EP1124641B1 - Procede et dispositif pour la separation mecanique d'un systeme disperse - Google Patents

Procede et dispositif pour la separation mecanique d'un systeme disperse Download PDF

Info

Publication number
EP1124641B1
EP1124641B1 EP99955886A EP99955886A EP1124641B1 EP 1124641 B1 EP1124641 B1 EP 1124641B1 EP 99955886 A EP99955886 A EP 99955886A EP 99955886 A EP99955886 A EP 99955886A EP 1124641 B1 EP1124641 B1 EP 1124641B1
Authority
EP
European Patent Office
Prior art keywords
centrifugal separator
cross
feed channels
partial
tangential feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99955886A
Other languages
German (de)
English (en)
Other versions
EP1124641A1 (fr
Inventor
Günter Slowik
Jürgen Kohlmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOHLMANN, JUERGEN
SLOWIK, GUENTER
Original Assignee
Kohlmann Juergen
Slowik Guenter
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19920237A external-priority patent/DE19920237B4/de
Application filed by Kohlmann Juergen, Slowik Guenter filed Critical Kohlmann Juergen
Publication of EP1124641A1 publication Critical patent/EP1124641A1/fr
Application granted granted Critical
Publication of EP1124641B1 publication Critical patent/EP1124641B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/02Construction of inlets by which the vortex flow is generated, e.g. tangential admission, the fluid flow being forced to follow a downward path by spirally wound bulkheads, or with slightly downwardly-directed tangential admission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C11/00Accessories, e.g. safety or control devices, not otherwise provided for, e.g. regulators, valves in inlet or overflow ducting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/02Construction of inlets by which the vortex flow is generated, e.g. tangential admission, the fluid flow being forced to follow a downward path by spirally wound bulkheads, or with slightly downwardly-directed tangential admission
    • B04C5/04Tangential inlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/04Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil
    • F01M2013/0422Separating oil and gas with a centrifuge device
    • F01M2013/0427Separating oil and gas with a centrifuge device the centrifuge device having no rotating part, e.g. cyclone

