EP1119895A1 - Antriebsvorrichtung - Google Patents

Antriebsvorrichtung

Info

Publication number
EP1119895A1
EP1119895A1 EP99955694A EP99955694A EP1119895A1 EP 1119895 A1 EP1119895 A1 EP 1119895A1 EP 99955694 A EP99955694 A EP 99955694A EP 99955694 A EP99955694 A EP 99955694A EP 1119895 A1 EP1119895 A1 EP 1119895A1
Authority
EP
European Patent Office
Prior art keywords
drive device
stator
rotor
rotors
toothing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99955694A
Other languages
English (en)
French (fr)
Inventor
Hans Heckmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1119895A1 publication Critical patent/EP1119895A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/06Rolling motors, i.e. motors having the rotor axis parallel to the stator axis and following a circular path as the rotor rolls around the inside or outside of the stator ; Nutating motors, i.e. having the rotor axis parallel to the stator axis inclined with respect to the stator axis and performing a nutational movement as the rotor rolls on the stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • F16H25/2247Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with rollers
    • F16H25/2252Planetary rollers between nut and screw

Definitions

  • the invention relates to a drive device.
  • Drive devices are known which consist of an electric motor, in particular a reluctance motor, and a flanged gear. So there are two components. This means that a relatively large amount of space is required and a corresponding weight is incurred.
  • the air gap between the stator and the rotor also causes losses which have a disadvantageous effect on the efficiency and thus on the performance.
  • the drive device with the features of claim 1 has the advantage that an electric motor and a transmission are combined into one component. This requires less space and has a lower weight.
  • the efficiency of the drive device is significantly improved compared to a conventional electric motor, because the Surface for the magnetic flux is increased and the air gap is minimized.
  • a non-magnetizable material is arranged in the slots of the poles in such a way that the entire stator has teeth on the entire diameter, which cooperates with the at least one rotor, this results in good concentricity.
  • This is further improved in that several rotors are provided, which are arranged in an annular space which is formed by the stator and an element, and in that the element has a toothing which meshes with the toothed rotors.
  • an electromotive planetary gear can be realized in a simple manner.
  • toothing of the element, the stator and the rotors is helical to the stator axis, this corresponds to an electromotive spindle drive, whereby either the rotors or the element can be used for the linear movement.
  • the teeth of the stator can be formed on its inside diameter or outside diameter, whereby an inner rotor or an outer rotor can be realized.
  • a particularly simple design results from the fact that a rotor is provided, that the element is designed as a cranked shaft which is rotatably arranged in a central longitudinal bore of the rotor, that the shaft has two parallel webs at the ends projecting from the rotor, which are perpendicular are arranged to the shaft and extend to the central axis of the stator, and that on the webs shaft sections are formed which protrude in the longitudinal direction from the drive device and are rotatably mounted on the drive device.
  • FIG. 1 shows a simplified front view of a drive device
  • FIG. 2 shows a detailed section from FIG. 1 with a first toothing
  • FIG. 3 shows a side view from the left according to FIG. 1 with a second toothing and a first possibility of storage
  • FIG. 4 shows a side view from the left according to FIG 1 with the toothing according to FIG. 3 and a second possibility of storage
  • FIG. 5 a simplified front view of a modified drive device
  • FIG. 6 a simplified front view of a further modified drive device
  • FIG. 7 a right side view according to FIG. 6.
  • a drive device 10 is shown in FIG.
  • the drive device 10 has a sun wheel designed as a stator 12.
  • the stator 12 is advantageously constructed as a stator laminated core.
  • dovetail-shaped grooves 18 are formed, which form three diametrically opposed pairs of grooves 18 ', 18'',18'''.
  • the six grooves 18 form six bar-shaped poles 20, which in turn form three diametrically opposite pole pairs 20 ', 20'',20'''.
  • Around each pole 20 is shown in FIG.
  • the drive device 10 has a sun wheel designed as a stator 12.
  • the stator 12 is advantageously constructed as a stator laminated core.
  • dovetail-shaped grooves 18 are formed, which form three diametrically opposed pairs of grooves 18 ', 18'',18'''.
  • the six grooves 18 form six bar-shaped poles 20, which in turn form three diametrically opposite pole pairs 20 ', 20'',20'''.
  • Pole pairs 20 ′, 20 ′′, 20 ′′ ′′ have a winding 22 that can be supplied with current.
  • the stator 12 of the drive device 10 thus has the structure of the stator of a so-called reluctance motor.
  • the windings 22 of the pole pairs 20 ', 20' ', 20' '' can therefore be energized in succession in a known manner so that a rotating magnetic field can be generated.
  • a non-magnetizable material 24 is advantageously arranged in the grooves 18 in such a way that the stator 12 has a toothing 26 over the entire inner diameter 16, also at the points interrupted by the grooves 20.
  • the material 24 can be, for example, a plastic or a resin with which the stator 12 is poured out after the windings 22 have been installed.
  • the toothing 26 can be produced, for example, when the stator 12 is poured out using a correspondingly shaped tool which is guided into the stator 12 and has the shape of the toothing 26. It is also possible to produce the toothing 26 after the pouring by machining.
  • the drive device 10 In the longitudinal direction of the drive device 10 or centered on the stator 12 and in alignment with the stator axis 14, the drive device 10 has an element 28 rotatably mounted on the drive device 10, the outer diameter 30 of which has a toothing 32.
  • the element 28 has the function of an output element.
  • the element 28 protrudes from the drive device 10 and has the shape of an output shaft outside the drive device 10, as a result of which a torque can be tapped off from the element 28.
