EP1117901B1 - Method for controlling a horizontal drilling machine - Google Patents

Method for controlling a horizontal drilling machine Download PDF

Info

Publication number
EP1117901B1
EP1117901B1 EP99953710A EP99953710A EP1117901B1 EP 1117901 B1 EP1117901 B1 EP 1117901B1 EP 99953710 A EP99953710 A EP 99953710A EP 99953710 A EP99953710 A EP 99953710A EP 1117901 B1 EP1117901 B1 EP 1117901B1
Authority
EP
European Patent Office
Prior art keywords
boring
control
lance
drilling
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99953710A
Other languages
German (de)
French (fr)
Other versions
EP1117901A1 (en
Inventor
Andreas Jacubasch
Helge-Björn KUNTZE
Hans-Joachim Bayer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1117901A1 publication Critical patent/EP1117901A1/en
Application granted granted Critical
Publication of EP1117901B1 publication Critical patent/EP1117901B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/22Fuzzy logic, artificial intelligence, neural networks or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S706/00Data processing: artificial intelligence
    • Y10S706/90Fuzzy logic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S706/00Data processing: artificial intelligence
    • Y10S706/902Application using ai with detail of the ai system
    • Y10S706/903Control
    • Y10S706/904Manufacturing or machine, e.g. agricultural machinery, machine tool
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S706/00Data processing: artificial intelligence
    • Y10S706/902Application using ai with detail of the ai system
    • Y10S706/911Nonmedical diagnostics
    • Y10S706/912Manufacturing or machine, e.g. agricultural machinery, machine tool
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S706/00Data processing: artificial intelligence
    • Y10S706/902Application using ai with detail of the ai system
    • Y10S706/928Earth science

