EP1130577B1 - Verfahren zur Rekonstruktion tieffrequenter Sprachanteile aus mittelhohen Frequenzanteilen - Google Patents

Verfahren zur Rekonstruktion tieffrequenter Sprachanteile aus mittelhohen Frequenzanteilen Download PDF

Info

Publication number
EP1130577B1
EP1130577B1 EP01102129A EP01102129A EP1130577B1 EP 1130577 B1 EP1130577 B1 EP 1130577B1 EP 01102129 A EP01102129 A EP 01102129A EP 01102129 A EP01102129 A EP 01102129A EP 1130577 B1 EP1130577 B1 EP 1130577B1
Authority
EP
European Patent Office
Prior art keywords
frequency
speech signal
signal
speech
fundamental
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01102129A
Other languages
English (en)
French (fr)
Other versions
EP1130577A2 (de
EP1130577A3 (de
Inventor
Jürgen Schultz
Klaus Dr. Schaaf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP1130577A2 publication Critical patent/EP1130577A2/de
Publication of EP1130577A3 publication Critical patent/EP1130577A3/de
Application granted granted Critical
Publication of EP1130577B1 publication Critical patent/EP1130577B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/038Speech enhancement, e.g. noise reduction or echo cancellation using band spreading techniques

Definitions

  • the invention relates to a method and an apparatus for the reconstruction of low-frequency speech components from medium-high frequency components.
  • the signal is improved in that either noise components are filtered out or very strongly disturbed frequency range are completely filtered out of the signal.
  • US Pat. No. 5,842,160 A discloses a method for improving the quality of a digital voice transmission in which different data volumes are assigned to different frequency bands depending on the energy content.
  • the nature of the coding and transmission results in low-energy signal areas, which lead to gaps in the received signal spectrum. These gaps are filled by signals synthesized from the existing data so that a more natural sounding speech signal is achieved.
  • the method described above and the associated devices is based on the disadvantage that the speech signal is not reconstructed at all or only in an inadequate form in order to produce the most natural possible source speech signal.
  • DVE digital voice enhancement
  • two microphones are mounted above each row of seats in a motor vehicle, so that it is, for example. All vehicle occupants is allowed to participate in a telephone conversation.
  • the system transmits the voice recorded at the front of the microphone to the rear standard loudspeakers and vice versa.
  • the system is thus fully connected to the handsfree telephone and the radio / CD / navigation device. It significantly improves the communication within the vehicle, especially when driving fast.
  • the level of the vehicle interior noise increases very strongly to low frequencies, so that the language is covered there by the noise.
  • all frequencies are cut off below, for example, 200 to 500 Hz, depending on the speed.
  • the result is that the speech fundamental frequency and the first multiples (harmonics) in the transmitted signal are missing.
  • the language thus sounds like a telephone, as typically a telephone network allows a sound transmission only above 350 Hz.
  • the invention is therefore based on the technical problem of further developing the known from the prior art method and the associated apparatus for the reconstruction of low-frequency speech components of medium frequency components and to design that for a reproduction of the disturbed speech signal as natural as possible reproduction possible.
  • the above-indicated technical problem is solved by a method having the features of claim 1. First, at least two adjacently arranged frequency components with an increased amplitude in the voice signal are determined above a cutoff frequency. Thereafter, the fundamental frequency of the speech signal is determined as a frequency difference between the at least two adjacent frequency components. Finally, the low-frequency frequency range below the cut-off frequency is reconstructed with the aid of the determined fundamental frequency and the speech signal. The thus generated synthetic speech signal can then be output directly via a playback device or stored for later transmission.
  • low-frequency signal components of the speech signal are generated synthetically, that is to say reconstructed, and admixed with the remaining recorded speech signal.
  • the reconstruction of the low-frequency speech components is done on the basis of the non-filtered speech signals. This is exploited that the low-frequency speech components are accompanied by higher-frequency components of the harmonics, so that can be estimated from the remaining signal, the missing portions.
  • the frequencies of the harmonics of the fundamental frequency arranged below the limit frequency are preferably determined and used in addition to the fundamental frequency for a reconstruction of the low-frequency frequency range.
  • the maximum information regarding the undisturbed speech signal is utilized from the spectrally evaluated section of the speech signal.
  • the frequencies used for the reconstruction are combined with a respective spectral distribution and a predetermined amplitude to form a synthetic spectrum which corresponds to the frequency range below the cutoff frequency in the speech signal. From this frequency section and the speech signal above the cutoff frequency, the reconstructed speech signal is then composed.
  • the low-frequency speech component thus no longer has a noise signal, since it is composed exclusively of frequency components of the speech signal.
  • the low-frequency speech component can also be determined directly from the speech signal.
  • a comb filter consisting of several band filters is set up on the basis of the fundamental frequency and the frequencies of the harmonics arranged below the cutoff frequency, the frequency positions of the individual bandpass filters corresponding to the cutoff frequencies and the harmonics.
  • the speech signal is then filtered in the range below the cutoff frequency, whereby the signal components which belong to the actual speech signal are transmitted. Also in this way, a reconstruction of a largely undisturbed speech signal in the low-frequency range of the speech signal is possible.
  • the amplitude of the at least one frequency signal generated below the cutoff frequency is determined as a function of the amplitudes of the frequency signals analyzed above the cutoff frequency.
  • typical amplitude profiles of speech signals can be used in order to achieve as exact as possible adaptation to a natural speech signal not only in the frequency components but also in the amplitude distribution of the frequency components.
  • the cutoff frequency is determined as a function of the noise level, that is to say, in particular, on the size of the interfering signal.
  • the cut-off frequency can also be determined as a function of the driving speed.
  • a development consists in that the speech signal is subjected to a noise suppression before conversion.
  • the conventional methods known from the prior art can be used to perform a pretreatment of the speech signal.
  • the speech components then emerge more clearly in the spectrum and can be recognized more clearly and therefore more accurately and reconstructed.
  • One application of the method described above is to reproduce voice signals recorded in a moving motor vehicle in order to reproduce the most natural possible language impression.
  • Another application of the method according to the invention is to reproduce a voice signal transmitted by means of a telephone connection.
  • the underlying problem is that the voice signals for telephone connections in the frequency range below 350 Hz contain no information. Therefore, for a faithful reproduction of the speech signal, the low-frequency speech component must be reconstructed from the frequency range above 350 Hz. This can be carried out in a particularly advantageous manner by the method according to the invention.
  • Fig. 1 shows a frequency-amplitude diagram of the interior noise level in a moving motor vehicle for different speeds between 60 Km / h and 160 Km / h.
  • the inner noise level rises sharply in comparison to the other frequencies of the inner noise signal.
  • a determination, so filtering out the speech signal from the interior noise signal is considerably more difficult.
  • Fig. 2 shows a speech signal superimposed on a background signal in a time-frequency representation as a spectrogram.