Definitions

  • the invention relates to a method for mechanically separating a disperse system into two or more disperse systems with different properties in a centrifugal separator and a device suitable for carrying out the method.
  • Suitable disperse systems are those in which the disperse phase is solid, liquid or gaseous and the dispersant is either liquid or gaseous, that is to say fluid.
  • the mechanical separation of such a disperse system of identical particle density in coarse and fine material is referred to as "classifying”. If a separation is carried out according to different densities, one speaks of “sorting”. If particles are separated from a liquid or gaseous dispersant surrounding them, this is a separation process. So-called centrifugal separators, also called cyclones, are used to carry out the mechanical separation processes “classifying”, “sorting” and “separating”.
  • a device for separating solid, floating parts in a gas stream by means of a centrifugal separator is known.
  • the total flow is divided into two partial flows before entering the centrifugal separator, which are introduced tangentially at different points in the centrifugal separator in order to introduce the partial flow enriched with the lower concentration of material into it so that the separation of the remaining material is not disturbed ,
  • a separating tongue is arranged in the total flow line through which the total flow is separated into the two partial flows and in order to effect the desired preliminary separation of the coarse material layer.
  • a generic method and the associated device are known from DE 39 36 078 C2.
  • the method used to control the degree of separation of a fluid multi-phase mixture is carried out using a cyclone separator with a swirl generator.
  • the entire material flow is divided into at least two partial flows by a first division, or at least two input material flows are used for the cyclone separator, the size of at least one of the partial flows being changeable.
  • the partial streams are optionally further divided and then the feed channels of the Swirl generator fed.
  • the swirl generator has a swirl chamber with several tangential feed channels, which have the same cross-sectional area and the number of which is even.
  • the main disadvantage of this procedure and the associated device is that the degree of separation can only be varied within a very small range, or requires the installation of a relatively large number of tangential feed channels. The latter leads to a significant increase in costs.
  • the selectivity and the grain size are other important characteristics when mechanically separating a disperse system. The two last-mentioned parameters can only be influenced insignificantly by the procedure described in DE 39 36 078 C2.
  • the invention had for its object to provide a generic method with which it is possible to vary the degree of separation in a wide range regardless of the fluid throughput without major structural changes and to influence the particle size and the selectivity.
  • the object is achieved by the method features specified in claim 1. Suitable embodiments of the procedure are given in claims 2 to 12. A device for carrying out the method is the subject of claim 13. Suitable design variants of the device are specified in claims 14 to 25.
  • the proposed procedure of dividing the partial flows into tangential feed channels with different cross-sectional areas as individual values or as a sum at the entry point in the centrifugal separator leads to a substantial expansion of the control range and to an improved influence on the procedural and qualitative parameters during operation. It is of great advantage that, compared to the solutions known from the prior art, the degree of separation can be regulated within a relatively large range independently of the total volume flow. An operating mode with three or four tangential feed channels is already sufficient for a large number of application areas.
  • centrifugal separators are either arranged directly on the centrifugal separator, evenly distributed over the circumference, or they open into a separate swirl chamber with which the centrifugal separator is additionally equipped.
  • a centrifugal separator with such a swirl chamber is described in detail, for example, in DE 39 36 078 C2.
  • each partial flow is divided into one or two tangential feed channels, whereby in the case of two tangential Differentiation of the supply channels in their cross-sectional area at the entry point in the centrifugal separator, or in the case of more than two tangential supply channels, the sum of the cross-sectional areas is essential as a distinguishing feature, enables a multitude of variations with regard to a different setting of the input impulses of the individual partial flows to be introduced into the centrifugal separator affect centrifugal acceleration in the separator. This means that the selectivity and the grain size can be set specifically for the product and the setting parameters can be changed during operation.
  • the required rotational symmetry of the partial streams is not impaired after entering the centrifugal separator.
  • the partial flow rate which is introduced through the tangential feed channel with the smallest cross-sectional area at the entry point into the centrifugal separator, is increased by appropriate adjustment of the pump or throttle element, and the other partial flow rate is reduced accordingly.
  • the total volume flow remains constant.
  • the partial flows introduced into the centrifugal separator are mixed very well with one another. This effect can be further improved by the arrangement of the swirl chamber already mentioned, the radial component of the speed vector increasing.
  • the partial flow amount which is assigned to the tangential feed channel with the larger cross-sectional area or the feed channels with the larger sum of the cross-sectional areas should be controllable via a throttle valve integrated in the partial flow line. With this valve, this partial flow can then be influenced in its throughput. If the throughput is constant, the other partial flow quantity, which is introduced into the centrifugal separator via the feed channel with the smaller cross-sectional area, is then inevitably increased. This already results in a large control range for the degree of separation.