  • the storage takes place in a known manner on housing parts of the drive device 10, not shown for example a front and rear flange.
  • the element 28 and the inner diameter 16 of the stator 12 form an annular space 34.
  • the four planet gears designed as rotors 36 are arranged, a different number also being possible.
  • the four rotors 36 form two pairs of rotors 36 ', 36'', which are diametrically opposed.
  • the toothing 32 of the element 28 meshes with an external toothing 37 of the rotors 36 and thus also serves for the rotatable mounting of the rotors 36.
  • the rotors 36 can be connected to their end faces 38 each with a ring 40 - indicated by dashed lines. This makes it possible to dispense with the material 24.
  • windings 22 of the pole pairs 20 ', 20' ', 20' '' are energized, a magnetic field is built up which exerts a force on parts which consist of a material which reacts to a magnetic field.
  • a magnetic field is built up which exerts a force on parts which consist of a material which reacts to a magnetic field.
  • Reluctance motor is common, a magnetic rotating field is generated, whereby the rotor pairs 36 ', 36' 'rotate.
  • the rotational movement of the element 28 and the transmissible torque can be tapped in a known manner at an end of the element 28 which protrudes from the drive device 10 and is designed as a shaft end.
  • the drive device 10 from FIGS. 1 and 2 represents the combination of an epicyclic gear in the form of a planetary gear and an electric motor, in particular a reluctance motor.
  • an electric motor in particular a reluctance motor.
  • the interlocking toothings 37, 26 of the stator 12 and the rotors 36 increase the surface area between them, which increases the efficiency and thus the performance.
  • the required transmission ratio can be achieved in a simple manner, as in the case of a planetary gear train, by the choice of the diameter of the stator 12, the element 28 and the rotors 36.
  • FIG. 3 shows a drive device 10a, the toothing 26a of the stator 12a, the toothing 32a of the element 28a and the toothing 37a of the rotors 36a extending helically to the longitudinal direction of the drive device 10 or to the stator axis 14.
  • the element 28a is fixed axially, for example - depending on the load - by one or two ball bearings 42, one in FIG is represented symbolically.
  • the element 28a serves solely to support the rotors 36a.
  • the rotors 36a are axially movable. They are rotatably mounted on rods 44 which protrude beyond the drive device 10a.
  • a plate 46 is attached to the ends of the rods 44 outside the drive device 10a.
  • Such a plate 46 can also be attached to both ends of the rods 44 when they protrude from the drive device 10a.
  • the rods 44 are axially displaceable.
  • the rotors 36a rotate about their own axis, which corresponds to a rod 44, the rods 44 are axially displaced.
  • a tensile or compressive force can be removed via the plate 46.
  • the drive device 10a functions as an actuator that can be used like a spindle drive.
  • the lengths of the stator 12a, the element 28a and the rotors 36 must be matched to one another for the required stroke.
  • the usable stroke corresponds approximately to the length of the rotors 36a minus the length of the housing of the drive device 10a.
  • FIG. 4 shows a drive device 10b which is similar to the drive device 10a. It differs in that the element 28b is axially movable and in that the rotors 36b are axially fixed.
  • the rotors are advantageously fixed axially via ball bearings 48, although another bearing can also be suitable. As a result, the rotors 36b can rotate about their own axis and can also run along the toothing 26b of the stator 12b.
  • the element 28b protrudes from the drive device 10b.
  • the usable stroke corresponds approximately to the length of the element 28b minus the length of the housing of the drive device 10b.
  • the element 28b serves to support the rotors 36b and to transmit a tensile or compressive force to the outside. For this transmission, it is advantageous or to form both ends of the element 28b similar to the shaft of a spindle drive known per se.
  • the drive device 10c shown in FIG. 5 corresponds to an external rotor.
  • the stator 12c has one
  • Outside diameter 50 formed.
  • four rotors 36 are arranged symmetrically, which form two diametrically opposite rotor pairs 36 ', 36' '.
  • the rotors 36 are connected to each other at the end faces 38 via a ring 40, which as an element for
  • Bearing of the rotors 36 is used and from which a torque can also be taken.
  • a drive device 10d can be seen from FIGS. 6 and 7, the stator 12 of the drive device 10 being used. Only one rotor 52 is provided, which has an external toothing 53 which is intended for engagement in the toothing 26 of the stator 12.
  • An element that serves to support the rotor 52 and to transmit a torque is designed as a cranked shaft 54.
  • the shaft 54 is rotatably arranged in a central longitudinal bore 56 of the rotor 52.
  • the shaft 54 has two parallel webs 58 which are arranged perpendicular to the shaft 54 and extend to the stator axis 14.
  • Shaft sections 60 are formed on the webs 58 and protrude in the longitudinal direction from the drive device 12c. They are rotatably supported by bearings 62 of the drive device 12d.
  • the webs 58 can be screwed to the shaft 54 and the shaft sections 60, for example.
  • This Drive device 10d represents a particularly simple construction.
  • the invention is not only limited to the drive device described and its modifications. Instead of a positive transmission of the torques by the toothings 26, 37a, 53 of the drive devices 10, 10c and 10d, it is also possible to provide a frictional transmission, for example by friction wheels.
  • the essence of the invention is that an electric motor and a planetary gear train are combined to form a drive device.
  • the sun gear is to be designed as a stator of an electric motor, in particular a reluctance motor
  • the at least one planet gear is to be designed as a rotor, at least one element also having to be provided which serves at least to support the at least one rotor. It is also conceivable to provide additional windings for the rotor or rotors, but this increases the effort involved in electrically connecting them.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Linear Motors (AREA)

