EP1126136B1 - Turbine blade with air cooled tip shroud - Google Patents

Turbine blade with air cooled tip shroud Download PDF

Info

Publication number
EP1126136B1
EP1126136B1 EP00810966A EP00810966A EP1126136B1 EP 1126136 B1 EP1126136 B1 EP 1126136B1 EP 00810966 A EP00810966 A EP 00810966A EP 00810966 A EP00810966 A EP 00810966A EP 1126136 B1 EP1126136 B1 EP 1126136B1
Authority
EP
European Patent Office
Prior art keywords
cooling
shroud
turbine blade
band element
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00810966A
Other languages
German (de)
French (fr)
Other versions
EP1126136A3 (en
EP1126136A2 (en
Inventor
Ibrahim Dr. El-Nashar
Hartmut Haehnle
Rudolf Kellerer
Beat Von Arx
Bernhard Prof.Dr. Weigand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1126136A2 publication Critical patent/EP1126136A2/en
Publication of EP1126136A3 publication Critical patent/EP1126136A3/en
Application granted granted Critical
Publication of EP1126136B1 publication Critical patent/EP1126136B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/80Platforms for stationary or moving blades
    • F05D2240/81Cooled platforms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/14Two-dimensional elliptical
    • F05D2250/141Two-dimensional elliptical circular

Definitions

  • the present invention relates to the field of gas turbines. It relates to an air-cooled turbine blade according to the preamble of claim 1.
  • Such a turbine blade is e.g. from US Pat. No. 5,482,435 or US Pat. No. 5,785,496.
  • the known cooling holes occupy comparatively little space within the shroud element. Since a certain minimum thickness of the shroud element is required for introducing the holes in the shroud element, and this or an even greater thickness of the shroud element is maintained in the area outside the holes, there is an unfavorably small ratio of flow-through shroud volume to not Wegströmtem shroud volume. This has the consequence that the cooling of the shroud element is not optimal, and that the shroud element is relatively heavy due to the large proportion of solid material and is therefore exposed to high mechanical stresses during operation due to centrifugal forces.
  • EP-A-1 013 884 discloses a turbine blade with actively cooled shroud element, in which cooling holes in the shroud element run approximately parallel to the direction of movement of the blade tip from inside to outside and open into a recess open towards the outside in front of the outer edge.
  • DE-A-196 01 819 discloses transverse to the direction of movement of the blade extending cooling holes, which branch off from longitudinal distribution channels and open at the ends in the outer space.
  • JP-A-03 194101 shows shroud elements with wide, slot-shaped. Cooling channels in which distributed posts are arranged.
  • JP-A-58 047104 discloses shroud elements with cooling holes extending in the direction of movement of the blade tip, which open directly into the outer space in the direction of the bore.
  • JP-A-08 028303 discloses shroud elements with cooling bores extending in the direction of movement of the blade tip, which open at the ends individually vertically upwards into the outer space.
  • US-A-3 433 015 shows cooled shrouds with restriction sites between the blade tip and the discharge ports.
  • EP-A-0 927 814 discloses oblique cooling holes in the shroud element.
  • the object is solved by the entirety of the features of claim 1.
  • the core of the invention is to design the cooling fluid-carrying cavities in the interior of the shroud element in coordination with the shroud element in shape and dimension so that the volume flowed through by the cooling fluid occupies a high proportion of the total volume of the shroud element. In this way, the weight of the shroud element can be significantly reduced with very efficient cooling.
  • the turbine blade according to the invention is characterized in that the cavities comprise cooling bores extending in the direction of movement of the blade tip, that the cooling bores are thwarted by a plurality of transverse bores, and that the transverse bores to the outside space are shut off by closed ends.
  • This configuration of intersecting cooling holes is geometrically similar to the previously mentioned wide distributed pin arrangement slots. Again, the solid material of the shroud element is significantly reduced and thus saved weight at greatly improved heat transfer.
  • the intersecting cooling holes can be relatively easily introduced into the shroud element by conventional means. Cooling technology particularly favorable cooling holes can be achieved if the cooling holes and the cross holes are made by means of the so-called "STEM drilling" process.
  • a turbine blade is shown in plan view from above.
  • the turbine blade 10 comprises the actual blade profile 23 (which extends perpendicular to the plane of the drawing) and a shroud element 11 arranged transversely thereto on the blade tip, which together with the shroud elements of the other blades (not shown) results in a continuous, annular, mechanically stabilizing shroud.
  • the airfoil 23 is internally hollow and is traversed by one or more cooling air channels 18 (indicated by dashed lines in Fig. 1) which direct cooling air from the blade root to the blade tip (see, e.g., Fig. 2 of US-A-5,482,435).
  • the shroud element 11 has on its upper side (22 in FIG. 2) two ribs 12 and 13 extending parallel in the direction of movement of the blade tip, which together with the opposite housing wall 20 of the gas turbine form a cavity 21 connected by gaps with the surroundings (FIG. 2).
  • cooling bores 16, 16 'and 17, 17' (dashed lines in Fig. 1 and 2), starting from the center to the outside.
  • the cooling holes may be of uniform shape, but may also be configured differently.
  • the cooling bores 16, 17 are designed as bores with a largely constant diameter, while the cooling bores 16 ', 17' are designed as diffusers with a cross-section widening in the direction of flow.
  • the cooling bores 16, 16 'and 17, 17' are on the input side with the cooling air channel 18 in connection and are supplied by this with cooling air (or other cooling fluid).
  • the cooling holes 16, 17 do not extend entirely to the lateral end or edge of the shroud element 11, but each open from the side in an elongated, from the top into the shroud element 11 recessed recess 14 or 15. This ensures that the cooling air always passes through the cooling holes, even if two (adjacent) shroud elements in mechanical Standing in contact.
  • each of the cooling bores 16, 16 'and 17, 17' can also be associated with a separate depression.
  • blowing out the cooling air leads upward to a "blowing" of the cavity 21 in the shroud (FIG. 2).
  • This leads to an increase in the pressure in the gap between shroud element 11 and housing wall 20 and thus contributes to a reduction of the penetrating mass flow of hot gas 24 at.
  • the mixing temperature is lowered in this area, whereby the thermal load of the shroud element 11 is reduced from the top 22 ago.
  • the cooling bores 16, 16 'and 17, 17' preferably on the input side, i. in the region of the cooling air supply to the profile 23, each equipped with a throttle point 19. This makes it possible to selectively limit the cooling air mass flow and to obtain a much more efficient cooling.
  • FIGS. 3 and 4 An alternative form of weight reduction is shown in FIGS. 3 and 4.
  • a wide slot 25 and 26 is provided in the interior of the shroud element 11 instead of a plurality of cooling holes on both sides of the blade profile, which extends from the central cooling air channel 18 to the lateral recesses 14 and 15 and opens there.
  • the slots 25, 26 lead because of their continuous width to a significant weight reduction and ensure over the entire width evenly distributed cooling
  • each throttle 19 or 19 ' may be provided to limit the cooling air mass flow, the throttle points each at the input side (throttle points 19) and / or the output side (throttling points 19 ') of the slots 25, 26 are positioned.
  • the cooling through the slots 25, 26 can be further increased in its effect, if a distributed arrangement (an "array") of pins 27 is provided as means for improving the heat transfer in the slots.
  • the pins 7 increase the turbulence of the cooling air flow and provide additional surfaces for heat transfer. In addition, they act mechanically stabilizing as they pass in the slots from wall to wall.
  • the number and arrangement of the pins in the "array" can be changed as part of optimizing the cooling effect.
  • FIG. 5 and 6 An embodiment of the inventive method of weight reduction is shown in Fig. 5 and 6.
  • a "matrix" of parallel cooling holes 16, 17 (drilling axis 29) and these crossing transverse bores 28 (drilling axis 30) generated in their effect in terms of weight reduction and cooling comparable to the pin-occupied slots of Fig. 3 and 4 is.
  • the cooling holes 16, 17 and the transverse bores 28 are preferably made by the so-called "STEM drilling" method, which is described in detail in US-A-5,306,401, as are the cooling holes in Figs. This makes it possible (by changing the feed) to provide the cooling bores 16, 17 and transverse bores 28 with internal roughness such as turbulators or ribs.
  • the cooling holes 16, 17 and transverse holes 28 are to the side by after drilling locked ends 31 and 32 shut off.
  • the cooling bores 16, 17 also have here preferably throttle points 19 and open into laterally arranged, upwardly open recesses 14, 15th