  • any irregularities that may occur as a result of different entry impulses of the two, three or four partial flow quantities can be largely compensated for.
  • installations should be provided for a certain positive guidance of the partial flows introduced. It is important that a free selection can be made for the partial flows and that a partial flow does not result from a return and therefore cannot be freely adjusted.
  • the partial flows can either be formed from a total volume flow by division or as separate output conveying flows which originate from one or two storage containers and in which the mass transfer takes place through separate conveying members. A change in volume flow to form different partial flows can then be effected by changing the speed of the pumps used.
  • the proposed procedure can also be used for those applications in which the degree of separation is to be kept constant, with variable fluid throughput.
  • the control range which can be achieved is considerably restricted in the procedure known from the prior art.
  • the two partial flows are arranged symmetrically and tangentially Feed channels introduced into the swirl chamber of the centrifugal separator.
  • this solution is only suitable for centrifugal separators with an additional swirl chamber.
  • the pressure can be measured in order to influence the degree of separation in the partial flow which is introduced into the centrifugal separator at the entry point via the feed channel with the smallest cross-sectional area. This is kept at a predetermined value by changing at least one of the remaining partial flow quantities.
  • a pressure measuring device is integrated in the feed channel with the smallest cross-sectional area at the inlet parts in the centrifugal separator. This is coupled to a control valve, which is integrated into one of the supply channels for the other partial flows. There is also the possibility of arranging a control valve in several of the other partial flows, which are then optionally controlled via the pressure measuring device.
  • a further embodiment variant consists of measuring or determining selected substance parameters before and / or after the centrifugal separator and, depending on this, the partial flow quantity ratio between two or more partial flows and / or the pressure difference between two defined points, one before and one after the centrifugal separator, to be changed.
  • This measure is used primarily when the pressure cannot be used as a parameter for controlling the deposition process. This is particularly the case when influencing variables change which influence the deposition process but not the pressure. For example, the loading of the feed stream can change. In this case the property of a material flow is measured and used as the reference variable for the control.
  • the particle size distribution in the stream after the centrifugal separator can be measured by means of a measuring device and the pressure upstream of the centrifugal separator and the ratio of the partial flows upstream of the centrifugal separator can be changed.
  • This measure allows, for example, the dust content in the clean gas flow or the average particle size of the centrifugal separator to be kept constant by appropriate control.
  • the actuators required to change the partial flow ratio and / or the pressure difference can be, for example, a pump or a valve, which can also be used in combination if necessary.
  • the centrifugal separator 10 shown in FIG. 1 consists, in a manner known per se, of a separating space 3, which is connected to a conical lower part 4, and an immersion tube 5, which protrudes from the separating space 3.
  • the two feed channels 1, 2 have different cross-sectional areas at their entry points S 1 , S 2 .
  • the two tangential feed channels 1, 2 have the same height and each have a rectangular cross-sectional area, and differ only in their width.
  • the feed channel 1 is formed wider at the entry point S 1 than the other tangential feed channel 2 at the same point S 2 .
  • the decisive factor is the cross-sectional area directly at the point of entry into the Centrifugal separator 10.
  • the tangential feed channels can also have a different cross-sectional profile, for example a conical one.
  • the shape or contour of the cross-sectional area does not have to be exclusively rectangular, but can also be circular, for example.
  • the mode of operation of this embodiment variant is explained in more detail with reference to FIG. The entire fluid flow of the disperse system to be separated is removed from a storage container and then divided into two partial flows 7 and 8.
  • a valve 9 is integrated in front of the connection point to the tangential feed channel 1.
  • the partial flow 8 which can be changed in its volume flow, is introduced into the centrifugal separator 10 via the feed channel 1 with the larger cross-sectional area at the entry point S 1 .
  • the other partial flow 7 is introduced directly via the feed channel 2, which has a smaller cross-sectional area at the entry point S 2 . If the valve 9 is completely opened, then with a constant total volume flow 6, a degree of separation dependent on the separation geometry and the material data is established. If the valve 9 is closed step by step and the total volume flow 6 is kept constant, the degree of separation is increased due to the higher speed at the entry point S 2 with the smaller cross-sectional area.
  • FIGS. 4 and 5 show an embodiment variant which, in comparison to the variant according to FIGS. 1 to 3, is also equipped with an additional swirl chamber 11.
  • This is located above the separating chamber 3 and has a larger diameter than the separating chamber 3.
  • the swirl chamber 11 is lower in height than the height of the separating chamber 3.
  • the tangential feed channels 1 and 2 open into the swirl chamber 11 on the outer circumference thereof.
  • the tangentially introduced partial flows to the central axis of the centrifugal separator 10 are accelerated and made more uniform. This ensures that a particularly high rotational symmetry of the flow is achieved when entering the separating chamber 3.