Abstract

Es wird eine Antriebsvorrichtung (10, 10a, 10b, 10c, 10d) vorgeschlagen, die ein Sonnenrad aufweist, das als Stator (12, 12a, 12b, 12c) ausgebildet ist, wobei in Längsrichtung mehrere Nuten (18, 18c) ausgebildet sind. Die Nuten bilden stegförmige, sich paarweise gegenüberliegende Pole (20), um die bestrombare Wicklungen (22) angeordnet sind. Die Antriebsvorrichtung (10, 10a, 10b, 10c, 10d) weist mindestens ein Planetenrad auf, das als Rotor (36, 36a, 36b) ausgebildet ist und wenigstens ein Element (28, 28a, 28b, 40, 54) zumindest zur drehbaren Lagerung des mindestens einen Rotors (36, 36a, 36b). Kern der Erfindung ist, daß ein Elektromotor und ein Umlauf-Rädergetriebe zu einer Antriebsvorrichtung (10, 10a, 10b, 10c, 10d) kombiniert werden. Dadurch werden zwei Komponenten zu einer vereinigt, was Bauraum, Gewicht und Kosten spart.

Description

Antriebsvorrichtung
Stand der Technik
Die Erfindung betrifft eine Antriebsvorrichtung. Es sind Antriebsvorrichtungen bekannt, die aus einem Elektromotor, insbesondere einem Reluktanzmotor, und einem angeflanschten Getriebe bestehen. Es handelt sich also um zwei Komponenten. Dies bedeutet, daß ein relativ großer Bauraum notwendig ist und ein entsprechendes Gewicht anfällt.
Ferner werden bei Elektromotoren durch den Luftspalt zwischen dem Stator und dem Rotor Verluste verursacht, die sich nachteilig auf den Wirkungsgrad und somit die Leistung auswirken.
Vorteile der Erfindung
Die Antriebsvorrichtung mit den Merkmalen des Anspruchs 1 hat demgegenüber den Vorteil, daß ein Elektromotor und ein Getriebe zu einer Komponente vereinigt sind. Diese erfordert weniger Bauraum und weist ein niedrigeres Gewicht auf .
Der Wirkungsgrad der Antriebsvorrichtung ist gegenüber einem herkömmlichen Elektromotor erheblich verbessert, da die Oberfläche für den magnetischen Fluß vergrößert und der Luftspalt minimiert ist.
Wird in den Nuten der Pole ein nicht magnetisierbares Material so angeordnet, daß der Stator am ganzen, mit dem mindestens einen Rotor zusammenwirkenden Durchmesser eine Verzahnung aufweist, so ergibt sich ein guter Rundlauf. Dieser wir noch dadurch verbessert, daß mehrere Rotoren vorgesehen sind, die in einem Ringraum, der vom Stator und einem Element gebildet ist, angeordnet sind und daß das Element eine Verzahnung aufweist, die mit den verzahnten Rotoren kämmt .
Dadurch, daß die Verzahnungen des Elements, des Stators und der Rotoren parallel zur Statorachse verlaufen und daß das Element so aus der Antriebsvorrichtung herausragt, daß ein Drehmoment abgreifbar ist, läßt sich auf einfache Weise ein elektromotorisches Planetengetriebe realisieren.
Verlaufen die Verzahnungen des Elements, des Stators und der Rotoren schraubenlinienformig zur Statorachse, so entspricht dies einem elektromotorischen Spindeltrieb, wobei sich für die Linearbewegung entweder die Rotoren oder das Element verwenden lassen.
Die Verzahnung des Stators kann an dessen Innendurchmesser oder Außendurchmesser ausgebildet werden, wodurch ein Innenläufer oder ein Außenläufer realisierbar ist.
Eine besonders einfache Ausbildung ergibt sich dadurch, daß ein Rotor vorgesehen ist, daß das Element als gekröpfte Welle ausgebildet ist, die in einer zentrischen Längsbohrung des Rotors drehbar angeordnet ist, daß die Welle an aus dem Rotor herausragenden Enden zwei parallele Stege aufweist, die senkrecht zur Welle angeordnet sind und zur Mittelachse des Stators reichen, und daß an den Stegen Wellenabschnitte ausgebildet sind, die in Längsrichtung aus der Antriebsvorrichtung ragen und an der Antriebsvorrichtung drehbar gelagert sind.
Weitere Vorteile und vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen und der Beschreibung.
Zeichnung
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen
Figur 1 eine vereinfachte Vorderansicht einer Antriebsvorrichtung, Figur 2 ein detaillierter Ausschnitt aus Fig. 1 mit einer ersten Verzahnung, Figur 3 eine Seitenansicht von links gemäß Figur 1 mit einer zweiten Verzahnung und einer ersten Möglichkeit der Lagerung, Figur 4 eine Seitenansicht von links gemäß Figur 1 mit der Verzahnung nach Figur 3 und einer zweiten Möglichkeit der Lagerung, Figur 5 eine vereinfachte Vorderansicht einer abgewandelten Antriebsvorrichtung, Figur 6 eine vereinfachte Vorderansicht einer weiteren abgewandelten Antriebsvorrichtung und Figur 7 eine Seitenansicht rechts gemäß Figur 6.
Beschreibung des Ausführungsbeispiels
In der Figur 1 ist eine Antriebsvorrichtung 10 gezeigt. Die Antriebsvorrichtung 10 weist ein als Stator 12 ausgebildetes Sonnenrad auf. Der Stator 12 ist vorteilhafterweise als Statorblechpaket aufgebaut . In Längsrichtung der Antriebsvorrichtung 10, die der Statorachse 14 entspricht, sind am Innendurchmesser 16 in gleichmäßigen Abständen sechs schwalbenschwanzförmige Nuten 18 ausgebildet, die drei, sich diametral gegenüberliegende Nutpaare 18', 18'', 18''' bilden. Die sechs Nuten 18 bilden sechs stegförmige Pole 20, die ihrerseits drei, sich diametral gegenüberliegende Polpaare 20', 20'', 20''' bilden. Um jeden Pol 20 der
Polpaare 20', 20'', 20''' ist eine bestrombare Wicklung 22 angeordnet. Der Stator 12 der Antriebsvorrichtung 10 weist somit den Aufbau des Stators eines sogenannten Reluktanzmotors auf. Die Wicklungen 22 der Polpaare 20', 20'', 20''' sind daher in bekannter Weise nacheinander so bestrombar, daß ein magnetisches Drehfeld erzeugbar ist. Vorteilhafterweise ist in den Nuten 18 ein nichtmagnetisierbares Material 24 so angeordnet, daß der Stator 12 am ganzen Innendurchmesser 16, auch an den durch die Nuten 20 unterbrochenen Stellen eine Verzahnung 26 aufweist. Bei dem Material 24 kann es sich beispielsweise um einen Kunststoff oder ein Harz handeln, mit dem der Stator 12 nach der Montage der Wicklungen 22 ausgegossen wird. Die Verzahnung 26 kann beispielsweise beim Ausgießen des Stators 12 mit einem entsprechend geformten Werkzeug, das in den Stator 12 geführt wird und die Form der Verzahnung 26 aufweist, hergestellt werden. Es ist auch möglich, die Verzahnung 26 nach dem Ausgießen durch eine spanende Bearbeitung herzustellen.
In Längsrichtung der Antriebsvorrichtung 10 beziehungsweise zentrisch zum Stator 12 und fluchtend mit der Statorachse 14 weist die Antriebsvorrichtung 10 ein drehbar an der Antriebsvorrichtung 10 gelagertes Element 28 auf, dessen Außendurchmesser 30 eine Verzahnung 32 aufweist. Das Element 28 hat die Funktion eines Abtriebselements. Das Element 28 ragt aus der Antriebsvorrichtung 10 heraus und hat außerhalb der Antriebsvorrichtung 10 die Form einer Abtriebswelle, wodurch ein Drehmoment am Element 28 abgreifbar ist. Die Lagerung erfolgt hierbei in bekannter Weise an nicht dargestellten Gehäuseteilen der Antriebsvorrichtung 10, beispielsweise einem vorderen und hinteren Flansch. Das Element 28 und der Innendurchmesser 16 des Stators 12 bilden einen Ringraum 34. Im Ringraum 34 sind vier als Rotoren 36 ausgebildete Planetenräder angeordnet, wobei auch eine andere Anzahl möglich ist. Die vier Rotoren 36 bilden zwei Rotorpaare 36', 36'', die sich diametral gegenüberliegen. Die Verzahnung 32 des Elements 28 kämmt mit einer Außenverzahnung 37 der Rotoren 36 und dient somit ebenfalls der drehbaren Lagerung der Rotoren 36. Hier zeigt sich auch, daß es vorteilhaft ist, in den Nuten 18 das nicht magnetisierbare Material 24 vorzusehen, da der Stator 12 dadurch am ganzen, mit den Rotoren 36 zusammenwirkenden Innendurchmesser 16 eine Verzahnung 26 aufweist, wodurch der Rundlauf der Antriebsvorrichtung 10 verbessert wird. Die Rotoren 36 können zur Lagerung an ihren Stirnseiten 38 mit jeweils einem - mit gestrichelten Linien angedeuteten - Ring 40 verbunden sein. Dadurch ist es möglich, auf das Material 24 zu verzichten.
