Kraftfahrzeug nötig.One way of determining the NOx raw concentration values is the measurement of a reference internal combustion engine on a test bench and the filing of the data in suitable maps. The reading out of these maps provides only meaningful results, if the NOx raw concentration values of various internal combustion engines a series does not fluctuate too much. Exceed the Fluctuations in NOx raw concentration levels to a certain extent, is an adaptation of the NOx raw concentration values of the internal combustion engine necessary in the vehicle.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren anzugeben, mit dem die NOx-Rohkonzentrationswerte einer Brennkraftmaschine der eingangs genannten Art auf einfache Weise adaptiert werden kann. The invention has for its object to provide a method with the NOx raw concentration values of an internal combustion engine of the type mentioned in a simple way can be adapted.
Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1
gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in
den Unteransprüchen angegeben.This object is achieved by the features of
Gemäß dem erfindungsgemäßen Verfahren werden die betriebspunktabhängigen Werte für die NOx-Rohkonzentration der Brennkraftmaschine aus einem Kennfeld ausgelesen und die Adaption der Konzentrationsschwankungen erfolgt auf der Basis des Ausgangssignals eines stromabwärts des NOx-Speicherkatalysators angeordneten NOx-Sensors entweder durch Modifikation eines Reduktionsfaktors, der zur Berechnung der korrigierten NOx-Rohkonzentration aus den NOx-Rohkonzentrationswerten dient, oder durch direkte Korrektur der aus dem Kennfeld ausgelesenen Werte für die NOx-Rohkonzentration mit einem Rohkonzentrationskorrekturfaktor.According to the method of the invention, the operating point dependent Values for the raw NOx concentration of the internal combustion engine read out of a map and the adaptation the concentration variations are based on the output signal one downstream of the NOx storage catalyst arranged NOx sensor either by modification of a Reduction factor used to calculate the corrected NOx raw concentration from the NOx raw concentration values, or by direct correction of the read out of the map Values for the NOx raw concentration with a raw concentration correction factor.
Die Erfindung wird nachfolgend unter Bezugnahme auf die Zeichnung näher erläutert. Es zeigen:
Figur 1- eine schematische Darstellung einer Mager-Brennkraftmaschine mit einem NOx-Speicherkatalysator,
- Figur 2
- ein Diagramm, das die während einer Magerphase der Brennkraftmaschine emitierte NOx-Menge und NOx-Konzentration zeigt,
- Figur 3
- eine Blockdarstellung zur Adaption der NOx-Rohkonzentrationswerte mittels eines Korrekturfaktors für den Reduktionsfaktor,
- Figur 4
- eine Blockdarstellung zur Adaption der NOx-Rohkonzentrationswerte mittels eines Korrekturfaktors für die NOx-Rohkonzentrationswerte und
- Figur 5
- ein Diagramm, das die Integrale der NOx-Konzentrationen zeigt.
- FIG. 1
- a schematic representation of a lean-burn engine with a NOx storage catalyst,
- FIG. 2
- a diagram showing the amount of NOx and NOx concentration emitted during a lean phase of the internal combustion engine,
- FIG. 3
- a block diagram for the adaptation of the NOx raw concentration values by means of a correction factor for the reduction factor,
- FIG. 4
- a block diagram for the adaptation of the NOx raw concentration values by means of a correction factor for the NOx Rohkonzentrationswerte and
- FIG. 5
- a diagram showing the integrals of the NOx concentrations.
Dabei wird für den Ausdruck NOx-Rohkonzentrationswert vereinfachend der Ausdruck NOx-Konzentration verwendet.At the same time, the expression NOx raw concentration value becomes simplistic the term NOx concentration is used.
In Fig. 1 ist in Form eines Blockschaltbildes eine Mager-Brennkraftmaschine mit einer NOx-Abgasnachbehandlungsanlage gezeigt, bei der das erfindungsgemäße Verfahren angewendet wird. Dabei sind nur die Komponenten dargestellt, die zum Verständnis der Erfindung nötig sind.In Fig. 1 is a lean-burn engine in the form of a block diagram with a NOx exhaust aftertreatment system shown used in the inventive method becomes. Only the components are shown, which are for Understanding the invention are necessary.
Der Mager-Brennkraftmaschine 10 wird über einen Ansaugkanal
11 ein Luft-/Kraftstoffgemisch zugeführt. Im Ansaugkanal 11
sind in Strömungsrichtung der angesaugten Luft gesehen nacheinander
ein Lastsensor in Form eines Luftmassenmessers 12,
ein Drosselklappenblock 13 mit einer Drosselklappe 14 und einem
nicht dargestellten Drosselklappensensor zur Erfassung
des Öffnungswinkels der Drosselklappe 14 und entsprechend der
Zylinderanzahl ein Satz Einspritzventile 15 vorgesehen, von
denen nur eines gezeigt ist. Das erfindungsgemäße Verfahren
ist aber auch bei einem System anwendbar, bei der der Kraftstoff
direkt in die jeweiligen Zylinder eingespritzt wird
(Direkteinspritzung).The lean-
Ausgangsseitig ist die Brennkraftmaschine 10 mit einem Abgaskanal
16 verbunden. In diesem Abgaskanal 16 ist eine Abgasnachbehandlungsanlage
für mageres Abgas vorgesehen. Sie besteht
aus einem nahe der Brennkraftmaschine 10 angeordneten
Vorkatalysator 17 (3-Wege-Katalysator) und einem in Strömungsrichtung
des Abgases dem Vorkatalysator 17 nachgeschalteten
NOx-Speicherkatalysator 18.On the output side, the
Die Sensorik für die Abgasnachbehandlungsanlage beinhaltet
einen Sauerstoffmeßaufnehmer 19 stromaufwärts des Vorkatalysators
17, einen Temperatursensor 20 im Verbindungsrohr zwischen
Vorkatalysator 17 und NOx-Speicherkatalysator 18 nahe
am Eintrittsbereich desselben und einen weiteren Abgassensor
21 stromabwärts des NOx-Speicherkatalysators 18.