  • FIG. 6 to 8 show an embodiment variant with three tangential feed channels 1, 2, and 12 with identical cross-sectional areas at the entry points S 1 , S 2 and S 12 into the spiral chamber 11 of the centrifugal separator 10.
  • the entry points S 1 , S 2 and S 12 are evenly distributed over the circumference of the swirl chamber 11, and are therefore each at the same distance from one another.
  • a component 14 with a conical outer surface is arranged within the swirl chamber 11 around the immersion tube 5, the cone tip of which points in the direction of the separating space 3.
  • the effect according to the invention only occurs when two tangential feed channels, such as 2 and 12, are fed via one feed line 8 and the third feed channel, eg 1, is fed via the other feed line 7.
  • This circuit variant is shown in FIG. 9.
  • the total fluid flow 6 is removed from the storage container by means of a delivery flow pump 16 and divided between the two partial flows 7 and 8.
  • the partial stream 7 reaches the centrifugal separator 10 without further influence via the tangential feed channel 1.
  • the partial stream 8 is divided into two further sub-streams 8a and 8b, a valve 9 being integrated in the line for the partial stream 8.
  • the lower part stream 8a then reaches the centrifugal separator 10 via the tangential feed channel 2 and the lower part stream 8b via the tangential feed channel 12.
  • the sum of the cross-sectional areas at the entry points S 2 and S 12 of the feed channels 2 and 12 is larger than the cross-sectional area at the entry point S. 1 of the feed channel 1.
  • the cross-sectional areas of all three feed channels are identical. However, this does not always have to be the case, it is only important that the two tangential feed channels, which are connected to a line which can be changed in volume flow, have a larger cross-sectional area in total.
  • the advantages of this circuit variant are, above all, a uniform design of the tangential feed channels, which means that the construction effort is kept low.
  • all tangential feed channels can be equipped with the same connection connections. FIG.
  • the feed channels 1 and 12 each have the same cross-sectional area at their entry points S 1 and S 12 in the centrifugal separator 10 and are arranged opposite one another. Both apply analogously to the feed channels 2 and 13 with the entry points S 2 and S 13 . However, the sum of the cross-sectional areas, on the one hand of the feed channels 1 and 12 and on the other hand of the feed channels 2 and 13 are different.
  • the total volume flow 6 withdrawn from a container is divided between the two partial flows 7 and 8 after the delivery flow pump 16 has been integrated.
  • a valve 9 is integrated in the line for the partial flow 8.
  • the partial flow 8 is divided into two further lower partial flows 8a and 8b, which have the larger cross-sectional areas via the tangential feed channels 2 and 13, which have the larger cross-sectional areas at the entry points S 2 and S 13 compared to the two other feed channels 1 and 12 in the centrifugal separator 10 be initiated.
  • the other partial flow 7 branching off from the total volume flow is likewise divided into two further partial flows 7a and 7b, which are introduced into the centrifugal separator 10 via the tangential feed channels 1, 12 with the smaller cross-sectional areas at the entry points S 1 and S 12 .
  • FIG. 11 A further embodiment variant is shown in which the total volume flow is formed from two separate partial flows 7, 8, which are either taken from a container or two locally separated containers, namely each partial flow 7, 8 via a separate delivery flow pump 16 or 17.
  • the sub-stream 7 then passes without further division via the tangential feed channel 1 with the smaller cross-sectional area at the entry point S 1 into the centrifugal separator 10.
  • the other sub-stream 8 is divided into two sub-streams 8a and 8b, which via the tangential feed channels 2 and 12 with the Larger cross-sectional areas are passed into the centrifugal separator 10 at the entry points S 2 and S 12 . It is again crucial that the sum of the cross-sectional areas of the entry points S 2 and S 12 is larger than the remaining cross-sectional area.
  • the individual flow rates are regulated exclusively via the speed control of the flow pumps 16 and 17. This variant offers the following advantages: Certain disperse systems run the risk of clogging the supply lines, particularly in the area of valves. A risk of clogging can be avoided by the possible regulation of the quantities of material to be supplied exclusively by means of the speed control via built-in pumps.
  • FIG. 12 also shows a centrifugal separator as a functional circuit diagram, the structure of which essentially corresponds to the variant shown in FIG. 3.
  • a pressure measuring device 18 is integrated in the tangential feed channel 2, which has the smaller cross-sectional area at the entry point into the centrifugal separator compared to the other tangential feed channel 1, , is integrated in the tangential feed channel 2, which has the smaller cross-sectional area at the entry point into the centrifugal separator compared to the other tangential feed channel 1, a pressure measuring device 18 is integrated , which is connected to the feed channel 1, is coupled.
  • This variant is used when it is a feed stream whose loading remains almost constant and in which the other material properties do not change.
  • this measure takes place when the total volume flow, the feed flow, is divided into two partial flows, which are introduced directly into the centrifugal separator 10 via a respective tangential feed channel 1 or 2, as shown in FIG.
  • the pressure is measured in the feed channel 2, and the measuring point can also be outside this channel 2, for example in the feed line to this channel.
  • the steep valve 9 is changed in the event of throughput fluctuations until the pressure has reached the desired setpoint again.
  • the ratio of the two partial flows is influenced at the same time. If you consider the change in the feed current in detail, the following process takes place. If the feed flow increased, the pressure would also increase without the proposed regulation.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Centrifugal Separators (AREA)
  • Cyclones (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Claims (25)

