EP1124621A1 - Dispositif pour la filtration de gaz - Google Patents

Dispositif pour la filtration de gaz

Info

Publication number
EP1124621A1
EP1124621A1 EP99947593A EP99947593A EP1124621A1 EP 1124621 A1 EP1124621 A1 EP 1124621A1 EP 99947593 A EP99947593 A EP 99947593A EP 99947593 A EP99947593 A EP 99947593A EP 1124621 A1 EP1124621 A1 EP 1124621A1
Authority
EP
European Patent Office
Prior art keywords
gas
filter
liquid
filtration
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99947593A
Other languages
German (de)
English (en)
Inventor
François Simon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1124621A1 publication Critical patent/EP1124621A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • B01D45/14Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by rotating vanes, discs, drums or brushes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D50/00Combinations of methods or devices for separating particles from gases or vapours
    • B01D50/20Combinations of devices covered by groups B01D45/00 and B01D46/00

Definitions

  • the present invention relates to the field of filtration of gases including air.
  • gases including air.
  • vacuum cleaners for household or industrial work air filtration for industrial or surgical clean rooms, air purification for forced ventilation or air conditioning ...
  • the filtration devices essentially consist of mechanical systems comprising at least one microporous filter separating the solid particles from the gaseous medium.
  • the patent GB1303250 relates to a filtering assembly whose particle capture process is different from the invention.
  • the particles are captured by impact of the particles on rotating fibers.
  • the basis of the process consists in obtaining the greatest possible number of shocks between particles and fibers in rotation. Its effectiveness of the process is a function of the number of shocks, a number which must be optimized.
  • This patent discusses the problems posed by the attachment of particles to filaments and proposes as a solution to give the fibers, charged collect by impact particles, complex curved cylindrical-conical shapes.
  • the method used in this patent has drawbacks, in particular the explosion of the water drops sprayed to wash the fibers. The sprayed liquid is only used to wash the fibers and not to fix particles or dissolve gases.
  • Application WO 9741943 relates to a filter made of brushes or a conventional filter washed with a cleaning solution. Liquid is sprayed or not in the gas depending on the degree of dryness of the gas to be treated. It is the degree of dryness of the gas to be treated which determines whether water is sprayed into the gas to be filtered. This spraying is incidental and dependent on conditions.
  • Application WO97 / 44117 describes a gas purification system which uses a rotating body of complex structure which makes it possible to create a large contact surface between a liquid film and the polluted gas. Spraying serves only to create the contact film between polluted gas and a liquid which is then centrifuged. This process has the limitations of conventional filters with regard to the size of the particles to be captured. Large particles clog it which can be avoided by increasing the section of the tubes but the capture efficiency of small particles is then reduced.
  • the devices of the prior art use water to wash conventional filters or increase air / gas contact by spreading a liquid film on more or less complex surfaces.
  • this filtration method requires the use of successive increasingly fine filters in order to be able to stop particles of different sizes and these filters must often be supplemented by, for example, electrostatic filters to stop the finest particles.
  • the succession of filters obstructs the flow of the treated gas.
  • the more particles have stopped the filters the more they obstruct the flow of gas to be treated which causes clogging of the filters and requires frequent replacement or cleaning to keep the filtration performance acceptable.
  • the materials separated from the filtered gas remain pulverulent and inconvenient to handle, which often requires treatment of the dust and waste collected.
  • These separate materials are bulky and quickly fill the device intended to receive them, while clogging it if it is a filter, as may be the case for a household vacuum cleaner.
  • these current filters are ill-suited for the filtration of very small particles, or in very low concentration, or for the filtration of gases highly charged with smoke, particles or dust.
  • these filters do not have the capacity to eliminate undesirable or toxic gases mixed with, for example, air to be purified.
  • the aim of the present invention is to propose a new solution for filtering gases, including air, overcoming these drawbacks.
  • the invention relates in its most general sense to a process and a device for filtering gases using the separation of the liquid and gaseous phases.
  • the gas to be treated is sucked in by suction means such as a propeller which rotates in the opposite direction to the adsorbent mass.
  • An adsorbent mist is added to the incoming flow to be treated by a mist generator.
  • the gas is mixed with the adsorbent mist and travels along a "gas path".
  • the adsorbent / gas mist mixture passes through a rotating adsorbent structure and then the treated gas is discharged through the outlet.
  • the reformed liquid, and what it has fixed, is evacuated, possibly treated and recycled ...
  • the invention uses the adsorption phenomenon which consists of the accumulation of a substance at the interface between two phases (gas / liquid or liquid / liquid for example). It comes from intermolecular attraction forces, of various nature and intensity, which are responsible for the cohesion of the condensed phases, liquid or solid. A molecule attracted unequally by the other molecules of two phases will find an energetically favorable position on the surface of the phase which most attracts it; this will be called the adsorbent. The molecules thus adsorbed constitute the adsorbate. If the energetic or kinetic conditions allow the molecule to penetrate within the adsorbent phase, there is absorption. Absorption is a phenomenon of penetration with fixation of molecules in an absorbent medium.
  • Each step of the treatment can be done in different ways.
  • the adsorbent mist is most simply obtained from water. It can also be obtained from liquid fatty substances, solvents, various chemical solutions.
  • the droplet diameters may vary depending on the application.
  • the type of liquid sprayed can vary as required.
  • a spray of larger drops can be added to the mist, which coalesce the droplets of the water for the first time.
  • the mist generator can be a sprinkler, an ultrasonic system, etc. It is possible to add various chemicals, in particular detergents, amphiphylic substances (hydophyls and lipophyls) to the liquid used to make the mist. Electrical, electrostatic, thermal, light and pressure means can be added at this stage of the process.
  • a linear gas path is the simplest and may be sufficient.
  • the rotary adsorbent structure can be produced according to numerous methods depending on the applications of the process.
  • the simplest structure consists of a more or less thick disc of natural or synthetic microfibers organized in a sufficiently loose network not to slow down too much the gases to be treated and sufficiently dense or thick to completely adsorb the fog and what it has captured or what he set out to do.
  • adsorbent structures can be used such as, for example, blades or rotary fins adsorbent in themselves or covered with adsorbent substances.
  • Certain materials such as polypropylene can advantageously be used given their capacity for simultaneous adsorption and absorption.
  • All materials with a high adsorption capacity can be used, such as fibers, or open cell foams, natural or synthetic, certain ceramics having a favorable mass / surface ratio, catalytic ceramics, zeolites, graphite, lamellar halides, aerogels ...
  • the desorbent liquids can be different from the liquid (s) used to create the adsorbent mist. It is possible to add to the disc-shaped rotary structure one or more peripheral rings of adsorbent materials which may be different from those of the central adsorbent material.
  • a final treatment can be added by the methods above or any other method.
  • the liquid effluents can then undergo a simple evacuation of the used liquids, recycling with or without treatment until partial or complete wear.
  • a treatment before reinjection can consist of all the possible modes of treatment of liquids.
  • a device for the filtration of gas comprising a microporous adsorbent filter or adsorbent microfibrous filter and means for forcing a flow of air between a suction mouth and a filtered air outlet mouth characterized in that it comprises means for spraying a liquid and centrifugal means placed between the spraying means and the filtered gas outlet mouth.
  • the particles wetted by the sprayer are blocked by the internal rotary adsorbent filter and ejected with the carrier liquid to an external receptacle.
  • this receptacle can contain a peripheral filter, concentric with the first which blocks said particles. At this point, the particles compact, out of the way of the gas. Filtration is thus carried out outside the air flow and perpendicular to the direction of flow progression. It does not obstruct its circulation and the eliminated detritus remains outside the flow.