Anstelle des Temperatursensors 20, der die Abgastemperatur
erfasst und aus dessen Signal mittels eines Temperaturmodells
die Temperatur des NOx-Speicherkatalysators 18 berechnet werden
kann, ist es auch möglich, die NOx-Speicherkatalysatortemperatur
unmittelbar zu messen. In der Figur 1 ist mit
strichlinierter Linie ein solcher Temperatursensor 201 eingezeichnet,
der die Monolithtemperatur des NOx-Speicherkatalysators
18 direkt mißt.The sensor system for the exhaust aftertreatment system includes a
Instead of the
Eine weitere Möglichkeit besteht darin, die Monolithtemperatur
des NOx-Speicherkatalysators 18 mittels eines Abgastemperaturmodells
zu berechnen, wobei als Eingangsgrößen für dieses
Modell einige oder alle der folgenden Parameter, wie
Drehzahl, Last, Zündwinkel, Luftzahl, Abgasrückführrate, Ansauglufttemperatur,
Kühlmitteltemperatur herangezogen werden.
Dadurch kann auf den Einsatz eines Temperatursensors 20 verzichtet
werden.Another possibility is the monolith temperature
the
Die Berechnung bzw. die Messung der Temperatur des NOx-Speicherkatalysators
18 ist zur verbrauchs- und emissionsoptimalen
Steuerung des Systems erforderlich. Basierend auf
diesem gemessenen, berechneten oder modellierten Temperatursignal
werden auch Katalysatorheiz- bzw. Katalysatorschutzmaßnahmen
eingeleitet.The calculation or measurement of the temperature of the NOx storage
Als Sauerstoffmeßaufnehmer 19 wird vorzugsweise eine Breitband-Lambdasonde
eingesetzt, welche in Abhängigkeit des Sauerstoffgehaltes
im Abgas ein stetiges, z.B. lineares Ausgangssignal
abgibt. Mit dem Signal dieser Breitband-Lambdasonde
wird die Luftzahl während des Magerbetriebes und während
der Regenerationsphase mit fettem Gemisch entsprechend
der Sollwertvorgaben eingeregelt. Diese Funktion übernimmt
eine an sich bekannte Lambdaregelungseinrichtung 22, die vorzugsweise
in eine den Betrieb der Brennkraftmaschine 10 steuernde
Steuerungseinrichtung 23 integriert ist.As
Solche elektronischen Steuerungseinrichtungen, die in der Regel
einen Mikroprozessor beinhalten und die neben der Kraftstoffeinspritzung
und der Zündung noch eine Vielzahl weiterer
Steuer- und Regelaufgaben, u.a. auch die Steuerung der Abgasnachbehandlungsanlage
übernehmen, sind an sich bekannt, so
daß im folgenden nur auf den im Zusammenhang mit der Erfindung
relevanten Aufbau und dessen Funktionsweise eingegangen
wird. Insbesondere ist die Steuerungseinrichtung 23 mit einer
Speichereinrichtung 24 verbunden, in dem u.a. verschiedene
Kennlinien bzw. Kennfelder KF1, KF2, sowie Korrekturfaktoren
RFKF und RKKF gespeichert sind, deren jeweilige Bedeutung anhand
der Beschreibung der nachfolgenden Figuren noch näher
erläutert wird.Such electronic control devices, as a rule
include a microprocessor and in addition to the fuel injection
and the ignition a lot more
Control tasks, i.a. also the control of the exhaust aftertreatment system
take over, are known per se, so
that in the following only on the in connection with the invention
relevant structure and its functioning received
becomes. In particular, the
Ein Temperatursensor 29 erfaßt ein der Temperatur der Brennkraftmaschine
entsprechendes Signal, beispielsweise über eine
Messung der Kühlmitteltemperatur. Die Drehzahl der Brennkraftmaschine
wird mit Hilfe eines Markierungen der Kurbelwelle
oder eines mit ihr verbundenen Geberrades abtastenden
Sensors 30 erfaßt.A
Das Ausgangssignal des Luftmassenmessers 12 und die Signale
des Drosselklappensensors, des Sauerstoffmeßaufnehmers 19,
der Abgassonde 21, der Temperatursensoren 20, 29, und des
Drehzahlsensors 30 werden über entsprechende Verbindungsleitungen
der Steuerungseinrichtung 23 zugeführt.The output of the
Zur Steuerung und Regelung der Brennkraftmaschine 10 ist die
Steuerungseinrichtung 23 außer mit einer Zündeinrichtung 27
für das Luft-Kraftstoffgemisch über eine nur schematisch dargestellte
Daten - und Steuerleitung 28 noch mit weiteren,
nicht explizit dargestellten Sensoren und Aktoren verbunden.For controlling and regulating the
Stromabwärts des NOx-Speicherkatalysators 18 ist im Abgaskanal
ein Abgassensor in Form eines NOx-Sensors 21 angeordnet,
dessen Ausgangssignal zur Steuerung der Speicherregeneration
und zur Adaption von Modellgrößen wie z.B. der Sauerstoff-
bzw. NOx-Speicherkapazität, des NOx-Speicherkatalysators 18,
sowie zum Erfassen des Alterungszustandes des NOx-Speicherkatalysators
herangezogen wird. Außerdem wird mit dem Ausgangssignal
des NOx-Sensors 21 im Bedarfsfall die NOx-Rohemission
der Brennkraftmaschine adaptiert. Downstream of the
Über die bereits erwähnten Parameter wird in der Steuerungseinrichtung
23 durch Abarbeiten abgelegter Steuerungsroutinen
u.a. der Lastzustand der Brennkraftmaschine erkannt, die NOx-Rohemission
der Brennkraftmaschine bestimmt und adaptiert,
sowie der Beladungsgrad des NOx-Speicherkatalysators bestimmt.About the already mentioned parameters is in the
Die während einer Magerphase von der Brennkraftmaschine emitierte NOx-Gesamtmenge kann in folgende Teile aufgespalten werden:
- Ein Teil wird auch im Magerbetrieb von der Abgasreinigungsanlage in unschädlichere Substanzen umgewandelt. Dieser Anteil wird im folgenden als stationäre Umsatzmenge SU be zeichnet.