Definitions

  • the present invention relates to a method to control a horizontal drilling machine, the one Drilling lance drives over a drill pipe, the Drilling lance an asymmetrically beveled hollow drill head having nozzles for a rinsing liquid, and at which the boring head during the feed movement smooth rotation almost straight and without Rotation on a cam track moves, their orientation by the set roll angle of the drilling lance given is.
  • the present invention relates to Horizontal drilling processes, such as those from H.-J. Bayer, "Principles of Controllable Horizontal Rinse Drilling", 3R international, vol. 30 (1991), No. 9, pp. 511-517.
  • a rinsing liquid such as, for example, is sprayed through nozzles Bentonite is pumped with the help of a piece screwed drill pipe at an angle into the ground pressed.
  • Bentonite is pumped with the help of a piece screwed drill pipe at an angle into the ground pressed.
  • the drill guide receives his Information about the current position and location of the Drilling head from corresponding measuring sensors on the drilling head.
  • Horizontal drilling rigs have a robust one for this high-resolution sensors that constantly provide orientation the drill head with respect to a fixed coordinate system by measuring roll angle, azimuth and Inclination of the drill head measures. From the current The length of the drill string can be linked with the previous changes in the angle of the drill head also the current Cartesian position of the Determine the drill head.
  • the drilling head can also the load moment of the Drill pipe as well as the pressure of a flushed Drilling fluid can be detected by sensors.
  • the movement behavior of the drill head is very complex and strongly depends on the current environment of the drill head, in particular the consistency, the structure and the degree of compaction of the soil material. Because of this complexity, a high drilling quality requires a high degree of skill from the drill operator. In this case, drilling quality is to be understood as the most exact adherence to the specified drilling course while avoiding collisions. If necessary, the drill operator must derive a correction of the feed rate, the rotation or the angle of rotation from the respective current orientation and position values transmitted by the sensors, and must take into account the current behavior of the drill head in his corrections. The correct operation of such a horizontal drilling machine therefore requires long training and a lot of experience with regard to the different underground behavior of the drilling machine.
  • a horizontal drilling machine is known from EP 0 598 139 A1 known that after a completely different Principle under completely different tax conditions is working. Unlike the horizontal drilling rigs, to which the present invention relates the drill head of the drilling rig of this publication Cut up that according to a conventional one Drilling process is rotated. The entire linkage of this Drilling device is constructed in a straight line, with a target drilling direction is specified via a laser beam. The drilling process can essentially be done with this drill done only in a straight line in one direction. A slight deviation from that caused by the laser beam given direction is using a fuzzy controller corrected. A tax opportunity for the There is no drilling on a cam track. The simpler form of movement as well as the completely different Movement dynamics of the drill with the document the associated much easier controllability compared to one type of horizontal drilling rig, to which the present invention relates rule it out that this document to the solution contributes to the above problem.
  • WO 97/31175 A relates to a pile driver for a Mole that was driven into the ground via a hammer mill becomes.
  • the drive head of the device is neither bevelled on one side and still rotating. The procedure to control this device can therefore not Contribute to solving the above problem.
  • the object of the present invention is therein, a method for controlling a horizontal drilling machine to indicate with a bevelled drill head that without the intervention of an experienced drill operator Drilling head automatically as precisely as possible on a preprogrammed Holds course and the target point independently of fluctuations in soil consistency as accurately as possible reached.
  • the drilling process should continue as possible take little time.
  • the drilling lance having an asymmetrically chamfered hollow drilling head with nozzles for a flushing liquid, in which the drilling head moves approximately linearly and without rotation on a curved path during the feed movement with uniform rotation moved, the orientation of which is given by the set rolling angle ⁇ xL of the drilling lance, actual values of control variables of the horizontal drilling machine are first measured, which include at least the rolling angle ⁇ xL , the inclination ⁇ yL and the azimuth ⁇ zL of the drilling lance.
  • Control signals for controlling at least the feed rate of the drill string and the angular position ⁇ x1 of a rotary motor for the drill string are determined from the actual values of the controlled variables and setpoints for the controlled variables, taking into account heuristic process values, using fuzzy logic, and the horizontal drilling machine is controlled with the control signals.
  • the controller for the horizontal drilling machine has an input interface for receiving actual values of controlled variables of the horizontal drilling machine.
  • control variables can be the roll angle, inclination and azimuth of the drill head as well as the current position of the drill head determined from these variables and the propulsion.
  • an output unit is provided which outputs the control signals for controlling the horizontal drilling machine.
  • the fuzzy controller is located between the input interface and the output unit. It determines the control signals from the actual values and the target values for the controlled variables by means of fuzzy logic, taking heuristic process values into account.
  • the heuristic process values are based, for example, on the experience of a long-time drill operator and contain an engineering description of the movement behavior of the drill head through blurred "if - then" relations to link the actual and target values with the corresponding control signals. This makes it possible to convert know-how gained over many years in the manual control of boring heads into an automatic control. This is particularly advantageous in the case of the control of the present horizontal drilling rigs, because the behavior of the drilling head largely eludes a physical - analytical description by means of dynamic models due to the various influence options.
  • the actual values of the controlled variables are measured by sensors that are attached to the drill head or the drill lance. Additional sensors can be provided, for example, on the drill pipe for determining the propulsion and the angle of rotation or the rotational speed of the pipe.
  • the process for controlling the horizontal drilling machine enables the drilling process to be carried out automatically with a high degree of accuracy.
  • the drill head can be kept very tight on the pre-programmed course regardless of fluctuations in soil properties.
  • the control thus enables the drilling process to be carried out independently of the use of an experienced drill guide. This eliminates fatigue-related fluctuations in the drilling speed and drilling accuracy, so that the drilling process can be completed in a shorter time.
  • the performance of the control system has already been demonstrated in test drilling.
  • the actual value itself is not subjected to the fuzzy control, but rather the difference between the actual value and the target value.
  • an optimization tool is used which is based on a neural network (NN).
  • NN neural network
  • the optimizing fuzzy controller is provided with an NN learning component. This consists of an adaptable NN model of the fuzzy controller and an NN model of the controlled system.
  • the NN controller model is now trained with representative training trajectories, for example with the target trajectory, until the model-actual trajectory can no longer be improved with respect to a selectable quality index.
  • the optimized fuzzy parameters are now loaded into the controller hardware. Then the automatic mode, i.e. the automatic control of the horizontal drilling machine, can begin.
  • the control for the horizontal drilling rig is preferably by a digital signal processor (DSP) implemented in which the fuzzy controller is implemented is.
  • DSP digital signal processor
  • This DSP is preferably coupled to a PC, via which any parameters can be entered.
  • the horizontal drilling system consists of a drilling lance 1 with a navigation sensor and a drill pipe 2 to which the drilling lance is attached.
  • the drill pipe is driven by a so-called Rig 3.
  • Reference numeral 4 indicates the floor area in which the drilling is to be carried out.
  • the horizontal drilling system is controlled via the fuzzy course control 7 with the support of an additional servo control 6.
  • the horizontal drilling rig used in this example is equipped with a rig that exerts a tensile force of 120 kN on the driving axis 5.
  • the drill pipe 2 is controlled with the drilling lance 1 at the tip using the rig.
  • the drill pipe 2 can be rotated about its longitudinal axis and, on the other hand, can be advanced in a translatory manner. These two degrees of freedom can be controlled independently of each other and allow targeted control of the drilling operation along a specified target route.
  • the drilling lance 1 has an asymmetrically shaped drilling tip, which is constructed like an asymmetrical wedge. In this way, the drilling process can be influenced in a targeted manner.
  • the outlet nozzles for the drilling fluid for example bentonite, can be arranged asymmetrically on the drilling lance, so that an asymmetrical solution of the soil is made possible directly in front of the drilling lance.
  • the horizontal drilling rig with this equipment if there are no other serious interferences ground control, two control modes.
  • the The current circular path of the drilling process depends on the first Approximation only from the set fixed Roll angle of the drilling lance 1, which is a very important one Represents process variable.
  • the control room of the drilling lance is in Figure 2 spatially for all possible roll angles shown. Mathematically this results in a torus with an inner radius of approximately 0 and one Outside radius of the order of 10 to 160 m lies. This outer radius depends on the soil physical parameters, the material of the Drill pipe, the mechanical form of the drilling lance and the set drilling process parameters on Horizontal drilling machine.
  • the Oil flow for the hydraulics is centralized Pressure pump generated.
  • the oil flow for the individual Hydraulic circuits is also using proportional valves electrical control electronics by means of mechanical Electrically operated lever.
  • the proportional valves have the property that they are independent of the oil flow of attacking disturbing forces and thus for the corresponding hydraulic circuit the speed set proportional to the valve position.
  • the drilling fluid is provided via a supply truck.
  • the system's actuators are three independent of each other adjustable hydraulic proportional valves, which are both manual and electrical (via electromagnetic Components) can be provided.
  • the valves are actuated in the present case Example of an analog interface card in the Control.
  • the hydraulic valves can also be operate manually.
  • a navigation sensor with a length of approx. 3 m and a weight of approx. 50 - 100 kg is mounted on the drilling lance, which has the three angle values ⁇ xL (roll angle of the lance), ⁇ yL (azimuth angle of the lance) and ⁇ xL ( Inclination angle of the lance) in a fixed world coordinate system (x L , y L , z L ). From these three angle values, the three-dimensional course of the drilling lance can be calculated in x, y, z world coordinates using the also measured propulsion.
  • two angle encoders are provided to record the position of the propulsion (x 1 ) and the roll angle ( ⁇ x1 ) on the rig.
  • the hydraulic pressures for propulsion and rotation as well as the bentonite pressure for drilling fluid are recorded using three pressure sensors.
  • a tachometer (frequency measurement) is used to measure the speed of rotation of the bentonite hydraulic motor. From Figure 1 further physical measured variables can be seen, which can optionally be recorded and included in the control. This applies in particular to the adjustment of the bentonite flow rate Q B and the pressure of the bentonite / water suspension P B.
  • the torque M x1 of the drill string can be detected.
  • Preferred control variables are the translatory path of the push cylinder (x1), the angular position of the rotary motor for the drill pipe ( ⁇ x1 ) and the volume flow of the bentonite / water suspension (Q B ).
  • FIG. 3 An example of the structure of the control of the presented horizontal drilling machine for automatic Course control of the drilling process is in Figure 3 shown.
  • the fuzzy control concept is based on one PC 8 in connection with a fast signal processor 10 implemented, the sensor and control side with the horizontal drilling machine is coupled. For coupling becomes a hardware and software interface adaptation created.
  • the control thus includes one Standard PC 8 with the appropriate software for operation and observing the drilling process.
  • Core of control is a digital signal processor system (DSP) 10, which is connected to the PC 8 by a PC bus 9 is.
  • DSP 10 controls the drilling process.
  • a hardware interface 11 with connection cable and distribution box between PC 8 and the Horizontal drilling system 12 is used for bidirectional Data exchange between the digital control and the Boring.
  • the control also includes a D / A converter 13, an A / D converter 14 and one Counter card 15. Be via the hardware interface 11 the actuators shown at the beginning, that is hydraulic proportional valves to control the Lance feed speed, the lance roll angle and the bentonite flow. Here is a servo control is also provided.

Abstract

Control apparatus for a horizontal boring tool is described which drives a boring lance via boring rods. The tool includes an input interface for receiving actual values of controlled variables of the horizontal boring tool, and an output unit for issuing control signals for controlling the horizontal boring tool. Between the input interface and the output unit is provided a fuzzy control unit which determines the control signals for activation of the horizontal boring tool from the actual values of the controlled variables and the desired values for the controlled variables by fuzzy logic while taking into account heuristic process values. The control apparatus permits automatic operation of the horizontal boring tool with good course steering and high precision.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Steuerung eines Horizontalbohrgerätes, das eine Bohrlanze über ein Bohrgestänge antreibt, wobei die Bohrlanze einen asymmetrisch abgeschrägten hohlen Bohrkopf mit Düsen für eine Spülflüssigkeit aufweist, und bei dem sich der Bohrkopf während der Vorschubbewegung bei gleichmäßiger Rotation annähernd geradlinig und ohne Rotation auf einer Kurvenbahn bewegt, deren Orientierung durch den eingestellten Rollwinkel der Bohrlanze gegeben ist.The present invention relates to a method to control a horizontal drilling machine, the one Drilling lance drives over a drill pipe, the Drilling lance an asymmetrically beveled hollow drill head having nozzles for a rinsing liquid, and at which the boring head during the feed movement smooth rotation almost straight and without Rotation on a cam track moves, their orientation by the set roll angle of the drilling lance given is.