  1. Procédé de séparation d'un système dispersé en deux ou plusieurs systèmes dispersés avec propriété différentes dans un collecteur centrifuge (10), où au minimum deux courants partiels (7, 8) sont formés d'un courant entier (6) ou de deux courants initiaux, ces courants partiels seront introduits par des canaux tangentiels (1, 2, 12, 13) comme courant rotatif dans le collecteur centrifuge (10) et
    a) ou bien les courants partiels (7, 8) sont introduits dans le collecteur centrifuge (10) dans des canaux tangentiels (1, 2) ayant au point d'entrée (S1, S2) des surfaces de coupe transversale différentes,
    b) ou bien en cas de partage des courants partiels (7, 8) en plus de deux canaux tangentiels (1, 2, 12, 13), au moins un des courants partiels (7, 8) sera partagé en subdivision (7a, 7b, 8a, 8b) et chacune de ces subdivisions courantielles sera introduites par un canal tangentiel (1, 2, 12, 13) dans le collecteur centrifuge (10), les sommes des surfaces des coupes transversales dans des canaux tangentiels (1, 2, 12, 13) aux points d'entrée (S1 ou S2 et S12; ou S1 et S12 ou S2 et S13) dans le collecteur centrifuge (10), qui sont liés au courant partiel correspondant (7 ou 8), étant différentes,
    et au moins le courant partiel (8), lies au canal tangentiel (1) avec la surface de coupe transversale plus grande ou avec les canaux tangentiels (2, 12, 13) avec la somme des surfaces de coupe transversale plus grande, est réglé Immédiatement à l'aide d'un organe de réglage (9, 17), et le partage des courants partiels (7, 7a, 7b, 8, 8a, 8b) sur les canaux tangentiels (1, 2, 12, 13) sera fait de façon que en cas de vitesse tangentielle demandée plus grande dans le collecteur centrifuge (10), les canaux tangentiels (2, 1 ou 1 et 12) avec la surface de coupe transversale plus petite ou la somme des coupe transversale au point d'entrée (S2, S1 ou S1 und S12) dans le collecteur centrifuge (10) avec un courant partiel (7) plus grand ou le courant entier (6) sont utilisés ou vice versa.
  2. Procédé selon la revendication 1, caractérisé en ce que le courant entier (6) est partagé en deux courants partiels (7, 8), qui sont introduit dans le collecteur centrifuge (10) chacun par un canal (1, 2), où le courant partiel (8), qui est connecté avec la surface d'une coupe transversale plus grande au point d'entrée (S1), est réglé à l'aide d'un organe de réglage (9).
  3. Procédé selon la revendication 1, caractérisé en ce que le courant entier (6) est partagé en plus de deux courants partiels (7, 8, 7a, 7b, 8a, 8b), qui sont introduits dans le collecteur centrifuge (10), où au moins deux courants partiels (7a, 7b, 8a, 8b) sont partagés d'un courant partiel (7, 8), et le courant partiel (8), dont les subdivisions (8a, 8b) sont introduits par des canaux tangentiels (2, 12, 13) avec la somme plus grande de surface d'une coupe transversale au point d'entrée (S2, S12, S13) dans le collecteur centrifuge (10), est modifié par un organe de réglage (9).
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que l'on utilise comme l'organe de réglage (9) une pompe et/ou une valve.
  5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que les courants partiels (7, 8) sont variées indépendamment l'un de l'autre par des modifications des courants respectifs à l'aide de pompes.
  6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que deux courants partiels séparés (7, 8) forment les courants initiaux, où chacun de ces courants partiels (7, 8) est varié par une pompe (16, 17) et au moins un courant partiel (8) est partagé en subdivisions (8a, 8b), qui sont introduits par des canaux tangentiels (2, 12) dans le collecteur centrifuge (10).