  • This spectrogram is obtained, for example, by a Fourier transform (FFT) from a microphone signal.
  • FFT Fourier transform
  • different gray levels of the individual segments of the spectrogram indicate different intensities.
  • narrow-band frequency components that run largely parallel to each other over short periods of time. These latter narrow-band frequency components represent harmonics of the fundamental frequency of the corresponding voice signal, which are evaluated according to the invention as described below.
  • FIG. 3 shows a spectrogram of the speech signal shown in FIG. 2 without the background noise, so that the low-frequency speech components can also be recognized as narrow-band frequency components in the spectrogram below 500 Hz. These language parts need to be reconstructed.
  • FIG. 4 further shows the previously described speech signal, in which the speech components are cut off below a cutoff frequency of approximately 400 Hz. Such a signal is approximately the same as the voice signal transmitted on a telephone connection.
  • FIG. 5 shows an example of a reconstructed speech signal in the range below the cutoff frequency of approximately 400 Hz
  • FIG. 6 shows the composite reconstructed speech signal from the reconstructed speech component shown in FIG. 5 and the frequency component shown in FIG. 4 above the cutoff frequency of the original one spectrum. How the reconstructed speech parts are obtained will be described in detail below with reference to FIGS. 7 to 9.
  • FIG. 7 shows in a block diagram an apparatus for the reconstruction of low-frequency speech components from medium-high frequency components.
  • the speech signal is fed to a means 4 for determining frequency components ⁇ fa1 , ⁇ fa2 ,... Of maxima in the speech signal above a predetermined limit frequency ⁇ 0 .
  • the speech signal is first passed through a bandpass filter 6, so that only the frequency components between the cutoff frequency ⁇ 0 and another frequency ⁇ 1 cut out and forwarded to further processing.
  • ⁇ 0 is, for example, in the range of 200 to 500 Hz, in particular 350 Hz
  • the frequency ⁇ 1 is, for example, in the range of 800 Hz.
  • the thus-filtered frequency portion of the speech signal is mixed in the mixing element 8, so that the sum and difference frequencies of the frequency components contained in the cut-out portion of the speech signal are formed.
  • the difference frequencies are the difference frequencies, so that the signal emerging from the mixing element 8 is processed by means of a low-pass filter, so that only frequency components below an adjustable frequency ⁇ 2 are transmitted.
  • the smallest difference frequency can be determined, the distance between two in the Speech signal adjacent to each other arranged spectral components corresponds. Since these are two harmonics of the fundamental frequency, the difference frequency represents the fundamental frequency ⁇ g .
  • This fundamental frequency is then fed to means 12 for reconstructing the speech signal. Via a further input of the means 12, the speech signal via a delay stage 14 and a low-pass filter 16 is supplied.
  • both the value of the fundamental frequency ⁇ g and a predetermined frequency section of the speech signal are available to the means 12 for reconstruction of the signal containing the speech.
  • the delay stage 14 serves to compensate for the time .DELTA.t, which is needed for the determination of the fundamental frequency ⁇ g and the low-pass filter 16 is a useful reduction of the amount of data, which is fed to the means 12 for the reconstruction of the speech signal.
  • the means 12 for the reconstruction of the speech signal below the cut-off frequency ⁇ 0 has two alternatives of procedures in terms of circuitry.
  • the fundamental frequency ⁇ g is used to generate a signal in the reconstructed speech signal corresponding to the root of the speech.
  • the aim is to generate all harmonics in the frequency section of the speech signal to be reconstructed, that is to simulate them.
  • the means 12 comprise a comb filter comprising a plurality of band filters whose spectral transmission functions are determined by the fundamental frequency ⁇ g and the frequencies ⁇ h1 , ⁇ h2 ,.. ,
  • the spectral transmission function of each bandpass filter is also defined over a predetermined width, so that corresponding spectral sections are filtered out of the speech signal in the range of low frequencies below the cutoff frequency ⁇ 0 . Since from the spectrogram only the proportions are filtered out, containing the speech signal, the speech signal is reconstructed from the spectrogram. If additionally a noise suppression is carried out, then the background noises are filtered out of the filtered-out signal components, so that an almost natural speech signal is generated.
  • the speech signal is delayed by a further delay stage 18 by a time difference ⁇ t, in order to make it possible to adapt to the time span necessary for the reconstruction of the low-frequency speech component.
  • a high-pass filter 20 in which the speech signal above the cut-off frequency ⁇ 0 is filtered out
  • both this high-pass filtered signal and the reconstructed speech signal for frequencies ⁇ ⁇ 0 converge in the summation element 22, from which the reconfigured spectrogram shown in FIG becomes.
  • This spectrogram therefore consists on the one hand of the frequency component reconstructed below the cutoff frequency ⁇ 0 and of the original frequency spectrum above the cutoff frequency ⁇ 0 .
  • the spectrogram thus produced, after conversion to a loudspeaker signal, results in almost natural-sounding speech reproduction.
  • the fundamental frequency ⁇ g in a speech signal does not remain constant due to the speech melody. Therefore, it is necessary to constantly redetermine the fundamental frequency ⁇ g . This can on the one hand be done by constantly going through the process described above, which has been previously described with reference to the elements 4, 6, 8 and 10. On the other hand, however, a more accurate adaptive tracking of the fundamental frequency ⁇ g can be performed. This is possible with a device which is shown in Fig. 8.
  • the fundamental frequency ⁇ g, 0 initially determined at the beginning of a speech signal is multiplied to N times the value by means of a multiplication element 24.
  • the (N-1) th harmonic is calculated to the fundamental frequency.
  • the frequency of these harmonics is hereinafter referred to as harmonic and the associated frequency denoted by ⁇ r .
  • the frequency ⁇ r is introduced via a Mehrtorschalter in a control loop.
  • the output of the multiplication element 24 is transferred from the multi-port switch 26 to the mixing element 28.
  • an estimated value ⁇ r new before and the Mehrtorschalter 26 is switched so that ⁇ r , new to the mixing element 28 is passed.
  • ⁇ r is exactly the frequency of the (N-1) th harmonic.
  • the mixing element 28 forms the difference between ⁇ r and ⁇ m .
  • a sine wave generator generates a sinusoidal signal with the frequency given by its input signal ⁇ d . This is fed to a mixing element 32 which mixes the speech signal and this sinusoidal signal. After mixing, the mixed signal is outputted from the mixing element 32, which is supplied to a control element 34 for detecting the frequency-dependent power distribution in the mixing signal with respect to the fixed frequency ⁇ m .
  • the power distribution will assume its maximum not at the frequency ⁇ m but at a position shifted by a difference value ⁇ .
  • a correction value to ⁇ can be determined, which is added to the current value of the frequency ⁇ r of the control harmonics added. This results in the new value of the frequency ⁇ r, new , which is fed again via the multiport switch 26 of the control loop. Subsequently, a mixture is again in the mixing element 28 with subsequent control sequence, as has been previously described.
  • the value ⁇ r is diverted from the control loop via a multiplication element 38 and output, in which the current frequency ⁇ r is applied with the factor 1 / N to adapt the value of the fundamental frequency ⁇ g, adapt .
  • the value of the fundamental frequency ⁇ g is constantly adaptively tracked, whereby the reconstruction of the low-frequency speech component from the medium-high frequency components is improved and brought closer to a natural speech signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Quality & Reliability (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephone Function (AREA)

