EP1120216B1 - Method and apparatus for mixing and discharging of concrete - Google Patents

Method and apparatus for mixing and discharging of concrete Download PDF

Info

Publication number
EP1120216B1
EP1120216B1 EP01101596A EP01101596A EP1120216B1 EP 1120216 B1 EP1120216 B1 EP 1120216B1 EP 01101596 A EP01101596 A EP 01101596A EP 01101596 A EP01101596 A EP 01101596A EP 1120216 B1 EP1120216 B1 EP 1120216B1
Authority
EP
European Patent Office
Prior art keywords
compressed air
mixing
conveying apparatus
motor
compressor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01101596A
Other languages
German (de)
French (fr)
Other versions
EP1120216A2 (en
EP1120216A3 (en
Inventor
Werner Foerster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaeser Kompressoren GmbH
Original Assignee
Kaeser Kompressoren GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10033663A external-priority patent/DE10033663A1/en
Application filed by Kaeser Kompressoren GmbH filed Critical Kaeser Kompressoren GmbH
Publication of EP1120216A2 publication Critical patent/EP1120216A2/en
Publication of EP1120216A3 publication Critical patent/EP1120216A3/en
Application granted granted Critical
Publication of EP1120216B1 publication Critical patent/EP1120216B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/08Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions using driven mechanical means affecting the mixing
    • B28C5/10Mixing in containers not actuated to effect the mixing
    • B28C5/12Mixing in containers not actuated to effect the mixing with stirrers sweeping through the materials, e.g. with incorporated feeding or discharging means or with oscillating stirrers
    • B28C5/1223Mixing in containers not actuated to effect the mixing with stirrers sweeping through the materials, e.g. with incorporated feeding or discharging means or with oscillating stirrers discontinuously operating mixing devices, e.g. with consecutive containers
    • B28C5/123Mixing in containers not actuated to effect the mixing with stirrers sweeping through the materials, e.g. with incorporated feeding or discharging means or with oscillating stirrers discontinuously operating mixing devices, e.g. with consecutive containers with pressure or suction means for discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/75Discharge mechanisms
    • B01F35/754Discharge mechanisms characterised by the means for discharging the components from the mixer
    • B01F35/7543Discharge mechanisms characterised by the means for discharging the components from the mixer using pneumatic pressure, overpressure or gas pressure in a closed receptacle or circuit system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/08Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions using driven mechanical means affecting the mixing
    • B28C5/0806Details; Accessories
    • B28C5/0831Drives or drive systems, e.g. toothed racks, winches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/30Driving arrangements; Transmissions; Couplings; Brakes
    • B01F35/32Driving arrangements
    • B01F35/32005Type of drive
    • B01F35/32045Hydraulically driven

Definitions

  • the invention relates to a mixing and conveying device for discontinuous, interrupted by charging operations mixture and subsequent promotion of thick materials, especially mortar and concrete, with a connected to a delivery line, a motor-driven agitator mixing vessel containing charged with mixed and conveyed and compressed air for discharging the thick matter through the delivery line can be acted upon, and with a built in the mixing and conveying device or as a separate unit, driven by a combustion or electric motor rotary compressor for generating the compressed air. Furthermore, the invention relates to a method for controlling and operating such a mixing and conveying device.
  • Such mixing and conveying devices are used in the construction industry for mixing and conveying of thick materials, in particular high solids with low water content such.
  • the components of the thick stock usually sand, binder and water, fed through a feed opening to the mixing vessel and then mixed by the agitator.
  • the lid of the mixing tank is closed and the mixing tank is pressurized with compressed air.
  • the thick material is pressed in the form of plugs which are interrupted by compressed air bubbles through a delivery line which is connected to an outlet nozzle in the lower part of the mixing vessel.
  • the interruptions between the plug arise because the blades of the still running agitator sweep periodically the outlet opening in the delivery line.
  • To support the plug conveying is usually compressed air by another Blowed in line in the area of the outlet nozzle.
  • Such mixing and conveying devices are designed with integrated or separate compressor.
  • the drive of the agitator takes place either via a switchable belt drive and a cardan shaft between the drive motor and agitator or via a hydraulic motor on the agitator and a hydraulic pump on the drive motor.
  • the compressor Due to the lack of a switchable coupling between the drive motor and the compressor element, the compressor is also driven during the mixing phase, in which there is no compressed air demand for the promotion. Although the compressor is idling, it nevertheless consumes a significant proportion of the drive motor power that is not available for the mixing process.
  • the required drive torque for the agitator is highest at the beginning of the mixing phase and then decreases rapidly when the feed is mixed to a pasty mass.
  • the required drive torque for the agitator depends strongly on the speed of the agitator. A reduction in the speed of the agitator at the beginning of the Mixed phase would reduce the required drive torque and (to an even greater extent) the required drive power (as a product of torque and speed), however, there is no efficient way of reducing the speed of the agitator in the known mixing and conveying equipment.
  • a change in the speed of the agitator is therefore limited on a change in the drive motor speed and / or in hydraulic motors by a bypass control with high power losses possible.
  • a combustion engine is used as the drive motor, then a reduction in the speed due to the curve speed-torque curve narrow limits.
  • a reduced drive motor speed means a reduction in the output of the engine.
  • the drive power required for the agitator at the beginning of the mixing phase has a clear maximum.
  • the design or tuning of the drive motor and the agitator must be done for this most unfavorable operating point, otherwise the engine can be strangled by the agitator.
  • the available power of the drive motor is not fully used for mixing.
  • the agitator runs in the known mixing and conveying equipment in the funding phase with an unnecessarily high speed and with unnecessarily high drive power, especially when - as in some devices usual - in the funding phase, the speed of the drive motor is further increased to as much as possible Generate compressed air for the promotion.
  • the unnecessarily high The power requirement of the agitator is not available for the generation of compressed air, ie the delivery of thick material.
  • the object of the invention is to improve the known mixing and conveying equipment to the effect that the power of the drive motor optimally used both during the mixing phase and during the delivery phase, reduces the design effort, the manufacturing cost and maintenance and reliability and durability of the device.
  • one or more pneumatic motors which are supplied with a proportion, preferably 20 to 100%, of the compressed air generated by the compressor, and their speed and / or torque and / or Drive power can be adapted by suitable means for influencing the supply of compressed air to the or the compressed air motors and / or the removal of exhaust air from the or the compressed air motors to the various operating phases of the mixing and conveying process.
  • a multi-part agitator can be used, the individual parts are each driven separately from a compressed air motor.
  • multiple air motors operating on a common shaft or coupled by a suitable gearbox may drive a one-piece agitator.
  • pneumatic motors with multiple inlets for the compressed air and / or multiple outlets for the exhaust air, which are preferably connected to different separate work spaces and / or with different housing sections of the same work spaces and their speed and / or drive power and / or drive torque can be changed by switching on or off the supply of compressed air or discharge of exhaust air at one or more of these inputs and outlets.
  • Air motors are particularly suitable for this application because of their speed-torque characteristic. They can also provide drive torque well above their rated torque, with their speed decreasing with increasing drive torque.
  • compressed air motors are on the one hand able to provide the relatively high drive torque for the agitator at the beginning of the mixing phase put.
  • their speed drops, so that the required for the agitator drive torque compared to known drives with a substantially constant speed is lower.
  • the lower drive torque at a lower speed means that compressed air motors reduce or prevent the maximum drive power occurring in known devices at the beginning of the mixing phase.
  • Compressed air motors must therefore be designed with a comparable mixing effect for a lower power than drives with belt transmission and cardan shaft or hydraulic motor and pump.
  • the use of compressed air motors is advantageous in particular because it leads to a decoupling of the rotational speeds of the drive motor and agitator.
  • the drive motor can run both in the mixing phase and in the delivery phase at full power and high speed to deliver as much compressed air for the drive of the agitator and / or for the promotion of thick matter.
  • the rotary compressors (screw compressors, vane compressors) commonly used in mixing and conveying equipment have compression chambers, which are formed between the rotor (s) and the compressor element housing and which open cyclically during the rotation of the rotor (s), at suction-side control edges close off the suction area, reduce it, open on the pressure-side control edges to the pressure side and push it out to the pressure side against the operating pressure. Openings or connections can be made in the fixed housing regions delimiting the compression chambers, by means of which compressed air with a temporally substantially constant pressure between intake and operating pressure can be taken or supplied to the compression chambers already closed by the suction region in the compressor element. The choice of the position of these connections determines the height of this intermediate pressure.
  • connection of these connections with the inlets and / or outlets of the compressed-air motors it is possible to change the pressure difference between the inlets and outlets of the compressed-air motors in a targeted manner.
  • the inlets and / or outlets can be throttled.
  • the pressure difference between the inlet and outlet of the air motors can be influenced by a variable bypass.
  • the compressed air is supplied to the or the compressed air motors at least temporarily with a pressure which substantially corresponds to the operating pressure of the compressor.
  • the compressed air is supplied to the compressed air motors at least temporarily preferably at a temperature which substantially corresponds to the compression end temperature of the compressor, which is usually between 70 ° C and 100 ° C in oil-injected rotary compressors.
  • the compressed air is taken to a point where she has not experienced any appreciable cooling. This allows a relatively high inlet temperature to be processed, so that the outlet temperature of the compressed air from the compressed air motors for thermodynamic reasons safely above the ambient temperature and no harmful condensation can occur.
  • the maximum operating volume is used.
  • the compressed air may also be advantageous to heat the compressed air prior to its delivery to the compressed air motors in a heat exchanger to a temperature above the compression end temperature of the compressor so as to further increase the working capacity of the compressed air as it expands in the air motors.
  • the compressed air can be heated, for example, by heat exchange with the cooling fluid or the exhaust gas flow of the internal combustion engine.
  • the compressed air can be supplied to the compressed air motors with an oil content for lubrication, preferably with 0.5 to 50 mg of oil per kilogram of air.
  • the desired oil content in the compressed air for the compressed air motors is preferably achieved in that the removal of the compressed air takes place at a suitable location before the fine separation of the oil in the compressor, z. B. in front of the coalescing filter in the oil separation tank.
  • the compressed air can be supplied to the pneumatic motors at least temporarily with a pressure which is between the suction and the operating pressure.
  • the compressed air can be removed at a suitable point of the compressor element.
  • the supply of compressed air to the compressed air motor via one or more valves can be opened and / or throttled and / or closed and / or switched between different sampling points.
  • the air emerging from the air motors is preferably returned to the circuit of the compressor.
  • This has, inter alia, the advantage that the oil does not escape to lubricate the air motors in the environment, but is returned to the compressor circuit.
  • One possibility is the return to the intake of the rotary compressor, z. B. in the inlet valve.
  • Another possibility of removing the exhaust air from the compressed air motor is to connect the outlet of the compressed air motor at the delivery passage with the compressed air supply of the mixing vessel.
  • the return or removal of the exhaust air can be opened and / or throttled and / or closed and / or switched between different return points via one or more valves.
  • the compressed air is supplied to a compressed air motor substantially at the operating pressure of the compressor, while its exhaust air is returned to the suction region or alternatively to the compressor element at a point where there is a pressure between suction and operating pressures the switchover between the two alternative feedbacks takes place via at least one valve.
  • the return line at the outlet of the compressed air motor is connected to the intake of the compressor, so that the maximum pressure difference is available for the compressed air engine between inlet and outlet. If this were not the case, then the compressed air motor would have to be unnecessarily large dimensions.
  • the return line is connected at the outlet of the air motor with a connection to the housing of the compressor element, at which an intermediate pressure prevails, preferably about 2 to 60% of the operating pressure.
  • the return of the exhaust air in already completed compression chambers in the compressor element is particularly advantageous because the supply of the compressed air motor takes place in an inner circuit, so that is substantially the entire intake flow of the compressor element as compressed air for the promotion of thick stock available.
  • the compressor element can therefore be dimensioned substantially smaller than would be the case in a return of the exhaust air of the compressed air motor in the environment or in the intake of the compressor element.
  • the compressed air is supplied to a compressed air motor substantially with the operating pressure of the compressor, while its exhaust air is fed into the intake of the compressor or in the environment or alternatively in the mixing vessel, wherein the switching between the two alternatives by at least a valve takes place.
  • the exhaust air of the compressed air motor is guided in the intake of the compressor or in the environment, so that the maximum pressure difference is available for the compressed air engine between inlet and outlet. If the exhaust air of the compressed air motor is returned to the suction of the Pompressors, then an internal circuit, so that no dusty ambient air, as usually arises when filling the mixing tank, must be cleaned by the inlet filter, resulting in a much longer service life of the filter. If the exhaust air discharged into the environment, z. B. via a blow-off silencer, so the return line can be omitted.
  • the exhaust air from the compressor is fed into the mixing tank, where there is a pressure between the suction and operating pressure of the compressor.
  • the operating pressure of the compressor sets in dependence on the total compressed air consumption and is divided into an advantageous self-adaptation to the respective delivery process in a pressure difference between the inlet and outlet of the air motor and a difference between the mixing vessel and the environment.
  • the exhaust air of the pressure motor is oil-containing, it can be passed through an oil separation element from which the separated oil is returned to the compressor's circuit before it enters the environment or before it enters the mixing tank.
  • a method for controlling and operating a mixing and conveying device in which the compressed air generated by the compressor during the mixing phase substantially only for supplying the or the agitator driving air motors is used and during the delivery phase both for the promotion of thick matter and for the supply of the or the agitator driving air motors.
  • compressed air motors can be used to drive the agitator, of which all but during the mixing phase, not all are supplied with compressed air during the delivery phase.
  • the pressure difference between the inlet and outlet of at least one air motor is influenced so that the speed and / or torque and / or the drive power of the agitator during the mixing phase are higher than in the delivery phase of.
  • the pressure difference between the inlet and outlet of the compressed air motors or during the mixing phase is set higher than in the delivery phase.
  • the pressure difference between the inlet and outlet of the compressed air or the motors can also be influenced by the fact that the exhaust air of the air motor or is passed during the conveying process in the mixing vessel. In this builds up a pressure whose height affects the pressure difference and thus the speed and / or torque and / or the drive line of the or the air motors.
  • the solution according to the invention allows greater design flexibility, because only an inlet and exhaust air line must be installed between the compressor and mixing tank. If the exhaust air of the compressed air motor in the delivery phase in the mixing vessel and in the mixing phase passed into the environment, then even only a compressed air line is required between the compressor and mixing unit, whereby in this embodiment, a conventional or only slightly modified construction site compressor can be used. This results in only minor restrictions for the relative arrangement of compressor and mixing tank. It also reduces maintenance and increases reliability. The vibrations and noise emissions of a switchable belt drive with cardan shaft are eliminated.
  • An internal combustion engine 1 drives via a clutch 2, the compressor element 3. This sucks in ambient air through the inlet valve 4, compresses them under injection of oil, which is supplied via the injection line 5, and conveys the compressed air-oil mixture via the pressure line 6 in the Oil separation tank 7. Here, most of the oil is separated from the air stream and collects in the lower part of the oil separation tank 7. From there it is pressed by the operating pressure through the cooler 8 back into the injection line 5.
  • a bypass 9 with a thermo valve 10 controls the final temperature of the oil or the compression end temperature.
  • a pressure line 11 compressed air is passed with operating pressure to the compressed air motor 12, which drives the agitator 13 in mixing tank 14.
  • a 2/2-way valve 15 is provided, with which the compressed air supply of the compressed air motor 12 can be released and interrupted.
  • the exhaust air of the compressed air motor is passed via an exhaust duct 16 to a 3/2-way valve 17.
  • the exhaust air is passed via line 18 into the inlet valve 4, in the other switching position in a return port 19 on the housing of the compressor element 3.
  • the return port 19 is provided with an opening in a housing portion of the compressor element 3 connected to the operating in the compression chambers, an intermediate pressure of about 50% of the operating pressure prevails.
  • the mixing vessel 14 can be charged via an opening 20 with mixed and conveyed material, closed by a cover 21 and set with the lid 21 under pressure.
  • the lid 21 is opened and the 2/2-way valve 22 is closed for the conveying air.
  • the compressor essentially generates compressed air for supplying the compressed air motor 12.
  • the 2/2-way valve 15 is open and releases the compressed air to the compressed air motor.
  • the 3/2-way valve 17 connects the outlet of the air motor with the inlet valve 4 of the compressor.
  • the air motor is supplied with the maximum pressure difference, so that it operates at a relatively high speed, relatively high torque and relatively high drive power.
  • the lid 21 Before switching to the delivery phase, the lid 21 must be closed.
  • Fig. 2 flows in the delivery phase compressed air from the oil separator 7 through a coalescing filter 23, the open 2/2-way valve 22 and the pressure lines 24 and 25 in the mixing vessel 14 and the delivery line 26.
  • the 3/2-way valve is in the other switching position and lets the exhaust air of the compressed air motor now flow into the return port 19 of the compressor element. There prevails an intermediate pressure, so that the compressed air motor is present a smaller pressure difference than during the mixing phase. This reduces both the compressed air consumption of the compressed air motor, as well as its speed, its torque and its drive power.
  • the compressed air for supplying the compressed air motor in the delivery phase in an inner circuit, consisting of the compressor element 3, the pressure line 11, the exhaust duct 16, the 3/2-way valve 17 and return port 19 on the compressor element 3, is guided, is essentially the entire intake flow of the compressor element to promote the thick material available.
  • Fig. 3 shows an alternative control scheme in which instead of the 2/2-way valve 15 and the 3/2-way valve 17, a 3/3-way valve 27 is used to control the air motor 12.
  • a 3/3-way valve 27 is used to control the air motor 12.
  • an additional adjustable throttle point 28 is shown in the line to the return port 19 through which a further adjustment of the speed, torque or drive power of the compressed air motor in the delivery phase is possible.
  • the valves 22 and 27 are shown in the switching position for idle or standstill of the mixing and conveying device.
  • a check valve 29 is arranged, which in the mixing phase, d. H. when the return line is closed by the valve 27 and no exhaust air of the compressed air motor 12 flows via the return port 19 into the compressor element, prevents pulsating flows between the compression chambers and the return line.
  • the air motor operates at the beginning of the mixing phase, when the mix still opposes the agitator a relatively high resistance, with lower speed and higher torque, than at the end of the mixing phase.
  • This adjustment results automatically by the course of the speed-torque curve of the air motor and proves to be advantageous over known drives, which operate during the mixing process at a substantially constant speed.
  • FIG. 5 shows an alternative embodiment, in which the compressed air is led directly from the compressor element 3 to the compressed air motor 12 both in the mixing phase and in the delivery phase.
  • the outlet of the compressed air motor 12 is connected to a 3/3-way valve 17.
  • the valve enables the position Standstill A, Mixing B and conveying C.
  • position A the exhaust air duct 16 is blocked and compressed air motor 12 is at a standstill.
  • position B the exhaust air of the compressed air motor 12 is guided through the exhaust duct 16 into the inlet valve 4.
  • the maximum possible pressure difference across the pneumatic motor 12 so that it operates at a relatively high speed, relatively high torque and relatively high drive power.
  • a bypass line 34 is provided with a throttle valve 35 between the inlet and outlet of the pneumatic motor 12, with which the pressure difference across the compressed air motor 12 can be limited.
  • the throttle valve 35 may be z. B. act to a minimum pressure valve that opens when exceeding a certain pressure difference and limits this to a certain value.
  • FIG. 6 shows a further possibility for interconnecting the components.
  • the exhaust duct 16 of the compressed air motor 12 is here analogous to Fig. 5 with a 3/3-way valve 17, which has the same switching capabilities connected.
  • the difference from the embodiment in Fig. 5 is that the mixing process (valve position B), the compressed air is given through the exhaust duct 16 via a blow-off muffler 33 directly into the environment.
  • an oil separation element 31 can be integrated into the exhaust air line 16.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Accessories For Mixers (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