  7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que le réglage sur le débit des courants partiels (7, 7a, 7b, 8, 8a, 8b) est fait en dehors des canaux tangentiels (1, 2, 12, 13).
  8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que les courants partiels et/ou leurs subdivisions (7, 7a, 7b, 8, 8a, 8b) introduits dans le collecteur centrifuge (10) sont accélérés avant d'arriver la sphère d'opération.
  9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que les courants partiels (7, 8) sont pris des réservoirs sépares ou communs.
  10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que en cas de courant entier (6), pour diminuer la grosseur de grain de séparation le courant partiel (7, 8) plus grand et réduit et le courant partiel plus petit est augmenté, la pression étant augmenté en même temps.
  11. Procédé selon l'une des revendications 1 à 10, caractérisé en ce que pour l'influence sur le degré de séparation à cause de fluctuations de la pression dans le courant partiel (7, 8) introduit dans le canal (1, 2, 12, 13) à la surface de coupe transversale la plus petite au point d'entrée (S1, S2, S12, S13) dans le collecteur centrifuge (10), la pression est mesurée et tenue constante par variation d'au moins d'un des autres courants partiels.
  12. Procédé selon l'une des revendications 1 à 11, caractérisé en ce que pour influencer la qualité de la séparation avant et/ou après le passage au collecteur centrifuge (10) un ou plusieurs paramètres matériels, qui influencent le processus de séparation, sont mesurés ou estimés et en fonction des résultats, la relation de quantité entre deux ou plusieurs courants partiels (7, 8) et/ou la différence de pression entre deux points definis, un avant et un après le passage au collecteur centrifuge (10) sont modifiées.
  13. Dispositif pour la mise en oeuvre du procède selon une revendications précédente, consistant d'un collecteur centrifuge (10) avec plusieurs canaux tangentiels (1, 2, 12, 13), où
    a) dans un dispositif avec deux canaux (1, 2), ceux-ci disposent de surfaces de coupe transversale différentes aux points d'entrée (S1, S2) au collecteur centrifuge (10), et
    b) dans un dispositif avec plus de deux canaux tangentiels (1, 2, 12, 13), au moins deux d'entre eux (2, 12 ou 2, 13) sont liés avec des conduites (8a, 8b) pour subdivisions de courants partiels qui dérivent d'une conduite de courant partiel (8), et les sommes de surfaces de coupe transversale au points d'entrée (S1 ou S2 et S12; ou S1 et S12 ou S2 et S13) des canaux (1, 2, 12, 13) dans le collecteur centrifuge (10) qui sont liés à la conduite de courant partiel (7 ou 8) respective, sont différentes
    et, aussi bien dans le dispositif avec deux que plus de deux canaux tangentiel (1, 2, 12, 13), un organe de réglage (9, 17) continu est compris au moins dans la conduite de courant partiel (8) étant liée aux canaux tangentiels (1 ou 2, 12 ou 2, 13)avec la surface de coupe transversale plus grande ou la somme des surface de coupe transversale au point d'entrée dans le collecteur centrifuge (10).
  14. Dispositif selon la revendication 13, caractérisé en ce que les canaux tangentiel (1, 2, 12, 13) aux points d'entrée (S1, S2, S12, S13) dans le collecteur centrifuge (10) aient la même hauteur et une largeur égal ou différente.
  15. Dispositif selon l'une des revendications 13 ou 14, caractérisé en ce que les surfaces de coupe transversale différentes ou les sommes des surfaces de coupe transversale se différencient par plus de quatre fois.