Wie aus der Figur 2 ersichtlich ist, verlaufen die
Verzahnung 26 des Stators 12, die Verzahnung 32 des Elements 28 und die Außenverzahnung 37 der Rotoren 32 parallel zur Längsrichtung der Antriebsvorrichtung 10 beziehungsweise zur Statorachse 14.
Werden die Wicklungen 22 der Polpaare 20', 20'', 20''' bestromt, so wird ein Magnetfeld aufgebaut, das auf Teile, die aus einem auf ein Magnetfeld reagierendes Material bestehen, eine Kraft ausübt. Durch entsprechendes Bestromen der Wicklungen 22, wie es zum Beispiel bei einem
Reluktanzmotor üblich ist, wird ein magnetisches Drehfeld erzeugt, wodurch sich die Rotorpaare 36', 36'' drehen.
Bewegt sich ein als Rotor 36 ausgebildetes Planetenrad, so rollt es mit seiner Außenverzahnung 37 im Gegenuhrzeigersinn entlang der am Innendurchmesser 16 des Stators 12 ausgebildeten Verzahnung 26 ab und auf einen Pol 20 zu. Durch die Drehbewegung eines Rotors 36, die durch die magnetische Anziehungskraft eines Pols 20 ausgeübt wird, dreht sich zwangsläufig, wie bei einem Planetengetriebe, auch das Element 28. Rollt ein Rotor 36 entlang der
Verzahnung 26 des Stators 12 im Uhrzeigersinn, so dreht sich ein Rotor 36 im Gegenuhrzeigersinn um die eigene Längsachse. Dadurch wird das Element 28 im Uhrzeigersinn gedreht. Die Drehbewegung des Elements 28 und das übertragbare Drehmoment lassen sich an einem aus der Antriebsvorrichtung 10 herausragenden Ende des Elements 28, das als Wellenende ausgebildet ist, in bekannter Weise abgreifen.
Die Antriebsvorrichtung 10 aus den Figuren 1 und 2 stellt die Vereinigung eines Räder-Umlaufgetriebes in Form eines Planetengetriebes und eines Elektromotors, insbesondere eines Reluktanzmotors dar. Auf diese Weise ist es also möglich, statt eines Elektromotors und eines angeflanschten Getriebes nur eine Komponente zu verwenden, wodurch Bauraum, Gewicht und Kosten einsparbar sind. Durch die ineinander greifenden Verzahnungen 37, 26 des Stators 12 und der Rotoren 36 ist die zwischen ihnen wirksame Oberfläche vergrößert, wodurch der Wirkungsgrad steigt und somit die Leistung. Die erforderliche Übersetzung kann auf einfache Weise wie bei einem Umlauf-Rädergetriebe durch die Wahl der Durchmesser des Stators 12, des Elements 28 sowie der Rotoren 36 erreicht werden.
In der Figur 3 ist eine Antriebsvorrichtung 10a dargestellt, wobei die Verzahnung 26a des Stators 12a, die Verzahnung 32a des Elements 28a und die Verzahnung 37a der Rotoren 36a schraubenlinienformig zur Längsrichtung der Antriebsvorrichtung 10 beziehungsweise zur Statorachse 14 verlaufen. Das Element 28a ist in diesem Fall axial festgelegt, beispielsweise - je nach Belastungsfall - durch ein oder zwei Kugellager 42, wobei in der Figur 3 eines symbolisch dargestellt ist. Das Element 28a dient in diesem Fall alleine der Lagerung der Rotoren 36a. Die Rotoren 36a sind axial bewegbar. Sie sind drehbar auf Stangen 44 gelagert, die über die Antriebsvorrichtung 10a hinausragen. An den außerhalb der AntriebsVorrichtung 10a liegenden Enden der Stangen 44 ist eine Platte 46 angebracht. Eine solche Platte 46 kann auch an beiden Enden der Stangen 44 angebracht sein, wenn diese aus der Antriebsvorrichtung 10a herausragen. Die Stangen 44 sind axial verschiebbar gelagert. Bei einer Drehbewegung der Rotoren 36a um ihre eigene Achse, die einer Stange 44 entspricht, werden die Stangen 44 axial verschoben. Über die Platte 46 kann eine Zug- oder Druckkraft abgenommen werden. Auf diese Weise fungiert die Antriebsvorrichtung 10a als Steller, der wie ein Spindeltrieb einsetzbar ist. Für den erforderlichen Hub müssen die Längen des Stators 12a, des Elements 28a sowie der Rotoren 36 aufeinander abgestimmt sein. Der nutzbare Hub entspricht in etwa der Länge der Rotoren 36a abzüglich der Länge des Gehäuses der Antriebsvorrichtung 10a.