  • This device can advantageously include electrical biasing means applicable upstream of the suction mouth, at the level of the spraying of the liquid and at the level of the centrifugal means.
  • Such a device makes it possible to remedy the drawbacks of filters of the prior art, by reducing the pressure losses of the gas flow during use and by ensuring an almost constant maintenance of the filtration qualities, whatever the quantity of gas previously filtered.
  • this new device allows the simultaneous elimination, in a single pass of the gas to be purified, of very diverse substances such as, for example, a mixture of air carrying toxic gases, fumes, dust, detritus and micro particles carried by air.
  • the sprayed liquid increases the mass of the transported substances or fixes or modifies them and thus makes it possible to centrifuge bodies for which centrifugation alone would have been ineffective or very difficult.
  • the centrifugal means comprise a microporous or microfibrous adsorbent filter, hydrophilic or not, electrically conductive or not, of cylindrical shape.
  • the device according to the invention comprises means coaxial with the microporous or microfibrous adsorbent filter for the peripheral collection of liquid effluents transporting the substances to be eliminated.
  • the device according to the invention comprises front suction means for the suction of the mixture of gas and liquid sprayed by the upstream front face of the filter.
  • the device according to the invention comprises peripheral suction means for sucking the mixture of gas and liquid sprayed by the radial face of the filter.
  • the device according to the invention comprises central suction means for the suction of the mixture of gas and liquid sprayed by an axial surface of the filter.
  • the liquid is either put into the form of a mist, the drops of which have a section of between 0.1 and 60 ⁇ m and preferably between 0.5 and 6 ⁇ m.
  • the liquid is sprayed in droplets or in jets of droplets of the order of a millimeter or fractions of a millimeter.
  • the liquid is sprayed in a thin sheet to best wet the content of the gas to be purified.
  • the device further comprises means for recycling the sprayed liquid.
  • the recycling means comprise pulverulent activated carbon impregnated or not with germicidal substances.
  • the misting liquid contains a fixing or chemical precipitation reagent.
  • the sprayed liquid contains surfactants or a highly hydrophilic soluble substance (CaCl2 for example).
  • the filter according to the invention is not a filter in the conventional sense of the term.
  • the classic filter stops and retains particles thanks to its mechanical characteristics (pore diameter, meshes ...), even if it is sometimes washed).
  • the device according to the invention is essentially a mist associated with a fog ejector fixator.
  • the ejector sensor operates by adsorption / local saturation / desorption of fog and does not have the constraints of conventional filters. It is the fog and the "ejector fixer" that filter.
  • the method and the device according to the invention make it possible to carry out filtering operations by adding to a gas to be treated a liquid phase in the form of a sprayed liquid followed by recovery by adsorption of the liquid phase added in a single passage of a gas to be purified or treated.
  • the method and the device according to the invention exploit in a simple way the complex physicochemical properties of the mists as well as the physicochemical properties of the water droplets or of other misted liquids.
  • the advantages of liquid microspheres are manifold. Microspheres of liquids do not need a support like the mobile liquid films in the gas flow to be treated and are not linked to a more or less rigid support and can have fluid and very complex paths favoring interactions with the gas to be treated. They offer a very large gas / liquid contact surface and allow the best use to be made of interface, surface and adsorption phenomena.
  • Liquid particles have electrical, electro-chemical and electrostatic properties which very advantageously differentiate them from liquid films or sprays when it comes to fixing micro-particles or even gases.
  • the transient fixing capacities of the adsorbent materials joined together in structures which are put in rotation are stronger. These structures are made of microfibers or foams or various substances or supports covered with highly adsorbent materials. What is usually called "filter”, but which is not the system according to the invention, can for example consist of a very loose network of adsorbent microfibers which does not block anything as do filters. We can thus use zeolites; aerogels or catalysts ...
  • Centrifugal force can be replaced by other systems, but has the advantage of being easy to use to separate from the temporary fixing mass (microfibers, adsorption ...) the fog and what it has fixed or what to which it is fixed during its mixing with the gas to be treated.
  • - Figure 2 shows a sectional view of a second embodiment
  • - Figure 3 shows the block diagram of filtration with a peripheral filter.
  • FIG. 1 represents a filtration device comprising a housing (1) having a suction mouth (2) on the upstream front face (4) and a filtered air outlet (3) on the opposite front face (5).
  • the device comprises a cylindrical filter (6) driven in rotation by an electric motor.
  • the filter consists of a microporous material, for example a block of agglomerated fibers or a porous solid material.
  • injection nozzles (18) spray a liquid in the form of micro-droplets having an average diameter of the order of a micron.
  • the misting liquid can consist of pure water or water containing one or more additives such as:
  • the misting liquid can also consist of other liquids such as oils or alcoholic derivatives.
  • Water or misting liquid is sprayed into the incoming air stream.
  • the solid particles are fixed by micro-droplets which are sucked into the rotary filter (6).
  • the rotary filter (6) drives the charged or uncharged droplets towards a peripheral receptacle (8) containing a rotary peripheral filter under the effect of centrifugal force.
  • a discharge pipe (9) drives the liquid effluents to a recovery tank (10). Liquid effluents can optionally be reprocessed and then recycled to be reinjected into the intake chamber (7).
  • an axial duct (11) allows the radial injection, through a perforated axis, of an additional liquid increasing the flow of liquid inside the filter (6).
  • Figure 2 shows an alternative embodiment
  • the device consists of a lenticular housing (1). It includes an axial suction mouth (2) and an axial discharge mouth (3).
  • the misting liquid is injected into the intake chamber (7) by one or more axial nozzles (13) oriented in the direction of the suction mouth (2).
  • the flow of misted liquid is thus oriented in the opposite direction to the flow of air to be treated, which increases the useful path where collisions take place between the liquid droplets and the particles to be filtered.
  • the mist thus formed is then sucked through the filter (6) in a radial direction, until an axial discharge by the discharge mouth (3).
  • FIG. 3 represents the basic diagram of filtration with a peripheral filter which can be installed in all the variant embodiments.
  • the apparatus is a conduit with a gas displacement system and a liquid spraying system (21).
  • a mass of finely porous air permeable material fixes the droplets produced by the spray system (21) as well as what they transport, what they have wetted or what they have attached to.
  • This mass of permeable material (24) is rapidly rotating and projects everything that it has temporarily fixed radially.
  • a rotary filter (22) peripheral to the permeable material (24) retains and compacts the effect of the centrifugal force, the solid materials (23) while letting through the liquid injected by the spraying system (21) and collected temporarily by the permeable material (24). The liquid is then, with or without treatment, returned to the spraying system
  • the material, shape, surface and surface shape of the peripheral filter (22) take account of the following unusual facts:
  • the materials to be filtered are wetted and subjected to high pressure due to the centrifugal force; due to the packing due to the wetting effect and to that of the centrifugal force, the peripheral filter (22) must collect and keep a quantity of material much less bulky (important advantage) but much more important than do the filters classics.
  • the texture, shape, pore size and thickness of the rotary peripheral filter (22) are variable, adapted and optimized for each use. It is possible to apply the electrical, electrostatic or electrochemical phenomena mentioned elsewhere in this text. For example, a simple sheet of conventional laboratory filter paper makes it possible to collect household dust very well, which is transformed into a kind of felt whose handling poses no problem.
  • the invention is described by way of nonlimiting example. Many alternative embodiments can be envisaged, in particular as regards the structure of the rotary filter, the drive mechanisms, the structure of the intake chamber, and the misting means, as well as the electrical polarization and the use. an electric or electrostatic polarization of the mists, the relative filters and the incoming flows.
  • the addition of a new phase in a gas / particle mixture makes it very simply separable from the phases which are usually difficult to dissociate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Filtering Materials (AREA)