Bei Anwendung konventioneller Tiefbautechnik ist die Neuverlegung von Rohren für Gase, Flüssigkeiten oder elektrische Leitungen mit erheblichen Kosten und Umweltbelastungen verbunden. Dies betrifft vor allem eine Trassenführung, die unter Straßen, Flüssen oder Gebäuden verlaufen soll. Die hohen Kosten resultieren sowohl aus den Primärkosten der erforderlichen Baumaßnahmen als auch aus den Folgekosten, verursacht durch Verkehrsstörungen oder sonstige Beeinträchtigungen des betroffenen Umfeldes. Durch grabenlose Verlegungstechniken lassen sich solche Kosten und Umweltbelastungen deutlich reduzieren. Hierfür werden unterschiedliche Bohrtechniken eingesetzt, mit denen die Öffnung des Erdreichs an der Oberfläche vermieden werden kann.When using conventional civil engineering the relocation of pipes for gases, liquids or electrical cables with considerable costs and Associated environmental pollution. This affects above all a route that runs under streets, rivers or Buildings should run. The high costs result both from the primary cost of the required construction as well as from the follow-up costs due to traffic disruptions or other impairments the affected environment. By trenchless Laying techniques can reduce such costs and Significantly reduce environmental pollution. For this be different drilling techniques used with which avoiding the opening of the soil on the surface can be.

Die vorliegende Erfindung bezieht sich hierbei auf Horizontalbohrverfahren, wie sie beispielsweise aus H.-J. Bayer, "Prinzipien des steuerbaren Horizontal-Spülbohrverfahrens", 3R international, Vol. 30 (1991), Nr. 9, S. 511-517, bekannt sind. Bei diesen Horizontalbohrverfahren wird ein zylindrischer hohler Bohrkopf, aus dem über Düsen eine Spülflüssigkeit wie beispielsweise Bentonit gepumpt wird, mit Hilfe eines stückweise verschraubten Bohrgestänges schräg in den Boden gedrückt. Durch eine Anschrägung des Bohrkopfes ist dieser nicht nur hinsichtlich der Vorschubgeschwindigkeit bzw. der Schubkraft steuerbar, sondern auch hinsichtlich seiner Bewegungsrichtung. Bei gleichmäßiger Rotation bewegt sich der Bohrkopf annähernd geradeaus. Wird der Bohrkopf während der Vorschubbewegung nicht gedreht, so bewegt er sich auf einer Kurvenbahn, deren Orientierung durch die Lage der Anschrägung vorgegeben ist. Durch diese Ausgestaltung ist die Steuerbarkeit des Bohrkopfes in jede Richtung gewährleistet. Je weiter sich der Bohrkopf von der hydraulischen Steuereinheit der Bohranlage entfernt, um so stärker wirken sich Spiel und Elastizität des Bohrgestänges auf das Systemverhalten hinsichtlich Genauigkeit und Stabilität negativ aus.The present invention relates to Horizontal drilling processes, such as those from H.-J. Bayer, "Principles of Controllable Horizontal Rinse Drilling", 3R international, vol. 30 (1991), No. 9, pp. 511-517. With these horizontal drilling methods becomes a cylindrical hollow drill head, from which a rinsing liquid such as, for example, is sprayed through nozzles Bentonite is pumped with the help of a piece screwed drill pipe at an angle into the ground pressed. By chamfering the drill head this not only with regard to the feed rate or the thrust controllable, but also in terms of its direction of movement. With more even The drill head moves approximately in rotation straight. Will the drill head during the feed motion not rotated, it moves on one Curve, the orientation of which is determined by the location of the Bevel is specified. Through this configuration is the controllability of the drill head in every direction guaranteed. The further the drill head is from the hydraulic control unit of the drilling rig removed to the play and elasticity of the drill pipe have a stronger effect on system behavior in terms of accuracy and stability.

Bei den bekannten Horizontalbohrgeräten des Standes der Technik wird der Bohrkopf bzw. die Bohrlanze über die vortriebsgeschwindigkeit und die Rotation des Bohrgestänges von einer Person, dem Bohrführer, gesteuert. Der Bohrführer erhält seine Information über die aktuelle Position und Lage des Bohrkopfes von entsprechenden Meßsensoren am Bohrkopf. Horizontalbohrgeräte verfügen hierzu über eine robuste hochauflösende Sensorik, die ständig die Orientierung des Bohrkopfes bezüglich eines ortsfesten Koordinatensystems durch Messung von Rollwinkel, Azimut und Inklination des Bohrkopfes mißt. Aus der aktuellen Länge des Bohrgestängestranges läßt sich in Verbindung mit den vorangegangenen Winkeländerungen des Bohrkopfes auch die jeweilige aktuelle kartesische Position des Bohrkopfes bestimmen. Neben der Position und Orientierung des Bohrkopfes können auch das Lastmoment des Bohrgestänges sowie der Druck einer eingespülten Bohrflüssigkeit über Sensoren erfaßt werden.In the known horizontal drilling rigs The drill head or the state of the art Drilling lance on the speed of advance and the Rotation of the drill pipe from one person to the Drill guide, controlled. The drill guide receives his Information about the current position and location of the Drilling head from corresponding measuring sensors on the drilling head. Horizontal drilling rigs have a robust one for this high-resolution sensors that constantly provide orientation the drill head with respect to a fixed coordinate system by measuring roll angle, azimuth and Inclination of the drill head measures. From the current The length of the drill string can be linked with the previous changes in the angle of the drill head also the current Cartesian position of the Determine the drill head. In addition to the position and orientation the drilling head can also the load moment of the Drill pipe as well as the pressure of a flushed Drilling fluid can be detected by sensors.

Das Bewegungsverhalten des Bohrkopfes ist sehr komplex und hängt stark von der momentanen Umgebung des Bohrkopfes, insbesondere der Konsistenz, dem Gefügeaufbau und dem Verdichtungsgrad des Bodenmaterials ab. Aufgrund dieser Komplexität erfordert eine hohe Bohrgüte vom Bohrführer ein hohes Maß an Geschicklichkeit. Unter Bohrgüte ist hierbei die möglichst genaue Einhaltung des vorgegebenen Bohrkurses unter Vermeidung von Kollisionen zu verstehen. Der Bohrführer muß hierbei aus den jeweiligen von den Sensoren übermittelten aktuellen Orientierungs- und Positionswerten bei Bedarf eine Korrektur der Vorschubgeschwindigkeit, der Rotation oder des Drehwinkels ableiten, und bei seinen Korrekturen das jeweilige momentane Verhalten des Bohrkopfes berücksichtigen. Die korrekte Bedienung eines derartigen Horizontalbohrgerätes erfordert daher langes Training und viel Erfahrung hinsichtlich des unterschiedlichen Untergrundverhaltens des Bohrgerätes. Die Qualität der Bohrung ist somit in starkem Maße von der jeweils als Bohrführer eingesetzten Person abhängig und unterliegt darüber hinaus ermüdungsabhängigen Schwankungen. Es besteht daher ein zunehmender Bedarf für eine Automatisierung des Steuerungsprozesses eines Horizontalbohrgerätes.
   Bisher war es jedoch aufgrund der hohen Komplexität des Bohrvorgangs nicht möglich, geeignete Steuerungsalgorithmen für eine Steuerung eines derartigen Horizontalbohrgerätes zu finden.
The movement behavior of the drill head is very complex and strongly depends on the current environment of the drill head, in particular the consistency, the structure and the degree of compaction of the soil material. Because of this complexity, a high drilling quality requires a high degree of skill from the drill operator. In this case, drilling quality is to be understood as the most exact adherence to the specified drilling course while avoiding collisions. If necessary, the drill operator must derive a correction of the feed rate, the rotation or the angle of rotation from the respective current orientation and position values transmitted by the sensors, and must take into account the current behavior of the drill head in his corrections. The correct operation of such a horizontal drilling machine therefore requires long training and a lot of experience with regard to the different underground behavior of the drilling machine. The quality of the drilling is therefore largely dependent on the person who is used as the drill operator and is also subject to fatigue-related fluctuations. There is therefore an increasing need for automation of the control process of a horizontal drilling machine.
Until now, however, due to the high complexity of the drilling process, it has not been possible to find suitable control algorithms for controlling such a horizontal drilling machine.