Description

  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Rekonstruktion tieffrequenter Sprachanteile aus mittelhohen Frequenzanteilen.
  • Im Stand der Technik der digitalen Verarbeitung von Sprachsignalen mit einem hohen Lärmpegel im tieffrequenten Bereich wird das Signal dadurch verbessert, daß entweder Störanteile herausgefiltert werden oder sehr stark gestörte Frequenzbereich aus dem Signal vollständig herausgefiltert werden.
  • Aus der US 5,842,160 A ist ein Verfahren zur Verbesserung der Qualität einer digitalen Sprachübertragung bekannt, bei dem verschiedenen Frequenzbändern je nach Energiegehalt verschiedene Datenmengen zugeordnet werden. Durch die Art der Kodierung und Übertragung entstehen niederenergetische Signalbereiche, die zu Lücken im empfangenen Signalspektrum führen. Diese Lücken werden durch synthetisch aus den vorhandenen Daten gewonnenen Signale gefüllt, so daß ein natürlicher klingendes Sprachsignal erreicht wird.
  • Aus der US 4,091,237 A ist ein Verfahren zur Ermittlung der Stimmgrundfrequenz eines digitalen Sprachsignals in Echtzeit bekannt. Speziell für Signale mit einem eingeschränkten Frequenzbereich, wie Telefonsignale, und mit einem hohen Störgeräuschanteil wird das Sprachsignale verbessert, indem Störgeräusche ausgefiltert werden. Das Signal wird durch eine Mehrzahl von Bandpaßfiltern aufgesplittet und ein entsprechendes Histogramm gebildet, aus dem die Stimmgrundfrequenz extrahiert wird. Ist die Grundfrequenz bekannt, können Störgeräusche daran erkannt werden, daß sie in keinem harmonischen Verhältnis zur Grundfrequenz stehen. Das zuvor beschriebene Verfahren dient dazu, die für eine Stimme charakteristische Grundfrequenz zu bestimmen.
  • Weiterhin ist aus der DE 37 33 983 ein Verfahren zum Dämpfen von Störsignalen in einem Hörgerät bekannt, bei dem das Signal digitalisiert und in einzelne Frequenzbereiche aufgeteilt wird. Frequenzbereiche mit bestimmten Charakteristika, wie schnelle oder sehr langsame Spektralverteilungsänderungen, werden gedämpft und/oder es werden die Grenzfrequenzen verschoben. Das so gereinigte Signal wird in synthetische Sprachsignale umgewandelt.
  • Weiterhin ist aus 4,700,390 A ein Verfahren zur Rekonstruktion tieffrequenter Audioanteile aus einem Audiosignal bekannt.
  • Den zuvor beschriebenen Verfahren und den damit verbundenen Vorrichtungen liegt der Nachteil zugrunde, daß das Sprachsignal gar nicht oder nur in unzureichender Form rekonstruiert wird, um ein möglichst natürliches Ausgangssprachsignal zu erzeugen.
  • Die zuvor dargestellten Verfahren können unter anderem bei der digitalen Sprachverstärkung (digital voice enhancement - DVE) eingesetzt werden. Beispielsweise sind oberhalb jeder Sitzreihe in einem Kraftfahrzeug zwei Mikrophone angebracht, so daß es bspw. allen Fahrzeuginsassen ermöglicht wird, sich an einem Telefongespräch zu beteiligen. Das System überträgt dazu die Sprache, die vorn durch das Mikrophon aufgenommen wurde, auf die hinteren Serienlautsprecher und umgekehrt. Das System ist somit voll mit dem Freisprechtelefon und dem Radio/CD/Navigationsgerät gekoppelt. Es verbessert insbesondere bei schneller Fahrt die Verständigung innerhalb des Fahrzeuges deutlich.
  • Der Pegel des Fahrzeuginnengeräusches steigt zu tiefen Frequenzen sehr stark an, so daß die Sprache dort vom Lärm überdeckt wird. Um durch das DVE-System möglichst wenig Umgebungslärm zu übertragen, denn dadurch würde der Innenlärmpegel unnötig erhöht, werden bei einem Teil der oben beschriebenen Verfahren alle Frequenzen je nach Geschwindigkeit unterhalb von bspw. 200 bis 500 Hz abgeschnitten. Die Folge ist, daß die Sprachgrundfrequenz und die ersten Vielfachen (Harmonischen) im übertragenen Signal fehlen. Die Sprache klingt somit telefonartig, da typischer Weise ein Telefonnetz eine Klangübertragung nur oberhalb von 350 Hz ermöglicht.
  • Neben der Nutzung eines Freisprechtelefons kann mit den Verfahren auch die Sprachverständigung innerhalb des Fahrzeuges durchgeführt werden. Dabei ist jedoch eine optimale Klangqualität erforderlich, um eine Akzeptanz bei den Käufern zu erzielen.
  • Insbesondere bei den Verfahren, die die Sprache von Störgeräuschen befreien, z. B. spektrale Subtraktion oder Kohärenzfiltern, kommt es dazu, daß die Varianz der Frequenzkomponete von Rauschen in die Größenordnung der Leistung des Sprachsignals kommt. Somit ist eine effektive Rauschunterdrückung nicht mehr möglich und die angewendeten Verfahren greifen nicht mehr.
  • Der Erfindung liegt daher das technische Problem zugrunde, das aus dem Stand der Technik bekannte Verfahren sowie die zugehörige Vorrichtung zur Rekonstruktion tieffrequenter Sprachanteile aus mittelhohen Frequenzanteilen dahingehend weiterzubilden und auszugestalten, daß für eine Wiedergabe des gestörten Sprachsignals eine möglichst naturgetreue Wiedergabe ermöglicht wird.
  • Das zuvor aufgezeigte technische Problem wird durch ein Verfahren mit den Merkmalen des Anspruches 1 gelöst. Zunächst werden oberhalb einer Grenzfrequenz mindestens zwei benachbart angeordnete Frequenzanteile mit erhöhter Amplitude im Sprachsignal bestimmt. Danach wird die Grundfrequenz des Sprachsignals als Frequenzdifferenz zwischen den mindestens zwei benachbarten Frequenzanteilen bestimmt. Schließlich wird mit Hilfe der ermittelten Grundfrequenz und des Sprachsignals der tieffrequente Frequenzbereich unterhalb der Grenzfrequenz rekonstruiert. Das somit erzeugte synthetische Sprachsignal kann dann über eine Wiedergabevorrichtung direkt wieder ausgegeben werden oder für ein späteres Aussenden gespeichert werden.
  • Mit anderen Worten werden tieffrequente Signalanteile des Sprachsignals synthetisch erzeugt, also rekonstruiert, und den restlichen aufgenommenen Sprachsignal zugemischt. Die Rekonstruktion der tieffrequenten Sprachanteile geschieht dabei auf der Grundlage der nicht ausgefilterten Sprachsignale. Dazu wird ausgenutzt, daß die tieffrequenten Sprachanteile von höherfrequenten Anteilen der Harmonischen begleitet sind, so daß sich die fehlenden Anteile aus dem verbleibenden Signal abschätzen lassen.