Description

TECHNISCHES GEBIETTECHNICAL AREA

Die vorliegende Erfindung bezieht sich auf das Gebiet der Gasturbinen. Sie betrifft eine luftgekühlte Turbinenschaufel gemäss dem Oberbegriff des Anspruchs 1.The present invention relates to the field of gas turbines. It relates to an air-cooled turbine blade according to the preamble of claim 1.

Eine solche Turbinenschaufel ist z.B. aus der Druckschrift US-A-5,482,435 oder der US-A-5,785,496 bekannt.Such a turbine blade is e.g. from US Pat. No. 5,482,435 or US Pat. No. 5,785,496.

STAND DER TECHNIKSTATE OF THE ART

Moderne Gasturbinen arbeiten bei extrem hohen Temperaturen. Dies bedingt eine intensive Kühlung der Turbinenschaufeln, die heutzutage in modernen Gasturbinen eingesetzt werden. Hierbei ist es meist besonders schwierig, die exponierten Bereiche der Schaufeln gut zu kühlen. Einer dieser Bereiche ist das Deckband bzw. Deckbandelement der Schaufel. Eine Möglichkeit, das Deckbandelement zu kühlen, ist in der eingangs genannten Druckschrift US-A-5,785,496 beschrieben worden. Dort wird vorgeschlagen (siehe die dortigen Fig. 1A und 1B), das Deckbandelement durch eine Reihe paralleler Kühlbohrungen zu kühlen, die sich von der (zentralen) Laufschaufel durch das Deckbandelement hindurch zur äusseren Kante des Deckbandelementes erstrecken und dort in den Aussenraum münden. In der US-A-5,482,435 sind zu demselben Zweck nur zwei in entgegengesetzte Richtungen laufende Bohrungen vorgesehen.Modern gas turbines operate at extremely high temperatures. This requires intensive cooling of the turbine blades, which today in modern gas turbines be used. In this case, it is usually particularly difficult to cool well the exposed areas of the blades. One of these areas is the shroud or shroud element of the blade. One way to cool the shroud element has been described in the aforementioned document US-A-5,785,496. There is proposed (see Figures 1A and 1B there) to cool the shroud element by a series of parallel cooling holes extending from the (central) blade through the shroud element to the outer edge of the shroud element and there open into the outside space. In US-A-5,482,435, only two bores running in opposite directions are provided for the same purpose.

Diese bekannten Lösungen haben allerdings Nachteile: Die bekannten Kühlbohrungen nehmen innerhalb des Deckbandelementes vergleichsweise wenig Platz ein. Da zum Einbringen der Bohrungen im Deckbandelement eine bestimmte Mindestdicke des Deckbandelementes benötigt wird, und diese oder eine noch grössere Dicke des Deckbandelementes auch im Bereich ausserhalb der Bohrungen beibehalten wird, ergibt sich ein ungünstig kleines Verhältnis von durchströmtem Deckbandvolumen zu nicht durchströmtem Deckbandvolumen. Dies hat zur Folge, dass die Kühlung des Deckbandelementes nicht optimal ist, und dass das Deckbandelement aufgrund des grossen Anteils an Vollmaterial vergleichsweise schwer ist und damit während des Betriebes aufgrund der Zentrifugalkräfte hohen mechanischen Belastungen ausgesetzt ist.However, these known solutions have disadvantages: The known cooling holes occupy comparatively little space within the shroud element. Since a certain minimum thickness of the shroud element is required for introducing the holes in the shroud element, and this or an even greater thickness of the shroud element is maintained in the area outside the holes, there is an unfavorably small ratio of flow-through shroud volume to not durchströmtem shroud volume. This has the consequence that the cooling of the shroud element is not optimal, and that the shroud element is relatively heavy due to the large proportion of solid material and is therefore exposed to high mechanical stresses during operation due to centrifugal forces.