- Ein weiterer Teil wird im NOx-Speicherkatalysator gespeichert, der im folgenden als Speichermenge SM bezeichnet wird.
- Ein dritter Teil wird an die Umgebung abgegeben. Dieser Anteil wird im folgenden als Durchbruchsmenge DB bezeichnet.
- A part is also converted in lean operation of the emission control system into harmless substances. This proportion is hereinafter referred to as stationary sales volume SU be.
- Another part is stored in the NOx storage catalyst, which will be referred to as storage amount SM hereinafter.
- A third part is given to the environment. This proportion is referred to below as the breakthrough amount DB.
Wird nicht das Integral dieser gesamten NOx-Menge über den Zeitraum einer Magerphase betrachtet, sondern die momentane NOx-Rohkonzentration, kann auch diese analog nach der oben beschriebenen Vorgehensweise aufgespalten werden in
- eine den stationären Umsatz SU hervorrufende Stationärumsatz-Konzentration SK,
- eine die Speichermenge SM hervorrufende Speicherkonzentration SPK und
- eine weder umgesetzte noch gespeicherte Nach-Kat-Konzentration NK.
- a steady-state conversion concentration SK causing the steady-state turnover SU,
- a storage amount SM causing memory concentration SPK and
- an unreacted or stored post-catalyst concentration NK.
Aus den jeweiligen Konzentrationen können durch Integration über der Zeit die oben genannten NOx-Mengen SU, SM und DB gebildet werden. From the respective concentrations can by integration over time, the above NOx levels SU, SM and DB formed become.
Unter korrigierter NOx-Rohkonzentration KK wird im folgenden die NOx-Rohkonzentration abzüglich der Stationärumsatz-Konzentration SK verstanden. Die Stationärumsatz-Konzentration SK wird über einen Reduktionsfaktor RF erfaßt. Die korrigierte NOx-Rohkonzentration KK ist als Produkt von der Differenz von Eins und dem Reduktionsfaktor RF und der NOx- Rohkonzentration RK der Brennkraftmaschine definiert: KK=(1-RF)* RK.Under corrected raw NOx concentration KK will be described below the NOx raw concentration less the stationary conversion concentration SK understood. The stationary sales concentration SK is detected via a reduction factor RF. The corrected raw NOx concentration KK is a product of the difference of one and the reduction factor RF and the NOx raw concentration RK of the internal combustion engine defines: KK = (1-RF) * RK.
Die möglichst genaue Kenntnis der korrigierten NOx-Rohkonzentration KK ist zur Katalysatorsteuerung über die Berechnung des Beladungsgrades sowie zur Alterungsadaption der Speicherkapazität nötig.The most accurate knowledge of the corrected NOx raw concentration KK is for catalyst control via the calculation the degree of loading and the aging adaptation of Storage capacity needed.
Die Figur 2 zeigt ein Diagramm, in das die oben genannten Anteile
der von der Brennkraftmaschine während der Magerphase
emitierte NOx-Rohemission eingetragen sind. Zum Zeitpunkt t0
ist die Magerphase beendet und eine Regenerationsphase für
den NOx-Speicherkatalysator 18 wird angefordert. Die schraffierten
Bereiche kennzeichnen die einzelnen NOx-Mengen stationäre
Umsatzmenge SU, Speichermenge SM und Durchbruchsmenge
DB.FIG. 2 shows a diagram in which the abovementioned proportions
that of the internal combustion engine during the lean phase
emitted raw NOx emission are registered. At the time t0
the lean phase is over and a regeneration phase for
the
Außerdem sind in das Diagramm bestimmte Anteile der NOx-Konzentration eingetragen. Neben der weder umgesetzten, noch gespeicherten Nach-Kat-Konzentration NK, die gegen Ende der Magerphase rasch ansteigt, sind als Ordinatenabschnitte die aus dem Kennfeld KF1 ausgelesene NOx-Rohkonzentration RK und die tatsächliche, aber nicht ermittelbare NOx-Rohkonzentration RKT dargestellt. Der zusätzlich eingezeichnete Kurvenverlauf von NK nach dem Zeitpunkt t0 würde sich einstellen, wenn zum Zeitpunkt t0 keine Regeneration eingeleitet werden würde.In addition, certain parts of the NOx concentration are in the diagram entered. In addition to neither implemented, nor stored after-cat concentration NK, which towards the end of the Lean phase rises rapidly, are as Ordinatenabschnitte the from the map KF1 read NOx raw concentration RK and the actual, but not determinable raw NOx concentration RKT shown. The additionally drawn Curve of NK after the time t0 would be if regeneration is not initiated at time t0 would become.