  • In bevorzugter Weise werden neben der Grundfrequenz auch die Frequenzen der unterhalb der Grenzfrequenz angeordneten Harmonischen der Grundfrequenz bestimmt und neben der Grundfrequenz für eine Rekonstruktion des tieffrequenten Frequenzbereiches verwendet. Somit wird aus dem spektral ausgewerteten Abschnitt des Sprachsignals die maximale Information bezüglich des ungestörten Sprachsignals ausgenutzt. Die für die Rekonstruktion herangezogenen Frequenzen werden mit einer jeweiligen Spektralverteilung und einer vorgegebenen Amplitude zu einem synthetischen Spektrum zusammengesetzt, das den Frequenzbereich unterhalb der Grenzfrequenz im Sprachsignal entspricht. Aus diesem Frequenzabschnitt und dem Sprachsignal oberhalb der Grenzfrequenz wird dann das rekonstruierte Sprachsignal zusammengesetzt. Der tieffrequente Sprachanteil weist somit kein Rauschsignal mehr auf, da es ausschließlich aus Frequenzanteilen des Sprachsignals zusammengesetzt ist.
  • In einer weiteren Ausgestaltung der Erfindung kann der tieffrequente Sprachanteil auch direkt aus dem Sprachsignal ermittelt werden. Dazu wird ein aus mehreren Bandfiltern bestehendes Kammfilter auf der Basis der Grundfrequenz und der Frequenzen der unterhalb der Grenzfrequenz angeordneten Harmonischen eingerichtet, wobei die Frequenzpositionen der einzelnen Bandfilter den Grenzfrequenzen und der Harmonischen entsprechen. Mit Hilfe des Kammfilters wird dann das Sprachsignal im Bereich unterhalb der Grenzfrequenz gefiltert, wodurch die Signalanteile durchgelassen werden, die zum eigentlichen Sprachsignal gehören. Auch in dieser Weise ist eine Rekonstruktion eines weitgehend ungestörten Sprachsignals im tieffrequenten Bereich des Sprachsignals möglich.
  • Entscheidend für die Qualität der Rekonstruktion des tieffrequenten Sprachanteils ist die Genauigkeit der ermittelten Grundfrequenz des Sprachsignals. Da sich die Grundfrequenz während des Sprechens aufgrund der Satzmelodie laufend verändert, wird eine weitere Verbesserung des Verfahrens dadurch erreicht, daß zu Beginn eines Sprache enthaltenen Sprachabschnittes aus dem Sprachsignal die Grundfrequenz bestimmt wird und anschließend diese adaptiv nachgeführt wird. Somit wird im zeitlichen Verlauf des Sprachsignals jeweils die aktuelle Grundfrequenz bestimmt, so daß die Rekonstruktion des Sprachsignals möglichst genau an den Stimmverlauf angepaßt werden kann. Ein Ausführungsbeispiel einer solchen adaptiven Nachführung wird weiter unten im Detail erläutert.
  • In weiter bevorzugter Weise wird die Amplitude des mindestens einen unterhalb der Grenzfrequenz erzeugten Frequenzsignals in Abhängigkeit von den Amplituden der oberhalb der Grenzfrequenz analysierten Frequenzsignale bestimmt. In weiter bevorzugter Weise können dabei typische Amplitudenverläufe von Sprachsignalen Anwendung finden, um nicht nur in den Frequenzanteilen, sondern auch in der Amplitudenverteilung der Frequenzanteile eine möglichst genaue Anpassung an ein natürliches Sprachsignal zu erreichen.
  • Weiter ist bevorzugt, daß die Grenzfrequenz in Abhängigkeit vom Geräuschpegel, also insbesondere von der Größe des Störsignals bestimmt wird. Somit ist es bei niedrigem Störsignalpegeln bspw. nur erforderlich, den Sprachsignalanteil unterhalb von 200 Hz zu rekonstruieren, während es bei hohen Störsignalpegeln notwendig ist, daß Sprachsignal im Frequenzbereich unterhalb von 500 Hz zu rekonstruieren. Bei einer Anwendung des Verfahrens in einem fahrenden Kraftfahrzeug kann die Grenzfrequenz auch in Abhängigkeit von der Fahrgeschwindigkeit bestimmt werden.
  • Weiterhin besteht eine Weiterbildung darin, daß das Sprachsignal vor einer Umwandlung einer Störsignalbefreiung unterzogen wird. Dabei können die herkömmlichen aus dem Stand der Technik bekannten Verfahren angewendet werden, um eine Vorbehandlung des Sprachsignals durchzuführen. Die Sprachanteile treten dann im Spektrum deutlicher hervor und können eindeutiger und somit genauer erkannt und rekonstruiert werden.
  • Eine Anwendung des zuvor beschriebenen Verfahrens besteht darin, in einem fahrenden Kraftfahrzeug aufgenommene Sprachsignale wiederzugeben, um dabei einen möglichst natürlichen Spracheindruck wiederzugeben.
  • Eine weitere Anwendung des erfindungsgemäßen Verfahrens besteht darin, ein mittels einer Telefonverbindung übertragenes Sprachsignal wiederzugeben. Das zugrunde liegende Problem besteht dabei darin, daß die Sprachsignale bei Telefonverbindungen im Frequenzbereich unterhalb von 350 Hz keine Informationen enthalten. Daher muß für eine naturgetreue Wiedergabe des Sprachsignals der tieffrequente Sprachanteil aus dem Frequenzbereich oberhalb von 350 Hz rekonstruiert werden. Dieses kann in besonders vorteilhafter Weise durch das erfindungsgemäße Verfahren durchgeführt werden.
  • Gemäß einer weiteren Lehre der vorliegenden Erfindung wird das oben dargestellte technische Problem auch durch eine Vorrichtung mit den Merkmalen des Anspruches 12 gelöst, während in den Ansprüchen 13 bis 16 vorteilhafte Ausgestaltungen angegeben werden. Die Vorrichtung und das damit durchgeführte Verfahren werden im folgenden anhand von Ausführungsbeispielen näher erläutert, wobei auf die beigefügte Zeichnung bezug genommen wird. In der Zeichnung zeigen
  • Fig. 1
    eine spektrale Innengeräuschverteilung in einem fahrenden Kraftfahrzeug für unterschiedliche Fahrgeschwindigkeiten,
    Fig. 2
    ein Spektrogramm eines im tieffrequenten Bereich von einem Störsignal überlagerten Sprachsignals,
    Fig. 3
    ein Spektrogramm des in Fig. 2 dargestellten Sprachsignals ohne Störsignal,
    Fig. 4
    ein Spektrogramm des in Fig. 3 dargestellten Sprachsignals ohne Frenquenzanteile unterhalb der Grenzfrequenz von ca. 400 Hz,
    Fig. 5
    ein Spektrogramm der im Spektralbereich unterhalb der Grenzfrequenz von ca. 400 Hz rekonstruierten Sprachanteile,
    Fig. 6
    das vollständige rekonstruierte Sprachsignal entsprechend dem in Fig. 3 dargestellten Sprachsignal ohne Störsignalanteil,
    Fig. 7
    ein Blockschaltbild eines Ausführungsbeispiels einer erfindungsgemäßen Vorrichtung zur Rekonstruktion tieffrequenter Sprachanteile aus mittelhohen Frequenzanteilen,
    Fig. 8
    eine Einrichtung zur adaptiven Nachführung der Grundfrequenz und
    Fig. 9
    die spektrale Verteilung der Kennlinien der Bandfilter des Regelelementes zum Feststellen der frequenzabhängigen Leistungsverteilung im Mischspektrum in Bezug auf die feststehende Mischungsfrequenz von 2000 Hz.
  • In den Fig. 1 und 2 ist der Ausgangspunkt der vorliegenden Erfindung dargestellt.