Zur Lösung dieses Problems ist bereits vorgeschlagen worden (GB-A-2,290,833), auf im Inneren des Deckbandelementes verlaufende Kühlbohrungen praktisch ganz zu verzichten und statt dessen Kühlluft nach Art einer Filmkühlung aus einem Verteilkanal über eine Reihe von kleinen Oeffnungen auf die Oberseite des Deckbandelementes ausströmen zu lassen, um ein dünneres und leichteres Deckbandelement zu ermöglichen. Problematisch ist dabei jedoch, dass die Effektivität dieser Oberflächen-Filmkühlung des Deckbandelementes stark von den auf der Oberseite des Deckbandelementes herrschenden Strömungsverhältnissen abhängt und damit nur schwer für die verschiedenen Betriebszustände optimiert werden kann.To solve this problem has already been proposed (GB-A-2,290,833) to dispense practically completely on the inside of the shroud element cooling bores and instead emit cooling air in the manner of a film cooling from a distribution channel via a series of small openings on the top of the shroud element to allow for a thinner and lighter shroud element. The problem is, however, that the effectiveness of this surface film cooling of the shroud element strongly on the prevailing on the top of the shroud element flow conditions dependent and thus difficult to optimize for the various operating conditions.

Die EP-A-1 013 884 offenbart eine Turbinenschaufel mit aktiv gekühltem Deckbandelement, bei der Kühlbohrungen in dem Deckbandelement annähernd parallel zur Bewegungsrichtung der Schaufelspitze von innen nach aussen verlaufen und vor dem äusseren Rand in eine zum Aussenraum hin offene Vertiefung münden.EP-A-1 013 884 discloses a turbine blade with actively cooled shroud element, in which cooling holes in the shroud element run approximately parallel to the direction of movement of the blade tip from inside to outside and open into a recess open towards the outside in front of the outer edge.

Die DE-A-196 01 819 offenbart quer zur Bewegungsrichtung der Schaufel verlaufende Kühlbohrungen, die von längslaufenden Verteilkanälen abzweigen und an den Enden in den Aussenraum münden.DE-A-196 01 819 discloses transverse to the direction of movement of the blade extending cooling holes, which branch off from longitudinal distribution channels and open at the ends in the outer space.

Die JP-A-03 194101 zeigt Deckbandelemente mit breiten, schlitzförmigen . Kühlkanälen, in denen verteilt Pfosten angeordnet sind.JP-A-03 194101 shows shroud elements with wide, slot-shaped. Cooling channels in which distributed posts are arranged.

Die JP-A-58 047104 offenbart Deckbandelemente mit in Bewegungsrichtung der Schaufelspitze verlaufenden Kühlbohrungen, die in Bohrungsrichtung direkt in den Aussenraum münden.JP-A-58 047104 discloses shroud elements with cooling holes extending in the direction of movement of the blade tip, which open directly into the outer space in the direction of the bore.

Die JP-A-08 028303 offenbart Deckbandelemente mit in Bewegungsrichtung der Schaufelspitze verlaufenden Kühlbohrungen, die an den Enden einzeln senkrecht nach oben in den Aussenraum münden.JP-A-08 028303 discloses shroud elements with cooling bores extending in the direction of movement of the blade tip, which open at the ends individually vertically upwards into the outer space.

Die US-A-3 433 015 zeigt gekühlte Deckbänder mit Drosselstellen zwischen der Schaufelspitze und den Ausströmöffnungen.US-A-3 433 015 shows cooled shrouds with restriction sites between the blade tip and the discharge ports.

Die EP-A-0 927 814 offenbart schräg verlaufende Kühlbohrungen im Deckbandelement.EP-A-0 927 814 discloses oblique cooling holes in the shroud element.

Aus der US-A-5 306 401 ist es schliesslich bekannt, Kühlbohrungen in Schaufelelementen durch den sogenannten "STEM-drilling"-Prozess herzustellen.Finally, it is known from US Pat. No. 5,306,401 to produce cooling bores in blade elements by the so-called "STEM-drilling" process.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Es ist daher Aufgabe der Erfindung, eine Turbinenschaufel mit luftgekühltem Deckbandelement zu schaffen, bei welcher die genannten Nachteile auf einfache Weise vermieden werden können, und die sich insbesondere bei deutlicher Gewichtsreduzierung des Deckbandelementes durch eine wirksame Kühlung des Deckbandelementes auszeichnet.It is therefore an object of the invention to provide a turbine blade with air-cooled shroud element, in which the disadvantages mentioned can be avoided in a simple manner, and which is characterized in particular with significant weight reduction of the shroud element by effective cooling of the shroud element.

Die Aufgabe wird durch die Gesamtheit der Merkmale des Anspruchs 1 gelöst. Kern der Erfindung ist es, die das Kühlfluid führenden Hohlräume im Inneren des Deckbandelementes in Abstimmung mit dem Deckbandelement in Form und Abmessung so auszugestalten, dass das vom Kühlfluid durchströmte Volumen einen hohen Anteil am Gesamtvolumen des Deckbandelementes einnimmt. Hierdurch kann bei gleichzeitig sehr effizienter Kühlung das Gewicht des Deckbandelementes erheblich reduziert werden.The object is solved by the entirety of the features of claim 1. The core of the invention is to design the cooling fluid-carrying cavities in the interior of the shroud element in coordination with the shroud element in shape and dimension so that the volume flowed through by the cooling fluid occupies a high proportion of the total volume of the shroud element. In this way, the weight of the shroud element can be significantly reduced with very efficient cooling.