Abstract

L'invention concerne dans son acceptation la plus générale un dispositif pour la filtration de gaz comportant un filtre absorbant (6) microporeux ou micro fibreux et des moyens pour forcer un flux d'air entre une bouche d'aspiration (2) et une bouche de sortie d'air filtré (3) caractérisé en ce qu'il comporte des moyens de pulvérisation (18) d'un liquide et des moyens centrifuges placés entre les moyens de pulvérisation et la bouche de sortie de gaz filtré. Les particules mouillées par le pulvérisateur sont bloquées par le filtre rotatif interne et éjectées avec le liquide porteur vers un réceptacle extérieur (10).

Description

DISPOSITIF POUR LA FILTRATION DE GAZ
La présente invention concerne le domaine de la filtration des gaz dont l'air. Les applications de tels dispositifs sont multiples : aspirateurs pour travaux électroménagers ou industriels, filtration d'air pour des salles blanches industrielles ou chirurgicales, épuration d'air pour la ventilation forcée ou la climatisation...
Dans l'état de la technique, les dispositifs de filtration sont essentiellement constitués par des systèmes mécaniques comprenant au moins un filtre microporeux séparant les particules solides du milieu gazeux.
On connaît les brevets DE8905182, GB2279271 GB1356866 qui décrivent des ensembles de filtres classiques utilisant des moyens de lavages du filtre à des fins de lubrification.
Le brevet GB1303250 concerne un ensemble de filtrage dont le procédé de capture des particules est différent de l'invention. La capture des particules se fait par chocs des particules sur des fibres en rotation. La base du procédé consiste en l'obtention du plus grand nombre de chocs possible entre particules et fibres en rotation. Son efficacité du procédé est fonction du nombre de chocs, nombre qu'il faut optimiser. Ce brevet évoque les problèmes que pose la fixation des particules aux filaments et propose comme solution de donner aux fibres, chargées collecter par impact particules, des formes complexes cylindro-coniques incurvées. La méthode utilisée dans ce brevet a des inconvénients, en particulier l'explosion des gouttes d'eau pulvérisées pour laver les fibres. Le liquide pulvérisé ne sert qu'à laver les fibres et non à fixer les particules ou à dissoudre des gaz. Le procédé selon 1 ' invention ne pose aucun des problèmes de mise en œuvre de ce brevet . La demande WO 9741943 concerne un filtre fait de brosses ou un filtre classique lavés par une solution de nettoyage. On pulvérise ou non du liquide dans le gaz en fonction du degré de sécheresse du gaz à traiter. C'est le degré de sécheresse du gaz à traiter qui détermine si on pulvérise de l'eau dans le gaz à filtrer. Cette pulvérisation est accessoire et dépendante des conditions .
La demande W097/44117 décrit un système dépuration des gaz qui utilise un corps rotatif de structure complexe qui permet de créer une grande surface de contact entre un film liquide et le gaz pollué. La pulvérisation le sert qu'à créer le film de contact entre gaz pollué et un liquide qui est ensuite centrifugé. Ce procédé a les limitations des filtres classiques en ce qui concerne la taille des particules à capturer. Les grosses particules le colmatent ce qui peut être évité en augmentant la section des tubes mais l'efficacité de capture des petites particules est alors diminuée.
Les dispositifs de l'art antérieur utilisent l'eau pour laver des filtres classiques ou augmenter de contact air/gaz en étalant un film liquide sur des surfaces plus ou moins complexes .
Aucun n'utilise les capacités de fixation des brouillards, ni la très grande surface de contact des gouttelettes sphériques des brouillards.
De tels dispositifs ne sont pas totalement satisfaisants, pour plusieurs raisons.
Premièrement, ce mode de filtration impose l'utilisation de filtres successifs de plus en plus fins pour pouvoir arrêter des particules de différentes tailles et ces filtres doivent souvent être complétés par, par exemple, des filtres électrostatiques pour arrêter les particules les plus fines.
De plus, la succession de filtres fait obstacle au flux du gaz traité. Au cours de l'utilisation, plus les filtres ont arrêté de particules, plus ils font obstacle au flux de gaz à traiter ce qui provoque un colmatage des filtres et nécessite des remplacements ou des nettoyages fréquents pour conserver à l'opération de filtration un rendement acceptable .
Par ailleurs, les matières séparées du gaz filtré restent pulvérulentes et malcommodes à manipuler, ce qui impose souvent un traitement des poussières et déchets recueillis. Ces matières séparées sont encombrantes et remplissent rapidement le dispositif destiné à les recevoir, tout en le colmatant s'il s'agit d'un filtre, comme cela peut être le cas pour un aspirateur ménager.
De plus, ces filtres actuels sont mal adaptés à la filtration de particules de très petites dimensions, ou en très faible concentration, ou pour la filtration de gaz très chargés en fumées, particules ou poussières. Enfin, ces filtres n'ont pas la capacité d'éliminer des gaz indésirables ou toxiques mélangés à, par exemple, de l'air à épurer.
Le but de la présente invention est de proposer une nouvelle solution de filtration des gaz, dont l'air, remédiant à ces inconvénients.
À cet effet, l'invention concerne dans son acception la plus générale un procédé et un dispositif de filtration des gaz utilisant la séparation des phases liquide et gazeuse. Le gaz à traiter est aspiré par des moyens d'aspiration comme une hélice qui tourne en sens inverse de la masse adsorbante. On ajoute un brouillard adsorbant au flux entrant à traiter par un générateur de brouillard. Le gaz est mélangé au brouillard adsorbant et parcourt un "chemin des gaz". Le mélange brouillard adsorbant/gaz traverse une structure adsorbante en rotation puis le gaz traité est évacué par la sortie. Le liquide reformé, et ce qu'il a fixé, est évacué, éventuellement traité et recyclé... L'invention utilise le phénomène d'adsorption qui consiste en l'accumulation d'une substance à l'interface entre deux phases (gaz/liquide ou liquide/liquide par exemple) . Il provient des forces d'attraction intermoléculaires, de nature et d'intensité variées, qui sont responsables de la cohésion des phases condensées, liquides ou solides. Une molécule attirée inégalement par les autres molécules de deux phases trouvera une position énergétiquement favorable à la surface de la phase qui l'attire le plus; celle-ci sera appelée l' adsorbant. Les molécules ainsi adsorbées constituent l'adsorbat. Si les conditions énergétiques ou cinétiques permettent à la molécule de pénétrer au sein de la phase adsorbante, il y a absorption. L'absorption est un phénomène de pénétration avec fixation des molécules dans un milieu absorbant.