  • Fig. 1 zeigt ein Frequenz-Amplituden-Diagramm des Innengeräuschpegels in einem fahrenden Kraftfahrzeug für unterschiedliche Geschwindigkeiten zwischen 60 Km/h und 160 Km/h. Bei dieser Darstellung fällt auf, daß insbesondere bei niedrigen Frequenzen unterhalb von ca. 500 Hz der Innengeräuschpegel im Vergleich zu den sonstigen Frequenzen des Innengeräuschsignals stark ansteigt. Da jedoch bei normaler Stimmlage die Grundfrequenz und die ersten Harmonischen zur Grundfrequenz im Frequenzbereich unter 1000 Hz und insbesondere unterhalb 500 Hz liegen, ist eine Bestimmung, also ein Herausfiltern des Sprachsignals aus dem Innenraumgeräuschsignal erheblich erschwert.
  • Fig. 2 zeigt ein Sprachsignal, das von einem Untergrundsignal überlagert worden ist, in einer Zeit-Frequenz-Darstellung als Spektrogramm. Dieses Spektrogramm wird bspw. durch eine Fouriertransformations (FFT) aus einem Mikrofonsignal erhalten. In Fig. 2 kennzeichnen unterschiedliche Grauwerte der Einzelsegmente des Spektrogramms unterschiedliche Intensitäten. Man erkennt einerseits deutlich die ansteigende Intensität (hellere Grauwerte) im Bereich kleiner Frequenzen zum Wert gleich Null hin und andererseits schmalbandige Frequenzanteile, die weitgehend parallel zueinander über kurze Zeitabschnitte verlaufen. Diese letztgenannten schmalbandigen Frequenzanteile stellen Harmonische der Grundfrequenz des entsprechenden Sprachsignals dar, die - wie im folgenden beschrieben - erfindungsgemäß ausgewertet werden.
  • Fig. 3 zeigt ein Spektrogramm des in Fig. 2 dargestellten Sprachsignals ohne das Untergrundgeräusch, so daß auch die tieffrequenzen Sprachanteile als schmalbandige Frequenzanteile im Spektrogramm unterhalb von 500 Hz zu erkennen sind. Diese Sprachanteile gilt es zu rekonstruieren.
  • Fig. 4 zeigt weiterhin das zuvor dargestellte Sprachsignal, bei dem die Sprachanteile unterhalb einer Grenzfrequenz von ca. 400 Hz abgeschnitten sind. Ein derartiges Signal entspricht ungefähr dem Sprachsignal, wie es bei einer Telefonverbindung übertragen wird.
  • Fig. 5 zeigt ein Beispiel eines rekonstruierten Sprachsignals im Bereich unterhalb der Grenzfrequenz von ca. 400 Hz und Fig. 6 zeigt das zusammengesetzte rekonstruierte Sprachsignal aus dem in Fig. 5 dargestellten rekonstruierten Sprachanteil und dem in Fig. 4 dargestellten Frequenzanteil oberhalb der Grenzfrequenz des ursprüngliche Spektrums. Wie die rekonstruierten Sprachanteile erhalten werden, wird im folgenden anhand der Fig. 7 bis 9 im Detail beschrieben.
  • Fig. 7 zeigt in einem Blockschaltbild eine Vorrichtung zur Rekonstruktion tieffrequenter Sprachanteile aus mittelhohen Frequenzanteilen. Das Sprachsignal wird einem Mittel 4 zur Bestimmung von Frequenzanteilen ωfa1, ωfa2, ... von Maxima im Sprachsignal oberhalb einer vorgegebenen Grenzfrequenz ω0 zugeleitet. Dazu wird das Sprachsignal zunächst durch ein Bandfilter 6 geleitet, so daß nur die Frequenzanteile zwischen der Grenzfrequenz ω0 und einer weiteren Frequenz ω1 herausgeschnitten und einer Weiterverarbeitung zugeleitet wird. ω0 liegt dabei beispielsweise im Bereich von 200 bis 500 Hz, insbesondere bei 350 Hz, während die Frequenz ω1 bspw. im Bereich von 800 Hz liegt. Der so ausgefilterte Frequenzabschnitt des Sprachsignals wird im Mischelement 8 gemischt, so daß die Summen- und Differenzfrequenzen der im herausgeschnittenen Abschnitt des Sprachsignals enthaltenen Frequenzanteile gebildet werden. Von Interesse sind dabei die Differenzfrequenzen, so daß das aus dem Mischelement 8 austretende Signal mittels eines Tiefpasses bearbeitet wird, so daß nur Frequenzanteile unterhalb einer einstellbaren Frequenz ω2 durchgelassen werden. Somit läßt sich die kleinste Differenzfrequenz bestimmen, die dem Abstand zweier im Sprachsignal benachbart zueinander angeordneter Spektralanteile entspricht. Da es sich dabei um zwei Harmonische der Grundfrequenz handelt, stellt die Differenzfrequenz die Grundfrequenz ωg dar. Diese Grundfrequenz wird anschließend Mitteln 12 zur Rekonstruktion des Sprachsignals zugeleitet. Über einen weiteren Eingang der Mittel 12 wird das Sprachsignal über eine Verzögerungsstufe 14 und einen Tiefpaß 16 zugeführt. Somit liegt den Mitteln 12 sowohl der Wert der Grundfrequenz ωg als auch ein vorgegebener Frequenzabschnitt des Sprachsignals für eine Rekonstruktion des die Sprache enthaltenden Signals zur Verfügung. Die Verzögerungsstufe 14 dient dabei einem Ausgleich der Zeitspanne Δt, die für die Bestimmung der Grundfrequenz ωg benötigt wird und der Tiefpaß 16 dient einer sinnvollen Verringerung der Datenmenge, die den Mitteln 12 zur Rekonstruktion des Sprachsignals zugeleitet wird.
  • Die Mittel 12 zur Rekonstruktion des Sprachsignals unterhalb der Grenzfrequenz ω0 weist schaltungstechnisch zwei Alternativen von Verfahrensweisen auf.
  • Als erste Alternative wird die Grundfrequenz ωg herangezogen, um ein Signal im rekonstruierten Sprachsignal zu erzeugen, das dem Grundton der Sprache entspricht. Darüber hinaus können auch die Frequenzen der Harmonischen zur Grundfrequenz ωg durch einfaches Multiplizieren mit den Zahlen N = 2, 3, 4,... ermittelt werden, so daß für eine Rekonstruktion des Sprachanteils unterhalb der Grenzfrequenz ω0 neben der Grundfrequenz ωg auch die unterhalb der Grenzfrequenz ω0 angeordneten Frequenzen ωh1, ωh2, ... der ersten, zweiten und weiteren Harmonischen verwendet werden. Ziel ist es dabei, sämtliche Harmonischen im zu rekonstruierenden Frequenzabschnitt des Sprachsignals zu erzeugen, also zu simulieren. Für eine spektrale Verteilung um jede dieser Frequenzen wird in Näherung eine Gauß'schen Verteilung oder eine andere mögliche spektrale Verteilung angenommen, die sich über eine Halbwertsbreite und eine Amplitude definieren läßt. Dadurch lassen sich die in Fig. 5 dargestellten spektralen Abschnitte im Spektrogramm erzeugen, die bei dem in Fig. 2 dargestellten verrauschten Signal nicht oder nur ansatzweise zu erkennen sind.