In der Figur 4 ist eine Antriebsvorrichtung 10b gezeigt, die ähnlich der Antriebsvorrichtung 10a ist. Sie unterscheidet sich dadurch, daß das Element 28b axial bewegbar ist und daß die Rotoren 36b axial festgelegt sind. Die Rotoren sind vorteilhafterweise über Kugellager 48 axial festgelegt, wobei auch eine andere Lagerung geeignet sein kann. Dadurch können sich die Rotoren 36b um die eigene Achse drehen und auch entlang der Verzahnung 26b des Stators 12b umlaufen.
Das Element 28b ragt aus der Antriebsvorrichtung 10b heraus. Der nutzbare Hub entspricht in etwa der Länge des Elements 28b abzüglich der Länge des Gehäuses der Antriebsvorrichtung 10b. Das Element 28b dient in diesem Fall der Lagerung der Rotoren 36b und der Übertragung einer Zug- oder Druckkraft nach außen. Für diese Übertragung ist es vorteilhaft ein oder beide Enden des Elements 28b ähnlich der Welle eines an und für sich bekannten Spindeltriebs auszubilden.
Die in der Figur 5 dargestellte Antriebsvorrichtung 10c entspricht einem Außenläufer. Der Stator 12c hat eine
Sternform, wobei die sechs Pole 20c nach außen ragen und drei sich diametral gegenüberliegende Polpaare 20c' , 20c' ' , 20c' ' ' bilden. Die Nuten 18c zwischen den Polen 20c sind ebenfalls mit einem nicht magnetischen Material 24c versehen. Die Verzahnung 26c des Stators 12c ist an dessen
Außendurchmesser 50 ausgebildet. Am Außendurchmesser 50 sind symmetrisch, beziehungsweise vier Rotoren 36 angeordnet, die zwei sich diametral gegenüberliegende Rotorpaare 36', 36'' bilden. Die Rotoren 36 sind an den Stirnseiten 38 über je einen Ring 40 miteinander verbunden, das als Element zur
Lagerung der Rotoren 36 dient und an dem auch ein Drehmoment abgenommen werden kann.
Aus den Figuren 6 und 7 geht eine Antriebsvorrichtung lOd hervor, wobei der Stator 12 der Antriebsvorrichtung 10 verwendet wird. Es ist nur ein Rotor 52 vorgesehen, der eine Außenverzahnung 53 aufweist, die zum Eingriff in die Verzahnung 26 des Stators 12 bestimmt ist. Ein Element, das der Lagerung des Rotors 52 und der Übertragung eines Drehmoments dient, ist als gekröpfte Welle 54 ausgebildet. Die Welle 54 ist in einer zentrischen Längsbohrung 56 des Rotors 52 drehbar angeordnet. An den Enden der Welle 54, die aus dem Rotor 52 herausragen, weist die Welle 54 zwei parallele Stege 58 auf, die senkrecht zur Welle 54 angeordnet sind und zur Statorachse 14 reichen. An den Stegen 58 sind Wellenabschnitte 60 ausgebildet, die in Längsrichtung aus der Antriebsvorrichtung 12c ragen. Sie sind über Lager 62 der Antriebsvorrichtung 12d drehbar gelagert. Die Stege 58 können mit der Welle 54 und den Wellenabschnitten 60 beispielsweise verschraubt sein. Diese Antriebsvorrichtung lOd stellt eine besonders einfach aufgebaute Ausbildung dar.
Selbstverständlich ist die Erfindung nicht nur auf die beschriebene Antriebsvorrichtung und deren Abwandlungen beschränkt. Es ist auch möglich statt einer formschlüssigen Übertragung der Drehmomente durch die Verzahnungen 26, 37a, 53 der Antriebsvorrichtungen 10, 10c und lOd eine reibschlüssige Übertragung beispielsweise durch Reibräder vorzusehen. Kern der Erfindung ist, daß ein Elektromotor und ein Umlauf-Rädergetriebe zu einer Antriebsvorrichtung kombiniert werden. Hierzu ist im wesentlichen das Sonnenrad als Stator eines Elektromotors, insbesondere eines Reluktanzmotors, auszubilden und das mindestens eine Planetenrad als Rotor, wobei noch wenigstens ein Element vorgesehen sein muß, das zumindest der Lagerung des mindestens eine Rotors dient. Es ist auch denkbar, für den oder die Rotoren zusätzliche Wicklungen vorzusehen, wodurch allerdings der Aufwand, diese elektrisch zu verbinden, größer wird.