Aus der EP 0 598 139 A1 ist ein Horizontalbohrgerät bekannt, das nach einem vollkommen anderen Prinzip unter vollkommen anderen Steuerbedingungen arbeitet. Im Gegensatz zu den Horizontalbohrgeräten, auf die sich die vorliegende Erfindung bezieht, weist der Bohrkopf des Bohrgerätes dieser Druckschrift eine Schneide auf, die entsprechend einem herkömmlichen Bohrvorgang rotiert wird. Das gesamte Gestänge dieses Bohrgerätes ist geradlinig aufgebaut, wobei eine Sollbohrrichtung über einen Laserstrahl vorgegeben wird. Der Bohrvorgang kann mit diesem Bohrgerät im Wesentlichen nur geradlinig in einer Richtung erfolgen. Eine leichte Abweichung von der durch den Laserstrahl vorgegebenen Richtung wird unter Einsatz eines Fuzzy-Reglers korrigiert. Eine Steuermöglichkeit für die Bohrung auf einer Kurvenbahn besteht nicht. Die einfachere Bewegungsform sowie die vollkommen andere Bewegungsdynamik des Bohrgerätes der Druckschrift mit der damit verbundenen wesentlich einfacheren Steuerbarkeit im Vergleich zu einem Typ von Horizontalbohrgerät, auf den sich die vorliegende Erfindung bezieht, schließen es aus, dass diese Druckschrift zur Lösung der obigen Problematik beiträgt.A horizontal drilling machine is known from EP 0 598 139 A1 known that after a completely different Principle under completely different tax conditions is working. Unlike the horizontal drilling rigs, to which the present invention relates the drill head of the drilling rig of this publication Cut up that according to a conventional one Drilling process is rotated. The entire linkage of this Drilling device is constructed in a straight line, with a target drilling direction is specified via a laser beam. The drilling process can essentially be done with this drill done only in a straight line in one direction. A slight deviation from that caused by the laser beam given direction is using a fuzzy controller corrected. A tax opportunity for the There is no drilling on a cam track. The simpler form of movement as well as the completely different Movement dynamics of the drill with the document the associated much easier controllability compared to one type of horizontal drilling rig, to which the present invention relates rule it out that this document to the solution contributes to the above problem.

Die WO 97/31175 A betrifft ein Rammgerät für eine Mole, das über ein Hammerwerk im Untergrund vorgetrieben wird. Der Vortriebskopf des Gerätes ist weder einseitig abgeschrägt noch rotiert er. Das Verfahren zur Steuerung dieses Gerätes kann daher nicht zur Lösung der obigen Problematik beitragen.WO 97/31175 A relates to a pile driver for a Mole that was driven into the ground via a hammer mill becomes. The drive head of the device is neither bevelled on one side and still rotating. The procedure to control this device can therefore not Contribute to solving the above problem.

Die Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren zur Steuerung eines Horizontalbohrgerätes mit abgeschrägtem Bohrkopf anzugeben, das ohne das Eingreifen eines erfahrenen Bohrführers den Bohrkopf automatisch möglichst genau auf einem vorprogrammierten Kurs hält und den Zielpunkt unabhängig von Schwankungen der Bodenkonsistenz möglichst genau erreicht. Der Bohrvorgang soll weiterhin möglichst wenig Zeit in Anspruch nehmen.The object of the present invention is therein, a method for controlling a horizontal drilling machine to indicate with a bevelled drill head that without the intervention of an experienced drill operator Drilling head automatically as precisely as possible on a preprogrammed Holds course and the target point independently of fluctuations in soil consistency as accurately as possible reached. The drilling process should continue as possible take little time.

Die Aufgabe wird mit dem Verfahren nach Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen des Verfahrens sind Gegenstand der Unteransprüche.The object is achieved with the method according to claim 1 solved. Advantageous refinements of the method are the subject of the subclaims.

Bei dem Verfahren zur Steuerung eines Horizontalbohrgerätes, das eine Bohrlanze über ein Bohrgestänge antreibt, wobei die Bohrlanze einen asymmetrisch abgeschrägten hohlen Bohrkopf mit Düsen für eine Spülflüssigkeit aufweist, bei dem sich der Bohrkopf während der Vorschubbewegung bei gleichmäßiger Rotation annähernd geradlinig und ohne Rotation auf einer Kurvenbahn bewegt, deren Orientierung durch den eingestellten Rollwinkel ϕxL der Bohrlanze gegeben ist, werden zunächst Istwerte von Regelgrößen des Horizontalbohrgerätes gemessen, die zumindest den Rollwinkel ϕxL, die Inklination ϕyL und den Azimut ϕzL der Bohrlanze umfassen. Aus den Istwerten der Regelgrößen und Sollwerten für die Regelgrößen werden unter Berücksichtigung heuristischer Verfahrenswerte mittels Fuzzy-Logik Steuersignale zur Steuerung zumindest der Vorschubgeschwindigkeit des Bohrgestänges und der Winkelstellung ϕx1 eines Drehmotors für das Bohrgestänge bestimmt und das Horizontalbohrgerät mit den Steuersignalen angesteuert.In the method for controlling a horizontal drilling machine that drives a drilling lance via a drill pipe, the drilling lance having an asymmetrically chamfered hollow drilling head with nozzles for a flushing liquid, in which the drilling head moves approximately linearly and without rotation on a curved path during the feed movement with uniform rotation moved, the orientation of which is given by the set rolling angle ϕ xL of the drilling lance, actual values of control variables of the horizontal drilling machine are first measured, which include at least the rolling angle ϕ xL , the inclination ϕ yL and the azimuth ϕ zL of the drilling lance. Control signals for controlling at least the feed rate of the drill string and the angular position ϕ x1 of a rotary motor for the drill string are determined from the actual values of the controlled variables and setpoints for the controlled variables, taking into account heuristic process values, using fuzzy logic, and the horizontal drilling machine is controlled with the control signals.