  • Als weitere Alternative für eine Rekonstruktion des tieffrequenten Sprachanteils besteht die Möglichkeit, daß die Mittel 12 einen Kammfilter aufweisen, der eine Mehrzahl von Bandfiltern aufweist, deren spektrale Durchlaßfunktionen durch die Grundfrequenz ωg und die Frequenzen ωh1, ωh2, ... bestimmt werden. Die spektrale Durchlaßfunktion jedes Bandfilters wird zudem über eine vorgegebene Breite definiert, so daß entsprechende spektrale Abschnitte aus dem Sprachsignal im Bereich tiefer Frequenzen unterhalb der Grenzfrequenz ω0 herausgefiltert werden. Da aus dem Spektrogramm nur die Anteile herausgefiltert werden, die das Sprachsignal enthalten, wird das Sprachsignal aus dem Spektrogramm rekonstruiert. Wird dabei zusätzlich eine Rauschunterdrückung durchgeführt, so werden aus den herausgefilterten Signalanteilen auch die Untergrundgeräusche herausgefiltert, so daß ein nahezu natürliches Sprachsignal erzeugt wird.
  • Wie weiterhin in Fig. 7 zu erkennen ist, wird das Sprachsignal über eine weitere Verzögerungsstufe 18 um eine Zeitdifferenz Δt verzögert, um eine Anpassung an die für Rekonstruktion des tieffrequenten Sprachanteils notwendige Zeitspanne zu ermöglichen. Nach Durchlaufen einen Hochpasses 20, in dem das Sprachsignal oberhalb der Grenzfrequenz ω0 herausgefiltert wird, laufen sowohl dieses hochpaßgefilterte Signal als auch das rekonstruierte Sprachsignal für Frequenzen ω<ω0 in dem Summenelement 22 zusammen, woraus das in Fig. 6 dargestellte rekonstuierte Spektrogramm erzeugt wird. Dieses Spektrogramm besteht also einerseits aus dem unterhalb der Grenzfrequenz ω0 rekonstruierten Frequenzanteil sowie aus dem ursprünglichen Frequenzspektrum oberhalb der Grenzfrequenz ω0. Das so erzeugte Spektrogramm führt nach einer Umwandlung in ein Lautsprechersignal zu einer nahezu natürlich klingenden Sprachwiedergabe.
  • Wie bereits oben erläutert worden, bleibt im allgemeinen die Grundfrequenz ωg in einem Sprachsignal aufgrund der Sprachmelodie nicht konstant. Daher ist es erforderlich, ständig die Grundfrequenz ωg neu zu bestimmen. Dieses kann einerseits dadurch geschehen, daß ständig das zuvor beschriebenen Verfahren durchlaufen wird, das anhand der Elemente 4, 6, 8 und 10 zuvor beschrieben worden ist. Zum anderen kann jedoch eine genauere adaptive Nachführung der Grundfrequenz ωg durchgeführt werden. Dieses ist mit einer Vorrichtung möglich, die in Fig. 8 dargestellt ist.
  • Die zu Beginn eines Sprachsignals zunächst bestimmte Grundfrequenz ωg,0 wird mit Hilfe eines Multiplikationselementes 24 auf den N-fachen Wert multipliziert. Somit wird die (N-1)te Harmonische zur Grundfrequenz berechnet. Die Frequenz dieser Harmonischen wird im folgenden als Regelharmonische bezeichnet und die zugehörige Frequenz mit ωr bezeichnet.
  • Die Frequenz ωr wird über einen Mehrtorschalter in einen Regelkreis eingebracht. In einer Initialisierungsphase zu Beginn eines Wortes wird der Ausgang des Multiplikationselementes 24 vom Mehrtorschalter 26 an das Mischelement 28 übergeben. Nach kurzer Zeit liegt - wie im folgenden beschrieben - ein Schätzwert ωr, neu vor und der Mehrtorschalter 26 wird so umgeschaltet, daß ωr, neu an das Mischelement 28 weitergegeben wird.
  • Ziel des Regelkreises besteht darin, die Differenz zwischen der (N-1)ten Harmonischen und einer festen Frequenz von bspw. ωm =2000 Hz zu bestimmen. Im Idealfall ist ωr exakt die Frequenz der (N-1)ten Harmonischen. Das Mischelement 28 bildet die Differenz zwischen ωr und ωm. Ein Sinusgenerator erzeugt ein sinusförmiges Signal mit der Frequenz, die durch sein Eingangssignal ωd vorgegeben wird. Dieses wird einem Mischelement 32 zugeleitet, das das Sprachsignal und dieses sinusförmige Signal mischt. Nach erfolgter Mischung wird aus dem Mischelement 32 das gemischte Signal ausgegeben, das einem Regelelement 34 zum Feststellen der frequenzabhängigen Leistungsverteilung im Mischsignal in Bezug auf die feststehende Frequenz ωm zugeleitet wird.
  • Unter der Annahme, daß die dem Mischelement 28 zugeführte Frequenz ωr der Regelharmonsichen genau zu einer Harmonischen im aktuellen Sprachsignal paßt, entspricht die Summe aus der Differenzfrequenz ωd, die durch die Differenz mit der feststehenden Mischungsfrequenz ωm und ωr erzeugt worden ist, und einem der Regelharmonischen entsprechenden Frequenzanteils des Sprachsignals genau der Mischungsfrequenz ωm. Dieses spiegelt sich in einer Leistungsverteilung (P-Verteilung) im Leistungsspektrum wider. Die Leistungsverteilung wird bei der Mischungsfrequenz ωm maximal sein.
  • Entspricht die Frequenz ωr der Regelharmonischen jedoch nicht der aktuellen Frequenz der entsprechenden Harmonischen im Sprachsignal, so wird die Leistungsverteilung ihr Maximum nicht bei der Frequenz ωm, sondern bei einer um einen Differenzwert Δω verschobene Positionen annehmen. Somit läßt sich ein Korrekturwert zu Δω bestimmen, der dem aktuellen Wert der Frequenz ωr der Regelharmonischen hinzu addiert wird. Daraus entsteht der neue Wert der Frequenz ωr,neu, der über den Multiportschalter 26 der Regelschleife erneut zugeführt wird. Anschließend erfolgt erneut eine Mischung im Mischelement 28 mit nachfolgender Regelabfolge, wie sie zuvor beschrieben worden ist. Ändert sich somit im Laufe des Sprachsignals die Grundfrequenz und somit auch die Frequenz der entsprechenden Harmonischen im Sprachsignal, so wird dieses durch die Regelschleife ausgeglichen, so daß ständig ein aktueller, mit der Grundfrequenz ωr weitgehend übereinstimmender Wert ωr erzeugt.
  • Fig. 9 zeigt dazu die Kennlinien einer Mehrzahl von Bandfiltern, die für eine Bestimmung der Leistungsverteilung im Regelelement 34 vorgesehen sind. Aus Fig. 9 ergibt sich eine Anzahl von 7 Bandfiltern, die um die feststehende Mischfrequenz ωm = 2000 Hz herum angeordnet sind. Fällt also beispielsweise die maximale Leistung in den Durchlaßbereich des mittleren Bandfilters, so wird der Korrekturwert Δω=0 gesetzt. Liegt dagegen das Maximum in einem der benachbart angeordneten Bandfilter, so wird ein entsprechender Korrekturwert Δω≠0 erzeugt, um bei weiter fortgeführter Regelung das Maximum der spektralen Leistungsverteilung in den Durchlaßbereich des mittleren Bandfilters zu verschieben.
  • Der Wert ωr wird aus der Regelschleife über ein Multiplikationselement 38 abgezweigt und ausgegeben, in dem die aktuelle Frequenz ωr mit dem Faktor 1/N beaufschlagt wird, um den Wert der Grundfrequenz ωg,adapt zu erzeugen. Somit wird der Wert der Grundfrequenz ωg ständig adaptiv nachgeführt, wodurch die Rekonstruktion des tieffrequenten Sprachanteils aus den mittelhohen Frequenzanteilen verbessert und näher an ein natürliches Sprachsignal herangeführt wird.