Mit dem Bezugszeichen KK(n-1) ist die korrigierte NOx-Rohkonzentration vor dem aktuellen Adaptionsvorgang, mit KK(n) die korrigierte NOx-Rohkonzentration nach der aktuellen Adaption bezeichnet. Die zugehörigen Werte für die Stationärumsatz-Konzentration SK(n-1) bei einem unkorrigierten Reduktionsfator und bei einem korrigierten Reduktionsfaktor SK(n) sind ebenfalls eingezeichnet.Numeral KK (n-1) is the corrected raw NOx concentration before the current adaptation process, with KK (n) is the corrected NOx raw concentration after the current one Termed adaptation. The associated values for the stationary sales concentration SK (n-1) for an uncorrected reduction fier and at a corrected reduction factor SK (n) are also drawn.
In der Figur 3 ist in Form einer Blockdarstellung ein erstes
Ausführungsbeispiel zur Adaption der NOx-Konzentrationsschwankungen
durch Modifikation des Reduktionsfaktors RF, der
zur Berechnung der korrigierten NOx-Rohkonzentration aus der
NOx-Rohkonzentration dient, dargestellt. Die korrigierte NOx-Rohkonzentration
KK wird dabei mit Hilfe des Signales der
stromabwärts des NOx-Speicherkatalysators angeordneten NOx-Sensors
21 ermittelt und falls nötig adaptiert.FIG. 3 is a first block diagram
Embodiment for the adaptation of the NOx concentration fluctuations
by modification of the reduction factor RF, the
for calculating the corrected raw NOx concentration from the
NOx raw concentration is shown. The corrected NOx raw concentration
KK is doing with the help of the signal of
downstream of the NOx storage catalyst arranged
Die Adaption wird während eines Zyklus, bestehend aus Magerund
Fettphase folgendermaßen durchgeführt. Als erstes werden
Durchbruchsmenge DB und die Speichermenge SM ermittelt. Die
Durchbruchsmenge DB wird in der Magerphase durch Messen der
Nach-Kat-NOx-Konzentration mit dem NOx-Sensor 21 und deren
Integration über der Magerphasendauer erfaßt. Die Speichermenge
SM in der Magerphase kann in der an die Magerphase anschließenden
Fettphase berechnet werden. Hierzu wird angenommen,
der zusätzliche, zur stöchiometrischen Verbrennung nicht
benötigte Kraftstoffmassenstrom wird zur Reduktion der gespeicherten
NOx-Masse sowie zum Aufbrauchen des eingelagerten
Sauerstoffs verwendet. Ist die gespeicherte Sauerstoffmenge,
die Zeitdauer vom Beginn der Fettphase bis zum Erkennen einer
vollständigen NOx-Regeneration des NOx-Speicherkatalysators,
der zusätzliche Kraftstoffmassenstrom sowie das Stoffmengenverhältnis
der Reaktion Kraftstoff + NOx bekannt, kann so auf
die eingespeicherte NOx-Menge zurückgeschlossen werden.The adaptation is during a cycle consisting of lean and
Fat phase performed as follows. Be first
Breakthrough amount DB and the storage amount SM determined. The
Breakthrough amount DB is measured in the lean phase by measuring the
After-Kat-NOx concentration with the
Basierend auf der in dem Kennfeld KF1 abgelegten NOx-Rohkonzentration RK und des in einem Kennfeld KF2 abgelegten Reduktionsfaktors RF wird das Integral der korrigierten NOx-Konzentration über der Magerphase IKK berechnet. Die NOx-Rohkonzentration RK wird beispielsweise in Abhängigkeit einiger oder aller folgender Parameter ermittelt: Drehzahl, Last, Zündwinkel, Luftzahl, Abgasrückführrate, Ansauglufttemperatur, Kühlmitteltemperatur.Based on the NOx raw concentration stored in the map KF1 RK and the filed in a map KF2 Reduction factor RF becomes the integral of the corrected NOx concentration calculated over the lean phase IKK. The NOx raw concentration For example, RK is dependent on some or all the following parameters: speed, load, Ignition angle, air ratio, exhaust gas recirculation rate, intake air temperature, Coolant temperature.