Die Steuerung für das Horizontalbohrgerät weist eine Eingangsschnittstelle zum Empfangen von Ist-Werten von Regelgrößen des Horizontalbohrgerätes auf. Derartige Regelgrößen können Rollwinkel, Inklination und Azimut des Bohrkopfes sowie die aus diesen Größen und dem Vortrieb ermittelte aktuelle Position des Bohrkopfes sein. Weiterhin ist eine Ausgabeeinheit vorgesehen, die die Steuersignale zur Ansteuerung des Horizontalbohrgerätes ausgibt. Zwischen der Eingangsschnittstelle und der Ausgabeeinheit befindet sich der Fuzzy-Regler, der die Steuersignale aus den Ist-Werten und den Soll-Werten für die Regelgrößen unter Berücksichtigung heuristischer Verfahrenswerte mittels Fuzzy-Logik bestimmt. Die heuristischen Verfahrenswerte beruhen beispielsweise auf den Erfahrungen eines langjährigen Bohrführers und beinhalten eine ingenieurmäßige Beschreibung des Bewegungsverhaltens des Bohrkopfes durch unscharfe "wenn - dann" - Relationen zur Verknüpfung der Ist- und Soll-Werte mit entsprechenden Steuersignalen. Hierdurch ist es möglich, langjährig gesammeltes Know-how bei der manuellen Steuerung von Bohrköpfen in eine automatische Steuerung umzusetzen. Dies ist gerade im Fall der Steuerung der vorliegenden Horizontalbohrgeräte von Vorteil, da sich das Verhalten des Bohrkopfes aufgrund der vielfältigen Einflußmöglichkeiten weitgehend einer physikalisch - analytischen Beschreibung durch dynamische Modelle entzieht.
   Die Ist-Werte der Regelgrößen werden durch Sensoren gemessen, die am Bohrkopf bzw. der Bohrlanze angebracht sind. Weitere Sensoren können beispielsweise am Bohrgestänge zur Ermittlung des Vortriebes und des Drehwinkels oder der Rotationsgeschwindigkeit des Gestänges vorgesehen sein.
The controller for the horizontal drilling machine has an input interface for receiving actual values of controlled variables of the horizontal drilling machine. Such control variables can be the roll angle, inclination and azimuth of the drill head as well as the current position of the drill head determined from these variables and the propulsion. Furthermore, an output unit is provided which outputs the control signals for controlling the horizontal drilling machine. The fuzzy controller is located between the input interface and the output unit. It determines the control signals from the actual values and the target values for the controlled variables by means of fuzzy logic, taking heuristic process values into account. The heuristic process values are based, for example, on the experience of a long-time drill operator and contain an engineering description of the movement behavior of the drill head through blurred "if - then" relations to link the actual and target values with the corresponding control signals. This makes it possible to convert know-how gained over many years in the manual control of boring heads into an automatic control. This is particularly advantageous in the case of the control of the present horizontal drilling rigs, because the behavior of the drilling head largely eludes a physical - analytical description by means of dynamic models due to the various influence options.
The actual values of the controlled variables are measured by sensors that are attached to the drill head or the drill lance. Additional sensors can be provided, for example, on the drill pipe for determining the propulsion and the angle of rotation or the rotational speed of the pipe.

Bei dem erfindungsgemäßen Verfahren werden die Ist-Werte der Regelgrößen des Horizontalbohrgerätes gemessen, aus den Ist-Werten und Soll-Werten für die Regelgrößen unter Berücksichtigung heuristischer Verfahrenswerte mittels Fuzzy-Logik Steuersignale zur Ansteuerung des Horizontalbohrgerätes bestimmt, und das Horizontalbohrgerät mit den Steuersignalen angesteuert.In the method according to the invention, the Actual values of the controlled variables of the horizontal drilling machine measured, from the actual values and target values for the Control variables taking heuristic into account Process values using fuzzy logic control signals Control of the horizontal drilling machine determined, and that Horizontal drilling machine controlled with the control signals.

Das Verfahren zur Steuerung des Horizontalbohrgerätes ermöglicht die automatische Durchführung des Bohrvorganges mit einer hohen Zielgenauigkeit. Der Bohrkopf kann durch die Steuerung sehr eng und unabhängig von Schwankungen in den Bodeneigenschaften auf einem vorprogrammierten Kurs gehalten werden. Die Steuerung ermöglicht somit das Durchführen des Bohrvorganges unabhängig vom Einsatz eines erfahrenen Bohrführers. Ermüdungsbedingte Schwankungen in der Bohrgeschwindigkeit und der Bohrgenauigkeit entfallen damit, so daß der Bohrvorgang in kürzerer Zeit abgeschlossen werden kann.
   Die Leistungsfähigkeit der Steuerung konnte bei Versuchsbohrungen bereits unter Beweis gestellt werden.
The process for controlling the horizontal drilling machine enables the drilling process to be carried out automatically with a high degree of accuracy. The drill head can be kept very tight on the pre-programmed course regardless of fluctuations in soil properties. The control thus enables the drilling process to be carried out independently of the use of an experienced drill guide. This eliminates fatigue-related fluctuations in the drilling speed and drilling accuracy, so that the drilling process can be completed in a shorter time.
The performance of the control system has already been demonstrated in test drilling.

In einer vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens wird nicht, wie bei anderen Fuzzy-Regelungskonzepten, der Ist-Wert selbst der Fuzzy-Regelung unterworfen, sondern die Differenz aus Ist-Wert und Soll-Wert.
   In einer weiteren vorteilhaften Ausführungsform wird ein Optimierungswerkzeug eingesetzt, das auf einem neuronalen Netz (NN) basiert. Bei diesem Ansatz wird dem optimierenden Fuzzy-Regler eine NN-Lernkomponente zur Seite gestellt. Diese besteht aus einem adaptionsfähigen NN-Modell des Fuzzy-Reglers sowie einem NN-Modell der Regelstrecke. In einer dem Automatikbetrieb vorangehenden Trainingsphase wird nun das NN-Reglermodell mit repräsentativen Trainingstrajektorien, beispielsweise mit der Soll-Trajektorie, so lange trainiert, bis die Modell-Ist-Trajektorie bezüglich eines wählbaren Güteindex nicht mehr verbessert werden kann. Die optimierten Fuzzy-Parameter werden nun in die Regler-Hardware geladen. Anschließend kann der Automatikbetrieb, das heißt die automatische Steuerung des Horizontalbohrgerätes, beginnen.
In an advantageous embodiment of the method according to the invention, as is the case with other fuzzy control concepts, the actual value itself is not subjected to the fuzzy control, but rather the difference between the actual value and the target value.
In a further advantageous embodiment, an optimization tool is used which is based on a neural network (NN). With this approach, the optimizing fuzzy controller is provided with an NN learning component. This consists of an adaptable NN model of the fuzzy controller and an NN model of the controlled system. In a training phase preceding the automatic mode, the NN controller model is now trained with representative training trajectories, for example with the target trajectory, until the model-actual trajectory can no longer be improved with respect to a selectable quality index. The optimized fuzzy parameters are now loaded into the controller hardware. Then the automatic mode, i.e. the automatic control of the horizontal drilling machine, can begin.