Die Erfindung betrifft ein Misch- und Fördergerät zur diskontinuierlichen, durch Beschickungsvorgänge unterbrochenen Mischung und anschließenden Förderung von Dickstoffen, insbesondere Mörtel und Beton, mit einem an eine Förderleitung angeschlossenen, ein motorisch angetriebenes Rührwerk enthaltenden Mischkessel, der mit Misch- und Fördergut beschickt und mit Druckluft zum Austrag der Dickstoffe durch die Förderleitung beaufschlagt werden kann, und mit einem in das Misch- und Fördergerät integrierten oder als separate Baueinheit ausgeführten, durch einen Verbrennungs- oder Elektromotor angetriebenen Rotationskompressor zur Erzeugung der Druckluft. Weiter betrifft die Erfindung ein Verfahren zur Steuerung und zum Betrieb eines solchen Misch- und Fördergeräts.The invention relates to a mixing and conveying device for discontinuous, interrupted by charging operations mixture and subsequent promotion of thick materials, especially mortar and concrete, with a connected to a delivery line, a motor-driven agitator mixing vessel containing charged with mixed and conveyed and compressed air for discharging the thick matter through the delivery line can be acted upon, and with a built in the mixing and conveying device or as a separate unit, driven by a combustion or electric motor rotary compressor for generating the compressed air. Furthermore, the invention relates to a method for controlling and operating such a mixing and conveying device.

Solche Misch- und Fördergeräte werden in der Bauindustrie zur Mischung und Förderung von Dickstoffen, insbesondere Dickstoffen mit geringem Wassergehalt wie z. B. Mörtel und Estrich-Beton, verwendet. Dabei werden zunächst die Bestandteile des Dickstoffs, in der Regel Sand, Bindemittel und Wasser, durch eine Einfüllöffnung dem Mischkessel zugeführt und dann durch das Rührwerk durchmischt. Anschließend wird der Deckel des Mischkessels geschlossen und der Mischkessel mit Druckluft beaufschlagt. Der Dickstoff wird in Form von Pfropfen, die von Druckluftblasen unterbrochen sind, durch eine Förderleitung gepreßt, die an einen Austrittsstutzen im unteren Bereich des Mischkessels angeschlossen ist. Die Unterbrechungen zwischen den Pfropfen entstehen, weil die Schaufeln des weiterhin laufenden Rührwerks die Austrittsöffnung in die Förderleitung periodisch überstreichen. Zur Unterstützung der Pfropfenförderung wird in der Regel zusätzlich Druckluft durch eine weitere Leitung im Bereich des Austrittsstutzens eingeblasen. Solche Misch- und Fördergeräte werden mit integriertem oder separatem Kompressor ausgeführt.Such mixing and conveying devices are used in the construction industry for mixing and conveying of thick materials, in particular high solids with low water content such. As mortar and screed concrete used. First, the components of the thick stock, usually sand, binder and water, fed through a feed opening to the mixing vessel and then mixed by the agitator. Then the lid of the mixing tank is closed and the mixing tank is pressurized with compressed air. The thick material is pressed in the form of plugs which are interrupted by compressed air bubbles through a delivery line which is connected to an outlet nozzle in the lower part of the mixing vessel. The interruptions between the plug arise because the blades of the still running agitator sweep periodically the outlet opening in the delivery line. To support the plug conveying is usually compressed air by another Blowed in line in the area of the outlet nozzle. Such mixing and conveying devices are designed with integrated or separate compressor.

Im folgenden werden zunächst bekannte Geräte mit integriertem Kompressor beschrieben. In solchen Misch- und Fördergeräten werden meist öleingespritzte Rotationskompressoren verwendet, in denen ein Elektro- oder Verbrennungsmotor direkt oder über ein Riemen- oder Zahnradgetriebe das Kompressorelement antreibt. Aus Kostengründen und wegen anderer konstruktiver Nachteile werden zwischen Antriebsmotor und Kompressorelement keine schaltbaren Kupplungen verwendet, d. h. das Kompressorelement wird bei laufendem Antriebsmotor immer mit angetrieben.In the following, first known devices are described with integrated compressor. In such mixing and conveying equipment usually oil-injected rotary compressors are used in which an electric or internal combustion engine directly or via a belt or gear drive drives the compressor element. For reasons of cost and because of other constructive disadvantages no switchable couplings are used between the drive motor and the compressor element, d. H. the compressor element is always driven with the drive motor running.

Der Antrieb des Rührwerks erfolgt entweder über ein schaltbares Riemengetriebe und eine Kardanwelle zwischen Antriebsmotor und Rührwerk oder über einen Hydraulikmotor am Rührwerk und eine Hydraulikpumpe am Antriebsmotor.The drive of the agitator takes place either via a switchable belt drive and a cardan shaft between the drive motor and agitator or via a hydraulic motor on the agitator and a hydraulic pump on the drive motor.

Aus Kostengründen ist man bestrebt, die Leistung des Antriebsmotors möglichst effizient zu nutzen, d. h. mit der installierten Motorleistung für eine bestimmte Dickstoffmenge möglichst kurze Misch- und Förderzeiten zu erreichen. Die bekannten Misch- und Fördergeräte haben hierbei Defizite, die sich aus der oben dargestellten Funktionsweise ergeben und im folgenden beschrieben werden:For cost reasons, it is endeavored to use the power of the drive motor as efficiently as possible, d. H. to achieve the shortest possible mixing and conveying times with the installed engine power for a certain amount of thick material. The known mixing and conveying devices here have deficits that result from the above-described operation and are described below:

Wegen des Fehlens einer schaltbaren Kupplung zwischen Antriebsmotor und Kompressorelement wird der Kompressor auch während der Mischphase, in der kein Druckluftbedarf für die Förderung besteht, angetrieben. Der Kompressor läuft zwar im Leerlauf, verbraucht aber trotzdem einen nennenswerten Anteil der Antriebsmotorleistung, der für den Mischvorgang nicht zur Verfügung steht.Due to the lack of a switchable coupling between the drive motor and the compressor element, the compressor is also driven during the mixing phase, in which there is no compressed air demand for the promotion. Although the compressor is idling, it nevertheless consumes a significant proportion of the drive motor power that is not available for the mixing process.