Die erfindungsgemässe Turbinenschaufel zeichnet sich dadurch aus, dass die Hohlräume sich in Bewegungsrichtung der Schaufelspitze erstreckende Kühlbohrungen umfassen, dass die Kühlbohrungen von einer Mehrzahl von Querbohrungen durchkreuzt werden, und dass die Querbohrungen zum Aussenraum hin durch verschlossene Enden abgesperrt sind. Diese Konfiguration der sich kreuzenden Kühlbohrungen ist von der Geometrie her vergleichbar zu den vorher erwähnten breiten Schlitzen mit verteilter Pin-Anordnung. Auch hier wird bei stark verbessertem Wärmeübergang das Vollmaterial des Deckbandelementes massgeblich reduziert und somit Gewicht eingespart. Die sich kreuzenden Kühlbohrungen lassen sich mit herkömmlichen Mitteln vergleichsweise leicht in das Deckbandelement einbringen. Kühlungstechnisch besonders günstige Kühlbohrungen lassen sich erreichen, wenn die Kühlbohrungen und die Querbohrungen mittels des sogenannten "STEM drilling"-Prozesses hergestellt sind.The turbine blade according to the invention is characterized in that the cavities comprise cooling bores extending in the direction of movement of the blade tip, that the cooling bores are thwarted by a plurality of transverse bores, and that the transverse bores to the outside space are shut off by closed ends. This configuration of intersecting cooling holes is geometrically similar to the previously mentioned wide distributed pin arrangement slots. Again, the solid material of the shroud element is significantly reduced and thus saved weight at greatly improved heat transfer. The intersecting cooling holes can be relatively easily introduced into the shroud element by conventional means. Cooling technology particularly favorable cooling holes can be achieved if the cooling holes and the cross holes are made by means of the so-called "STEM drilling" process.

Weitere Ausführungsformen ergeben sich aus den abhängigen Ansprüchen.Further embodiments emerge from the dependent claims.

KURZE ERLÄUTERUNG DER FIGURENBRIEF EXPLANATION OF THE FIGURES

Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit der Zeichnung näher erläutert werden. Es zeigen

Fig. 1
in der Draufsicht von oben eine Turbinenschaufel mit den (gestrichelt angedeuteten) tunnelförmigen Kühlbohrungen im Deckbandelement;
Fig. 2
von der Seite her gesehen die Spitze der Turbinenschaufel nach Fig. 1 innerhalb der Gasturbine mit der gegenüberliegenden Gehäusewand;
Fig. 3
in einer zu Fig. 1 vergleichbaren Darstellung eine Turbinenschaufel mit breiten Schlitzen und einer regelmässigen Anordnung von Pins in den Schlitzen;
Fig. 4
in einer zu Fig. 2 vergleichbaren Darstellung die Seitenansicht der Schaufel nach Fig. 3;
Fig. 5
in einer zu Fig. 1 vergleichbaren Darstellung ein bevorzugtes Ausführungsbeispiel der Erfindung mit sich kreuzenden Kühlbohrungen und Querbohrungen; und
Fig. 6
in einer zu Fig. 2 vergleichbaren Darstellung die Seitenansicht der Schaufel nach Fig. 5.
The invention will be explained in more detail with reference to embodiments in conjunction with the drawings. Show it
Fig. 1
in plan view from above a turbine blade with the (dashed lines indicated) tunnel-shaped cooling holes in the shroud element;
Fig. 2
seen from the side of the tip of the turbine blade of Figure 1 within the gas turbine with the opposite housing wall.
Fig. 3
in a representation comparable to Figure 1, a turbine blade with wide slots and a regular array of pins in the slots.
Fig. 4
in a comparable to Figure 2 representation of the side view of the blade according to Fig. 3;
Fig. 5
in a comparable to Figure 1 representation of a preferred embodiment of the invention with intersecting cooling holes and cross holes. and
Fig. 6
in a representation comparable to FIG. 2, the side view of the blade according to FIG. 5.

WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS FOR CARRYING OUT THE INVENTION

In Fig. 1 ist in der Draufsicht von oben eine Turbinenschaufel dargestellt. Die Turbinenschaufel 10 umfasst das eigentliche (senkrecht zur Zeichenebene sich erstreckende) Schaufelprofil 23 und ein quer dazu an der Schaufelspitze angeordnetes Deckbandelement 11, welches zusammen mit den Deckbandelementen der anderen (nicht gezeigten) Schaufeln ein durchgehendes, ringförmiges, mechanisch stabilisierendes Deckband ergibt. Das Schaufelprofil 23 ist im Inneren teilweise hohl und von einem oder mehreren Kühlluftkanälen 18 (in Fig. 1 gestrichelt angedeutet) durchzogen, die Kühlluft vom Schaufelfuss bis in die Schaufelspitze leiten (siehe z.B. Fig. 2 der US-A-5,482,435). Das Deckbandelement 11 hat auf seiner Oberseite (22 in Fig. 2) zwei parallel in Bewegungsrichtung der Schaufelspitze verlaufende Rippen 12 und 13, die zusammen mit der gegenüberliegenden Gehäusewand 20 der Gasturbine eine durch Spalte mit der Umgebung verbundene Kavität 21 bilden (Fig. 2).In Fig. 1, a turbine blade is shown in plan view from above. The turbine blade 10 comprises the actual blade profile 23 (which extends perpendicular to the plane of the drawing) and a shroud element 11 arranged transversely thereto on the blade tip, which together with the shroud elements of the other blades (not shown) results in a continuous, annular, mechanically stabilizing shroud. The airfoil 23 is internally hollow and is traversed by one or more cooling air channels 18 (indicated by dashed lines in Fig. 1) which direct cooling air from the blade root to the blade tip (see, e.g., Fig. 2 of US-A-5,482,435). The shroud element 11 has on its upper side (22 in FIG. 2) two ribs 12 and 13 extending parallel in the direction of movement of the blade tip, which together with the opposite housing wall 20 of the gas turbine form a cavity 21 connected by gaps with the surroundings (FIG. 2). ,