Die Summe aus der Durchbruchsmenge DB und der Speichermenge SM, sowie der Integralwert der korrigierten NOx-Konzentration über der Magerphase IKK werden zu einer Divisionsstufe D1 geführt und dort das Verhältnis (DB+SM)/IKK gebildet. Anschließend wird die Differenz 1-(DB+SM)/IKK gebildet und dieser Wert zu einem Verstärkerelement V geführt. Stimmt die Berechnung der korrigierten NOx-Konzentration mit der aus den Sondensignalen ermittelten, nicht direkt reduzierten NOx-Konzentration überein, so gilt: IKK=DB + SM. In diesem Fall liegt am Summationspunkt S1 der Wert Null an und der Korrekturfaktor RFKF für den Reduktionsfaktor RF wird nicht adaptiert (RFKF(n-1) = RFKF(n).The sum of the breakthrough amount DB and the amount of memory SM, as well as the integral value of the corrected NOx concentration over the lean phase IKK are led to a division stage D1 and there formed the ratio (DB + SM) / IKK. Subsequently the difference 1- (DB + SM) / IKK is formed and this Value to an amplifier element V out. Fits the calculation the corrected NOx concentration with that from the probe signals determined, not directly reduced NOx concentration match, then: IKK = DB + SM. In this case is at the summation point S1 to the value zero and the correction factor RFKF for the reduction factor RF is not adapted (RFKF (n-1) = RFKF (n).
Wird festgestellt, das eine nicht hinnehmbare Abweichung zwischen dem Wert IKK und dem Summenwert DB+SM besteht, wird der Korrekturfaktor RFKF für den Reduktionsfaktor RF, mit dem der Reduktionsfaktor RF multipliziert wird, in geeigneter Weise verkleinert oder vergrößert. Er wird verkleinert, wenn IKK<DB+SM ist und er wird vergrößert, wenn IKK>DB+SM gilt.Is found to be an unacceptable deviation between is the value IKK and the sum value DB + SM, the Correction factor RFKF for the reduction factor RF, with which the Reduction factor RF is multiplied, in a suitable manner reduced or enlarged. He is downsized, though IKK <DB + SM is and it is increased if IKK> DB + SM.
Es ist auch möglich, anstelle der Verhältnisbildung von IKK und (DB+SM) die Differenz von IKK und (DB+SM) zur Bestimmung des Inkrements bzw. Dekrements heranzuziehen, mit dem der Korrekturfaktor RFKF verändert wird.It is also possible, instead of the ratio formation of IKK and (DB + SM) the difference of IKK and (DB + SM) for determination of the increment or decrement with which the Correction factor RFKF is changed.
Der aus dem Kennfeld KF2 beispielsweise als Funktion der Temperatur
des NOx-Speicherkatalysators 18 ausgelesene Reduktionsfaktor
RF wird mit dem unverändert gebliebenen oder mit
dem in der oben beschriebenen Weise adaptierten Korrekturfaktor
RFKF multipliziert. Der so erhaltene Wert wird von 1 abgezogen
und dieser Wert mit der NOx-Rohkonzentration RK multipliziert,
der hierzu aus dem Kennfeld KF1 ausgelesen wird. The from the map KF2 example, as a function of temperature
of the
Als Ergebnis erhält man einen Wert für die korrigierte NOX-Rohkonzentration KK = (1-RF)*RK.The result is a value for the corrected NOX raw concentration KK = (1-RF) * RK.
Eine weitere Möglichkeit der Adaption stellt die Adaption eines Korrekturfaktors RKKF für die NOx-Rohkonzentration RK dar. Das Verfahren ist in Figur 4 ebenfalls in Form einer Blockdarstellung gezeigt und ist ähnlich dem anhand der Figur 3 erläuterten Verfahren.Another possibility of adaptation is the adaptation of a Correction factor RKKF for the raw NOx concentration RK The method is in Figure 4 also in the form of a Block diagram shown and is similar to the reference to the figure 3 explained method.
Allerdings wird beim hier vorgestellten Verfahren nicht der Reduktionsfaktor RF modifiziert, sondern die NOx-Rohkonzentration RK wird mit einem nach dem oben erläuterten Adaptionsverfahren (Verhältnis- bzw. Differenzbildung von IKK und (DB+SM)) berechenbaren Korrekturfaktor RKKF multipliziert. Anschließend wird diese vorkorrigierte NOx-Rohkonzentration RKK mit dem Wert 1-RF multipliziert, wobei mit RF wieder der Reduktionsfaktor bezeichnet ist, der aus dem Kennfeld KF2 ausgelesen wird. Als Ergebnis erhält man einen Wert für die korrigierte NOX-Rohkonzentration KK = (1-RF)*RKK.However, in the process presented here is not the Reduction factor RF modified, but the NOx raw concentration RK is using a after explained above Adaptation method (ratio or difference formation of IKK and (DB + SM)) computable correction factor RKKF multiplied. Subsequently, this pre-corrected NOx raw concentration RKK multiplied by the value 1-RF, where with RF again the reduction factor is designated, the off the map KF2 is read out. The result is one Value for the corrected NOX raw concentration KK = (1-RF) * RKK.
In Figur 5 sind die Integrale der korrigierten NOx-Konzentration IKK über der Magerphase, der Speichermenge SM und der Durchbruchsmenge DB dargestellt. Außerdem sind die korrigierte NOx-Rohkonzentration KK und die Summe aus Speicherkonzentration SPK und Nach-Kat-Konzentration NK eingezeichnet. Im Idealfall sind die Integralwerte IKK und SM+DB gleich und es braucht keine Adaption durchgeführt werden, andernfalls wird eine Adaption nach den anhand der Figuren 3 oder 4 erläuterten Verfahren durchgeführt.In Figure 5, the integrals of the corrected NOx concentration IKK over the lean phase, the amount of memory SM and the Breakthrough amount DB shown. Besides, the corrected ones NOx raw concentration KK and the sum of storage concentration SPK and post-catalyst concentration NK marked. Ideally the integral values IKK and SM + DB are the same and it is no adaptation needs to be done, otherwise it will an adaptation according to the explained with reference to the figures 3 or 4 Procedure performed.