Das erforderliche Antriebsmoment für das Rührwerk ist zu Beginn der Mischphase am höchsten und nimmt dann rasch ab, wenn das Beschickungsgut zu einer pastösen Masse durchgemischt wird. Außerdem hängt das erforderliche Antriebsmoment für das Rührwerk stark von der Drehzahl des Rührwerks ab. Eine Reduzierung der Drehzahl des Rührwerks zu Beginn der Mischphase würde das erforderliche Antriebsmoment und (in noch stärkerem Maße) die erforderliche Antriebsleistung (als Produkt von Moment und Drehzahl) reduzieren, jedoch existiert bei den bekannten Misch- und Fördergeräten keine effiziente Möglichkeit zur Drehzahlreduzierung des Rührwerks.The required drive torque for the agitator is highest at the beginning of the mixing phase and then decreases rapidly when the feed is mixed to a pasty mass. In addition, the required drive torque for the agitator depends strongly on the speed of the agitator. A reduction in the speed of the agitator at the beginning of the Mixed phase would reduce the required drive torque and (to an even greater extent) the required drive power (as a product of torque and speed), however, there is no efficient way of reducing the speed of the agitator in the known mixing and conveying equipment.

Aus Kostengründen verzichtet man nämlich auf Getriebe mit variablem Übersetzungsverhältnis zwischen Antriebsmotor und Rührwerk bzw. auf regelbare Hydraulikmotoren. Eine Veränderung der Drehzahl des Rührwerks ist deshalb nur eingeschränkt über eine Veränderung der Antriebsmotordrehzahl und/oder bei Hydraulikmotoren durch eine Bypass-Regelung mit hohen Leistungsverlusten möglich. Wenn als Antriebsmotor ein Verbrennungsmotors verwendet wird, dann sind einer Reduzierung der Drehzahl wegen des Verlaufs Drehzahl-Drehmoment-Kennlinie enge Grenzen gesetzt. Außerdem bedeutet eine verringerte Antriebsmotordrehzahl einer Verringerung der Abgabeleistung des Motors. Bei Verwendung eines Elektromotors als Antriebsmotor kommen aus Kostengründen keine drehzahlveränderbaren Antriebe in Frage.For cost reasons, one dispenses with gearbox with variable transmission ratio between the drive motor and agitator or on controllable hydraulic motors. A change in the speed of the agitator is therefore limited on a change in the drive motor speed and / or in hydraulic motors by a bypass control with high power losses possible. If a combustion engine is used as the drive motor, then a reduction in the speed due to the curve speed-torque curve narrow limits. In addition, a reduced drive motor speed means a reduction in the output of the engine. When using an electric motor as the drive motor, no speed-variable drives come into question for cost reasons.

Deshalb hat bei Misch- und Fördergeräten nach dem Stand der Technik die für das Rührwerk benötigte Antriebsleistung zu Beginn der Mischphase ein deutliches Maximum. Die Auslegung bzw. Abstimmung des Antriebsmotors und des Rührwerks müssen für diesen ungünstigsten Betriebspunkt erfolgen, da sonst der Motor durch das Rührwerk abgewürgt werden kann. Im weiteren Verlauf der Mischphase wird dann die verfügbare Leistung des Antriebsmotors nicht vollständig zur Mischung genutzt.Therefore, in mixing and conveying equipment according to the prior art, the drive power required for the agitator at the beginning of the mixing phase has a clear maximum. The design or tuning of the drive motor and the agitator must be done for this most unfavorable operating point, otherwise the engine can be strangled by the agitator. In the further course of the mixing phase then the available power of the drive motor is not fully used for mixing.

Auch während der Förderphase wäre eine gegenüber der Mischphase reduzierte Drehzahl wünschenswert, die zur Erhaltung der Durchmischung und zur Unterstützung der Pfropfenbildung ohne weiteres ausreichen würde. Das Rührwerk läuft jedoch bei den bekannten Misch- und Fördergeräten in der Förderphase mit einer unnötig hohen Drehzahl und mit unnötig hoher Antriebsleistung, insbesondere dann, wenn- wie bei einigen Geräten üblich - in der Förderphase die Drehzahl des Antriebsmotors weiter erhöht wird, um möglichst viel Druckluft für die Förderung zu erzeugen. Der unnötig hohe Leistungsbedarf des Rührwerks steht nicht für die Erzeugung von Druckluft, d.h. die Förderung des Dickstoffs, zur Verfügung.Even during the production phase, a reduced speed compared with the mixing phase would be desirable, which would be sufficient to maintain the mixing and to support the plug formation. However, the agitator runs in the known mixing and conveying equipment in the funding phase with an unnecessarily high speed and with unnecessarily high drive power, especially when - as in some devices usual - in the funding phase, the speed of the drive motor is further increased to as much as possible Generate compressed air for the promotion. The unnecessarily high The power requirement of the agitator is not available for the generation of compressed air, ie the delivery of thick material.

Ein weiterer Nachteil bekannter Misch- und Fördergeräte mit Hydraulikpumpe und -motor sind die hohen Kosten für den zusätzlichen Hydraulik-Kreislauf. In der Offenlegungsschrift DE 42 11 139 A1 wird deshalb vorgeschlagen, den Ölkreislauf des Rotationskompressors und den Hydraulik-Kreislauf zu kombinieren. Dieses System hat sich jedoch bisher nicht durchgesetzt, wahrscheinlich deshalb, weil der hohe Luftanteil im Kompressoröl erhebliche Probleme im Hydrauliksystem verursacht.Another disadvantage of known mixing and conveying equipment with hydraulic pump and motor are the high cost of the additional hydraulic circuit. In the published patent application DE 42 11 139 A1 it is therefore proposed to combine the oil circuit of the rotary compressor and the hydraulic circuit. However, this system has not been successful so far, probably because the high percentage of air in the compressor oil causes significant problems in the hydraulic system.

Ein weiterer Nachteil bekannter Misch- und Fördergeräte mit Riemengetriebe und Kardanwelle sind schädliche Drehschwingungen des Antriebsstrangs und daraus resultierende Vibrationen, die zu erheblicher Geräuschentwicklung führen und z.B. in der Offenlegungsschrift DE 42 10 430 A1 beschrieben werden. Diese Antriebsart verursacht außerdem konstruktive Einschränkungen, die zu höheren Herstellkosten führen. Auch die Komponenten wie der schaltbare Riemenantrieb mit Spannrolle, Betätigungshebeln, Kardanwelle, Getriebe zur Reduzierung der Drehzahl, mehreren Lagern, Einrichtungen zur Schmierung der Lager etc. tragen erheblich zu den Herstellkosten bei. Weiterhin nachteilig ist der relativ hohe Wartungsbedarf des schaltbaren Riemengetriebes.Another disadvantage of known mixing and conveying devices with belt transmission and cardan shaft are damaging torsional vibrations of the drive train and resulting vibrations, which lead to significant noise and, for example. in the published patent application DE 42 10 430 A1. This type of drive also causes design limitations, which leads to higher production costs. The components such as the switchable belt drive with idler pulley, operating levers, cardan shaft, gearbox to reduce the speed, several bearings, facilities for the lubrication of the bearings, etc. contribute significantly to the manufacturing costs. Another disadvantage is the relatively high maintenance requirements of the switchable belt drive.

Bekannte Misch- und Fördergeräte mit separaten Kompressoren werden z. B. von fahrbaren oder transportablen Baustellenkompressoren mit Druckluft versorgt. Als Antrieb für das Rührwerk wird dabei meist ein Elektromotor verwendet. Nachteilig dabei ist, daß diese Geräte auf einen zusätzlichen Stromanschluß angewiesen sind, der auf Baustellen nicht immer vorhanden ist.Known mixing and conveying equipment with separate compressors z. B. powered by mobile or portable construction site compressors with compressed air. The drive for the agitator usually an electric motor is used. The disadvantage here is that these devices are dependent on an additional power connection, which is not always available on construction sites.

Die Aufgabe der Erfindung besteht darin, die bekannten Misch- und Fördergeräte dahingehend zu verbessern, daß die Leistung des Antriebsmotors sowohl während der Mischphase als auch während der Förderphase optimal genutzt, der konstruktive Aufwand, die Herstellungskosten und der Wartungsaufwand reduziert und die Zuverlässigkeit und die Lebensdauer des Geräts erhöht werden.The object of the invention is to improve the known mixing and conveying equipment to the effect that the power of the drive motor optimally used both during the mixing phase and during the delivery phase, reduces the design effort, the manufacturing cost and maintenance and reliability and durability of the device.

Zur Lösung der erfindungsgemäßen Aufgabe wird vorgeschlagen, für den motorischen Antrieb des Rührwerks einen oder mehrere Druckluftmotoren zu verwenden, die mit einem Anteil, vorzugsweise 20 bis 100 %, der vom Kompressor erzeugten Druckluft versorgt werden, und deren Drehzahl und/oder Drehmoment und/oder Antriebsleistung durch geeignete Mittel zur Beeinflussung der Zufuhr von Druckluft zu dem bzw. den Druckluftmotoren und/oder der Abfuhr von Abluft von dem bzw. den Druckluftmotoren an die verschiedenen Betriebsphasen des Misch- und Förderprozesses angepaßt werden kann.To solve the object of the invention, it is proposed to use for the motor drive of the agitator one or more pneumatic motors, which are supplied with a proportion, preferably 20 to 100%, of the compressed air generated by the compressor, and their speed and / or torque and / or Drive power can be adapted by suitable means for influencing the supply of compressed air to the or the compressed air motors and / or the removal of exhaust air from the or the compressed air motors to the various operating phases of the mixing and conveying process.

Dazu zählt insbesondere die Verwendung von mehreren Druckluftmotoren, die einzeln oder in Kombination das Rührwerk so antreiben, daß durch Zu- oder Abschaltung einzelner Motoren die Drehzahl und/oder die Antriebsleistung und/oder das Antriebsmoment des Rührwerks verändert werden kann. Dazu kann beispielsweise ein mehrteiliges Rührwerk verwendet werden, dessen einzelne Teile jeweils separat von einem Druckluftmotor angetrieben werden. Alternativ können mehrere Druckluftmotoren, die auf einer gemeinsamen Welle arbeiten oder durch ein geeignetes Getriebe gekoppelt werden, ein einteiliges Rührwerk antreiben.This includes, in particular, the use of a plurality of compressed-air motors, which individually or in combination drive the agitator so that the speed and / or the drive power and / or the drive torque of the agitator can be changed by connecting or disconnecting individual motors. For this example, a multi-part agitator can be used, the individual parts are each driven separately from a compressed air motor. Alternatively, multiple air motors operating on a common shaft or coupled by a suitable gearbox may drive a one-piece agitator.

Ebenfalls eingeschlossen ist die Verwendung von Druckluftmotoren mit mehreren Einlässen für die Druckluft und/oder mehreren Auslässen für die Abluft, die vorzugsweise mit verschiedenen separaten Arbeitsräumen und/oder mit verschiedenen Gehäuseabschnitten der gleichen Arbeitsräume verbunden sind und deren Drehzahl und/oder Antriebsleistung und/oder Antriebsmoment durch Zu- oder Abschaltung der Zufuhr von Druckluft bzw. Abfuhr von Abluft an einem oder mehreren dieser Ein- und Auslässe verändert werden kann.Also included is the use of pneumatic motors with multiple inlets for the compressed air and / or multiple outlets for the exhaust air, which are preferably connected to different separate work spaces and / or with different housing sections of the same work spaces and their speed and / or drive power and / or drive torque can be changed by switching on or off the supply of compressed air or discharge of exhaust air at one or more of these inputs and outlets.

Druckluftmotoren sind wegen ihrer Drehzahl-Drehmoment-Kennlinie besonders für diese Anwendung geeignet. Sie können auch Antriebsmomente deutlich über ihrem Nennmoment liefern, wobei ihre Drehzahl mit steigendem Antriebsmoment abnimmt.Air motors are particularly suitable for this application because of their speed-torque characteristic. They can also provide drive torque well above their rated torque, with their speed decreasing with increasing drive torque.