  16. Dispositif selon l'une des revendications 13 à 15, caractérisé en ce que les canaux tangentiels (2, 12 ou 1, 12, ou 2, 13) aux surfaces de coupe transversale au point d'entrée dans le collecteur centrifuge (10) soient liés par des conduites (7a, 7b, 8a, 8b) pour les subdivisions des courants partiels avec une conduite d'approvisionnement commune (7, 8) pour les courants partiels.
  17. Dispositif selon l'une des revendications 13 à 16, caractérisé en ce qu'au moins une des conduites d'approvisionnement (7, 8) dispose d'un organe de réglage continu (9, 16, 17).
  18. Dispositif selon la revendication 17, caractérisé en ce que l'organe de réglage soit une pompe (16, 17) ou une valve (9).
  19. Dispositif selon l'une des revendications 13 à 18, caractérisé en ce que les axes centrales des surfaces de coupe transversale des canaux tangentiels (1, 2, 12, 13) aux points d'entrée (S1, S2, S12, S13) dans le collecteur centrifuge (10) soit au même niveau et que les surfaces de coupe transversale soit disposées régulièrement.
  20. Dispositif selon l'une des revendications 13 à 19, caractérisé en ce que les canaux tangentiels (1, 2, 12, 13) soient disposés sur la même coordonnée axiale.
  21. Dispositif selon l'une des revendications 13 à 20, caractérisé en ce que les conduites d'approvisionnement (7, 8, 7a, 7b, 8a, 8b) aient des coupes transversales de jonction différentes, de façon que les conduites d'approvisionnement (8, 8a, 8b) liés au canaux tangentiels (1, 2, 12, 13) dont la surface de coupe transversale ou la somme des surfaces de coupe transversale aux points d'entrée dans le collecteur centrifuge (10) est la plus grande, aient la coupe transversale de jonction plus grande.
  22. Dispositif selon l'une des revendications 13 à 21, caractérisé en ce que la conduite (7) liée avec le canal d'approvisionnement (2) disposant de la surface de coupe transversale la plus petite au point d'entrée dans le collecteur centrifuge (10) ou ce canal lui-même (2) dispose un instrument de mesure pour la pression (18) et combiné une valve (9) qui, à son tour, soit liée au moins avec un des canaux (1) pour les autres courants partiels.
  23. Dispositif selon l'une des revendications 13 à 22, caractérisé en ce qu'avant ou après le passage au collecteur centrifuge (10) soit disposé un instrument pour mesurer ou estimer un ou plusieurs paramètres matériels, qui influencent le processus de séparation, et qui est combiné avec au moins un organe de réglage pour varier la relation de quantité entre les courants partiels et/ou la différence de pression entre deux points définis, un avant et un après le passage au collecteur centrifuge (10).
  24. Dispositif selon l'une des revendications 13 à 23, caractérisé en ce que le collecteur centrifuge (10) dispose d'une chambre de rotation (11) dont le diamètre soit plus grand du diamètre de la chambre de séparation (3) du collecteur centrifuge (10) et dont la hauteur soit plus petite de la hauteur de la chambre de séparation, les canaux tangentiels (1, 2, 12, 13) ayant un lien avec la chambre de rotation (11).
  25. Dispositif selon l'une des revendications 13 à 24, caractérisé en ce que le nombre de canaux tangentiels (1, 2, 12, 13) soit limité à quatre.
EP99955886A 1998-10-29 1999-10-27 Procede et dispositif pour la separation mecanique d'un systeme disperse Expired - Lifetime EP1124641B1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19849645 1998-10-29
DE19849645 1998-10-29
DE19920237A DE19920237B4 (de) 1998-10-29 1999-05-03 Verfahren und Vorrichtung zum mechanischen Trennen eines dispersen Systems
DE19920237 1999-05-03
PCT/EP1999/008097 WO2000025932A1 (fr) 1998-10-29 1999-10-27 Procede et dispositif pour la separation mecanique d'un systeme disperse