Claims (8)
- Method for adapting a NOx concentration value (RK) of an internal combustion engine (10) operated, at least in certain operating ranges, with an excess of air, wherebylocated in an exhaust gas duct (16) of the internal combustion engine (10) is a NOx-storage reducing catalytic converter (18),which adsorbs NOx during a storage phase if the internal combustion engine (10) is operated using a lean burn air-fuel mixture,and which in a regeneration phase with the addition of regeneration agents converts the stored NOx by means of a catalytic process,located downstream of the NOx-storage reducing catalytic converter (18) is a NOx sensor (21),the NOx concentration value (RK), which is dependent on operating parameters of the internal combustion engine (10), is stored in an identification field (KF1) in a memory device (24) within a control device (23) which controls an internal combustion engine (10),
- Method according to Claim 1, characterized in that the adaptation of the NOx concentration value (RK) is carried out by changing a reduction factor (RF) which affects the NOx concentration value (RK) and takes into consideration a stationary conversion concentration (SK) which is converted in the lean burn operation of the internal combustion engine (10) by the NOx-storage reducing catalytic converter (18).
- Method according to Claim 2, characterized in thata break-out quantity (DB) in the lean burn phase is detected by measuring the NOx concentration (NK) downstream of the NOx-storage reducing catalytic converter (18) with the aid of the NOx sensor (21) and integrating it over the period of the lean burn phase,a storage quantity (SM) in the lean burn phase is calculated in the rich burn phase which follows the lean burn phase,based on the NOx concentration value (RK) and the reduction factor (RF) the integral of the corrected NOx concentration is calculated for the lean burn phase (IKK),the sum of the break-out quantity (DB) and the storage quantity (SM), as well as the integral value of the corrected NOx concentration for the lean burn phase (IKK) are placed in a ratio ((DB+SM) / IKK),depending on the value of the ratio a correction factor (RFKF) for the reduction factor (RF) is changed or left unchanged,the reduction factor (RF) is multiplied by the correction factor (RFKF).
- Method according to Claim 3, characterized in that the adapted reduction factor (RF) is used to calculate the corrected NOx concentration (KK) as a product of the difference between 1 and the adapted reduction factor (RF), and the gross NOx concentration (RK) read out from the identification field (KF1).
- Method according to Claim 1, characterized in that the adaptation of the NOx concentration value (RK) is carried out by changing a correction factor (RKKF) with which the NOx concentration value (RK) imported from the identification field (KF1) is immediately multiplied, thereby obtaining a pre-corrected value for the NOx concentration (RKK).
- Method according to Claim 5, characterized in thata break-out quantity (DB) in the lean burn phase is detected by measuring the NOx concentration (NK) downstream of the NOx catalyzer (18) with the aid of the NOx sensor (21) and integrating it over the period of the lean burn phase,a storage quantity (SM) in the lean burn phase is calculated in the rich burn phase which follows the lean burn phase,based on the NOx concentration (RK) and the reduction factor (RF) the integral of the corrected NOx concentration is calculated for the lean burn phase (IKK),the sum of the break-out quantity (DB) and the storage quantity (SM), as well as the integral value of the corrected NOx concentration for the lean burn phase (IKK) are placed in a ratio ((DB+SM) / IKK),depending on the value of the ratio the correction factor (RFKF) for the reduction factor (RF) is changed or left unchanged.
- Method according to Claim 6, characterized in that the pre-corrected value for the NOx concentration (RKK) is used to calculate the corrected NOx concentration (KK) as a product of the difference between 1 and the reduction factor (RF), and the pre-corrected NOx concentration (RKK).