Dadurch sind Druckluftmotoren einerseits in der Lage, das relative hohe Antriebsmoment für das Rührwerk zu Beginn der Mischphase zur Verfügung zu stellen. Andererseits sinkt dabei ihre Drehzahl, so daß das für das Rührwerk erforderliche Antriebsmoment gegenüber bekannten Antrieben mit im wesentlichen konstanter Drehzahl geringer ist. Das geringere Antriebsmoment bei geringerer Drehzahl führt dazu, daß mit Druckluftmotoren das bei bekannten Geräten auftretende Maximum der Antriebsleistung zu Beginn der Mischphase vermindert oder vermieden wird. Druckluftmotoren müssen deshalb bei vergleichbarer Mischwirkung für eine geringere Leistung ausgelegt werden, als Antriebe mit Riemengetriebe und Kardanwelle oder Hydraulikmotor und -pumpe.As a result, compressed air motors are on the one hand able to provide the relatively high drive torque for the agitator at the beginning of the mixing phase put. On the other hand, their speed drops, so that the required for the agitator drive torque compared to known drives with a substantially constant speed is lower. The lower drive torque at a lower speed means that compressed air motors reduce or prevent the maximum drive power occurring in known devices at the beginning of the mixing phase. Compressed air motors must therefore be designed with a comparable mixing effect for a lower power than drives with belt transmission and cardan shaft or hydraulic motor and pump.

Die Erfindung wird nun zunächst für Misch- und Fördergeräte mit integriertem Kompressor beschrieben.The invention will now be described first for mixing and conveying equipment with integrated compressor.

Vorteilhaft ist die Verwendung von Druckluftmotoren insbesondere deshalb, weil sie zu einer Entkoppelung der Drehzahlen von Antriebsmotor und Rührwerk führt. Der Antriebsmotor kann sowohl in der Mischphase als auch in der Förderphase mit voller Leistung und hoher Drehzahl laufen, um möglichst viel Druckluft für den Antrieb des Rührwerks und/oder für die Förderung des Dickstoffs zu liefern.The use of compressed air motors is advantageous in particular because it leads to a decoupling of the rotational speeds of the drive motor and agitator. The drive motor can run both in the mixing phase and in the delivery phase at full power and high speed to deliver as much compressed air for the drive of the agitator and / or for the promotion of thick matter.

Die in Misch- und Fördergeräten üblicherweise verwendeten Rotationskompressoren (Schraubenkompressoren, Flügelzellenkompressoren) besitzen Verdichtungskammern, die zwischen dem bzw. den Rotoren und dem Gehäuse des Kompressorelements gebildet werden und sich im Verlauf der Rotation des bzw. der Rotoren zyklisch öffnen, füllen, an saugseitigen Steuerkanten vom Ansaugbereich abschließen, verkleinern, an druckseitigen Steuerkanten zur Druckseite öffnen und gegen den Betriebsdruck zur Druckseite ausgeschoben werden. In den feststehenden, die Verdichtungskammern begrenzenden Gehäusebereichen können Öffnungen bzw. Anschlüsse angebracht werden, durch die den bereits vom Ansaugbereich abgeschlossenen Verdichtungskammern im Kompressorelement Druckluft mit einem zeitlich im wesentlichen konstanten Druck zwischen Ansaug- und Betriebsdruck entnommen oder zugeführt werden kann. Die Wahl der Position dieser Anschlüsse bestimmt dabei die Höhe dieses Zwischendrucks.The rotary compressors (screw compressors, vane compressors) commonly used in mixing and conveying equipment have compression chambers, which are formed between the rotor (s) and the compressor element housing and which open cyclically during the rotation of the rotor (s), at suction-side control edges close off the suction area, reduce it, open on the pressure-side control edges to the pressure side and push it out to the pressure side against the operating pressure. Openings or connections can be made in the fixed housing regions delimiting the compression chambers, by means of which compressed air with a temporally substantially constant pressure between intake and operating pressure can be taken or supplied to the compression chambers already closed by the suction region in the compressor element. The choice of the position of these connections determines the height of this intermediate pressure.

Durch wechselnde Verbindung dieser Anschlüsse mit den Ein- und/oder Auslässen der Druckluftmotoren ist es möglich, die Druckdifferenz zwischen den Ein- und Auslässen der Druckluftmotoren gezielt zu verändern. Zusätzlich oder alternativ können die Ein- und/oder Auslässe gedrosselt werden. Zusätzlich oder alternativ kann die Druckdifferenz zwischen Ein- und Auslaß der Druckluftmotoren durch einen veränderlichen Bypaß beeinflußt werden. Mit diesen Maßnahmen kann die Drehzahl und/oder das Drehmoment und/oder die Antriebsleistung der Druckluftmotoren an die Betriebsphasen angepaßt werden.By changing connection of these connections with the inlets and / or outlets of the compressed-air motors, it is possible to change the pressure difference between the inlets and outlets of the compressed-air motors in a targeted manner. Additionally or alternatively, the inlets and / or outlets can be throttled. Additionally or alternatively, the pressure difference between the inlet and outlet of the air motors can be influenced by a variable bypass. With these measures, the speed and / or torque and / or the drive power of the air motors can be adapted to the operating phases.

In einer bevorzugten Ausführung der Erfindung wird die Druckluft dem bzw. den Druckluftmotoren wenigstens zeitweise mit einem Druck zugeführt, der im wesentlichen dem Betriebsdruck des Kompressors entspricht.In a preferred embodiment of the invention, the compressed air is supplied to the or the compressed air motors at least temporarily with a pressure which substantially corresponds to the operating pressure of the compressor.

Weiterhin wird die Druckluft den Druckluftmotoren wenigstens zeitweise bevorzugt mit einer Temperatur zugeführt, die im wesentlichen der Verdichtungsendtemperatur des Kompressors entspricht, die bei öleingespritzten Rotationskompressoren in der Regel zwischen 70°C und 100°C liegt. Die Druckluft wird dazu an einer Stelle entnommen, an der sie noch keine nennenswerte Abkühlung erfahren hat. Dadurch kann eine relativ hohe Eintrittstemperatur abgearbeitet werden, so daß die Austrittstemperatur der Druckluft aus den Druckluftmotoren aus thermodynamischen Gründen sicher über der Umgebungstemperatur liegt und keinerlei schädliche Kondensation auftreten kann. Außerdem wird so das maximale Betriebsvolumen genutzt.Furthermore, the compressed air is supplied to the compressed air motors at least temporarily preferably at a temperature which substantially corresponds to the compression end temperature of the compressor, which is usually between 70 ° C and 100 ° C in oil-injected rotary compressors. The compressed air is taken to a point where she has not experienced any appreciable cooling. This allows a relatively high inlet temperature to be processed, so that the outlet temperature of the compressed air from the compressed air motors for thermodynamic reasons safely above the ambient temperature and no harmful condensation can occur. In addition, the maximum operating volume is used.

Es kann auch vorteilhaft sein, die Druckluft vor ihrer Zufuhr zu den Druckluftmotoren in einem Wärmetauscher auf eine Temperatur oberhalb der Verdichtungsendtemperatur des Kompressors zu erwärmen, um so das Arbeitsvermögen der Druckluft bei der Expansion in den Druckluftmotoren weiter zu erhöhen. Bei Misch- und Fördergeräten mit Verbrennungsmotor als Antriebsmotor kann die Druckluft beispielsweise durch Wärmeaustausch mit dem Kühlfluid oder dem Abgasstrom des Verbrennungsmotors erwärmt werden.It may also be advantageous to heat the compressed air prior to its delivery to the compressed air motors in a heat exchanger to a temperature above the compression end temperature of the compressor so as to further increase the working capacity of the compressed air as it expands in the air motors. In mixing and conveying devices with an internal combustion engine as a drive motor, the compressed air can be heated, for example, by heat exchange with the cooling fluid or the exhaust gas flow of the internal combustion engine.

Weiterhin kann die Druckluft den Druckluftmotoren mit einem Ölgehalt zur Schmierung zugeführt werden, vorzugsweise mit 0,5 bis 50 mg Öl pro Kilogramm Luft.Furthermore, the compressed air can be supplied to the compressed air motors with an oil content for lubrication, preferably with 0.5 to 50 mg of oil per kilogram of air.

Gegenüber dem trockenen Betrieb erhöht diese Schmierung der Druckluftmotoren ihren Wirkungsgrad, ihre Lebensdauer und ihre Zuverlässigkeit.Compared to dry operation, this lubrication of the air motors increases their efficiency, their life and their reliability.

Bei Verwendung von öleingespritzten Rotationskompressoren wird der gewünschte Ölgehalt in der Druckluft für die Druckluftmotoren bevorzugt dadurch erreicht, daß die Entnahme der Druckluft an einer geeigneten Stelle vor der Feinabscheidung des Öls im Kompressor erfolgt, z. B. vor dem Koaleszenzfilter im Ölabscheidebehälter.When using oil-injected rotary compressors, the desired oil content in the compressed air for the compressed air motors is preferably achieved in that the removal of the compressed air takes place at a suitable location before the fine separation of the oil in the compressor, z. B. in front of the coalescing filter in the oil separation tank.

Es ist auch möglich, die Druckluft den Druckluftmotoren wenigstens zeitweise mit einem Druck zuzuführen, der zwischen dem Ansaug- und dem Betriebsdruck liegt. Dazu kann die Druckluft an einer geeigneten Stelle des Kompressorelements entnommen werden.It is also possible to supply the compressed air to the pneumatic motors at least temporarily with a pressure which is between the suction and the operating pressure. For this purpose, the compressed air can be removed at a suitable point of the compressor element.

Außerdem kann die Zufuhr von Druckluft zu den Druckluftmotor über ein oder mehrere Ventile geöffnet und/oder gedrosselt und/oder geschlossen und/oder zwischen verschiedenen Entnahmestellen umgeschaltet werden.In addition, the supply of compressed air to the compressed air motor via one or more valves can be opened and / or throttled and / or closed and / or switched between different sampling points.

Die aus den Druckluftmotoren austretende Luft wird bevorzugt in den Kreislauf des Kompressors zurückgeführt. Dies hat unter anderem den Vorteil, daß das Öl zur Schmierung der Druckluftmotoren nicht in die Umgebung entweicht, sondern in den Kompressorkreislauf zurückgeführt wird. Eine Möglichkeit dazu ist die Rückführung in den Ansaugbereich des Rotationskompressors, z. B. in das Einlaßventil.The air emerging from the air motors is preferably returned to the circuit of the compressor. This has, inter alia, the advantage that the oil does not escape to lubricate the air motors in the environment, but is returned to the compressor circuit. One possibility is the return to the intake of the rotary compressor, z. B. in the inlet valve.

Eine weitere Möglichkeit ist die Rückführung in das Kompressorelement, und zwar an einer Stelle, an der ein Druck zwischen Ansaug- und Betriebsdruck herrscht. Diesem Zwischendruck sind geringe Druckpulsationen überlagert, deren Amplitude etwa der Druckdifferenz zwischen zwei benachbarten Verdichtungskammern im Bereich der Rückführstelle entspricht. In Betriebszuständen, in denen keine Rückführung stattfindet, können sich dadurch pulsierende Strömungsvorgänge zwischen den Verdichtungskammern und dem Volumen in der Rückführleitung ergeben, die Leistungsverluste verursachen. Zur Vermeidung dieses Effektes kann es vorteilhaft sein, die Abluft über ein Rückschlagventil in das Kompressorelement zurückzuführen, wobei zwischen dem Rückschlagventil und den Verdichtungskammern im Kompressorelement ein Volumen eingeschlossen ist, das kleiner als das Volumen der Verdichtungskammer im Bereich des Anschlusses der Rückführung ist, vorzugsweise kleiner als 20 %.Another possibility is the return to the compressor element, and at a point where there is a pressure between suction and operating pressure. This intermediate pressure is superimposed by low pressure pulsations whose amplitude corresponds approximately to the pressure difference between two adjacent compression chambers in the region of the return point. In operating conditions in which no recirculation takes place, this can result in pulsating flow processes between the compression chambers and the volume in the return line, which cause power losses. To avoid this effect, it may be advantageous to the exhaust air due to a check valve in the compressor element, wherein between the check valve and the compression chambers in the compressor element, a volume is included, which is smaller than the volume of the compression chamber in the region of the terminal of the return, preferably less than 20%.

Eine andere Möglichkeit der Abfuhr der Abluft vom Druckluftmotor besteht darin, den Auslaß des Druckluftmotors beim Fördergang mit der Druckluftzuführung des Mischkessels zu verbinden.Another possibility of removing the exhaust air from the compressed air motor is to connect the outlet of the compressed air motor at the delivery passage with the compressed air supply of the mixing vessel.

Die Rückführung bzw. Abfuhr der Abluft kann über ein oder mehrere Ventile geöffnet und/oder gedrosselt und/oder geschlossen und/oder zwischen verschiedenen Rückführstellen umgeschaltet werden.The return or removal of the exhaust air can be opened and / or throttled and / or closed and / or switched between different return points via one or more valves.