Im Inneren des Deckbandelementes 11 verlaufen zwischen und im wesentlichen parallel zu den Rippen 12, 13 mehrere Kühlbohrungen 16, 16' und 17, 17' (in Fig. 1 und 2 gestrichelt eingezeichnet) von der Mitte ausgehend nach aussen. Die Kühlbohrungen können von einheitlicher Gestalt sein, können aber auch unterschiedlich ausgestaltet sein. Im Ausführungsbeispiel der Fig. 1 und 2 sind die Kühlbohrungen 16, 17 als Bohrungen mit weitgehend konstantem Durchmesser ausgelegt, während die Kühlbohrungen 16', 17' als Diffusoren mit sich in Strömungsrichtung erweiterndem Querschnitt ausgebildet sind.Inside the shroud element 11 extend between and substantially parallel to the ribs 12, 13 a plurality of cooling bores 16, 16 'and 17, 17' (dashed lines in Fig. 1 and 2), starting from the center to the outside. The cooling holes may be of uniform shape, but may also be configured differently. In the exemplary embodiment of FIGS. 1 and 2, the cooling bores 16, 17 are designed as bores with a largely constant diameter, while the cooling bores 16 ', 17' are designed as diffusers with a cross-section widening in the direction of flow.

Die Kühlbohrungen 16, 16' und 17, 17' stehen eingangsseitig mit dem Kühlluftkanal 18 in Verbindung und werden von diesem mit Kühlluft (oder einem anderen Kühlfluid) versorgt. Wie aus Fig. 1 zu entnehmen ist, erstrecken sich die Kühlbohrungen 16, 17 nicht ganz bis zum seitlichen Ende bzw. Rand des Deckbandelementes 11, sondern münden jeweils von der Seite her in eine längliche, von der Oberseite her in das Deckbandelement 11 eingelassen Vertiefung 14 bzw. 15. Dadurch ist gewährleistet, dass die Kühlluft immer durch die Kühlbohrungen hindurchtritt, auch wenn zwei (benachbarte) Deckbandelemente in mechanischem Kontakt stehen. Es versteht sich von selbst, dass anstelle der durchgehenden Vertiefungen 14, 15 auch jede der Kühlbohrungen 16, 16' und 17, 17' für sich genommen mit einer separaten Vertiefung in Verbindung stehen kann. Weiterhin ist es auch denkbar, die Kühlbohrungen 16, 16' und 17, 17' leicht schräg und von einer Parallelität untereinander abweichend verlaufen zu lassen, wenn es zur Optimierung der Kühlung über die gesamte Fläche des Deckbandelementes 11 nötig ist.The cooling bores 16, 16 'and 17, 17' are on the input side with the cooling air channel 18 in connection and are supplied by this with cooling air (or other cooling fluid). As can be seen from Fig. 1, the cooling holes 16, 17 do not extend entirely to the lateral end or edge of the shroud element 11, but each open from the side in an elongated, from the top into the shroud element 11 recessed recess 14 or 15. This ensures that the cooling air always passes through the cooling holes, even if two (adjacent) shroud elements in mechanical Standing in contact. It goes without saying that, instead of the through recesses 14, 15, each of the cooling bores 16, 16 'and 17, 17' can also be associated with a separate depression. Furthermore, it is also conceivable to have the cooling bores 16, 16 'and 17, 17' slightly oblique and deviating from one another by a parallelism, if it is necessary to optimize the cooling over the entire surface of the shroud element 11.

Weiterhin führt ein Ausblasen der Kühlluft nach oben zu einem "Aufblasen" der Kavität 21 im Deckband (Fig. 2). Dies führt zu einer Erhöhung des Druckes im Spalt zwischen Deckbandelement 11 und Gehäusewand 20 und trägt damit zu einer Verkleinerung des eindringenden Massenstromes an Heissgas 24 bei. Weiterhin wird natürlich auch die Mischtemperatur in diesem Bereich abgesenkt, wodurch die thermische Belastung des Deckbandelementes 11 von der Oberseite 22 her verringert wird. Weiterhin ist es vorteilhaft, die Kühlbohrungen 16, 16' und 17, 17' vorzugsweise eingangsseitig, d.h. im Bereich der Kühlluftversorgung am Profil 23, jeweils mit einer Drosselstelle 19 auszustatten. Dadurch wird es möglich, den Kühlluftmassenstrom gezielt zu begrenzen und eine deutlich effizientere Kühlung zu erhalten.Furthermore, blowing out the cooling air leads upward to a "blowing" of the cavity 21 in the shroud (FIG. 2). This leads to an increase in the pressure in the gap between shroud element 11 and housing wall 20 and thus contributes to a reduction of the penetrating mass flow of hot gas 24 at. Furthermore, of course, the mixing temperature is lowered in this area, whereby the thermal load of the shroud element 11 is reduced from the top 22 ago. Furthermore, it is advantageous that the cooling bores 16, 16 'and 17, 17' preferably on the input side, i. in the region of the cooling air supply to the profile 23, each equipped with a throttle point 19. This makes it possible to selectively limit the cooling air mass flow and to obtain a much more efficient cooling.

Entscheidend für die Reduktion des Gewichtes des Deckbandelementes 11 ist beim Beispiel der Fig. 1 und 2 jedoch, dass die Kühlbohrungen 16, 16' und 17, 17' tunnelförmig ausgebildet sind. Das bedeutet, dass - wie in der Seitenansicht von Fig. 2 deutlich zu sehen ist - die Dicke des Deckbandelementes 11 ausserhalb der Kühlbohrungen 16, 16'; 17, 17' reduziert ist. Hierdurch kann beim Deckbandelement erheblich an Material und damit an Gewicht eingespart werden. Gleichzeitig reduziert sich das zu kühlende Materialvolumen. Schliesslich bilden die tunnelförmigen Kühlbohrungen 16, 16' und 17, 17' auf der Oberseite des Deckbandelementes rippenförmige Erhebungen, die massgeblich zu einer Erhöhung der mechanischen Steifigkeit des Deckbandelementes 11 beitragen.Decisive for the reduction of the weight of the shroud element 11 is in the example of FIGS. 1 and 2, however, that the cooling holes 16, 16 'and 17, 17' are tunnel-shaped. This means that - as can be clearly seen in the side view of Figure 2 - the thickness of the shroud element 11 outside the cooling holes 16, 16 '; 17, 17 'is reduced. As a result, the shroud element considerably saves material and thus weight. At the same time, the volume of material to be cooled is reduced. Finally, the tunnel-shaped cooling bores 16, 16 'and 17, 17' on the upper side of the shroud element rib-shaped elevations, which contribute significantly to an increase in the mechanical rigidity of the shroud element 11.