Claims

Ansprüche
1. Antriebsvorrichtung (10, 10a, 10b, 10c, lOd) mit einem Sonnenrad, das als Stator (12, 12a, 12b, 12c) ausgebildet ist, wobei in Längsrichtung mehrere Nuten (18, 18c) ausgebildet sind, die stegförmige, sich paarweise gegenüberliegende Pole (20) bilden, um die bestrombare Wicklungen (22) angeordnet sind, mit mindestens einem Planetenrad, das als Rotor (36, 36a, 36b) ausgebildet ist und mit wenigstens einem Element (28, 28a, 28b, 40, 54) zumindest zur drehbaren Lagerung des mindestens einen Rotors (36, 36a, 36b) .
2. Antriebsvorrichtung (10, 10a, 10b, 10c, lOd) nach Anspruch 1, dadurch gekennzeichnet, daß in den Nuten (18, 18c) ein nichtmagnetisierbares Material (24) so angeordnet ist, daß der Stator (12, 12a, 12b, 12c) am ganzen, mit einer Verzahnung (37, 37a, 53) des mindestens einen Rotors (36, 36a, 3βb) zusammenwirkenden Durchmesser (16, 50) eine Verzahnung (26, 26a, 26b, 26c) aufweist.
3. Antriebsvorrichtung (10, 10a, 10b) nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß mehrere Rotoren (36, 36a, 36b) vorgesehen sind, die in einem Ringraum (34) , der vom Stator (12, 12a, 12b) und dem wenigstens einen Element (28, 28a, 28b) gebildet ist, angeordnet sind und daß das Element (28, 28a, 28b) eine Verzahnung (32, 32a) aufweist, die mit den verzahnten Rotoren (36, 36a, 36b) kämmt.
4. Antriebsvorrichtung (10, 10c, lOd) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Verzahnungen (26, 37, 53) parallel zur Statorachse (14) verlaufen und daß am Element (28) ein Drehmoment abgreifbar ist.
5. Antriebsvorrichtung (10a, 10b) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Verzahnungen (26a, 26b, 32a) schraubenlinienformig zur Statorachse (14) verlaufen.
6. AntriebsVorrichtung (10a) nach Anspruch 5, dadurch gekennzeichnet, daß das Element (28a) axial festgelegt ist, und daß die Rotoren (36a) axial bewegbar sind.
7. Antriebsvorrichtung (10b) nach Anspruch 5, dadurch gekennzeichnet, daß die Rotoren (36b) axial festgelegt sind, und daß das Element (28b) axial bewegbar ist.
8. Antriebsvorrichtung (10, 10a, 10b, lOd) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Verzahnung (26, 26a, 26b) des Stators (12, 12a, 12b) an dessen Innendurchmesser (16) ausgebildet ist.
9. Antriebsvorrichtung (10c) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Verzahnung (26c) des Stators (12c) an dessen Außendurchmesser (50) ausgebildet ist .
10. Antriebsvorrichtung (lOd) nach Anspruch 1, dadurch gekennzeichnet, daß ein Rotor (52) vorgesehen ist, daß das Element als gekröpfte Welle (54) ausgebildet ist, die in einer zentrischen Längsbohrung (56) des Rotors (52) drehbar angeordnet ist, daß die Welle (54) an aus dem Rotor (52) herausragenden Enden zwei parallele Stege (58) aufweist, die senkrecht zur Welle (54) angeordnet sind und zur Statorachse (14) reichen, und daß an den Stegen (58) Wellenabschnitte (60) ausgebildet sind, die in Längsrichtung aus der Antriebsvorrichtung (lOd) ragen und an der Antriebsvorrichtung (lOd) drehbar gelagert sind.
EP99955694A 1998-10-06 1999-09-14 Antriebsvorrichtung Withdrawn EP1119895A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE1998145914 DE19845914C2 (de) 1998-10-06 1998-10-06 Antriebsvorrichtung
DE19845914 1998-10-06
PCT/DE1999/002914 WO2000021183A1 (de) 1998-10-06 1999-09-14 Antriebsvorrichtung

Publications (1)

Publication Number Publication Date
EP1119895A1 true EP1119895A1 (de) 2001-08-01

Family

ID=7883522

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99955694A Withdrawn EP1119895A1 (de) 1998-10-06 1999-09-14 Antriebsvorrichtung

Country Status (5)