Damit ist eine Vielzahl von Möglichkeiten gegeben, die dem bzw. den Druckluftmotoren zwischen Ein- und Auslaß zur Verfügung gestellte Druckdifferenz gezielt zu beeinflussen.This is a variety of ways given to influence the or the compressed air motors between inlet and outlet made available pressure difference targeted.

In einer besonders bevorzugten Ausführung der Erfindung wird die Druckluft einem Druckluftmotor im wesentlichen mit dem Betriebsdruck des Kompressors zugeführt, während seine Abluft in den Ansaugbereich oder alternativ in das Kompressorelement an einer Stelle zurückgeführt wird, an der ein Druck zwischen Ansaug- und Betriebsdruck herrscht, wobei die Umschaltung zwischen beiden alternativen Rückführungen über mindestens ein Ventil erfolgt. Während der Mischphase wird die Rückführleitung am Austritt des Druckluftmotors mit dem Ansaugbereich des Kompressors verbunden, so daß für den Druckluftmotor zwischen Ein- und Auslaß die maximale Druckdifferenz zur Verfügung steht. Wäre dies nicht der Fall, dann müßte der Druckluftmotor unnötig groß dimensioniert werden. Während der Förderphase wird die Rückführleitung am Austritt des Druckluftmotors mit einem Anschluß am Gehäuse des Kompressorelements verbunden, an dem ein Zwischendruck herrscht, vorzugsweise etwa 2 bis 60 % des Betriebsdrucks. Durch diese Rückführung wird die Druckdifferenz zwischen Ein- und Auslaß des Druckluftmotors reduziert und seine Drehzahl sinkt auf den in der Förderphase gewünschten Wert.In a particularly preferred embodiment of the invention, the compressed air is supplied to a compressed air motor substantially at the operating pressure of the compressor, while its exhaust air is returned to the suction region or alternatively to the compressor element at a point where there is a pressure between suction and operating pressures the switchover between the two alternative feedbacks takes place via at least one valve. During the mixing phase, the return line at the outlet of the compressed air motor is connected to the intake of the compressor, so that the maximum pressure difference is available for the compressed air engine between inlet and outlet. If this were not the case, then the compressed air motor would have to be unnecessarily large dimensions. During the delivery phase, the return line is connected at the outlet of the air motor with a connection to the housing of the compressor element, at which an intermediate pressure prevails, preferably about 2 to 60% of the operating pressure. By this feedback, the pressure difference between the inlet and outlet of the air motor is reduced and its speed drops to the desired value in the delivery phase.

Die Rückführung der Abluft in bereits abgeschlossene Verdichtungskammern im Kompressorelement ist besonders vorteilhaft, weil die Versorgung des Druckluftmotors in einem inneren Kreislauf stattfindet, so daß im wesentlichen der gesamte Ansaugvolumenstrom des Kompressorelements als Druckluft für die Förderung des Dickstoffs zur Verfügung steht. Das Kompressorelement kann deshalb wesentlich kleiner dimensioniert werden, als es bei einer Rückführung der Abluft des Druckluftmotors in die Umgebung oder in den Ansaugbereich des Kompressorelements der Fall wäre.The return of the exhaust air in already completed compression chambers in the compressor element is particularly advantageous because the supply of the compressed air motor takes place in an inner circuit, so that is substantially the entire intake flow of the compressor element as compressed air for the promotion of thick stock available. The compressor element can therefore be dimensioned substantially smaller than would be the case in a return of the exhaust air of the compressed air motor in the environment or in the intake of the compressor element.

In einer weiteren bevorzugten Ausführung der Erfindung wird die Druckluft einem Druckluftmotor im wesentlichen mit dem Betriebsdruck des Kompressors zugeführt, während seine Abluft in den Ansaugbereich des Kompressors bzw. in die Umgebung oder alternativ in den Mischkessel geführt wird, wobei die Umschaltung zwischen beiden Alternativen durch mindestens ein Ventil erfolgt. Während der Mischphase wird die Abluft des Druckluftmotors in den Ansaugbereich des Kompressors oder in die Umgebung geführt, so daß für den Druckluftmotor zwischen Ein- und Auslaß die maximale Druckdifferenz zur Verfügung steht. Wird die Abluft des Druckluftmotors in den Ansaugbereich des Pompressors zurückgeführt, dann entsteht ein innerer Kreislauf, so daß keine staubhaltige Umgebungsluft, wie sie beim Befüllen des Mischkessels gewöhnlich entsteht, durch den Einlaßfilter gereinigt werden muß, was zu einer deutlich verlängerten Standzeit des Filters führt. Wird die Abluft in die Umgebung abgeführt, z. B. über einen Abblaseschalldämpfer, so kann die Rückführleitung entfallen.In a further preferred embodiment of the invention, the compressed air is supplied to a compressed air motor substantially with the operating pressure of the compressor, while its exhaust air is fed into the intake of the compressor or in the environment or alternatively in the mixing vessel, wherein the switching between the two alternatives by at least a valve takes place. During the mixing phase, the exhaust air of the compressed air motor is guided in the intake of the compressor or in the environment, so that the maximum pressure difference is available for the compressed air engine between inlet and outlet. If the exhaust air of the compressed air motor is returned to the suction of the Pompressors, then an internal circuit, so that no dusty ambient air, as usually arises when filling the mixing tank, must be cleaned by the inlet filter, resulting in a much longer service life of the filter. If the exhaust air discharged into the environment, z. B. via a blow-off silencer, so the return line can be omitted.

Während der Förderphase wird die Abluft des Kompressors in den Mischkessel geleitet, in dem ein Druck zwischen Ansaug- und Betriebsdruck des Kompressors herrscht.During the delivery phase, the exhaust air from the compressor is fed into the mixing tank, where there is a pressure between the suction and operating pressure of the compressor.

Es wird dann im wesentlichen die gesamte vom Kompressor erzeugte Druckluft zunächst durch den Druckluftmotor und dann in den Mischkessel zur Förderung von Mischgut geleitet.It is then passed substantially all of the compressed air generated by the compressor first by the air motor and then into the mixing vessel for the delivery of mix.

In dieser Anordnung stellt sich der Betriebsdruck des Kompressors in Abhängigkeit vom gesamtent Druckluftverbrauch ein und teilt sich in einer vorteilhaften Selbstanpassung an den jeweiligen Fördervorgang in eine Druckdifferenz zwischen Ein- und Auslaß des Druckluftmotors und eine Differenz zwischen Mischkessel und Umgebung auf.In this arrangement, the operating pressure of the compressor sets in dependence on the total compressed air consumption and is divided into an advantageous self-adaptation to the respective delivery process in a pressure difference between the inlet and outlet of the air motor and a difference between the mixing vessel and the environment.

Falls die Abluft des Druckmotors ölhaltig ist, kann sie vor dem Austritt in die Umgebung bzw. vor dem Eintritt in den Mischkessel durch ein Ölabscheideelement geleitet werden, aus dem das abgeschiedene Öl in den Kreislauf des Kompressors zurückgeführt wird.If the exhaust air of the pressure motor is oil-containing, it can be passed through an oil separation element from which the separated oil is returned to the compressor's circuit before it enters the environment or before it enters the mixing tank.

Durch Fremdkörper oder sehr grobkörnige Mischgüter kann es zur einer Blockierung des Rührwerks kommen, die durch eine kurzzeitige Umkehr der Drehrichtung in der Regel wieder beseitigt werden kann. In einer weiteren bevorzugten Ausführung der Erfindung ist deshalb die Verwendung eines Druckluftmotors mit umschaltbarer Drehrichtung vorgesehen.Foreign objects or very coarse-grained mixed materials can lead to a blockage of the agitator, which can usually be eliminated again by a short-term reversal of the direction of rotation. In a further preferred embodiment of the invention, therefore, the use of a compressed air motor is provided with reversible direction of rotation.

Zur Lösung der erfindungsgemäßen Aufgabe wird weiterhin ein Verfahren zur Steuerung und zum Betrieb eines Misch- und Fördergeräts vorgeschlagen, in dem die vom Kompressor erzeugte Druckluft während der Mischphase im wesentlichen nur zur Versorgung des bzw. der das Rührwerk antreibenden Druckluftmotoren verwendet wird und während der Förderphase sowohl zur Förderung des Dickstoffs als auch zur Versorgung des bzw. der das Rührwerk antreibenden Druckluftmotoren.To achieve the object of the invention, a method for controlling and operating a mixing and conveying device is further proposed, in which the compressed air generated by the compressor during the mixing phase substantially only for supplying the or the agitator driving air motors is used and during the delivery phase both for the promotion of thick matter and for the supply of the or the agitator driving air motors.

Insbesondere können dazu mehrere Druckluftmotoren für den Antrieb des Rührwerks verwendet werden, von denen während der Förderphase alle, während der Mischphase jedoch nicht alle mit Druckluft versorgt werden.In particular, several compressed air motors can be used to drive the agitator, of which all but during the mixing phase, not all are supplied with compressed air during the delivery phase.

In einer bevorzugten Ausführung dieses Verfahrens wird die Druckdifferenz zwischen Ein- und Auslaß mindestens eines Druckluftmotors so beeinflußt, daß die Drehzahl und/oder das Drehmoment und/oder die Antriebsleistung des Rührwerks während der Mischphase höher sind, als in Förderphase der. Dazu wird die Druckdifferenz zwischen Ein- und Auslaß des bzw. der Druckluftmotoren während der Mischphase höher eingestellt, als in der Förderphase.In a preferred embodiment of this method, the pressure difference between the inlet and outlet of at least one air motor is influenced so that the speed and / or torque and / or the drive power of the agitator during the mixing phase are higher than in the delivery phase of. For this purpose, the pressure difference between the inlet and outlet of the compressed air motors or during the mixing phase is set higher than in the delivery phase.

Die Veränderung der Druckdifferenz zwischen Ein- und Auslaß des bzw. der Druckluftmotoren erfolgt durch gezielte Drosselung und/oder Umschaltung der Zufuhr der Druckluft und/oder der Abfuhr der Abluft zwischen verschiedenen Entnahme- und/oder Rückführstellen im Kompressor, an denen im wesentlichen der Ansaugdruck, der Betriebsdruck oder ein Zwischendruck herrscht, und/oder durch Veränderung eines Bypaß zwischen Ein- und Auslaß.The change in the pressure difference between the inlet and outlet of the compressed air motors or by targeted throttling and / or switching the supply of compressed air and / or the removal of the exhaust air between various removal and / or return points in the compressor, where essentially the suction pressure , the operating pressure or an intermediate pressure prevails, and / or by changing a bypass between inlet and outlet.

Bei einer weiteren Verfahrensvariante kann die Druckdifferenz zwischen Ein- und Auslaß des bzw. der Druckluftmotoren auch dadurch beeinflußt werden, daß die Abluft des bzw. der Druckluftmotoren während des Fördervorgangs in den Mischkessel geleitet wird. In diesem baut sich ein Druck auf, dessen Höhe die Druckdifferenz und damit die Drehzahl und/oder das Drehmoment und/oder die Antriebsleitung des bzw. der Druckluftmotoren beeinflußt.In a further variant of the method, the pressure difference between the inlet and outlet of the compressed air or the motors can also be influenced by the fact that the exhaust air of the air motor or is passed during the conveying process in the mixing vessel. In this builds up a pressure whose height affects the pressure difference and thus the speed and / or torque and / or the drive line of the or the air motors.

Es kann auch Teil des Verfahren sein, sowohl die Versorgung mit Förderluft als auch die Reduzierung der Drehzahl und/oder des Drehmoments und/oder der Antriebsleistung des Rührwerks durch eine manuell oder automatisch betätigte Schalteinrichtung nach Schließung des Mischbehälters freizugeben und/oder auszulösen.It may also be part of the process to release and / or trigger both the supply of conveying air and the reduction of the rotational speed and / or the torque and / or the drive power of the agitator by a manually or automatically operated switching device after closure of the mixing container.

Weiterhin kann es sinnvoll sein, die Steuerung des Misch- und Fördergerätes so auszuführen, daß eine mögliche Blockade des Rührwerks automatisch erkannt und dadurch eine vorübergehende automatische Umkehrung der Drehrichtung auslöst wird. Dabei kann beispielsweise der Umstand ausgenutzt werden, daß der Druckluftverbrauch des Druckluftmotors bei Stillstand praktisch auf Null zurückgeht.Furthermore, it may be useful to perform the control of the mixing and conveying device so that a possible blockage of the agitator is automatically detected and thereby a temporary automatic reversal of the direction of rotation is triggered. In this case, for example, the fact can be exploited that the compressed air consumption of the compressed air motor at standstill practically goes back to zero.