Die Steuerung für das Horizontalbohrgerät wird vorzugsweise durch einen digitalen Signalprozessor (DSP) realisiert, in den der Fuzzy-Regler implementiert ist. Dieser DSP ist vorzugsweise an einen PC gekoppelt, über den etwaige Parameter eingegeben werden können.The control for the horizontal drilling rig is preferably by a digital signal processor (DSP) implemented in which the fuzzy controller is implemented is. This DSP is preferably coupled to a PC, via which any parameters can be entered.

Die Steuerung für das Horizontalbohrgerät sowie das Verfahren zur Steuerung des Gerätes werden nachfolgend anhand eines Ausführungsbeispiels ohne Einschränkung des allgemeinen Erfindungsgedankens nochmals erläutert. Hierbei zeigen:

Figur 1
eine schematische Darstellung zur Kursregelung eines Horizontalbohrgerätes mit den zugehörigen Steuer- und Zustandsgrößen;
Figur 2
die räumliche Darstellung des Steuerraums einer Bohrlanze in Abhängigkeit vom Rollwinkel; und
Figur 3
eine schematische Darstellung eines Beispiels für die Komponenten einer Steuerung eines Horizontalbohrgerätes.
The control for the horizontal drilling device and the method for controlling the device are explained again below using an exemplary embodiment without restricting the general inventive concept. Here show:
Figure 1
a schematic representation of the course control of a horizontal drilling machine with the associated control and status variables;
Figure 2
the spatial representation of the control room of a drilling lance depending on the roll angle; and
Figure 3
is a schematic representation of an example of the components of a control system of a horizontal drilling machine.

Im vorliegenden Beispiel wird die Steuerung für ein in Figur 1 gezeigtes Horizontalbohrsystem erläutert. Das Horizontalbohrsystem besteht aus einer Bohrlanze 1 mit einem Navigationssensor sowie einem Bohrgestänge 2, an dem die Bohrlanze befestigt ist. Das Bohrgestänge über ein sogenanntes Rig 3 angetrieben. Bezugszeichen 4 gibt den Bodenbereich an, in dem die Bohrung vorgenommen werden soll. Das Horizontalbohrsystem wird über die Fuzzy-Kursregelung 7 mit Unterstützung einer zusätzlichen Servoregelung 6 angesteuert.
   Das in diesem Beispiel eingesetzte Horizontalbohrgerät ist mit einem Rig ausgestattet, das eine Zugkraft von 120 kN auf die Vortriebsachse 5 ausübt. Beim Bohrvortrieb wird das Bohrgestänge 2 mit der Bohrlanze 1 an der Spitze mit Hilfe des Rigs gesteuert. Das Bohrgestänge 2 kann dabei zum einen rotatorisch um seine Längsachse gedreht und zum anderen translatorisch vorgeschoben werden. Diese beiden Freiheitsgrade sind unabhängig voneinander steuerbar und erlauben eine gezielte Steuerung des Bohrvortriebs entlang einer festgelegten Solltrasse.
   Die Bohrlanze 1 weist im vorliegenden Beispiel eine asymmetrisch geformte Bohrspitze auf, die wie ein asymmetrischer Keil aufgebaut ist. Hierdurch kann der Bohrverlauf gezielt beeinflußt werden. Weiterhin können die Austrittsdüsen für die Bohrflüssigkeit, beispielsweise Bentonit, asymmetrisch an der Bohrlanze angeordnet sein, so daß eine unsymmetrische Lösung des Bodens unmittelbar vor der Bohrlanze ermöglicht wird.
In the present example, the control for a horizontal drilling system shown in FIG. 1 is explained. The horizontal drilling system consists of a drilling lance 1 with a navigation sensor and a drill pipe 2 to which the drilling lance is attached. The drill pipe is driven by a so-called Rig 3. Reference numeral 4 indicates the floor area in which the drilling is to be carried out. The horizontal drilling system is controlled via the fuzzy course control 7 with the support of an additional servo control 6.
The horizontal drilling rig used in this example is equipped with a rig that exerts a tensile force of 120 kN on the driving axis 5. When drilling, the drill pipe 2 is controlled with the drilling lance 1 at the tip using the rig. On the one hand, the drill pipe 2 can be rotated about its longitudinal axis and, on the other hand, can be advanced in a translatory manner. These two degrees of freedom can be controlled independently of each other and allow targeted control of the drilling operation along a specified target route.
In the present example, the drilling lance 1 has an asymmetrically shaped drilling tip, which is constructed like an asymmetrical wedge. In this way, the drilling process can be influenced in a targeted manner. Furthermore, the outlet nozzles for the drilling fluid, for example bentonite, can be arranged asymmetrically on the drilling lance, so that an asymmetrical solution of the soil is made possible directly in front of the drilling lance.

Das Horizontalbohrgerät mit dieser Ausstattung hat, wenn keine sonstigen schwerwiegenden Störeinflüsse des Bodens hinzukommen, zwei Steuermodi. Der Bohrvortrieb läuft annähernd geradlinig, wenn das Bohrgestänge rotierend vorgeschoben wird. Wird das Bohrgestänge nur vorgetrieben ohne zu rotieren, so verläuft der Bohrvortrieb annähernd kreisförmig. Die momentane Kreisbahn des Bohrverlaufs hängt in erster Näherung nur von dem eingestellten feststehenden Rollwinkel der Bohrlanze 1 ab, der eine sehr wichtige Prozeßgröße darstellt. Der Steuerraum der Bohrlanze ist in Figur 2 für alle möglichen Rollwinkel räumlich dargestellt. Mathematisch ergibt sich hierbei ein Torus mit einem Innenradius von annähernd 0 und einem Außenradius der in der Größenordnung von 10 bis 160 m liegt. Dieser Außenradius ist abhängig von den bodenphysikalischen Parametern, dem Material des Bohrgestänges, der mechanischen Form der Bohrlanze sowie den eingestellten Bohrprozeßparametern am Horizontalbohrgerät.The horizontal drilling rig with this equipment if there are no other serious interferences ground control, two control modes. The boring runs almost straight if that Rotating drill pipe is advanced. Will that Boring rods only driven without rotating, see above the drilling progress is approximately circular. The The current circular path of the drilling process depends on the first Approximation only from the set fixed Roll angle of the drilling lance 1, which is a very important one Represents process variable. The control room of the drilling lance is in Figure 2 spatially for all possible roll angles shown. Mathematically this results in a torus with an inner radius of approximately 0 and one Outside radius of the order of 10 to 160 m lies. This outer radius depends on the soil physical parameters, the material of the Drill pipe, the mechanical form of the drilling lance and the set drilling process parameters on Horizontal drilling machine.