Chacune des étapes du traitement peut se faire de différentes façons.
Le brouillard adsorbant est le plus simplement obtenu à partir d'eau. Il peut également être obtenu à partir de corps gras liquides, de solvants, de solutions chimiques diverses . Les diamètres des goutelettes peuvent varier selon les applications.
Le type de liquide pulvérisé peut varier selon les besoins. Il peut être ajouté au brouillard une pulvérisation de gouttes plus grosses qui effectuent une première fixation des goutelettes du bouillard par coalescence. Le générateur de brouillard peut être un gicleur, un système à ultra-sons.... II est possible d'ajouter au liquide servant à faire le brouillard divers produits chimiques, en particulier des détergents, des substances amphiphyles (hydophyles et lipophyles) . Des moyens électriques, électrostatiques, thermiques, lumineux et de pression peuvent être ajoutés à ce stade du processus.
Un chemin linéaire des gaz est le plus simple et peut suffire.
Il est possible d'adjoindre au système différents éléments qui en optimisent le fonctionnement. Par exemple il est possible d'ajouter un ou plusieurs essuie-glace hélicodaux qui, mis en rotation raclent la paroi du chemin des gaz et ramènent vers la structure adorbante rotative les matières ou liquides ayant pu se déposer sur la paroi du chemin des gaz .
Il est possible d'augmenter le distance parcourue par le mélange brouillard-gaz, d'ajouter différents moyen pour favoriser les contacts gaz-brouillard
(ailettes, chicanes...) et de provoquer des turbulences favorisant elles aussi le contact brouillard/ gaz à traiter.
Il est possible d'augmenter la pression dans le chemin des gaz et au niveau de la structure adsorbante rotative par un systèmes d'ailettes rotatives à pas croissant (puis décroissant après le passage au travers de la structure rotative adsorbante) .
Il est possible, au cours de la traversée du chemin des gaz, de réinjecter du brouillard, un brouillard différent du premier brouillard; des goutellettes .
La structure adsorbante rotative peut être réalisée selon de nombreuses méthodes selon les applications du procédé. La structure la plus simple consiste en un disque plus ou moins épais de microfibres naturelles ou synthétiques organisées en un réseau suffisment lâche pour ne pas trop freiner les gaz à traiter et suffisement dense ou épais pour adsober totalement le brouillard et ce qu'il a capté ou ce à quoi il s'est fixé.
D'autres structures adsorbantes peuvent être utilisées telles, par exemple, que des pales ou des ailettes rotatives adsorbantes en elle-mêmes ou recouvertes de substances adsorbantes.
Certaines matières telles que le polypropylène peuvent avantageusement être utilisées étant données leurs capacité d'adsobtion et d'absorbtion simultannées .
Toutes les matières ayant une forte capacité d'adsobtion peuvent être utilisées, telles que des fibres, ou des mousses à cellules ouvertes, naturelles ou synthétiques, certaines céramiques ayant un rapport masse/surface favorable, des céramiques catalytiques, des zéolithes, du graphite, des halogénures lamellaires, des aérogels....
La liste n'est pas limitative, certaines applications pouvant nécessiter des matières adaptées de façon très spécifique.
Afin de faciliter le phénomène de désorbption il est possible de pulvériser directement sur 1 ' adsobant rotatif ou de le rincer par injection de liquide en son centre et/ou d'y appliquer des moyens élecriques, électrostatiques, thermiques, chimiques, de pression ou de dépression...
Les liquides désorbants peuvent être différents du ou des liquides utilisés pour créer le brouillard adsorbant. Il est possible d'ajouter à la structure rotative en forme de disque un ou des anneaux périphériques de matières adsorbantes qui peuvent être différentes de celles de la matière adsorbante centrale.
Il est également possible d'y adjoindre un filtre classique périphérique sur lequel viennent se compacter les matières filtrées et au travers duquel passe le liquide reformé.
Il est possible d'ajouter à la matière adorbante rotative des moyens électriques, électrostatiques, chimiques, thermiques... ainsi que sur les anneaux ou filtres périphériques. Il peut être avantageux de donner à la matière adsorbante rotative une forme autre que simplement cylindrique (conique, conique double, concave, convexe...) .
Il est possible de placer plusieurs structures rotatives, identiques ou différentes en forme ou matière, successives dans le flux du ou des gaz à traiter et d'y appliquer tous les différent moyens décrits pour une structure rotative adsobante unique, gazeux et possible d'intercaler entre ces structures tous les moyens (brouillards, goutelettes, moyens chimiques, électriques, électrostatiques, anneaux périphériques, filtres periheriques, évacuation des liquides... ) décrits pour une structure rotative adsorbante unique.
Pour l'évacuation des gaz traités, l'on peut ajouter un traitement final par les méthodes qui précédent ou toute autre méthode.
Les effluents liquides peuvent ensuite subir une simple évacuation des liquides usés, un recyclage avec ou sans traitement jusqu'à usure partielle ou complète. Un traitement avant réinjection peut consister en tous les modes de traitement des liquides envisageables.
Dans un mode de réalisation particulier,
1 ' invention concerne un dispositif pour la filtration de gaz comportant un filtre microporeux adsorbant ou micro fibreux adsorbant et des moyens pour forcer un flux d'air entre une bouche d'aspiration et une bouche de sortie d'air filtré caractérisé en ce qu'il comporte des moyens de pulvérisation d'un liquide et des moyens centrifuges placés entre les moyens de pulvérisation et la bouche de sortie de gaz filtré. Les particules mouillées par le pulvérisateur sont bloquées par le filtre adsorbant rotatif interne et éjectées avec le liquide porteur vers un réceptacle extérieur. Avantageusement, ce réceptacle peut contenir un filtre périphérique, concentrique au premier qui bloque les dites particules. À ce moment, les particules se compactent, hors du chemin du gaz. La filtration s'effectue ainsi à l'extérieur du flux d'air et perpendiculairement au sens de progression du flux. Elle ne gène pas sa circulation et les détritus éliminés restent à 1 ' extérieur du flux.
Ce dispositif peut avantageusement comporter des moyens de polarisation électrique applicables en amont de la bouche d'aspiration, au niveau de la pulvérisation du liquide et au niveau des moyens centrifuges.