Neben den bisher genannten Vorteilen der erfindungsgemäßen Lösung können durch Verwendung eines Druckluftmotors der konstruktive Aufwand und die Herstellkosten gegenüber den bekannten Lösungen reduziert werden. Der schaltbare Riemenantrieb mit Spannrolle, Betätigungshebeln, Kardanwelle, Getriebe zur Reduzierung der Drehzahl, mehreren Lagern, Einrichtungen zur Schmierung der Lager bzw. der Hydraulikmotors mit Hydraulikpumpe und allen weiteren Komponenten eines Hydraulik-Kreislaufs können entfallen.In addition to the previously mentioned advantages of the solution according to the invention can be reduced by using a pneumatic motor of the design effort and manufacturing costs compared to the known solutions. The switchable belt drive with idler pulley, operating levers, cardan shaft, speed reducer, multiple bearings, bearing lubrication equipment or hydraulic motor with hydraulic pump and all other components of a hydraulic circuit can be eliminated.

Gegenüber einem schaltbaren Riemengetriebe mit angeschlossener Kardanwelle erlaubt die erfindungsgemäße Lösung eine größeren konstruktiven Spielraum, weil zwischen Kompressor und Mischkessel lediglich eine Zu- und Abluftleitung verlegt werden muß. Wird die Abluft des Druckluftmotors in der Förderphase in dem Mischkessel und in der Mischphase in die Umgebung geleitet, dann ist zwischen Kompressor und Mischeinheit sogar nur eine Druckluftleitung erforderlich, wodurch in dieser Ausführung ein üblicher bzw. nur geringfügig modifizierter Baustellenkompressor eingesetzt werden kann. Dadurch ergeben sich nur geringe Einschränkungen für die relative Anordnung von Kompressor und Mischkessel. Außerdem wird Wartungsaufwand verringert und die Zuverlässigkeit erhöht. Die Vibrationen und Geräuschemissionen eines schaltbaren Riemengetriebes mit Kardanwelle entfallen.Compared to a switchable belt transmission with attached cardan shaft, the solution according to the invention allows greater design flexibility, because only an inlet and exhaust air line must be installed between the compressor and mixing tank. If the exhaust air of the compressed air motor in the delivery phase in the mixing vessel and in the mixing phase passed into the environment, then even only a compressed air line is required between the compressor and mixing unit, whereby in this embodiment, a conventional or only slightly modified construction site compressor can be used. This results in only minor restrictions for the relative arrangement of compressor and mixing tank. It also reduces maintenance and increases reliability. The vibrations and noise emissions of a switchable belt drive with cardan shaft are eliminated.

Die meisten der für Geräte mit integriertem Kompressor aufgeführten Punkte gelten auch für Geräte mit separatem Kompressor. Hinzu kommt, daß bei Verwendung von Druckluftmotoren zum Antrieb des Rührwerks im Gegensatz zum üblichen Antrieb mit Elektromotoren kein zusätzlicher Stromanschluß erforderlich ist. Für die Versorgung des Misch- und Fördergeräts mit Druckluft während der Förderphase ist ohnehin ein Baustellenkompressor vorhanden (in der Regel mit Verbrennungsmotor), der auch die Druckluft für den Druckluftmotor zum Antrieb des Rührwerks liefern kann. Antriebe sonstiger Einrichtungen an Misch- und Fördergeräten (Geräte zum Beschicken mit Mischgut, Ladeschaufeln etc.) können auch mit Druckluftmotoren angetrieben werden, so daß keinerlei Stromversorgung erforderlich ist.Most of the items listed for units with integrated compressor also apply to units with separate compressors. In addition, when using compressed air motors for driving the agitator in contrast to the usual drive with electric motors no additional power connection is required. For the supply of the mixing and conveying device with compressed air during the delivery phase a construction site compressor is present anyway (usually with internal combustion engine), which can also supply the compressed air for the air motor to drive the agitator. Drives of other facilities on mixing and conveying equipment (equipment for loading with mix, loading buckets, etc.) can also be driven by pneumatic motors, so that no power supply is required.

Im folgenden wird die Erfindung anhand eines Ausführungsbeispiels beschrieben, ohne jedoch die Allgemeinheit der Erfindung auf dieses Beispiel einzuschränken. Es zeigen:

Fig. 1
ein Steuerungsschema eines erfindungsgemäßen Misch- und Fördergerätes in der Mischphase;
Fig. 2
ein Steuerungsschema eines erfindungsgemäßen Misch- und Fördergerätes in der Förderphase;
Fig. 3
ein Steuerungsschema eines erfindungsgemäßen Misch- und Fördergerätes mit einer alternativen Ventilanordnung im Leerlauf;
Fig. 4
die Drehzahl-Drehmoment-Kennlinie eines typischen Druckluftmotors und eines typischen Rührwerks zu Beginn und am Ende der Mischphase. Wobei die Bezeichnungen der einzelnen Kurven folgende Bedeutung haben:
  • a: Drehzahl-Drehmoment-Kennlinie des Druckluftmotors
  • b: Erforderliches Antriebsmoment des Rührwerks zu Beginn der Mischphase
  • c: Erforderliches Antriebsmoment des Rührwerks am Ende der Mischphase
  • d: Betriebspunkt von Rührwerk und Druckluftmotor zu Beginn der Mischphase
  • e: Betriebspunkt von Rührwerk und Druckluftmotor am Ende der Mischphase
  • NB: Drehzahl von Rührwerk und Druckluftmotor zu Beginn der Mischphase
  • NE: Drehzahl von Rührwerk und Druckluftmotor am Ende der Mischphase
  • MB: Drehmoment von Rührwerk und Druckluftmotor zu Beginn der Mischphase
  • ME: Drehmoment von Rührwerk und Druckluftmotor am Ende der Mischphase
Fig. 5:
ein Steuerungsschema eines erfindungsgemäßen Misch- und Fördergerätes mit einer Anschlußvariante der Komponenten im Leerlauf; Alternative (gestrichelte Linien) mit ölhaltiger Antriebsluft;
Fig. 6:
ein Steuerungsschema eines erfindungsgemäßen Misch- und Fördergerätes mit einer weiteren Anschlußvariante der Komponenten im Leerlauf.
In the following the invention will be described with reference to an embodiment, but without limiting the generality of the invention to this example. Show it:
Fig. 1
a control scheme of a mixing and conveying apparatus according to the invention in the mixing phase;
Fig. 2
a control scheme of a mixing and conveying apparatus according to the invention in the funding phase;
Fig. 3
a control scheme of a mixing and conveying apparatus according to the invention with an alternative valve arrangement at idle;
Fig. 4
The speed-torque characteristics of a typical air motor and a typical agitator at the beginning and end of the mixing phase. Where the names of the individual curves have the following meaning:
  • a: Speed-torque characteristic of the compressed air motor
  • b: Required drive torque of the agitator at the beginning of the mixing phase
  • c: Required drive torque of the agitator at the end of the mixing phase
  • d: Operating point of agitator and air motor at the beginning of the mixing phase
  • e: Operating point of agitator and air motor at the end of the mixing phase
  • N B : Speed of agitator and air motor at the beginning of the mixing phase
  • N E : Speed of agitator and Air motor at the end of the mixing phase
  • M B : Torque of stirrer and air motor at the beginning of the mixing phase
  • M E : Torque of stirrer and air motor at the end of the mixing phase
Fig. 5:
a control scheme of a mixing and conveying apparatus according to the invention with a connection variant of the components at idle; Alternative (dashed lines) with oily drive air;
Fig. 6:
a control scheme of a mixing and conveying apparatus according to the invention with a further connection variant of the components at idle.

Ein Verbrennungsmotor 1 treibt über eine Kupplung 2 das Kompressorelement 3. Dieses saugt Umgebungsluft über das Einlaßventil 4 an, verdichtet sie unter Einspritzung von Öl, das über die Einspritzleitung 5 zugeführt wird, und fördert das Druckluft-Öl-Gemisch über die Druckleitung 6 in den Ölabscheidebehälter 7. Hier wird der größte Teil des Öls aus dem Luftstrom abgeschieden und sammelt sich im unteren Bereich des Ölabscheidebehälters 7. Von dort wird es vom Betriebsdruck durch den Kühler 8 zurück in die Einspritzleitung 5 gepreßt. Ein Bypaß 9 mit einem Thermoventil 10 regelt dabei die Endtemperatur des Öls bzw. die Verdichtungsendtemperatur.An internal combustion engine 1 drives via a clutch 2, the compressor element 3. This sucks in ambient air through the inlet valve 4, compresses them under injection of oil, which is supplied via the injection line 5, and conveys the compressed air-oil mixture via the pressure line 6 in the Oil separation tank 7. Here, most of the oil is separated from the air stream and collects in the lower part of the oil separation tank 7. From there it is pressed by the operating pressure through the cooler 8 back into the injection line 5. A bypass 9 with a thermo valve 10 controls the final temperature of the oil or the compression end temperature.

Über eine Druckleitung 11 wird Druckluft mit Betriebsdruck zum Druckluftmotor 12 geleitet, der das Rührwerk 13 in Mischkessel 14 antreibt. In der Druckleitung 11 ist ein 2/2-Wegeventil 15 vorgesehen, mit dem die Druckluftversorgung des Druckluftmotors 12 freigegeben und unterbrochen werden kann. Die Abluft des Druckluftmotors wird über eine Abluftleitung 16 zu einem 3/2-Wegeventil 17 geleitet.Via a pressure line 11 compressed air is passed with operating pressure to the compressed air motor 12, which drives the agitator 13 in mixing tank 14. In the pressure line 11, a 2/2-way valve 15 is provided, with which the compressed air supply of the compressed air motor 12 can be released and interrupted. The exhaust air of the compressed air motor is passed via an exhaust duct 16 to a 3/2-way valve 17.

In der einen Schaltstellung des 3/2-Wegeventils 17 wird die Abluft über die Leitung 18 in das Einlaßventil 4 geleitet, in der anderen Schaltstellung in einen Rückführanschluß 19 am Gehäuse des Kompressorelements 3. Der Rückführanschluß 19 ist mit einer Öffnung in einem Gehäusebereich des Kompressorelements 3 verbunden, an dem im Betrieb in den Verdichtungskammern ein Zwischendruck von etwa 50% des Betriebsdrucks herrscht.In the one switching position of the 3/2-way valve 17, the exhaust air is passed via line 18 into the inlet valve 4, in the other switching position in a return port 19 on the housing of the compressor element 3. The return port 19 is provided with an opening in a housing portion of the compressor element 3 connected to the operating in the compression chambers, an intermediate pressure of about 50% of the operating pressure prevails.

Der Mischkessel 14 kann über eine Öffnung 20 mit Misch- und Fördergut beschickt, durch einen Deckel 21 verschlossen und bei geschlossenem Deckel 21 unter Druck gesetzt werden.The mixing vessel 14 can be charged via an opening 20 with mixed and conveyed material, closed by a cover 21 and set with the lid 21 under pressure.

Weitere Details der Regelung des Kompressors und des Misch- und Fördergeräts werden hier zur Vereinfachung nicht dargestellt.Further details of the control of the compressor and the mixing and conveying device are not shown here for simplicity.

Wie in Fig. 1 dargestellt, ist in der Mischphase der Deckel 21 geöffnet und das 2/2-Wegeventil 22 für die Förderluft geschlossen. Der Kompressor erzeugt im wesentlichen Druckluft zur Versorgung des Druckluftmotors 12. Das 2/2-Wegeventil 15 ist geöffnet und gibt die Druckluft zum Druckluftmotor frei. Das 3/2-Wegeventil 17 verbindet den Auslaß des Druckluftmotors mit dem Einlaßventil 4 des Kompressors. Dadurch wird der Druckluftmotor mit der maximalen Druckdifferenz versorgt, so daß er mit relativ hoher Drehzahl, relativ hohem Drehmoment und relativ hoher Antriebsleistung arbeitet. Vor der Umschaltung in die Förderphase muß der Deckel 21 geschlossen werden.As shown in Fig. 1, in the mixing phase, the lid 21 is opened and the 2/2-way valve 22 is closed for the conveying air. The compressor essentially generates compressed air for supplying the compressed air motor 12. The 2/2-way valve 15 is open and releases the compressed air to the compressed air motor. The 3/2-way valve 17 connects the outlet of the air motor with the inlet valve 4 of the compressor. As a result, the air motor is supplied with the maximum pressure difference, so that it operates at a relatively high speed, relatively high torque and relatively high drive power. Before switching to the delivery phase, the lid 21 must be closed.