Das Rotieren und Vortreiben des Bohrgestänges 2 erfolgt mit Hilfe von Hydraulikzylindern für den Vortrieb und einem Hydraulikmotor für die Rotation. Der Ölfluß für die Hydraulik wird mit einer zentralen Druckpumpe erzeugt. Der Ölfluß für die einzelnen Hydraulikkreise wird über Proportionalventile mit elektrischer Ansteuerelektronik mittels mechanischer Hebel elektrisch fernbedient. Die Proportionalventile haben die Eigenschaft, daß sie den Ölfluß unabhängig von angreifenden Störkräften einprägen und somit für den entsprechenden Hydraulikkreis die Geschwindigkeit proportional zu der Ventilstellung einstellen. Entsprechendes gilt für den Durchfluß der Bohrflüssigkeit der mittels eines Hydraulikmotors und eines Pumpenmotors eingestellt wird. Die Bohrspülflüssigkeit wird über einen Versorgungs-LKW zur Verfügung gestellt. Die Aktoren des Systems sind drei unabhängig voneinander einstellbare hydraulische Proportionalventile, die sowohl manuell als auch elektrisch (über elektromagnetische Komponenten) gestellt werden können. Die Ansteuerung der Ventile erfolgt im vorliegenden Beispiel über eine analoge Interfacekarte in der Steuerung. Die Hydraulikventile lassen sich auch manuell bedienen.Rotating and advancing the drill string 2 takes place with the help of hydraulic cylinders for the Propulsion and a hydraulic motor for rotation. The Oil flow for the hydraulics is centralized Pressure pump generated. The oil flow for the individual Hydraulic circuits is also using proportional valves electrical control electronics by means of mechanical Electrically operated lever. The proportional valves have the property that they are independent of the oil flow of attacking disturbing forces and thus for the corresponding hydraulic circuit the speed set proportional to the valve position. The same applies to the flow of the drilling fluid that by means of a hydraulic motor and a Pump motor is set. The drilling fluid is provided via a supply truck. The system's actuators are three independent of each other adjustable hydraulic proportional valves, which are both manual and electrical (via electromagnetic Components) can be provided. The The valves are actuated in the present case Example of an analog interface card in the Control. The hydraulic valves can also be operate manually.

Die Überwachung und Messung der verschiedenen Systemzustände erfolgt mit unterschiedlichen Sensoren. So ist ein Navigationssensor mit einer Länge von ca. 3 m und einem Gewicht von ca. 50 - 100 kg an der Bohrlanze montiert, der die drei Winkelwerte ϕxL (Rollwinkel der Lanze), ϕyL (Azimutwinkel der Lanze) und ϕxL (Inklinationswinkel der Lanze) in einem festen Weltkoordinatensystem (xL, yL, zL) liefert. Aus diesen drei Winkelwerten läßt sich über den ebenfalls gemessenen Vortrieb der dreidimensionale Kursverlauf der Bohrlanze in x-, y-, z- Weltkoordinaten berechnen. Weiterhin sind zwei Winkelkodierer zur Erfassung der Position des Vortriebs (x1) und des Rollwinkels (ϕx1) auf dem Rig vorgesehen. Mittels dreier Drucksensoren werden die Hydraulikdrücke für den Vortrieb und die Rotation sowie der Bentonitdruck für Bohrspülflüssigkeit erfaßt. Ein Drehzahlmesser (Frequenzmessung) dient der Messung der Drehgeschwindigkeit des Bentonit-Hydraulik-Motors.
   Aus Figur 1 sind weitere physikalische Meßgrößen ersichtlich, die gegebenenfalls erfaßt und in die Regelung einbezogen werden können. Dies betrifft insbesondere die Einstellung der Bentonit-Durchflußmenge QB und des Druckes der Bentonit/ Wassersuspension PB. Weiterhin kann das Drehmoment Mx1 des Bohrgestänges erfaßt werden.
   Bevorzugte Steuergrößen sind der translatorische Weg des Schubzylinders (x1), die Winkelstellung des Drehmotors für das Bohrgestänge (ϕx1) sowie der Volumenstrom der Bentonit/Wassersuspension (QB).
The various system states are monitored and measured using different sensors. A navigation sensor with a length of approx. 3 m and a weight of approx. 50 - 100 kg is mounted on the drilling lance, which has the three angle values ϕ xL (roll angle of the lance), ϕ yL (azimuth angle of the lance) and ϕ xL ( Inclination angle of the lance) in a fixed world coordinate system (x L , y L , z L ). From these three angle values, the three-dimensional course of the drilling lance can be calculated in x, y, z world coordinates using the also measured propulsion. Furthermore, two angle encoders are provided to record the position of the propulsion (x 1 ) and the roll angle (ϕ x1 ) on the rig. The hydraulic pressures for propulsion and rotation as well as the bentonite pressure for drilling fluid are recorded using three pressure sensors. A tachometer (frequency measurement) is used to measure the speed of rotation of the bentonite hydraulic motor.
From Figure 1 further physical measured variables can be seen, which can optionally be recorded and included in the control. This applies in particular to the adjustment of the bentonite flow rate Q B and the pressure of the bentonite / water suspension P B. Furthermore, the torque M x1 of the drill string can be detected.
Preferred control variables are the translatory path of the push cylinder (x1), the angular position of the rotary motor for the drill pipe (ϕ x1 ) and the volume flow of the bentonite / water suspension (Q B ).

Ein Beispiel für die Struktur der Steuerung des vorgestellten Horizontalbohrgerätes zur automatischen Kursregelung des Bohrverlaufs ist in Figur 3 dargestellt. Das Fuzzy-Regelungskonzept wird auf einem PC 8 in Verbindung mit einem schnellen Signalprozessor 10 implementiert, der sensor- und steuerungsseitig mit dem Horizontalbohrgerät gekoppelt ist. Zur Kopplung wird eine hard- und softwaremäßige Schnittstellenanpassung geschaffen. Die Steuerung umfaßt somit einen Standard-PC 8 mit der passenden Software zum Bedienen und Beobachten des Bohrprozesses. Kern der Steuerung ist ein digitales Signalprozessorsystem (DSP) 10, welches durch einen PC-Bus 9 mit dem PC 8 verbunden ist. Der DSP 10 übernimmt die Regelung des Bohrvorgangs. Ein Hardware-Interface 11 mit Verbindungskabel und Verteilerkasten zwischen PC 8 und dem Horizontalbohrsystem 12 dient dem bidirektionalen Datenaustausch zwischen der digitalen Steuerung und dem Horizontalbohrsystem. Weiterhin umfaßt die Steuerung einen D/A-Wandler 13, einen A/D-Wandler 14 sowie eine Zählerkarte 15. Über das Hardware-Interface 11 werden die eingangs dargestellten Aktoren, das heißt die hydraulischen Proportionalventile zur Steuerung der Lanzen-Vorschubgeschwindigkeit, des Lanzen-Rollwinkels und des Bentonitdurchflusses angesteuert. Hierbei ist zusätzlich eine Servoregelung vorgesehen.An example of the structure of the control of the presented horizontal drilling machine for automatic Course control of the drilling process is in Figure 3 shown. The fuzzy control concept is based on one PC 8 in connection with a fast signal processor 10 implemented, the sensor and control side with the horizontal drilling machine is coupled. For coupling becomes a hardware and software interface adaptation created. The control thus includes one Standard PC 8 with the appropriate software for operation and observing the drilling process. Core of control is a digital signal processor system (DSP) 10, which is connected to the PC 8 by a PC bus 9 is. The DSP 10 controls the drilling process. A hardware interface 11 with connection cable and distribution box between PC 8 and the Horizontal drilling system 12 is used for bidirectional Data exchange between the digital control and the Boring. The control also includes a D / A converter 13, an A / D converter 14 and one Counter card 15. Be via the hardware interface 11 the actuators shown at the beginning, that is hydraulic proportional valves to control the Lance feed speed, the lance roll angle and the bentonite flow. Here is a servo control is also provided.