Eine alternative Form der Gewichtsreduktion ist in Fig. 3 und 4 wiedergegeben. Hier ist im Inneren des Deckbandelementes 11 anstelle einer Vielzahl von Kühlbohrungen zu beiden Seiten des Schaufelprofils jeweils ein breiter Schlitz 25 bzw. 26 vorgesehen, der sich jeweils vom zentralen Kühlluftkanal 18 bis zu den seitlichen Vertiefungen 14 bzw. 15 erstreckt und dort mündet. Die Schlitze 25, 26 führen wegen ihrer durchgehenden Breite zu einer erheblichen Gewichtsreduktion und gewährleisten eine über die gesamte Breite gleichmässig verteilte Kühlung Auch hier können jeweils Drosselstellen 19 bzw. 19' zur Begrenzung des Kühlluftmassenstromes vorgesehen sein, wobei die Drosselstellen jeweils an der Eingangsseite (Drosselstellen 19) und/oder der Ausgangsseite (Drosselstellen 19') der Schlitze 25, 26 positioniert sind. Die Kühlung durch die Schlitze 25, 26 kann in ihrer Wirkung weiter erhöht werden, wenn als Mittel zur Verbesserung des Wärmeübergangs in den Schlitzen eine verteilte Anordnung (einen "array") von Pins 27 vorgesehen wird. Die Pins 7 erhöhen die Turbulenz der Kühlluftströmung und stellen zusätzliche Flächen für den Wärmeübergang dar. Darüber hinaus wirken sie mechanisch stabilisierend, wenn sie in den Schlitzen von Wand zu Wand reichen. Zahl und Anordnung der Pins im "array" können im Rahmen einer Optimierung der Kühlwirkung verändert werden.An alternative form of weight reduction is shown in FIGS. 3 and 4. Here, a wide slot 25 and 26 is provided in the interior of the shroud element 11 instead of a plurality of cooling holes on both sides of the blade profile, which extends from the central cooling air channel 18 to the lateral recesses 14 and 15 and opens there. The slots 25, 26 lead because of their continuous width to a significant weight reduction and ensure over the entire width evenly distributed cooling Again, each throttle 19 or 19 'may be provided to limit the cooling air mass flow, the throttle points each at the input side (throttle points 19) and / or the output side (throttling points 19 ') of the slots 25, 26 are positioned. The cooling through the slots 25, 26 can be further increased in its effect, if a distributed arrangement (an "array") of pins 27 is provided as means for improving the heat transfer in the slots. The pins 7 increase the turbulence of the cooling air flow and provide additional surfaces for heat transfer. In addition, they act mechanically stabilizing as they pass in the slots from wall to wall. The number and arrangement of the pins in the "array" can be changed as part of optimizing the cooling effect.

Ein Ausführungsbeispiel für die erfindungsgemässe Art der Gewichtsreduktion ist in Fig. 5 und 6 dargestellt. Hier wird im Deckbandelement 11 eine "Matrix" aus parallelen Kühlbohrungen 16, 17 (Bohrachse 29) und diese kreuzenden Querbohrungen 28 (Bohrachse 30) erzeugt, die in ihrer Wirkung hinsichtlich Gewichtsreduktion und Kühlung vergleichbar mit den Pin-besetzten Schlitzen der Fig. 3 und 4 ist. Die Kühlbohrungen 16, 17 und die Querbohrungen 28 werden - wie auch die Kühlbohrungen in Fig. 1 und 2 - vorzugsweise mit dem sogenannten "STEM drilling"-Verfahren hergestellt, das in der US-A-5,306,401 in allen Einzelheiten beschrieben ist. Dadurch ist es (durch Veränderung des Vorschubs) möglich, die Kühlbohrungen 16, 17 und Querbohrungen 28 mit internen Rauhigkeiten wie z.B. Turbulatoren oder Rippen zu versehen. Dies führt zu einer deutlich effizienteren Kühlung, weil die Form der Kühlbohrung optimiert werden kann. Die Kühlbohrungen 16, 17 und Querbohrungen 28 werden zur Seite hin durch nach dem Bohren verschlossene Enden 31 bzw. 32 abgesperrt. Die Kühlbohrungen 16, 17 haben auch hier vorzugsweise Drosselstellen 19 und münden in seitlich angeordnete, nach oben offene Vertiefungen 14, 15.An embodiment of the inventive method of weight reduction is shown in Fig. 5 and 6. Here, in the shroud element 11, a "matrix" of parallel cooling holes 16, 17 (drilling axis 29) and these crossing transverse bores 28 (drilling axis 30) generated in their effect in terms of weight reduction and cooling comparable to the pin-occupied slots of Fig. 3 and 4 is. The cooling holes 16, 17 and the transverse bores 28 are preferably made by the so-called "STEM drilling" method, which is described in detail in US-A-5,306,401, as are the cooling holes in Figs. This makes it possible (by changing the feed) to provide the cooling bores 16, 17 and transverse bores 28 with internal roughness such as turbulators or ribs. This leads to a much more efficient cooling, because the shape of the cooling hole can be optimized. The cooling holes 16, 17 and transverse holes 28 are to the side by after drilling locked ends 31 and 32 shut off. The cooling bores 16, 17 also have here preferably throttle points 19 and open into laterally arranged, upwardly open recesses 14, 15th

BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

1010
Turbinenschaufelturbine blade
1111
DeckbandelementShroud element
12,1312.13
Ripperib
14,1514.15
Vertiefungdeepening
16,16',17,17'16.16 '17.17'
Kühlbohrungcooling hole
1818
KühlluftkanalCooling air duct
19,19'19.19 '
Drosselstellerestriction
2020
Gehäusewandhousing wall
2121
Kavitätcavity
2222
Oberseite (Deckbandelement)Top side (shroud element)
2323
Schaufelprofilblade profile
2424
Heissgashot gas
25,2625.26
Schlitzslot
2727
PinPin code
2828
Querbohrungcross hole
29,3029.30
Bohrachsedrilling axis
31,3231.32
verschlossenes Endeclosed end

Claims (6)

  1. Air-cooled turbine blade (10) which has a shroud-band element (11) at the blade tip, the shroud-band element (11) extending transversely to the blade longitudinal axis, hollow spaces (16, 16', 17, 17'; 25, 26; 28) for cooling being provided in the interior of the shroud-band element (11), which hollow spaces (16, 16', 17, 17'; 25, 26; 28) are connected on the inlet side to at least one cooling-air passage (18) passing through the turbine blade (10) to the blade tip and open on the outlet side into the exterior space surrounding the turbine blade (10), the hollow spaces (16, 16', 17, 17'; 25, 26; 28) and the shroud-band element (11) being matched to one another in shape and dimensions in order to reduce the weight of the shroud-band element (11) the hollow spaces comprising cooling holes (16, 17) extending in the direction of movement of the blade tip, and a plurality of transverse holes (28) crossing the cooling holes (16, 17), characterized in that the transverse holes (28) are blocked off toward the exterior space by closed ends (32).
  2. Turbine blade according to Claim 1, characterized in that the cooling holes (16, 17) in each case open upward into the exterior space upstream of the outer margin of the shroud-band element (11).
  3. Turbine blade according to either of Claims 1 and 2, characterized in that recesses (14, 15) are made in the shroud-band element (11) from the top side, and in that the cooling holes (16, 17) open laterally into the recesses (14, 15).
  4. Turbine blade according to one of Claims 1 to 3, characterized in that a choke point (19) for limiting the cooling-air mass flow is provided in each of the cooling holes (16, 17), and in that the choke points (19) are each arranged at the inlet side of the cooling holes (16, 17).
  5. Turbine blade according to one of Claims 1 to 4, characterized in that the cooling holes (16, 16'; 17, 17') and the transverse holes (28) are produced by means of the so-called STEM drilling process.
  6. Turbine blade according to one of Claims 1 to 5, characterized in that ribs (12, 13) which run parallel to one another and are at a distance apart are provided on the top side of the shroud-band element (11), and these ribs (12, 13) together with the opposite casing wall (20) of the gas turbine form a cavity (21), and in that the hollow spaces (16, 16'; 17, 17') open into the cavity (21).
EP00810966A 1999-12-28 2000-10-19 Turbine blade with air cooled tip shroud Expired - Lifetime EP1126136B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19963377A DE19963377A1 (en) 1999-12-28 1999-12-28 Turbine blade with actively cooled cover band element
DE1996377 1999-12-28

Publications (3)

Publication Number Publication Date
EP1126136A2 EP1126136A2 (en) 2001-08-22
EP1126136A3 EP1126136A3 (en) 2004-05-19
EP1126136B1 true EP1126136B1 (en) 2006-06-14

Family

ID=7934748

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00810966A Expired - Lifetime EP1126136B1 (en) 1999-12-28 2000-10-19 Turbine blade with air cooled tip shroud

Country Status (4)

Country Link
US (1) US6464460B2 (en)
EP (1) EP1126136B1 (en)
CN (1) CN1278018C (en)
DE (2) DE19963377A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6869270B2 (en) * 2002-06-06 2005-03-22 General Electric Company Turbine blade cover cooling apparatus and method of fabrication
EP1508668B1 (en) 2003-07-23 2006-12-20 Alstom Technology Ltd Method of reconditioning and method of fabricating a turbine blade
EP1515000B1 (en) * 2003-09-09 2016-03-09 Alstom Technology Ltd Blading of a turbomachine with contoured shrouds
US20060280610A1 (en) * 2005-06-13 2006-12-14 Heyward John P Turbine blade and method of fabricating same
GB2430170B (en) * 2005-09-15 2008-05-07 Rolls Royce Plc Method of forming a cast component
US20070201980A1 (en) * 2005-10-11 2007-08-30 Honeywell International, Inc. Method to augment heat transfer using chamfered cylindrical depressions in cast internal cooling passages
US7686581B2 (en) * 2006-06-07 2010-03-30 General Electric Company Serpentine cooling circuit and method for cooling tip shroud
US7762774B2 (en) * 2006-12-15 2010-07-27 Siemens Energy, Inc. Cooling arrangement for a tapered turbine blade
US7568882B2 (en) * 2007-01-12 2009-08-04 General Electric Company Impingement cooled bucket shroud, turbine rotor incorporating the same, and cooling method
US7946816B2 (en) * 2008-01-10 2011-05-24 General Electric Company Turbine blade tip shroud
US8057177B2 (en) * 2008-01-10 2011-11-15 General Electric Company Turbine blade tip shroud
US7946817B2 (en) * 2008-01-10 2011-05-24 General Electric Company Turbine blade tip shroud
US20090180894A1 (en) * 2008-01-10 2009-07-16 General Electric Company Turbine blade tip shroud
US8322986B2 (en) * 2008-07-29 2012-12-04 General Electric Company Rotor blade and method of fabricating the same
GB0901129D0 (en) * 2009-01-26 2009-03-11 Rolls Royce Plc Rotor blade
CH700686A1 (en) * 2009-03-30 2010-09-30 Alstom Technology Ltd Blade for a gas turbine.
CN102069365B (en) * 2009-11-25 2014-12-10 中国江南航天工业集团林泉电机厂 Method for manufacturing radiator and radiator
US8444372B2 (en) 2011-02-07 2013-05-21 General Electric Company Passive cooling system for a turbomachine
EP2713009B1 (en) * 2012-09-26 2015-03-11 Alstom Technology Ltd Cooling method and system for cooling blades of at least one blade row in a rotary flow machine
BR112017020559B1 (en) * 2015-04-15 2022-11-16 Robert Bosch Gmbh FREE END AXIAL FAN SET
US10947898B2 (en) * 2017-02-14 2021-03-16 General Electric Company Undulating tip shroud for use on a turbine blade
JP6636668B1 (en) * 2019-03-29 2020-01-29 三菱重工業株式会社 High-temperature component, method for manufacturing high-temperature component, and method for adjusting flow rate
US11255198B1 (en) * 2021-06-10 2022-02-22 General Electric Company Tip shroud with exit surface for cooling passages