Wie in Fig. 2 dargestellt, strömt in der Förderphase Druckluft aus dem Ölabscheidebehälter 7 durch einen Koaleszenzfilter 23, das geöffnete 2/2-Wegeventil 22 und die Druckleitungen 24 und 25 in den Mischkessel 14 und die Förderleitung 26. Das 3/2-Wegeventil befindet sich in der anderen Schaltstellung und läßt die Abluft des Druckluftmotors nun in den Rückführanschluß 19 des Kompressorelements strömen. Dort herrscht ein Zwischendruck, so daß am Druckluftmotor eine kleinere Druckdifferenz anliegt, als während der Mischphase. Dadurch sinkt sowohl der Druckluftverbrauch des Druckluftmotors, als auch seine Drehzahl, sein Drehmoment und seine Antriebsleistung.As shown in Fig. 2, flows in the delivery phase compressed air from the oil separator 7 through a coalescing filter 23, the open 2/2-way valve 22 and the pressure lines 24 and 25 in the mixing vessel 14 and the delivery line 26. The 3/2-way valve is in the other switching position and lets the exhaust air of the compressed air motor now flow into the return port 19 of the compressor element. There prevails an intermediate pressure, so that the compressed air motor is present a smaller pressure difference than during the mixing phase. This reduces both the compressed air consumption of the compressed air motor, as well as its speed, its torque and its drive power.

Weil die Druckluft zur Versorgung des Druckluftmotors in der Förderphase in einem inneren Kreislauf, bestehend aus dem Kompressorelement 3, der Druckleitung 11, der Abluftleitung 16, dem 3/2-Wegeventil 17 und Rückführanschluß 19 am Kompressorelement 3, geführt wird, steht im wesentlichen der gesamte Ansaugvolumenstrom des Kompressorelements zur Förderung des Dickstoffs zur Verfügung.Because the compressed air for supplying the compressed air motor in the delivery phase in an inner circuit, consisting of the compressor element 3, the pressure line 11, the exhaust duct 16, the 3/2-way valve 17 and return port 19 on the compressor element 3, is guided, is essentially the entire intake flow of the compressor element to promote the thick material available.

Fig. 3 zeigt ein alternatives Steuerungsschema, in dem anstelle des 2/2-Wegeventils 15 und des 3/2-Wegeventils 17 ein 3/3-Wegeventil 27 zur Steuerung des Druckluftmotors 12 verwendet wird. Außerdem ist eine zusätzliche verstellbare Drosselstelle 28 in der Leitung zum Rückführanschluß 19 dargestellt, durch die eine weitere Anpassung der Drehzahl, des Drehmoments bzw. der Antriebsleistung des Druckluftmotors in der Förderphase möglich ist. Die Ventile 22 und 27 sind in der Schaltstellung für Leerlauf bzw. Stillstand des Misch- und Fördergeräts dargestellt.Fig. 3 shows an alternative control scheme in which instead of the 2/2-way valve 15 and the 3/2-way valve 17, a 3/3-way valve 27 is used to control the air motor 12. In addition, an additional adjustable throttle point 28 is shown in the line to the return port 19 through which a further adjustment of the speed, torque or drive power of the compressed air motor in the delivery phase is possible. The valves 22 and 27 are shown in the switching position for idle or standstill of the mixing and conveying device.

Im Bereich des Rückführanschlusses 19 ist ein Rückschlagventil 29 angeordnet, das in der Mischphase, d. h. wenn die Rückführleitung durch das Ventil 27 geschlossen ist und keine Abluft des Druckluftmotors 12 über den Rückführanschluß 19 in das Kompressorelement strömt, pulsierende Strömungen zwischen den Verdichtungskammern und der Rückführleitung verhindert.In the region of the return port 19, a check valve 29 is arranged, which in the mixing phase, d. H. when the return line is closed by the valve 27 and no exhaust air of the compressed air motor 12 flows via the return port 19 into the compressor element, prevents pulsating flows between the compression chambers and the return line.

Wie in Fig. 4 dargestellt, arbeitet der Druckluftmotor zu Beginn der Mischphase, wenn das Mischgut dem Rührwerk noch einen relativ hohen Widerstand entgegensetzt, mit geringerer Drehzahl und höherem Drehmoment, als am Ende der Mischphase. Diese Anpassung ergibt sich automatisch durch den Verlauf der Drehzahl-Drehmoment-Kennlinie des Druckluftmotors und erweist sich als vorteilhaft gegenüber bekannten Antrieben, die während des Mischvorgangs im wesentlichen mit konstanter Drehzahl arbeiten.As shown in Fig. 4, the air motor operates at the beginning of the mixing phase, when the mix still opposes the agitator a relatively high resistance, with lower speed and higher torque, than at the end of the mixing phase. This adjustment results automatically by the course of the speed-torque curve of the air motor and proves to be advantageous over known drives, which operate during the mixing process at a substantially constant speed.

Fig. 5 zeigt eine alternative Ausführung, bei der die Druckluft sowohl in der Mischphase als auch in der Förderphase direkt vom Kompressorelement 3 zum Druckluftmotor 12 geführt wird. Der Auslaß des Druckluftmotors 12 ist mit einem 3/3-Wegeventil 17 verbunden. Das Ventil ermöglicht die Stellung Stillstand A, Mischen B und Fördern C. In der Stellung A ist die Abluftleitung 16 geblockt und Druckluftmotor 12 ist im Stillstand. In der Mischphase (Stellung B) wird die Abluft des Druckluftmotor 12 durch die Abluftleitung 16 in das Einlaßventil 4 geführt. Dadurch stellt sich die maximal mögliche Druckdifferenz über den Druckluftmotor 12 ein, so daß er mit relativ hoher Drehzahl, relativ hohem Moment und relativ hoher Antriebsleistung arbeitet. Ferner ergibt sich in dieser Stellung ein geschlossener Kreislauf für die Druckluftversorgung des Druckluftmotors 12. In Ventilstellung C wird die Abluftleitung 16 mit der Druckluftzufuhr 30 de Mischkessels 14 verbunden. In der Druckluftzufuhr 30 befindet sich ein Ölabscheideelement 31, um das Öl aus der Druckluft abzuscheiden und durch eine Rückführleitung 32 in das Kompressorelement 3 zurückzuführen.FIG. 5 shows an alternative embodiment, in which the compressed air is led directly from the compressor element 3 to the compressed air motor 12 both in the mixing phase and in the delivery phase. The outlet of the compressed air motor 12 is connected to a 3/3-way valve 17. The valve enables the position Standstill A, Mixing B and conveying C. In position A, the exhaust air duct 16 is blocked and compressed air motor 12 is at a standstill. In the mixing phase (position B), the exhaust air of the compressed air motor 12 is guided through the exhaust duct 16 into the inlet valve 4. As a result, the maximum possible pressure difference across the pneumatic motor 12, so that it operates at a relatively high speed, relatively high torque and relatively high drive power. In addition, in this position, a closed circuit for the compressed air supply of the compressed air motor 12 in valve position C, the exhaust air line 16 is connected to the compressed air supply 30 de mixing vessel 14. In the compressed air supply 30 is an oil separation element 31 to separate the oil from the compressed air and due to a return line 32 in the compressor element 3.

Außerdem ist eine Bypaßleitung 34 mit einem Drosselventil 35 zwischen Ein- und Auslaß des Druckluftmotors 12 vorgesehen, mit dem die Druckdifferenz über den Druckluftmotor 12 begrenzt werden kann. Bei dem Drosselventil 35 kann es sich z. B. um ein Mindestdruckventil handeln, das bei Überschreitung einer bestimmten Druckdifferenz öffnet und diese auf einen bestimmten Wert begrenzt.In addition, a bypass line 34 is provided with a throttle valve 35 between the inlet and outlet of the pneumatic motor 12, with which the pressure difference across the compressed air motor 12 can be limited. In the throttle valve 35 may be z. B. act to a minimum pressure valve that opens when exceeding a certain pressure difference and limits this to a certain value.

In Fig. 6 ist eine weitere Möglichkeit zur Verschaltung der Komponenten dargestellt. Die Abluftleitung 16 des Druckluftmotors 12 ist hier analog zu Fig. 5 mit einem 3/3-Wegeventil 17, das über die selben Schaltmöglichkeiten verfügt, verbunden. Der Unterschied zur Ausführung in Fig. 5 besteht darin, daß beim Mischvorgang (Ventilstellung B) die Druckluft durch die Abluftleitung 16 über einen Abblaseschalldämpfer 33 direkt in die Umgebung gegeben wird. Ist zur Schmierung des Druckluftmotors ölhaltige Druckluft erforderlich, so kann anstelle des Koaleszenzfilterelements 23 im Ölabscheidebehälter 7 ein Ölabscheideelement 31 in die Abluftleitung 16 integriert werden.FIG. 6 shows a further possibility for interconnecting the components. The exhaust duct 16 of the compressed air motor 12 is here analogous to Fig. 5 with a 3/3-way valve 17, which has the same switching capabilities connected. The difference from the embodiment in Fig. 5 is that the mixing process (valve position B), the compressed air is given through the exhaust duct 16 via a blow-off muffler 33 directly into the environment. If oil-containing compressed air is required for lubrication of the compressed-air motor, instead of the coalescing filter element 23 in the oil separation tank 7, an oil separation element 31 can be integrated into the exhaust air line 16.

Claims (30)