- Method according to one of the Claims 2, 3 or 7, characterized in that the reduction factor (RF) is stored in an identification field (KF2) depending on the temperature of the NOx-storage reducing catalytic converter (18).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19851477 | 1998-11-09 | ||
DE19851477 | 1998-11-09 | ||
PCT/DE1999/003519 WO2000028201A1 (en) | 1998-11-09 | 1999-11-03 | METHOD FOR ADAPTING THE NOx CONCENTRATION OF AN INTERNAL COMBUSTION ENGINE OPERATED WITH AN EXCESS OF AIR |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1131549A1 EP1131549A1 (en) | 2001-09-12 |
EP1131549B1 true EP1131549B1 (en) | 2004-07-21 |
Family
ID=7887090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99962044A Expired - Lifetime EP1131549B1 (en) | 1998-11-09 | 1999-11-03 | METHOD FOR ADAPTING THE NOx CONCENTRATION OF AN INTERNAL COMBUSTION ENGINE OPERATED WITH AN EXCESS OF AIR |
Country Status (5)
Country | Link |
---|---|
US (1) | US6438947B2 (en) |
EP (1) | EP1131549B1 (en) |
JP (1) | JP3531867B2 (en) |
DE (1) | DE59910023D1 (en) |
WO (1) | WO2000028201A1 (en) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1164268B1 (en) * | 1997-04-09 | 2006-05-24 | Emitec Gesellschaft für Emissionstechnologie mbH | Arrangement for monitoring a NOx-trap |
JP4517463B2 (en) * | 2000-06-22 | 2010-08-04 | マツダ株式会社 | Engine exhaust purification system |
DE10034874B4 (en) * | 2000-07-18 | 2004-01-22 | Siemens Ag | Method for adapting a raw NOx concentration |
DE10036453A1 (en) * | 2000-07-26 | 2002-02-14 | Bosch Gmbh Robert | Operating a nitrogen oxide storage catalyst on vehicle IC engine comprises storing nitrogen oxides generated from the engine in first phase in storage catalyst |
DE10305635B4 (en) * | 2003-02-11 | 2011-01-13 | Continental Automotive Gmbh | Emission control method for lean-burn engines |
DE10312440B4 (en) * | 2003-03-20 | 2006-04-06 | Siemens Ag | Emission control method for lean-burn engines |
JP2004293338A (en) * | 2003-03-25 | 2004-10-21 | Mitsubishi Fuso Truck & Bus Corp | Method for presuming amount of nox occlusion |
JP4182878B2 (en) * | 2003-10-09 | 2008-11-19 | トヨタ自動車株式会社 | Air-fuel ratio control device for internal combustion engine |
US7018442B2 (en) * | 2003-11-25 | 2006-03-28 | Caterpillar Inc. | Method and apparatus for regenerating NOx adsorbers |
DE102005001961A1 (en) * | 2005-01-15 | 2006-07-27 | Audi Ag | Method and device for protecting temperature-sensitive components in the intake region of an internal combustion engine with exhaust gas recirculation |
DE102005042488A1 (en) * | 2005-09-07 | 2007-03-08 | Robert Bosch Gmbh | Method for operating an internal combustion engine and device for carrying out the method |
DE102005042489A1 (en) * | 2005-09-07 | 2007-03-08 | Robert Bosch Gmbh | Method for operating an internal combustion engine and device for carrying out the method |
WO2008131788A1 (en) * | 2007-04-26 | 2008-11-06 | Fev Motorentechnik Gmbh | Control of a motor vehicle internal combustion engine |
JP4333803B1 (en) * | 2008-04-22 | 2009-09-16 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
FR2934637B1 (en) * | 2008-07-30 | 2010-08-13 | Renault Sas | METHOD FOR MANAGING THE OPERATION OF A NOX TRAP EQUIPPED WITH AN EXHAUST LINE OF AN INTERNAL COMBUSTION ENGINE |
EP2761154A4 (en) * | 2011-09-28 | 2016-01-06 | Continental Controls Corp | Automatic set point adjustment system and method for engine air-fuel ratio control system |
FR2982824B1 (en) * | 2011-11-17 | 2013-11-22 | IFP Energies Nouvelles | METHOD FOR TRANSIENTLY CONTROLLING A HYBRID PROPULSION SYSTEM OF A VEHICLE |
JP6025606B2 (en) * | 2013-02-22 | 2016-11-16 | 三菱重工業株式会社 | Fuel cetane number estimation method and apparatus |
FR3006372B1 (en) * | 2013-05-31 | 2017-02-24 | Renault Sa | METHOD OF ESTIMATING POLLUTING EMISSIONS OF INTERNAL COMBUSTION ENGINE AND ASSOCIATED METHOD OF CONTROLLING ENGINE |
FR3016924B1 (en) * | 2014-01-30 | 2018-10-26 | Psa Automobiles Sa. | METHOD FOR CORRECTING AN ESTIMATING MODEL OF A QUANTITY OF NITROGEN OXIDES BEFORE A SELECTIVE CATALYTIC REDUCTION SYSTEM |
SE540265C2 (en) | 2014-01-31 | 2018-05-15 | Scania Cv Ab | Process and system for supplying additives to an exhaust stream |
JP6477088B2 (en) | 2015-03-20 | 2019-03-06 | いすゞ自動車株式会社 | NOx storage amount estimation device |
KR101734710B1 (en) * | 2015-12-07 | 2017-05-11 | 현대자동차주식회사 | A method for preventing to regenerate dpf frequently using a method for analyzing driving pattern of vehicle |
US20200291877A1 (en) * | 2019-03-12 | 2020-09-17 | GM Global Technology Operations LLC | Aggressive thermal heating target strategy based on nox estimated feedback |
CN114810296B (en) * | 2022-05-09 | 2023-07-18 | 潍柴动力股份有限公司 | Stability control method and device of closed-loop controller |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992021871A1 (en) * | 1991-06-03 | 1992-12-10 | Isuzu Motors Limited | DEVICE FOR REDUCING NO¿x? |
JP3440654B2 (en) * | 1994-11-25 | 2003-08-25 | トヨタ自動車株式会社 | Exhaust gas purification device |
JP2836522B2 (en) * | 1995-03-24 | 1998-12-14 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
DE19511548A1 (en) * | 1995-03-29 | 1996-06-13 | Daimler Benz Ag | Nitrous oxide reduction system in vehicle engine exhaust |
DE19543219C1 (en) * | 1995-11-20 | 1996-12-05 | Daimler Benz Ag | Diesel engine operating method |
DE19607151C1 (en) * | 1996-02-26 | 1997-07-10 | Siemens Ag | Regeneration of nitrogen oxide storage catalyst |
US5704339A (en) * | 1996-04-26 | 1998-01-06 | Ford Global Technologies, Inc. | method and apparatus for improving vehicle fuel economy |