Un tel dispositif permet de remédier aux inconvénients des filtres de l'art antérieur, en réduisant les pertes de charge du flux gazeux en cours d'utilisation et en assurant un maintien quasiment constant des qualités de filtration, quelle que soit la quantité de gaz précédemment filtrée.
De plus ce nouveau dispositif permet l'élimination simultanée, en un seul passage du gaz à épurer, de substances très diverses telles que, par exemple, un mélange d'air porteur de gaz toxiques, de fumées, de poussières de détritus et de micro particules transportées par de l'air. Le liquide pulvérisé augmente la masse des substances transportées ou les fixe ou les modifie et permet ainsi de centrifuger des corps pour lesquels la centrifugation seule aurait été inefficace ou très difficile. De préférence, les moyens centrifuges comportent un filtre adsorbant microporeux ou micro fibreux, hydrophile ou non, conducteur d'électricité ou non, de forme cylindrique.
Selon une première variante, le dispositif selon l'invention comporte des moyens coaxiaux au filtre adsorbant microporeux ou micro fibreux pour le recueil périphérique des effluents liquides transporteurs des substances à éliminer.
Selon une deuxième variante, le dispositif selon l'invention comporte des moyens d'aspiration frontaux pour l'aspiration du mélange de gaz et de liquide pulvérisé par la face frontale amont du filtre.
Selon une troisième variante, le dispositif selon l'invention comporte des moyens d'aspiration périphériques pour 1 ' aspiration du mélange de gaz et de liquide pulvérisé par la face radiale du filtre.
Selon une quatrième variante, le dispositif selon l'invention comporte des moyens d'aspiration centraux pour l'aspiration du mélange de gaz et de liquide pulvérisé par une surface axiale du filtre.
Selon le choix du mode de réalisation désiré, le liquide est soit mis sous forme de brouillard dont les gouttes présentent une section comprise entre 0,1 et 60 μm et de préférence entre 0,5 et 6μm. Pour certains modes de réalisation, le liquide est projeté en gouttelettes ou en jets de gouttelettes de l'ordre du millimètre ou de fractions de millimètre. Pour d'autres modes de réalisation, le liquide est projeté en une fine nappe pour mouiller au mieux le contenu du gaz à épurer. Selon une variante de réalisation, le dispositif comporte en outre des moyens de recyclage du liquide pulvérisé.
Avantageusement, les moyens de recyclage comportent du charbon actif pulvérulent imprégné ou non de substances germicides. Selon une variante de mise en œuvre, le liquide de brumisation contient un réactif de fixation ou de précipitation chimique.
Selon une autre variante de mise en œuvre, le liquide pulvérisé contient des agents tensio-actifs ou une substance soluble fortement hydrophile (CaCl2 par exemple) .
Le filtre selon l'invention n'est pas un filtre au sens conventionnel du terme. Le filtre classique arrête et retient des particules grâce à ses caractéristiques mécaniques (diamètre des pores, mailles...), même s'il est parfois lavé) . Le dispositif selon l'invention est essentiellement un brouillard associé à un fixateur éjecteur de brouillard. Le capteur éjecteur fonctionne par adsorption/saturation locale/désorption du brouillard et n'a pas les contraintes des filtres classiques. Ce sont le brouillard et le "fixateur éjecteur" de brouillard qui filtrent .
Le procédé et le dispositif selon 1 ' invention permettent de réaliser des opérations de filtrage grâce à l'ajout à un gaz à traiter d'une phase liquide sous forme de liquide pulvérisé suivi de la récupération par adsorption de la phase liquide ajoutée en un seul passage d'un gaz à épurer ou à traiter.
Le procédé et le dispositif selon 1 ' invention exploitent de façon simple les propriétés physico-chimiques complexes des brouillards ainsi que les propriétés physicochimiques des gouttelettes d'eau ou d'autres liquides brumisés . Les avantages des micro sphères de liquide sont multiples . Les microsphères de liquides n'ont pas besoin d'un support comme les films liquide mobiles dans le flux de gaz à traiter et ne sont pas liées à un support plus ou moins rigide et peuvent avoir des trajets fluides et très complexes favorisant les interactions avec le gaz à traiter. Elles offrent une très grande surface de contact gaz/liquide et permettent d'utiliser au mieux les phénomènes d'interface, de surface et d' adsorption.
Elles possèdent de plus une très forte tension superficielle ce qui induit des effets et des réactions de surface que les films ne peuvent pas provoquer ainsi qu'une une pression interne très élevée, induite par la très forte tension superficielle. Le liquide des gouttelettes est sous pression, ce qui permet de "travailler" chimiquement et physiquement dans des conditions de pressions élevées sans avoir à mettre tout un appareil sous pression. Les particules liquides possèdent des propriétés électriques, él ec t ro chimiques et électrostatiques qui les différencient très avantageusement des films liquides ou des pulvérisations en gouttes dès qu'il s'agit de fixer des micro-particules ou même des gaz.
Les capacités de fixation transitoire des matières adsorbantes réunies en structures qui sont mises en rotation sont plus fortes. Ces structures sont faites de microfibres ou de mousses ou de substances diverses ou de supports recouverts de matières très adsorbantes. Ce que l'on appelle habituellement "filtre", mais qui n'en est pas un le système selon l'invention, peut par exemple être constitué d'un réseau très lâche de microfibres adsorbantes qui ne bloque rien comme le font les filtres. On peut ainsi utiliser des zéolithes; des aérogels ou des catalyseurs...
La force centrifuge peut être remplacée par d'autres systèmes, mais a l'avantage d'être facile à utiliser pour séparer de la masse de fixation provisoire (microfibres, adsorption...) le brouillard et ce qu'il a fixé ou ce à quoi il s'est fixé pendant son mélange avec le gaz à traiter.
Ce à quoi, selon les applications, on peut ajouter la pulvérisation de gouttes ou gouttelettes de liquide dans le mélange gaz brouillard et/ou sur la masse de fixation pour obtenir une coalescence des gouttelettes du brumisat.
Le procédé n'utilise pas de films liquides pour créer une grande surface de contact gaz /liquide (comme le font les dispositifs de l'art antérieur) mais des micro- sphères (brouillards) qui n'ont pas besoin d'un support de grande surface et de forme complexe pour s ' étaler au mieux comme c'est le cas comme dans les brevets qui utilisent les fi1ms 1iquides .
L'invention sera mieux comprise à la lecture de la description qui suit, se référant aux exemples non limitatifs décrit en référence aux dessins annexés où : - la figure 1 représente une vue en coupe d'un premier exemple de réalisation ;