  1. A mixing and conveying apparatus for the discontinuous mixing interrupted by feeding operations and the subsequent conveyance of thick substances, in particular mortar and concrete, comprising a mixing vessel (14) which is connected to a conveyor conduit and which includes a motor-driven agitator mechanism (13) and which is fed with material to be mixed and conveyed and which can be subjected to the action of compressed air for discharge of the thick substances through the conveyor conduit (26), and a compressor element (3) for producing the compressed air, which is integrated into the mixing and conveying apparatus or is in the form of a separate unit and is driven by an internal combustion engine or electric motor,
    characterised in that
    the motor drive for the agitator mechanism (13) is afforded by one or more compressed air motors (12) which are supplied with a part of the compressed air produced by the compressor element (3).
  2. A mixing and conveying apparatus according to claim 1 characterised in that the compressed air feed and/or discharge of the compressed air motor or motors (12) is controlled by means of a control device which permits adaptation of the rotary speed and/or the torque and/or the drive power output of the compressed air motor or motors (12) to the various operating phases of the mixing and conveying process.
  3. A mixing and conveying apparatus according to claim 1 or claim 2 characterised in that a plurality of compressed air motors (12) drive the agitator mechanism (13) individually or by way of a transmission in such a way that the rotary speed and/or the drive power output and/or the drive torque of the agitator mechanism can be altered by switching individual motors (12) on or off.
  4. A mixing and conveying apparatus according to claim 1 or claim 2 characterised in that compressed air motors (12) with a plurality of inlets for compressed air and/or a plurality of outlets for the exhaust air are used, which are preferably connected to different separate working spaces and/or to different housing portions of the same working spaces, wherein the rotary speed and/or the drive power output and/or the drive torque of the compressed air motors (12) can be altered by switching on or off the feed of compressed air or the discharge of exhaust air at one or more of said inlets and outlets.
  5. A mixing and conveying apparatus according to one or more of claims 1 to 4 characterised in that the pressure difference between the inlet and the outlet of at least one compressed air motor (12) is influenced at least at times by a variable bypass (9) between the inlet and the outlet.
  6. A mixing and conveying apparatus according to one or more of claims 1 to 5 characterised in that the compressed air of at least one compressed air motor (12) is supplied at least at times at a pressure which substantially corresponds to the operating pressure of the compressor element (3).
  7. A mixing and conveying apparatus according to one or more of claims 1 to 5 characterised in that the compressed air is fed at least at times to at least one compressed air motor (12) at a temperature which substantially corresponds to the final compression temperature of the compressor element (3).
  8. A mixing and conveying apparatus according to one or more of claims 1 to 5 characterised in that the compressed air is heated at least at times before it is fed to at least one compressed air motor (12) in a heat exchanger to a temperature above the final compression temperature of the compressor element (3).
  9. A mixing and conveying apparatus according to one or more of claims 1 to 5 characterised in that the compressed air is fed to at least one compressed air motor (12) at least at times with an oil content for lubrication, preferably with 0.5 to 50 mg of oil per kilogram of air.
  10. A mixing and conveying apparatus according to claim 9 characterised in that when using oil-injected rotational compressors as the compressor elements (3) the desired oil content of the compressed air for at least one compressed air motor (12) is achieved by the compressed air being taken off at a suitable location upstream of fine separation of the oil in the compressor element (3).
  11. A mixing and conveying apparatus according to one or more of claims 1 to 5 characterised in that the compressed air for at least one compressed air motor (12) is taken off at least at times at a location of the compressor element (3) at which a pressure between the intake pressure and the operating pressure obtains.
  12. A mixing and conveying apparatus according to one or more of claims 1 to 11 characterised in that the supply of compressed air to at least one compressed air motor (12) can be opened and/or throttled and/or closed and/or switched over between different take-off locations by way of one or more valves.
  13. A mixing and conveying apparatus according to one or more of claims 1 to 5 characterised in that the exhaust air of at least one compressed air motor (12) is recycled at least at times into the circuit of the compressor element (3).
  14. A mixing and conveying apparatus according to one or more of claims 1 to 5 characterised in that the exhaust air of at least one compressed air motor (12) is recycled at least at times into the intake region of the compressor element (3), preferably into the inlet valve.
  15. A mixing and conveying apparatus according to one or more of claims 1 to 5 characterised in that the exhaust air of at least one compressed air motor (12) is recycled at least at times into the compressor element (3) at a location at which a pressure between the intake pressure and the operating pressure obtains.
  16. A mixing and conveying apparatus according to claim 15 characterised in that the exhaust air is recycled into the compressor element (3) by way of a check valve (29), wherein enclosed between the check valve (29) and the compression chambers in the compressor element (3) is a volume which is smaller than the volume of the compression chamber in the region of the connection of the recycling means, preferably less than 20%.
  17. A mixing and conveying apparatus according to one or more of claims 1 to 5 characterised in that the exhaust air of at least one compressed air motor (12) is passed at least at times into the air supply of the mixing vessel (14).
  18. A mixing and conveying apparatus according to one or more of claims 1 to 5 characterised in that the exhaust air of at least one compressed air motor (12) is discharged at least at times into the ambient atmosphere.
  19. A mixing and conveying apparatus according to claim 17 or claim 18 and claim 8 characterised in that oil-bearing exhaust air of at least one compressed air motor (12) before passing into the mixing vessel (14) or before issuing into the ambient atmosphere is passed through an oil separator (7) from which the separated oil is recycled into the circuit of the compressor element (3).
  20. A mixing and conveying apparatus according to one or more of claims 11 to 15 characterised in that the recycling of the exhaust air of at least one compressed air motor (12) can be opened and/or throttled and/or closed and/or switched over between different recycling locations by way of one or more valves.
  21. A mixing and conveying apparatus according to one or more of the preceding claims characterised in that a compressed air motor (12) is used for driving the agitator mechanism (13), to which compressed air is supplied substantially at the operating pressure of the compressor element (3) and the exhaust air of which is recycled into the intake region or alternatively into the compressor element (3) at a location at which a pressure between the intake pressure and the operating pressure obtains, wherein switching over between the two alternative recycling conditions is effected by at least one valve.
  22. A mixing and conveying apparatus according to one or more of the preceding claims characterised in that the direction of rotation of at least one compressed air motor (12) can be switched over.
  23. A method of operating a mixing and conveying apparatus for the discontinuous mixing interrupted by feeding operations and the subsequent conveyance of thick substances, in particular mortar and concrete, comprising a mixing vessel (14) which is connected to a conveyor conduit and which includes a motor-driven agitator mechanism (13) and which is fed with material to be mixed and conveyed and which can be subjected to the action of compressed air for discharge of the thick substances through the conveyor conduit, and a compressor element (3) for producing the compressed air, which is integrated into the mixing and conveying apparatus or is in the form of a separate unit and is driven by an internal combustion engine or electric motor, characterised in that during the mixing phase the compressed air produced by the compressor element (3) is used substantially only for supplying one or more compressed air motors (12) for driving the agitator mechanism (13) and that during the conveying phase the compressed air produced by the compressor element (3) is used both for conveying the thick substance and also for supplying one or more compressed air motors (12) for driving the agitator mechanism (13).
  24. A method of operating a mixing and conveying apparatus according to claim 23 characterised in that when using a plurality of compressed air motors (12) for driving the agitator mechanism (13) during the conveying phase all compressed air motors (12) are supplied with compressed air but during the mixing phase not all compressed air motors (12) are supplied with compressed air.
  25. A method of operating a mixing and conveying apparatus according to claim 23 characterised in that the rotary speed and/or the drive power output and/or the drive torque of at least one compressed air motor (12) which is provided with a plurality of inlets for the compressed air and/or a plurality of outlets for the exhaust air is altered by switching on or off the supply of compressed air or the discharge of exhaust air at one or more of said inlets and outlets.
  26. A method of operating a mixing and conveying apparatus according to one or more of claims 23 to 25 characterised in that the rotary speed and/or the torque and/or the drive power output of the agitator mechanism (13) is higher during the mixing phase than in the conveying phase by influencing the pressure difference between the inlet and the outlet of at least one compressed air motor (12).
  27. A method of operating a mixing and conveying apparatus according to one or more of claims 23 to 26 characterised in that the pressure difference between the inlet and the outlet of at least one compressed air motor (12) is greater during the mixing phase than during the conveying phase.
  28. A method of operating a mixing and conveying apparatus according to one or more of claims 23 to 27 characterised in that the variation in the pressure difference between the inlet and the outlet of at least one compressed air motor (12) is effected by variable throttling and/or by switching over the supply of the compressed air and/or the discharge of the exhaust air between different take-off and/or recycling locations in the compressor element (3) or mixing vessel, at which the intake pressure, the operating pressure or an intermediate pressure obtains, and/or by varying a bypass between the inlet and outlet.
  29. A method of operating a mixing and conveying apparatus according to one or more of claims 23 to 28 characterised in that after closure of the mixing container (14) a manually or automatically actuated switching device enables and/or triggers both the supply with conveying air and also the reduction in the rotary speed and/or torque and/or drive power output of the agitator mechanism (13).
  30. A method of operating a mixing and conveying apparatus according to one or more of claims 23 to 29 characterised in that a possible blockage of the agitator mechanism (13) is automatically detected and triggers a temporary automatic reversal in the direction of rotation of the agitator mechanism (13).
EP01101596A 2000-01-27 2001-01-25 Method and apparatus for mixing and discharging of concrete Expired - Lifetime EP1120216B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE20001472 2000-01-27
DE20001472U 2000-01-27
DE10033663 2000-07-11
DE10033663A DE10033663A1 (en) 2000-01-27 2000-07-11 Method and device for mixing and conveying concrete

Publications (3)

Publication Number Publication Date
EP1120216A2 EP1120216A2 (en) 2001-08-01
EP1120216A3 EP1120216A3 (en) 2003-04-02
EP1120216B1 true EP1120216B1 (en) 2006-05-24

Family

ID=26006341

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01101596A Expired - Lifetime EP1120216B1 (en) 2000-01-27 2001-01-25 Method and apparatus for mixing and discharging of concrete

Country Status (4)

Country Link
US (1) US6354726B2 (en)
EP (1) EP1120216B1 (en)
DE (1) DE50109837D1 (en)
ES (1) ES2266028T3 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0323120D0 (en) * 2003-10-03 2003-11-05 Carroll Autoload Ltd Mixing apparatus
US20050195681A1 (en) * 2004-02-18 2005-09-08 Henry Gembala Lightweight concrete mixer
ITVI20040226A1 (en) * 2004-09-24 2004-12-24 Peron Srl Unipersonale DEVICE AND MACHINE FOR THE STORAGE AND OR TRANSPORT OF A PRODUCT FOR THE REALIZATION OF FLOOR SUBSTRATES
US7766537B2 (en) * 2005-02-18 2010-08-03 Henry Gembala Lightweight foamed concrete mixer
CN102398310B (en) * 2010-09-15 2013-03-06 中联重科股份有限公司 Control system of mixing drum of concrete mixing transport vehicle
KR101415890B1 (en) * 2013-07-05 2014-08-06 강원대학교산학협력단 Manufacturing equipment and method of manufacturing for highly efficient concrete that have been undergoing process of mixing and dissipating air on common concrete
WO2015069990A1 (en) * 2013-11-07 2015-05-14 Air Krete, Inc. A progressive bubble generating system used in making cementitous foam
DE202013010597U1 (en) * 2013-11-27 2014-02-20 Bms Bau-Maschinen-Service Ag mortar pump
CN106965318B (en) * 2017-05-05 2019-04-09 重庆中兴商品混凝土有限责任公司 A kind of mixing plant for concrete stirring
IT201900019031A1 (en) * 2019-10-16 2021-04-16 Atos Spa DEVICE AND CONTROL METHOD FOR THE PROTECTION OF FIXED DISPLACEMENT PUMPS IN HYDRAULIC CIRCUITS

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2942860A (en) * 1956-03-05 1960-06-28 Ian M Ridley Concrete gun, mixer and sandblaster
US3237865A (en) * 1963-07-30 1966-03-01 Amlico Furnaspray Corp Apparatus for protecting refractory linings
US4436431A (en) * 1981-05-11 1984-03-13 William A. Strong Slurry production system
US4534654A (en) * 1983-07-27 1985-08-13 A. J. Sackett & Sons Co. High-speed fluid blender
US4704071A (en) * 1986-06-17 1987-11-03 Mccullough Ross M Method and apparatus for pumping liquids
US4850701A (en) * 1988-05-27 1989-07-25 Halliburton Company Skid-mounted self-leveling mixer apparatus
US4854714A (en) * 1988-05-27 1989-08-08 Halliburton Company Blender vehicle apparatus
DE3836930A1 (en) * 1988-10-29 1990-05-03 Putzmeister Maschf MIXED AND COMPRESSED AIR CONVEYOR
DE4002760A1 (en) * 1990-01-12 1991-07-18 Schwing Gmbh F Concrete pump for wet spray process - has control to ensure adequate supply of compressed air
DE4210430A1 (en) 1992-03-30 1993-10-07 Putzmeister Maschf Mixing and conveying device
DE4211139A1 (en) * 1992-04-03 1993-10-07 Putzmeister Maschf Mixing and compressed air conveyor
AUPM657894A0 (en) * 1994-06-30 1994-07-21 Hood, Max George Method and apparatus for cement blending
US5570953A (en) * 1994-11-28 1996-11-05 Dewall; Harlen E. Mud-mixing machine for drywall texturing and other applications
US5803596A (en) * 1996-05-17 1998-09-08 Stephens; Patrick J. Method and apparatus for high capacity production of finished aqueous foam with continuously adjustable proportioning

Also Published As

Publication number Publication date
DE50109837D1 (en) 2006-06-29
EP1120216A2 (en) 2001-08-01
US20010028600A1 (en) 2001-10-11
US6354726B2 (en) 2002-03-12
ES2266028T3 (en) 2007-03-01
EP1120216A3 (en) 2003-04-02

Similar Documents

Publication Publication Date Title
DE69734530T2 (en) LOADED HYBRID MOTOR
DE10047940A1 (en) Screw air compressor has a frequency controlled drive motor protected from overload by a valve venting to the atmosphere.
EP1120216B1 (en) Method and apparatus for mixing and discharging of concrete
DE69923716T2 (en) HIGH-PRESSURE GAS TURBINE UNIT WITH HIGH-PRESSURE PISTON COMPRESSOR
EP0724068B1 (en) Oilfeeder system
EP3146215B1 (en) Multi-stage compressor with hydrodynamic coupling
DE2430525C3 (en) Fuel supply system for gas turbine engines
DE3144712C2 (en) Method for regulating the filling of internal combustion engines with combustion gas and device for carrying out this method
DE2400325A1 (en) GENTLE COMPRESSOR WORKING WITH OIL INJECTION
EP2460940B1 (en) Fan unit for a suction dredger
EP0892160B1 (en) Internal combustion engine with engine cooling and secondary air supply system
DE10033663A1 (en) Method and device for mixing and conveying concrete
DE3224006A1 (en) Turbocharger group for internal-combustion engines
DE4203528A1 (en) Motor vehicle with turbo charger and hydrostatic mechanical auxiliary drive
DE4330622A1 (en) Variable speed drive for IC engine auxiliaries - has drive belt for auxiliaries driven by casing of epicyclic gearbox bolted to flange on crankshaft
CH627822A5 (en) GAS DYNAMIC PRESSURE SHAFT MACHINE ON AN INTERNAL COMBUSTION ENGINE.
EP0037555B1 (en) Mixing and feeding apparatus
WO2009080211A1 (en) Device for generating compressed air for a vehicle and method for operating a device for generating compressed air
DE2429976A1 (en) COMPRESSOR
DE2303150C3 (en) Exhaust gas cleaning system for a piston internal combustion engine
WO1993019914A1 (en) Pneumatic mixer and conveyor
WO2014127905A1 (en) Piston compressor
DE883528C (en) Loader for internal combustion engines
DE3320827A1 (en) Internal combustion engine with supercharging
DE2553561A1 (en) IC engine super charge system - in which compressor is rotated by turbine actuated by hydraulic pressure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7B 28C 5/12 B

Ipc: 7B 28C 7/16 B

Ipc: 7B 01F 15/00 B

Ipc: 7B 28C 5/08 A

17P Request for examination filed

Effective date: 20030905

AKX Designation fees paid

Designated state(s): DE ES FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060524

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50109837

Country of ref document: DE

Date of ref document: 20060629

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060831

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2266028

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120127

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130131

Year of fee payment: 13

Ref country code: ES

Payment date: 20130129

Year of fee payment: 13

Ref country code: DE

Payment date: 20130328

Year of fee payment: 13

Ref country code: FR

Payment date: 20130219

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50109837

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50109837

Country of ref document: DE

Effective date: 20140801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140125

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140125