Publications (2)

Publication Number Publication Date
EP1124641A1 EP1124641A1 (fr) 2001-08-22
EP1124641B1 true EP1124641B1 (fr) 2003-09-10

Family

ID=26049807

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99955886A Expired - Lifetime EP1124641B1 (fr) 1998-10-29 1999-10-27 Procede et dispositif pour la separation mecanique d'un systeme disperse

Country Status (6)

Country Link
EP (1) EP1124641B1 (fr)
CN (1) CN1121909C (fr)
AT (1) ATE249282T1 (fr)
AU (1) AU1266100A (fr)
CA (1) CA2348385A1 (fr)
WO (1) WO2000025932A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2520468C1 (ru) * 2013-02-05 2014-06-27 Виктор Александрович Рудницкий Способ очистки газового потока от твердых взвесей

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005061256A1 (de) * 2005-12-20 2007-06-21 Günter Dr. Slowik Verfahren und Vorrichtung zur Entölung von Kurbelgehäuseentlüftungsgasen einer Brennkraftmaschine
CN103785550B (zh) * 2012-10-29 2017-03-01 中国石油化工股份有限公司 气流式颗粒分选器和流化床反应器及其应用
CN103861326B (zh) * 2013-11-13 2016-08-17 中石化石油工程设计有限公司 一种立体多点位续推式旋流布水结构
CN104907189A (zh) * 2015-07-02 2015-09-16 泸州北方化学工业有限公司 颗粒物料气固分离器
TWI687258B (zh) * 2019-05-10 2020-03-11 頂程國際股份有限公司 過濾裝置
CN113798071A (zh) * 2021-08-23 2021-12-17 鞍钢集团矿业有限公司 一种单入口多通道式进料体水力旋流器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE875753C (de) * 1941-11-29 1953-05-07 Kohlenscheidungs Ges Mit Besch Einrichtung zum Abscheiden fester, in einem Gasstrom schwebender Gutteile
FR1009165A (fr) * 1950-01-26 1952-05-26 Perfectionnements aux dispositifs de dépoussiérage des gaz
DE1292478B (de) * 1959-10-20 1969-04-10 Maschf Augsburg Nuernberg Ag Fliehkraft-Trockenabscheider in Zyklonbauweise
US3507397A (en) * 1969-04-09 1970-04-21 William R Robinson Hydrocyclone unit
DE3936078C2 (de) * 1989-10-30 1994-02-10 Guenter Dr Ing Slowik Drallerzeuger für Zyklonabscheider

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2520468C1 (ru) * 2013-02-05 2014-06-27 Виктор Александрович Рудницкий Способ очистки газового потока от твердых взвесей

Also Published As

Publication number Publication date
CN1121909C (zh) 2003-09-24
EP1124641A1 (fr) 2001-08-22
CA2348385A1 (fr) 2000-05-11
CN1325324A (zh) 2001-12-05
AU1266100A (en) 2000-05-22
WO2000025932A1 (fr) 2000-05-11
ATE249282T1 (de) 2003-09-15

Similar Documents

Publication Publication Date Title
DE3915641C2 (de) Windsichter
DE10104012C2 (de) Vorrichtung zur Aerosolerzeugung
DE2731279A1 (de) Verfahren und vorrichtung zur aufteilung eines stroemenden fluessigkeits-gas- gemisches in mehrere teilstroeme
EP1124641B1 (fr) Procede et dispositif pour la separation mecanique d'un systeme disperse
DE3936078C2 (de) Drallerzeuger für Zyklonabscheider
EP1124642A1 (fr) Ensemble hydrocyclone et procede correspondant
DE19920237B4 (de) Verfahren und Vorrichtung zum mechanischen Trennen eines dispersen Systems
DE3787656T2 (de) Hydrozyklone.
DE4400489C2 (de) Zentrifugalabscheider, Vorrichtung und Verfahren
DE3404093C2 (fr)
DE1910501B2 (de) Umluftsichter
DE102017209068A1 (de) Aerosolvorrichtung und Verfahren zum Bereitstellen eines Aerosols
WO2007071373A2 (fr) Procede et dispositif de deshuilage des gaz de ventilation d'un carter de vilebrequin d'un moteur a combustion interne
AT412148B (de) Vorrichtung zum sortieren von holzspänen in getrennte teilmengen
DE2946232A1 (de) Verfahren und vorrichtung zum steuern eines durchflusses
DE19923600A1 (de) Verfahren zur Aufbereitung von mineralischen Rohstoffen, insbesondere von Steinkohle
DE3238361C2 (fr)
DE10014586C1 (de) Verfahren und Vorrichtung zur dynamischen Filtration
DD209491A5 (de) Verfahren und vorrichtung zum sieben einer fasersuspension
DE10310002B3 (de) Trennverfahren und Trennvorrichtung für Flüssigkeit und Gas in einem Zwei-Phasen-Gemisch
WO2010066571A1 (fr) Chromatographe en phase gazeuse à dispositif de commutation contrôlable
EP0641587B1 (fr) Procédé pour séparer des dispersions de particules dans un liquide dans des portions riches et pauvres en particules
WO2019219552A1 (fr) Dispositif séparateur
DE623564C (fr)
DE19626895A1 (de) Flüssigkeitsverteiler für eine Stoffaustauschkolonne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010523

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KOHLMANN, JUERGEN

Owner name: SLOWIK, GUENTER

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KOHLMANN, JUERGEN

Inventor name: SLOWIK, GUENTER

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030910

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20030910

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030910

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030910

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030910

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030910

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59906973

Country of ref document: DE

Date of ref document: 20031016

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031027

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031027

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031027

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031210

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031210

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031221

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20030910

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: *KOHLMANN JURGEN

Effective date: 20031031

Owner name: *SLOWIK GUNTER

Effective date: 20031031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040614

EN Fr: translation not filed