Country Link
EP (1) EP1119895A1 (de)
JP (1) JP2002528025A (de)
CZ (1) CZ20011212A3 (de)
DE (1) DE19845914C2 (de)
WO (1) WO2000021183A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10021368B4 (de) * 2000-05-02 2006-12-14 Deutsches Zentrum für Luft- und Raumfahrt e.V. Mechatronischer Aktuator
SE0101641L (sv) * 2001-05-09 2002-11-10 Abb Ab Vindkraftgenerator
WO2003044927A1 (en) * 2001-05-09 2003-05-30 Abb Ab Electrical machine
US7411322B2 (en) * 2005-12-06 2008-08-12 Lucent Technologies Inc. Micromachined reluctance motor
JP2007252174A (ja) * 2006-02-15 2007-09-27 Venera Laboratory Co Ltd ギアドモーターおよびプラネタリーギアドダイナモ
WO2007103266A2 (en) * 2006-03-03 2007-09-13 Borealis Technical Limited Motor using magnetic normal force
DE102006011246A1 (de) * 2006-03-10 2007-09-13 Gangolf Jobb Elektromechanische Drehmaschine
US7999427B2 (en) * 2007-08-09 2011-08-16 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Directed flux motor
GB2453027A (en) * 2007-09-11 2009-03-25 Borealis Tech Ltd Motor using magnetic normal force
JP5123333B2 (ja) * 2010-01-26 2013-01-23 株式会社 資生堂 油中水型乳化日焼け止め化粧料
AT514263B1 (de) * 2013-04-17 2016-06-15 Manfred Dr Schrödl Elektrische Maschine
CN107769411B (zh) * 2017-10-10 2019-12-13 抚顺三平科技开发有限公司 一种高功率密度的磁阻电机
CN109378933B (zh) * 2018-11-28 2021-02-19 华南智能机器人创新研究院 一种行星齿轮式无刷直流电机

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1102694A (en) * 1964-11-04 1968-02-07 British United Shoe Machinery Improvements in or relating to electromechanical rotary drive systems
GB2094066A (en) * 1981-01-08 1982-09-08 Ask Jonas Waldemar Electromagnetic machines
WO1986005634A1 (en) * 1985-03-15 1986-09-25 Teijin Seiki Co., Ltd. Geared motor
JPS6223361A (ja) * 1985-07-22 1987-01-31 Takashi Hosokawa 電動アクチエ−タ
JPS62171456A (ja) * 1986-01-21 1987-07-28 Satoshi Kiyono 転動型ステツピングモ−タ
JPH02164265A (ja) * 1988-09-13 1990-06-25 Toshiba Corp 可変空隙形モータ
US5252870A (en) * 1991-03-01 1993-10-12 Jacobsen Stephen C Magnetic eccentric motion motor
US5289065A (en) * 1993-04-05 1994-02-22 Ford Motor Company Zero air gap orbiting gear stepper motor
JPH077913A (ja) * 1993-06-18 1995-01-10 Teruo Kawai 動力発生装置
DE4423902A1 (de) * 1994-07-09 1996-04-11 Fibro Gmbh Konzentrischer Getriebemotor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0021183A1 *

Also Published As

Publication number Publication date
JP2002528025A (ja) 2002-08-27
DE19845914A1 (de) 2000-04-13
DE19845914C2 (de) 2000-08-24
WO2000021183A1 (de) 2000-04-13
CZ20011212A3 (cs) 2001-08-15

Similar Documents

Publication Publication Date Title
DE19845914C2 (de) Antriebsvorrichtung
EP2472099B1 (de) Anker für einen Elektromotor zum Antrieb einer Startervorrichtung
DE4341166A1 (de) Drehantriebs-Vorrichtung für die Welle einer Werkzeugmaschine
CH702879B1 (de) Planetengetriebe in Wolfrom-Anordnung sowie Elektromotor mit integriertem Planetengetriebe in Wolfrom-Anordnung.
WO2004042891A1 (de) Permanentmagnetmaschine mit axialem luftspal
EP2668393B1 (de) Startvorrichtung mit überlastsicherung
WO2014183919A1 (de) Antriebseinrichtung, insbesondere stelleinrichtung in einem fahrzeug
WO2014044277A1 (de) Getriebeanordnung
EP2564053A2 (de) Freilauf mit integrierter dämpfung
EP2656484B1 (de) Transversalflussmaschine
DE10056597A1 (de) Schaltgetriebe für ein Fahrrad mit Elektromotor
EP1563587B1 (de) Antriebsvorrichtung für verstelleinrichtungen in kraftfahrzeugen
EP0875982A1 (de) Elektromagnetischer Linearantrieb
DE2822830A1 (de) Schrittmotor
DE10021368B4 (de) Mechatronischer Aktuator
DE102017114013A1 (de) Elektrisch angetriebener Getriebemotor
DE102018214583A1 (de) Vorrichtung zum Anstellen eines Gegenstandes
DE102011085878A1 (de) Elektrische Maschine
DE10042398A1 (de) Motor mit integriertem Harmonicdrive-Getriebe
DE10156586A1 (de) Elektromotorischer Stellantrieb
EP0828872B1 (de) Antrieb für friktionsspindelaggregate
DE3337412A1 (de) Rohrmotor
DE19538865A1 (de) Getriebe
DE102015120247A1 (de) Statoranordnung für einen Elektromotor und Verfahren zur Herstellung einer Statoranordnung
AT523028A1 (de) Elektrische Maschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010507

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20030411

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030822

RBV Designated contracting states (corrected)

Designated state(s): DE GB