- la figure 2 représente une vue en coupe d'un deuxième exemple de réalisation ; - la figure 3 représente le schéma de principe de la filtration avec un filtre périphérique.
La figure 1 représente un dispositif de filtration comportant un boîtier (1) présente une bouche d'aspiration (2) sur la face frontale amont (4) et une sortie d'air filtré (3) sur la face frontale opposée (5) . Le dispositif comporte un filtre cylindrique (6) entraîné en rotation par un moteur électrique. Le filtre est constitué par un matériau microporeux, par exemple un bloc de fibres agglomérées ou un matériaux solide poreux. Dans le cône d'aspiration (7) disposé en amont du filtre (6), des buses d'injection (18) pulvérisent un liquide sous forme de micro-gouttelettes présentant un diamètre moyen de l'ordre du micron. Le liquide de brumisation peut être constitué par de l'eau pure ou de l'eau contenant un ou plusieurs additifs tels que :
- des réactifs chimiques ou biochimiques pour la fixation de certaines molécules ;
- des solvants ;
- des antibactériens ; - de 1 ' iodure d'argent pour la déodorisation ou la stérilisation.
Le liquide de brumisation peut également être constitué par d'autres liquides tels que des huiles ou des dérivés alcooliques. L'eau ou le liquide de brumisation est pulvérisée dans le flux d'air entrant. Les particules solides sont fixées par les micro-gouttelettes qui sont aspirées dans le filtre rotatif (6) . Le filtre rotatif (6) entraîne les gouttelettes chargées ou non vers un réceptacle périphérique (8) contenant un filtre périphérique rotatif sous l'effet de la force centrifuge. Un conduit d'évacuation (9) entraîne les effluents liquides vers un bac de récupération (10) . Les effluents liquides peuvent éventuellement être retraités puis recyclés pour être réinjectés dans la chambre d'admission (7).
L'air filtré est aspiré à travers le filtre (6) vers le conduit d'évacuation (3) . Éventuellement, un conduit axial (11) permet l'injection radiale, à travers un axe perforé, d'un liquide additionnel augmentant le débit de liquide à l'intérieur du filtre (6).
La figure 2 représente une variante de réalisation.
Le dispositif est constitué par un boîtier (1) lenticulaire. Il comprend une bouche d'aspiration (2) axiale, ainsi qu'une bouche d'évacuation (3) axiale.
Le liquide de brumisation est injecté dans la chambre d'admission (7) par une ou plusieurs buses axiales (13) orientées en direction de la bouche d'aspiration (2). Le flux de liquide brumisé est ainsi orienté en sens opposé au flux de l'air à traiter, ce qui augmente le chemin utile où s'effectue les collisions entre les gouttelettes liquides et les particules à filtrer.
Le brouillard ainsi formé est ensuite aspiré à travers le filtre (6) selon une direction radiale, jusqu'à une évacuation axiale par la bouche d'évacuation (3).
La force centrifuge s ' exerçant sur les gouttelettes liquides, chargées ou non de particules solides, entraîne celles-ci à contresens du flux d'air filtré, à l'intérieur du filtre. Ceci augmente encore les possibilités de rencontres entre les particules à filtrer, et les gouttelettes liquides. Les effluents liquides sont filtrés en périphérie, le filtrat est compacté et les effluents ensuite récupérés par une goulotte périphérique (8) pour être recyclés ou évacués. La figure 3 représente le schéma de principe de la filtration avec un filtre périphérique que l'on peut installer dans toutes les variantes de réalisation. L'appareil est un conduit avec un système de déplacement des gaz et un système de pulvérisation de liquides (21) . Une masse de matière perméable à l'air, finement poreuse, fixe les gouttelettes produites par le système de pulvérisation (21) ainsi que ce qu'elles transportent, ce qu'elles ont mouillé ou ce à quoi elles se sont fixées. Cette masse de matière perméable (24) est en rotation rapide et projette radialement tout ce qu'elle a provisoirement fixé
Un filtre (22) rotatif et périphérique à la matière perméable (24) retient et compacte par l'effet de la force centrifuge, les matières solides (23) tout en laissant passer le liquide injecté par le système de pulvérisation (21) et recueilli provisoirement par la matière perméable (24) . Le liquide est ensuite, avec ou sans traitement renvoyé vers le système de pulvérisation
(21) . On a donc ici une machine dont une des propriétés majeures consiste à pouvoir accumuler en les compactant des matières transportées par un flux gazeux, en dehors du trajet du gaz traité, donc sans en gêner le passage. Le trajet du gaz traité reste dans son état initial sans le moindre colmatage jusqu'au remplissage complet du filtre (22)
La matière, la forme, la surface et la forme de surface du filtre périphérique (22) tiennent compte des faits inhabituels suivants:
- les matières à filtrer sont mouillées et soumises à une forte pression du fait de la force centrifuge ; du fait du tassement du à l'effet de mouillage et à celui de la force centrifuge, le filtre périphérique (22) doit recueillir et conserver une quantité de matière beaucoup moins encombrante (avantage important) mais beaucoup plus importante que ne le font les filtres classiques .
La texture, la forme, la taille des pores, l'épaisseur du filtre périphérique rotatif (22) sont variables adapté et optimisés pour chaque utilisation. Il est possible d'y appliquer les phénomènes électriques, électrostatiques ou électrochimiques cité par ailleurs dans ce texte. Pour exemple, une simple feuille de papier filtre classique de laboratoire permet de très bien recueillir des poussières ménagères qui sont transformées en une sorte de feutre dont la manipulation ne pose aucun problème.
L'invention est décrite à titre d'exemple non limitatif. De nombreuses variantes de réalisation peuvent être envisagées, notamment en ce qui concerne la structure du filtre rotatif, les mécanismes d'entraînement, la structure de la chambre d'admission, et les moyens de brumisation, ainsi que la polarisation électrique et l'utilisation d'une polarisation électrique ou électrostatique des brouillards, des filtres relatifs et des flux entrants . L'ajout d'une nouvelle phase dans un mélange gazeux/particules rend beaucoup simplement séparable des phases habituellement difficiles à dissocier
Il devient possible, en un seul passage d'extraire d'un gaz pollué des détritus (papier), des poussières, des microparticules, des vapeurs et des gaz toxiques ou non, des odeurs.... Il n'y a plus de problème de colmatage de filtre. De plus, les parties séparées du gaz porteur à traiter peuvent être compactées, mises en solution, précipitées, ce qui facilite leur manutention.