Claims (16)

  1. Verfahren zur Rekonstruktion tieffrequenter Sprachanteile aus mittelhohen Frequenzanteilen,
    - bei dem oberhalb einer Grenzfrequenz (ω0) mindestens zwei benachbart angeordnete Frequenzanteile (ωfa1, ωfa2, ...) mit erhöhter Amplitude im Sprachsignal bestimmt werden und
    - bei dem die Grundfrequenz (ωg) des Sprachsignals als Frequenzdifferenz zwischen den mindestens zwei benachbarten Frequenzanteilen (ωfa1, ωfa2, ...) bestimmt wird und
    - bei dem mit Hilfe der ermittelten Grundfrequenz (ωg) und des Sprachsignals der tieffrequente Frequenzbereich unterhalb der Grenzfrequenz (ω0) rekonstruiert wird.
  2. Verfahren nach Anspruch 1, bei dem aus der Grundfrequenz (ωg) die Frequenzen (ωh1, ωh2, ...) der unterhalb der Grenzfrequenz (ω0) angeordneten Harmonischen der Grundfrequenz (ωg) bestimmt und neben der Grundfrequenz (ωg) für das Rekonstruieren des tieffrequenten Frequenzbereiches verwendet werden.
  3. Verfahren nach Anspruch 1, bei dem mit Hilfe eines mehrere Bandfilter aufweisenden Kammfilters auf der Basis der Grundfrequenz (ωg) und der Frequenzen der unterhalb der Grenzfrequenz (ω0) angeordneten Harmonischen die Frequenzpositionen der Bandfilter eingerichtet werden, mit deren Hilfe das Sprachsignals im Bereich unterhalb der Grenzfrequenz (ω0) gefiltert wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, bei dem zu Beginn eines Sprache enthaltenen Sprachabschnittes aus dem Sprachsignal die Grundfrequenz (ωg) bestimmt wird und anschließend die Grundfrequenz (ωg) adaptiv nachgeführt wird.
  5. Verfahren nach Anspruch 4,
    - bei dem für eine adaptive Nachführung der Grundfrequenz (ωg) aus dem aktuellen Wert der Grundfrequenz (ωg) die Frequenz (ωr) einer Regelharmonischen als N-te Harmonische berechnet wird,
    - bei dem die Differenz zwischen der Frequenz (ωr) der Regelharmonischen und einer feststehenden Mischungsfrequenz (ωm) gebildet wird,
    - bei dem ein sinusförmiges Signal (sin(ωd)) mit der sich aus der Differenzbildung ergebenden Differenz- oder Summenfrequenz (ωd) erzeugt wird,
    - bei dem das sinusförmige Signal (sin(ωd)) mit dem Sprachsignal gemischt und ein Mischsignal erzeugt wird,
    - bei dem im Mischsignal die frequenzabhängige Leistungsverteilung in Bezug auf die feststehende Mischungsfrequenz (ωm) festgestellt wird,
    - bei dem aus der Leistungsverteilung ein Korrekturwert (Δω) für die Frequenz (ωr) der Regelharmonischen berechnet wird,
    - bei dem die Frequenz (ωr) der Regelharmonischen um den Korrekturwert (Δω) verändert und einer erneuten Mischung mit der feststehenden Mischungsfrequenz (ωm) zugeleitet wird und
    - bei dem die Grundfrequenz (ωg) ausgegeben wird, die dem entsprechenden Bruchteil 1/N der Frequenz (ωr) entspricht.
  6. Verfahren nach Anspruch 5, bei dem für eine Bestimmung die Leistungsverteilung das Mischsignal einer Mehrzahl von Bandfiltern (BFn) zugeleitet wird, die nebeneinanderliegende Frequenzbereiche zentriert um die feste Mischungsfrequenz herum abdecken,
  7. Verfahren nach einem der Ansprüche 1 bis 6, bei dem die Amplitude des mindestens einen unterhalb der Grenzfrequenz erzeugten Frequenzsignals in Abhängigkeit von den Amplituden der oberhalb der Grenzfrequenz analysierten Frequenzsignale bestimmt wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, bei dem die Grenzfrequenz in Abhängigkeit vom Geräuschpegel bestimmt wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, bei dem das Sprachsignal vor einer Umwandlung in ein Spektrogramm einer Störsignalbefreiung unterzogen wird.
  10. Anwendung eines Verfahrens nach einem der Ansprüche 1 bis 9 für die Wiedergabe eines in einem fahrenden Kraftfahrzeug aufgenommenen Sprachsignals.
  11. Anwendung eines Verfahrens nach einem der Ansprüche 1 bis 9 für die Wiedergabe eines Sprachsignals, das mittels einer Telefonverbindung übertragen wird.
  12. Vorrichtung zur Rekonstruktion tieffrequenter Sprachanteile aus mittelhohen Frequenzanteilen, insbesondere zur Durchführung eines Verfahren nach einem der Ansprüche 1 bis 11,
    - mit Mitteln (4) zur Bestimmung von Frequenzanteile (ωfa1, ωfa2, ...) von Maxima im Sprachsignal oberhalb einer vorgegebenen Grenzfrequenz (ω0),
    - mit Mitteln (8) zum Mischen der Frequenzanteile (ωfa1, ωfa2, ...) zur Bestimmung der Grundfrequenz (ωg) des Sprachsignals als Differenzfrequenz zwischen jeweils zwei benachbarten Frequenzanteilen (ωfa1, ωfa2, ...) und
    - mit Mitteln (12) zur Rekonstruktion des Sprachsignals unterhalb der Grenzfrequenz (ω0) aus der ermittelten Grundfrequenz (ωg) und dem Sprachsignal.
  13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, daß die Mittel (12) zur Rekonstruktion des Sprachsignals unterhalb der Grenzfrequenz (ω0) das Spektrogramm aus der Grundfrequenz (ωg) und den Frequenzen (ωh1, ωh2, ...) der unterhalb der Grenzfrequenz (ω0) angeordneten Harmonischen der Grundfrequenz (ωg) mit einer vorgegebenen Spektralverteilung und einer vorgegebenen Amplitudenverteilung bestimmt.
  14. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, daß die Mittel (12) einen Kammfilter mit einer Mehrzahl von Bandfiltern aufweisen, wobei die Frequenzen der Bandfilter auf der Basis der Grundfrequenz (ωg) und ggf. ein oder mehrerer unterhalb der Grenzfrequenz (ω0) angeordneter Harmonischer der Grundfrequenz (ωg) einstellbar sind.
  15. Vorrichtung nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, daß für ein adaptives Nachführen der Grundfrequenz (ωg) vorgesehen sind,
    - ein Multiplikatorelement (24) zum Erzeugen der N-ten Harmonischen der Grundfrequenz als Frequenz (ωr) einer Regelharmonischen,
    - ein Mischelement (28) zum Mischen der Frequenz (ωr) der Regelharmonischen mit einer feststehenden Mischungsfrequenz (ωm),
    - einem Sinusgenerator (30) zum Mischen der sich aus der Mischung ergebenden Differenz- oder Summenfrequenz (ωd),
    - einem Mischelement (32) zum Mischen des sinusförmigen Signals (sin(ωd)) mit dem Sprachsignal und zum Erzeugen eines Mischsignals erzeugt wird,
    - einem Regelelement (34) zum Feststellen der frequenzabhängigen Leistungsverteilung im Mischsignal in Bezug auf die feststehende Mischungsfrequenz (ωm) und zum Berechnen eines ein Korrekturwert (Δω) für die Frequenz (ωr) der Regelharmonischen aus der Leistungsverteilung,
    - einem Mischelement (36) zum Verändern der Frequenz (ωr) der Regelharmonischen um den Korrekturwert (Δω) und
    - mit einem Multiplikatorelement (38) zum Berechnen des Bruchteils 1/N der Frequenz (ωr) als Grundfrequenz (ωg).
  16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß das Regelelement (34) eine Mehrzahl von Bandfiltern aufweist, die zentrisch zur Mischungsfrequenz (ωm) nebeneinanderliegende Frequenzbereiche abdecken.
EP01102129A 2000-03-02 2001-02-01 Verfahren zur Rekonstruktion tieffrequenter Sprachanteile aus mittelhohen Frequenzanteilen Expired - Lifetime EP1130577B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10010037 2000-03-02
DE10010037A DE10010037B4 (de) 2000-03-02 2000-03-02 Verfahren zur Rekonstruktion tieffrequenter Sprachanteile aus mittelhohen Frequenzanteilen