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3433015A (en) * 1965-06-23 1969-03-18 Nasa Gas turbine combustion apparatus
US3527544A (en) * 1968-12-12 1970-09-08 Gen Motors Corp Cooled blade shroud
GB1605335A (en) * 1975-08-23 1991-12-18 Rolls Royce A rotor blade for a gas turbine engine
JPS5847104A (en) * 1981-09-11 1983-03-18 Agency Of Ind Science & Technol Turbine rotor blade in gas turbine
JPH03194101A (en) * 1989-12-21 1991-08-23 Toshiba Corp Gas turbine cooling moving blade
US5197852A (en) * 1990-05-31 1993-03-30 General Electric Company Nozzle band overhang cooling
GB9224241D0 (en) * 1992-11-19 1993-01-06 Bmw Rolls Royce Gmbh A turbine blade arrangement
US5306401A (en) * 1993-03-15 1994-04-26 Fierkens Richard H J Method for drilling cooling holes in turbine blades
GB2290833B (en) 1994-07-02 1998-08-05 Rolls Royce Plc Turbine blade
JP3188105B2 (en) * 1994-07-11 2001-07-16 三菱重工業株式会社 Gas turbine blades
US5482435A (en) 1994-10-26 1996-01-09 Westinghouse Electric Corporation Gas turbine blade having a cooled shroud
GB2298245B (en) * 1995-02-23 1998-10-28 Bmw Rolls Royce Gmbh A turbine-blade arrangement comprising a cooled shroud band
US5785496A (en) 1997-02-24 1998-07-28 Mitsubishi Heavy Industries, Ltd. Gas turbine rotor
JPH1113402A (en) * 1997-06-23 1999-01-19 Mitsubishi Heavy Ind Ltd Tip shroud for gas turbine cooling blade
EP1391581B1 (en) * 1998-02-04 2013-04-17 Mitsubishi Heavy Industries, Ltd. Gas turbine moving blade
DE59912323D1 (en) * 1998-12-24 2005-09-01 Alstom Technology Ltd Baden Turbine blade with actively cooled Deckbandelememt
US6254345B1 (en) * 1999-09-07 2001-07-03 General Electric Company Internally cooled blade tip shroud

Also Published As

Publication number Publication date
US6464460B2 (en) 2002-10-15
CN1278018C (en) 2006-10-04
DE50012982D1 (en) 2006-07-27
DE19963377A1 (en) 2001-07-12
US20010006600A1 (en) 2001-07-05
CN1301911A (en) 2001-07-04
EP1126136A3 (en) 2004-05-19
EP1126136A2 (en) 2001-08-22

Similar Documents

Publication Publication Date Title
EP1126136B1 (en) Turbine blade with air cooled tip shroud
EP1013884B1 (en) Turbine blade with actively cooled head platform
EP1223308B1 (en) Turbomachine component
EP1113145B1 (en) Blade for gas turbines with metering section at the trailing edge
DE10001109B4 (en) Cooled shovel for a gas turbine
DE60018817T2 (en) Chilled gas turbine blade
EP1270873B1 (en) Gas turbine blade
DE602005000350T2 (en) Turbine stator blade with improved cooling
DE602005000449T2 (en) Cooling with microchannels for a turbine blade
DE1946535C3 (en) Component for a gas turbine engine
DE60017437T2 (en) RIBS FOR INCREASING THE HEAT TRANSFER OF A COOLING AIR INNER COOLED TURBINE BLADE
EP2384393B1 (en) Cooled vane for a gas turbine
DE19944923B4 (en) Turbine blade for the rotor of a gas turbine
DE1601561C3 (en) Cooled airfoil blade for an axial flow machine
DE2241194A1 (en) FLOW MACHINE SHOVEL WITH A WING-SHAPED CROSS-SECTIONAL PROFILE AND WITH A NUMBER OF COOLING DUCTS RUNNING IN THE LENGTH DIRECTION OF THE SHOVEL
EP1267039A1 (en) Cooling configuration for an airfoil trailing edge
DE19904229A1 (en) Cooled turbine blade has shroud formed by sealing rib with integrated cooling channels connected to coolant channel in blade
DE19634238A1 (en) Coolable shovel
EP1006263B1 (en) Vane cooling
EP3207217B1 (en) Film-cooled gas turbine component
EP1167689A1 (en) Configuration of a coolable turbine blade
DE102004002327A1 (en) Cooled shovel for a gas turbine
EP1207269B1 (en) Gas turbine vane
EP1644614B1 (en) Cooled blade for a gas turbine
EP0992653A1 (en) Film-cooled components with triangular cross section cooling holes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7F 01D 11/24 B

Ipc: 7F 01D 5/20 A

Ipc: 7F 01D 11/08 B

Ipc: 7F 01D 5/18 B

17P Request for examination filed

Effective date: 20041112

AKX Designation fees paid

Designated state(s): DE GB

17Q First examination report despatched

Effective date: 20050216

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: EL-NASHAR, IBRAHIM, DR.

Inventor name: HAEHNLE, HARTMUT

Inventor name: VON ARX, BEAT

Inventor name: KELLERER, RUDOLF

Inventor name: WEIGAND, BERNHARD, PROF.DR.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50012982

Country of ref document: DE

Date of ref document: 20060727

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060906

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50012982

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50012982

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50012982

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50012982

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50012982

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171019

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20171019

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50012982

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181019