Claims

REVENDICATIONS
1 - Dispositif pour la filtration de gaz comportant des moyens pour forcer un flux d'air entre une bouche d'aspiration et une bouche de sortie de gaz filtré caractérisé en ce qu'il comporte des moyens de pulvérisation d'un liquide et des moyens centrifuges placés entre les moyens de pulvérisation et la bouche de sortie de gaz filtré. 2 - Dispositif pour la filtration de gaz selon la revendication 1 caractérisé en ce qu'il comporte des moyens d' adsorption placés entre les moyens centrifuges et les moyens de pulvérisation.
3 - Dispositif pour la filtration de gaz selon la revendication 1 ou 2 caractérisé en ce que les moyens centrifuges comportent un filtre cylindrique.
4 - Dispositif pour la filtration de gaz selon la revendication 3 caractérisé en ce que les moyens centrifuges comportent un filtre microporeux de forme cylindrique.
5 - Dispositif pour la filtration de gaz selon la revendication 3 caractérisé en ce que les moyens centrifuges comportent un filtre microfibreux de forme cylindrique . 6 - Dispositif pour la filtration de gaz selon la revendication 4 ou 5 caractérisé en ce qu'il comporte des moyens coaxiaux au filtre pour le recueil périphérique des effluents liquides.
7 - Dispositif pour la filtration de gaz selon la revendication 4 ou 5 caractérisé en ce qu'il comporte des moyens d'aspiration frontaux pour l'aspiration du gaz vaporisé par la face frontale amont du filtre.
8 - Dispositif pour la filtration de gaz selon la revendication 4 ou 5 caractérisé en ce qu'il comporte des moyens d'aspiration périphériques pour l'aspiration du gaz pulvérisé par la face radiale du filtre.
9 - Dispositif pour la filtration de gaz selon la revendication 4 ou 5 caractérisé en ce qu'il comporte des moyens d'aspiration centraux pour l'aspiration du gaz pulvérisé par une surface axiale du filtre.
10 - Dispositif pour la filtration de gaz selon l'une quelconque des revendications précdentes caractérisé en ce que le pulvérisateur forme des gouttes présentant une section comprise entre 0,5 et 6 μm.
11 - Dispositif pour la filtration de gaz selon l'une quelconque des revendications précédentes caractérisé en ce qu'il comporte des moyens de polarisation électrique applicables en amont de la bouche d'aspiration, au niveau de la pulvérisation du liquide et au niveau des moyens centrifuges .
12 - Dispositif pour la filtration de gaz selon l'une quelconque des revendications précédentes caractérisé en ce qu'il comporte des moyens de recyclage du liquide de pulvérisation.
13 - Dispositif pour la filtration de gaz selon la revendication 12 caractérisé en ce que les moyens de recyclage comportent du charbon actif pulvérulent.
14 - Dispositif pour la filtration de selon l'une quelconque des revendications précédentes caractérisé en ce que le liquide de pulvérisation contient un réactif de fixation.
15 - Dispositif pour la filtration de gaz selon l'une quelconque des revendications précédentes caractérisé en ce qu'il comporte un filtre additionnel périphérique.
EP99947593A 1998-10-16 1999-10-15 Dispositif pour la filtration de gaz Withdrawn EP1124621A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9813099 1998-10-16
FR9813099A FR2784607B1 (fr) 1998-10-16 1998-10-16 Filtration de gaz par force centrifuge
PCT/FR1999/002523 WO2000023173A1 (fr) 1998-10-16 1999-10-15 Dispositif pour la filtration de gaz

Publications (1)

Publication Number Publication Date
EP1124621A1 true EP1124621A1 (fr) 2001-08-22

Family

ID=9531744

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99947593A Withdrawn EP1124621A1 (fr) 1998-10-16 1999-10-15 Dispositif pour la filtration de gaz

Country Status (5)