Publications (3)

Publication Number Publication Date
EP1130577A2 EP1130577A2 (de) 2001-09-05
EP1130577A3 EP1130577A3 (de) 2002-09-18
EP1130577B1 true EP1130577B1 (de) 2007-06-06

Family

ID=7633152

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01102129A Expired - Lifetime EP1130577B1 (de) 2000-03-02 2001-02-01 Verfahren zur Rekonstruktion tieffrequenter Sprachanteile aus mittelhohen Frequenzanteilen

Country Status (3)

Country Link
EP (1) EP1130577B1 (de)
AT (1) ATE364221T1 (de)
DE (2) DE10010037B4 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE528748T1 (de) * 2006-01-31 2011-10-15 Nuance Communications Inc Verfahren und entsprechendes system zur erweiterung der spektralen bandbreite eines sprachsignals
CN111863006B (zh) * 2019-04-30 2024-07-16 华为技术有限公司 一种音频信号处理方法、音频信号处理装置和耳机
CN112151065B (zh) * 2019-06-28 2024-03-15 力同科技股份有限公司 单音信号频率检测方法、装置、设备及计算机存储介质
CN113362840B (zh) * 2021-06-02 2022-03-29 浙江大学 基于内建传感器欠采样数据的通用语音信息恢复装置及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4091237A (en) * 1975-10-06 1978-05-23 Lockheed Missiles & Space Company, Inc. Bi-Phase harmonic histogram pitch extractor
US4490843A (en) * 1982-06-14 1984-12-25 Bose Corporation Dynamic equalizing
US4700390A (en) * 1983-03-17 1987-10-13 Kenji Machida Signal synthesizer
DE3782959T2 (de) * 1986-04-01 1993-06-24 Matsushita Electric Ind Co Ltd Erzeuger von niederfrequenten toenen.
JP2779886B2 (ja) * 1992-10-05 1998-07-23 日本電信電話株式会社 広帯域音声信号復元方法

Also Published As

Publication number Publication date
DE50112581D1 (de) 2007-07-19
EP1130577A2 (de) 2001-09-05
EP1130577A3 (de) 2002-09-18
DE10010037A1 (de) 2001-09-06
ATE364221T1 (de) 2007-06-15
DE10010037B4 (de) 2009-11-26

Similar Documents

Publication Publication Date Title
DE60212696T2 (de) Bandbreitenvergrösserung für audiosignale
DE2719973C2 (de)
DE2818204C2 (de) Signalverarbeitungsanlage zur Ableitung eines störverringerten Ausgangssignals
DE69122648T2 (de) Digitale Teilbandkodierungsvorrichtung
EP1853089B1 (de) Verfahren zum Unterdrücken von Rückkopplungen und zur Spektralerweiterung bei Hörvorrichtungen
DE60303214T2 (de) Verfahren zur reduzierung von aliasing-störungen, die durch die anpassung der spektralen hüllkurve in realwertfilterbanken verursacht werden
DE69719246T2 (de) Spektrale Umsetzung eines digitalen Audiosignals
EP1741039B1 (de) Informationssignalverarbeitung durch modifikation in der spektral-/modulationsspektralbereichsdarstellung
EP1386307B1 (de) Verfahren und vorrichtung zur bestimmung eines qualitätsmasses eines audiosignals
WO1999023642A1 (de) Verfahren zur reduktion von störungen akustischer signale mittels der adaptiven filter-methode der spektralen subtraktion
DE4120537A1 (de) Niederfrequenzkompensationsschaltung fuer tonsignale
EP1016319B1 (de) Verfahren und vorrichtung zum codieren eines zeitdiskreten stereosignals
EP1258865A2 (de) Schaltungsanordnung zur Verbesserung der Verständlichkeit von Sprache enthaltenden Audiosignalen
WO1998023130A1 (de) Gehörangepasste qualitätsbeurteilung von audiosignalen
DE69317802T2 (de) Verfahren und Vorrichtung für Tonverbesserung unter Verwendung von Hüllung von multibandpassfiltrierten Signalen in Kammfiltern
EP1239455A2 (de) Verfahren und Anordnung zur Durchführung einer an die Übertragungsfunktion menschilcher Sinnesorgane angepassten Fourier Transformation sowie darauf basierende Vorrichtungen zur Geräuschreduktion und Spracherkennung
DE69511602T2 (de) Signalquellencharakterisiersystem
DE4343366C2 (de) Verfahren und Schaltungsanordnung zur Vergrößerung der Bandbreite von schmalbandigen Sprachsignalen
EP1130577B1 (de) Verfahren zur Rekonstruktion tieffrequenter Sprachanteile aus mittelhohen Frequenzanteilen
WO2001047335A2 (de) Verfahren zur elimination von störsignalanteilen in einem eingangssignal eines auditorischen systems, anwendung des verfahrens und ein hörgerät
DE10025655B4 (de) Verfahren zum Entfernen einer unerwünschten Komponente aus einem Signal und System zum Unterscheiden zwischen unerwünschten und erwünschten Signalkomponenten
DE19832472A1 (de) Vorrichtung und Verfahren zur Beeinflussung eines Audiosignals in Abhängigkeit von Umgebungsgeräuschen
DE69015753T2 (de) Tonsyntheseanordnung.
DE2904426A1 (de) Analog-sprach-codierer und decodierer
DE69222696T2 (de) Auf Analyse-durch-Synthese-Methoden gegründeter Sprachcodierer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030318

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070606

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50112581

Country of ref document: DE

Date of ref document: 20070719

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070917

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20070606

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070606

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071106

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070606

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070606

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070907

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070606

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070606

26N No opposition filed

Effective date: 20080307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080201

BERE Be: lapsed

Owner name: VOLKSWAGEN A.G.

Effective date: 20080228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070606

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160229

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50112581

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170901