DE69703840T3 (en) * | 1996-06-10 | 2010-08-26 | Hitachi, Ltd. | Exhaust gas purification device for an internal combustion engine and catalyst for purifying the exhaust gas of the internal combustion engine |
DE19653756C2 (en) * | 1996-12-20 | 1999-01-14 | Porsche Ag | New control strategy for a NOx storage |
DE19716275C1 (en) * | 1997-04-18 | 1998-09-24 | Volkswagen Ag | Process for reducing nitrogen oxide in the exhaust gas of an internal combustion engine |
US5983627A (en) * | 1997-09-02 | 1999-11-16 | Ford Global Technologies, Inc. | Closed loop control for desulfating a NOx trap |
US6244047B1 (en) * | 1998-10-02 | 2001-06-12 | Ford Global Technologies, Inc. | Method of purging lean NOx trap |
-
1999
- 1999-11-03 JP JP2000581353A patent/JP3531867B2/en not_active Expired - Fee Related
- 1999-11-03 EP EP99962044A patent/EP1131549B1/en not_active Expired - Lifetime
- 1999-11-03 DE DE59910023T patent/DE59910023D1/en not_active Expired - Lifetime
- 1999-11-03 WO PCT/DE1999/003519 patent/WO2000028201A1/en active IP Right Grant
-
2001
- 2001-05-09 US US09/852,349 patent/US6438947B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
WO2000028201A1 (en) | 2000-05-18 |
US20010032457A1 (en) | 2001-10-25 |
US6438947B2 (en) | 2002-08-27 |
JP2002529652A (en) | 2002-09-10 |
JP3531867B2 (en) | 2004-05-31 |
DE59910023D1 (en) | 2004-08-26 |
EP1131549A1 (en) | 2001-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1131549B1 (en) | METHOD FOR ADAPTING THE NOx CONCENTRATION OF AN INTERNAL COMBUSTION ENGINE OPERATED WITH AN EXCESS OF AIR | |
DE102008025452B4 (en) | Monitoring the performance of a lambda probe | |
DE602005005407T2 (en) | Apparatus and method for estimating the NOx adsorption amount of a NOx storage | |
DE60222226T2 (en) | Method for determining the fuel sulfur content of an internal combustion engine | |
DE102007005684B3 (en) | Internal-combustion engine operating method for motor vehicle, involves determining high carbon quality value, which is representative for oxygen storage capability of catalytic converter, and determining nitrogen oxide quality value | |
EP1228301A2 (en) | Method of monitoring the exhaust catalyst of an internal combustion engine | |
DE10319983B3 (en) | Device for regulating the lambda value in an I.C. engine with a catalyst arranged in the exhaust gas pipe, comprises a nitrogen oxides sensor arranged after a partial volume of the catalyst or downstream of the catalyst | |
DE10001133B4 (en) | Device for controlling the air-fuel ratio in an internal combustion engine | |
EP1117917A1 (en) | METHOD FOR REGENERATING AN NOx STORAGE CATALYTIC CONVERTER | |
DE19851319C2 (en) | Method for determining the raw NOx emission of an internal combustion engine that can be operated with excess air | |
DE102021126386B3 (en) | Method for operating a drive device for a motor vehicle and corresponding drive device | |
DE102018216980A1 (en) | Method for regulating a filling of a storage device of a catalytic converter for an exhaust gas component as a function of aging of the catalytic converter | |
DE102018251720A1 (en) | Method for determining a maximum storage capacity of an exhaust gas component storage device of a catalytic converter | |
EP1187670B1 (en) | CALIBRATION OF AN NOx SENSOR AND REGULATION OF AN UPSTREAM NOx STORAGE CATALYST | |
DE69425920T2 (en) | System for feedback control of the air / fuel ratio in an internal combustion engine | |
EP1255917B1 (en) | METHOD AND DEVICE FOR DETECTING A NOx CONCENTRATION OF AN EXHAUST GAS STREAM PERTAINING TO A COMBUSTION ENGINE | |
EP1730391B1 (en) | Method and device for controlling an internal combustion engine | |
DE10309422A1 (en) | Calibrating nitrogen oxide sensor in engine exhaust system, shuts off engine for interval during which decay of nitrogen oxide signal is observed and evaluated | |
EP1960644B1 (en) | Method for the diagnosis of a catalytic converter which is arranged in an exhaust area of an internal combustion engine and device for carrying out said method | |
DE102018251725A1 (en) | Method for regulating a filling of an exhaust gas component store of a catalytic converter | |
DE102006002257B4 (en) | Method and device for operating an exhaust gas catalytic converter of an internal combustion engine | |
DE19859176C2 (en) | Procedure for checking the functionality of a lambda sensor | |
DE102021132412B3 (en) | Method for operating a drive device for a motor vehicle and corresponding drive device | |
DE10114049A1 (en) | Method and device for controlling an external exhaust gas recirculation rate and / or an air-fuel ratio | |
DE10305635B4 (en) | Emission control method for lean-burn engines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010111 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20040721 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 59910023 Country of ref document: DE Date of ref document: 20040826 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20050422 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20081113 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20081117 Year of fee payment: 10 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20091103 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100730 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091103 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20181130 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59910023 Country of ref document: DE |