Country Link
US (1) US6627166B1 (fr)
EP (1) EP1124621A1 (fr)
AU (1) AU6098399A (fr)
FR (1) FR2784607B1 (fr)
WO (1) WO2000023173A1 (fr)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080219A (en) * 1998-05-08 2000-06-27 Mott Metallurgical Corporation Composite porous media
JP2001120933A (ja) * 1999-10-28 2001-05-08 Kankyo Co Ltd 空気清浄方法及び装置並びに加湿方法及び装置
DE10148000A1 (de) * 2001-09-28 2003-04-10 Rolls Royce Deutschland Ölseparator
JP2003144826A (ja) * 2001-11-09 2003-05-20 Ebara Corp ファンスクラバー
FR2839981B1 (fr) * 2002-07-31 2005-02-18 Air Liquide Procede de determination de l'aptitude d'un dispositif capable de pieger des partitudes viables et reviviscentes, a determiner la qualite microbiologique d'un gaz ou d'un melange de gaz sous pression
US7282086B2 (en) * 2003-07-16 2007-10-16 Jeffery Allen Stuckey Fluid filter cleaning apparatus
SE526815C2 (sv) * 2004-03-16 2005-11-08 3Nine Ab Anordning och förfarande för rengöring av en centrifugalseparator
US7402798B2 (en) * 2005-01-18 2008-07-22 Phoenix S&T, Inc. Apparatus and method for controlling an electrostatically induced liquid spray
US7763848B2 (en) * 2005-01-18 2010-07-27 Phoenix S&T, Inc. Apparatus and method for controlling an electrostatically induced liquid spray
EP1743562B1 (fr) * 2005-07-13 2011-09-28 Toshiba TEC Kabushiki Kaisha Aspirateur électrique
GB2433041A (en) * 2005-12-08 2007-06-13 Eminox Ltd Cleaning a vehicle exhaust system filter
US7389652B1 (en) * 2006-10-21 2008-06-24 Shields Fair Heat transfer apparatus
GB2448548A (en) * 2007-04-21 2008-10-22 Converteam Ltd Vortex cleaning of air intake of electrical machine
SE531722C2 (sv) * 2007-08-28 2009-07-21 Alfa Laval Tumba Ab Centrifugalseparator och förfarande för rening av en gas
US20090095057A1 (en) * 2007-10-16 2009-04-16 Phoenix S&T, Inc. Integrated microfluidic nozzle device for chromatographic sample preparation for mass spectrometry applications
WO2009108538A2 (fr) * 2008-02-26 2009-09-03 Phoenix S & T, Inc. Procédé et appareil permettant d’accroître la capacité de la chromatographie en phase liquide et de la spectrométrie de masse
ITMI20090402A1 (it) 2009-03-17 2010-09-18 Getters Spa Sistema di pompaggio combinato comprendente una pompa getter ed una pompa ionica
NO330124B1 (no) * 2009-06-11 2011-02-21 Ntnu Tech Transfer As En separator for en gass/væske strøm
US20110131937A1 (en) * 2009-12-08 2011-06-09 Yang Hsien Ming absorptive device to carbon dioxide in the air
EP2463008A1 (fr) 2010-12-10 2012-06-13 NTNU Technology Transfer AS Séparateur permettant de séparer un écoulement de fluide de gaz avec une phase dispersée
CN102423590A (zh) * 2011-07-19 2012-04-25 吴江市新吴纺织有限公司 自动吸尘机构
EP2574389B1 (fr) 2011-09-29 2022-09-28 Alfa Laval Corporate AB Dispositif comprenant un séparateur centrifuge et un procédé pour nettoyer un gaz
DE102012220186A1 (de) * 2012-11-06 2014-05-08 Efficient Energy Gmbh Tropfenabscheider und Verdampfer
CA2903307C (fr) 2013-03-15 2019-12-03 Oy Halton Group Ltd. Nettoyage de fumees par pulverisation d'eau a fonctionnement base sur la demande
CN103357235B (zh) * 2013-07-23 2015-05-13 国电科学技术研究院 多污染物联合控制装置
US10507425B2 (en) * 2016-08-24 2019-12-17 Honeywell International Inc. Ionic liquid CO2 scrubber for spacecraft
ES2677608B1 (es) * 2017-02-03 2019-08-20 Desenvolupament Innovacio I Recerca Aplicada S L Sistema de depuración de gases y aire
JP7445902B2 (ja) * 2019-03-28 2024-03-08 パナソニックIpマネジメント株式会社 微粒子捕集装置
CN110694358A (zh) * 2019-09-04 2020-01-17 徐州易尔环保科技有限公司 一种车间废气处理系统
CN112973295B (zh) * 2021-03-18 2022-03-29 中国石油大学(北京) 具有排液功能的聚结滤芯
CN114225596B (zh) * 2021-12-31 2023-03-10 中海外交通建设有限公司 一种用于建筑工程施工的粉尘收集装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1303250A (fr) * 1969-09-17 1973-01-17
GB1356866A (en) * 1972-04-27 1974-06-19 Schwarz Holywell Ltd Filters for removing airborne dust
DE8905182U1 (fr) * 1989-04-17 1989-08-10 Schmitz, Hugo, 4720 Beckum, De
US5112369A (en) * 1991-10-02 1992-05-12 Allied-Signal Inc. Method of applying a wettant to a filtering media
GB2279271B (en) * 1992-06-16 1996-01-17 Wagner Mining & Constr Exhaust gas scrubber and filter assembly
US5536298A (en) * 1995-02-24 1996-07-16 Awaji; Toshio Method of treating fine particle dust in manufacturing process of semiconductor elements and apparatus therefor
AU6139196A (en) * 1996-05-06 1997-11-26 Moon Chan Park Apparatus and method for purifying exhaust gas
NL1003157C2 (nl) * 1996-05-17 1997-11-18 Romico Hold A V V Roterende deeltjesscheider met hoge afscheidingsgraad.
US6251168B1 (en) * 1999-07-23 2001-06-26 Hudson Products Corporation High efficiency gas scrubber using combined coalescing media and centrifugal cyclone
US6451093B1 (en) * 2001-01-22 2002-09-17 Charles C. Miles Centripetal demister

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0023173A1 *

Also Published As

Publication number Publication date
FR2784607B1 (fr) 2001-02-09
WO2000023173A1 (fr) 2000-04-27
AU6098399A (en) 2000-05-08
US6627166B1 (en) 2003-09-30
FR2784607A1 (fr) 2000-04-21

Similar Documents

Publication Publication Date Title
EP1124621A1 (fr) Dispositif pour la filtration de gaz
EP0971783B1 (fr) Procede et appareil pour la separation des goutelettes ou particules d'un courant gazeux
FR2889082A1 (fr) Dispositif d'extraction air/eau par collection electrostatique semi-humide et procede utilisant ce dispositif
FR2717100A1 (fr) Coalesceur, procédé pour son utilisation et élément de coalescence à y utiliser.
KR101612519B1 (ko) 집진장치
FR3021648A1 (fr) Unite de traitement et de depollution de l'eau usee
FR2821281A1 (fr) Separateur en matiere poreuse comprenant une structure en feutre et appareil comprenant un tel separateur
EP1142620A1 (fr) Procédé et dispositif d'élimination de particules contenues dans un courant de fluide
EP1587601B1 (fr) Machine rotative destinee a engendrer un flux de fluide epure reglable et capable de s'auto-nettoyer
US3877906A (en) Filtration apparatus
CN108654180B (zh) 污水旋转过滤方法以及用于污水处理的过滤器
FR2568140A1 (fr) Procede de separation d'une matiere solide en suspension dans un liquide
JP4060725B2 (ja) 浮上濾材を用いた濾過装置
CA2651909C (fr) Separateur en matiere poreuse destine a traiter des effluents gazeux
EP1005389A1 (fr) Separateur mecanique pour effluents gazeux et procede de fabrication associe
FR2564331A1 (fr) Perfectionnements apportes aux installations de depollution d'un gaz pollue par des particules solides et/ou liquides
WO2001024910A1 (fr) Procede et installation d'epuration de fumees contenant des polluants organiques
CA2513314C (fr) Procede et dispositif d'elimination de particules contenues dans un courant de fluide
RU13539U1 (ru) Фильтр-сепаратор и фильтрующий элемент
RU2263457C2 (ru) Всасывающее устройство с фильтрацией воды
CA2187375C (fr) Procede et dispositif d'elimination de particules contenues dans un courant de fluide
CN212476333U (zh) 一种用于含油污水的一体化污水处理装置
FR3109893A1 (fr) Appareil de filtration de l'air avec réservoir d'eau
FR2758612A1 (fr) Systeme compact et polyvalent de traitement d'air, par voie humide, pour la climatisation d'habitacles
JP2004188377A (ja) ドレン清水化用フィルタ

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010503

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20020801

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030212