Claims (8)

  1. A method for controlling a horizontal boring tool, which drives a boring lance (1) via boring rods (2), with said boring lance (1) having an asymmetrically slanted hollow boring head having nozzles for a rinsing fluid, wherein
    when advancing said boring head moves straight if rotation is uniform and on a curved path if there is no rotation, the orientation of said curved path is given by a set roll angle jxL of said boring lance (1),
    actual values of the control variables of said horizontal boring tool are measured, said control variables comprising at least said roll angle jxL, the inclination angle jyL and the azimuth jzL, of said boring lance (1) of said horizontal boring tool are measured,
    the control signals for the control of at least the rate of advancing of said boring rods (2) and the angle jxl of a torque motor for said boring rods (2) are determined from the actual values of said control variables and the desired values for said control variables by means of fuzzy logic while taking into account heuristic process values, and
    said horizontal boring tool is activated by said control signals.
  2. A method according to claim 1,
    whereinhe variance between said desired values and said actual values are subjected to a fuzzy control and said control signals are determined therefrom.
  3. A method according to claim 1 or 2,
    wherein said control variables include the orientation and/or the position of said boring lance (1).
  4. A method according to one of the claims 1 to 3,
    wherein said control variables include the rate of advancing and/or the torque of said boring rods (2).
  5. A method according to one of the claims 1 to 4,
    wherein said control variables include the flow volume and/or the pressure of a boring fluid conveyed to said boring lance (1).
  6. A method according to one of the claims 1 to 5,
    wherein said fuzzy control unit is optimized prior to initial activation of said horizontal boring tool while utilizing a model of a neuronal network.
  7. A method according to one of the claims 1 to 6,
    wherein dynamic desired values relating to the temporal course of the boring procedure being provided as said desired values.
  8. A method according to one of the claims 1 to 7,
    wherein the advancing and/or the rotation of said boring tools (2) and/or the flowing of a rinsing boring fluid are controlled by said control signals.
EP99953710A 1998-09-23 1999-08-31 Method for controlling a horizontal drilling machine Expired - Lifetime EP1117901B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19843639 1998-09-23
DE19843639 1998-09-23
PCT/DE1999/002797 WO2000017487A1 (en) 1998-09-23 1999-08-31 Control mechanism for a horizontal drilling machine

Publications (2)

Publication Number Publication Date
EP1117901A1 EP1117901A1 (en) 2001-07-25
EP1117901B1 true EP1117901B1 (en) 2003-12-03

Family

ID=7881977

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99953710A Expired - Lifetime EP1117901B1 (en) 1998-09-23 1999-08-31 Method for controlling a horizontal drilling machine

Country Status (5)

Country Link
US (1) US6772134B1 (en)
EP (1) EP1117901B1 (en)
AT (1) ATE255676T1 (en)
DE (2) DE19941197C2 (en)
WO (1) WO2000017487A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6315062B1 (en) 1999-09-24 2001-11-13 Vermeer Manufacturing Company Horizontal directional drilling machine employing inertial navigation control system and method
US6424919B1 (en) 2000-06-26 2002-07-23 Smith International, Inc. Method for determining preferred drill bit design parameters and drilling parameters using a trained artificial neural network, and methods for training the artificial neural network
GB2371625B (en) 2000-09-29 2003-09-10 Baker Hughes Inc Method and apparatus for prediction control in drilling dynamics using neural network
WO2002035048A1 (en) * 2000-10-27 2002-05-02 Vermeer Manufacturing Company Solid-state inertial navigation control system for a horizontal drilling machine
NL1017128C2 (en) * 2001-01-16 2002-07-17 Brownline B V Measuring system, for horizontal or vertical drilling, comprises measuring unit with fibre optic or ring laser gyroscopes, microelectromechanical system or tempo sensor
GB2417792B (en) * 2003-03-31 2007-05-09 Baker Hughes Inc Real-time drilling optimization based on mwd dynamic measurements
US7730967B2 (en) 2004-06-22 2010-06-08 Baker Hughes Incorporated Drilling wellbores with optimal physical drill string conditions
US20070240599A1 (en) * 2006-04-17 2007-10-18 Owen Oil Tools Lp High density perforating gun system producing reduced debris
WO2010151242A1 (en) * 2009-06-26 2010-12-29 Atlas Copco Rock Drills Ab Control system and rock drill rig
CN102226400B (en) * 2011-05-31 2012-09-12 中铁隧道装备制造有限公司 Method and system for preventing clamping stagnation of shield body due to too large frictional resistance in earth pressure balance shield machine
CN102852510B (en) * 2012-09-07 2016-02-24 三一重型装备有限公司 Auxiliary driller's system and rig
US20170130569A1 (en) * 2015-11-10 2017-05-11 Michael Sequino System for forming a horizontal well for environmental remediation and method of operation
CN106986142B (en) * 2017-01-23 2018-10-19 中国矿业大学 Based on pull pressure sensor fully mechanized coal face drag conveyor automatic alignment device and method
US10202261B2 (en) 2017-04-18 2019-02-12 Kuwait University Heuristic fuzzy controller for gantry cranes
US11085295B2 (en) * 2019-01-24 2021-08-10 Huaneng Tibet Yarlungzangbo River Hydropower Development Investment Co., Ltd. Tunnel boring robot and remote mobile terminal command system
WO2022087387A1 (en) 2020-10-22 2022-04-28 Terra Sonic International, LLC Sonic-powered methods for horizontal directional drilling
AT525280B1 (en) * 2021-09-07 2023-02-15 Putscher Daniel Process for controlling a horizontal drilling rig

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4694913A (en) * 1986-05-16 1987-09-22 Gas Research Institute Guided earth boring tool
JPH07103781B2 (en) * 1990-04-19 1995-11-08 株式会社小松製作所 How to operate a small diameter underground machine
JPH07119550B2 (en) * 1990-07-09 1995-12-20 株式会社小松製作所 Control method of tunnel machine
JPH07119551B2 (en) * 1990-07-13 1995-12-20 株式会社小松製作所 Driving support device for excavation type underground excavator
US6417666B1 (en) * 1991-03-01 2002-07-09 Digital Control, Inc. Boring tool tracking system and method using magnetic locating signal and wire-in-pipe data
US5337002A (en) * 1991-03-01 1994-08-09 Mercer John E Locator device for continuously locating a dipole magnetic field transmitter and its method of operation
JPH05141185A (en) * 1991-11-22 1993-06-08 Komatsu Ltd Automatic propulsion unit for small diameter pipe pusher and control method therefor
EP0598139A4 (en) 1992-06-22 1998-01-07 Komatsu Mfg Co Ltd Control apparatus for excavators.
US5553680A (en) * 1995-01-31 1996-09-10 Hathaway; Michael D. Horizontal drilling apparatus
GB9603982D0 (en) 1996-02-26 1996-04-24 Univ Aberdeen Moling apparatus and a ground sensing system therefor
DE19632401A1 (en) * 1996-08-12 1998-02-19 Delmag Maschinenfabrik Drill
DE19707286C1 (en) * 1997-02-24 1998-11-19 Flowtex Technologie Gmbh Device and method for trenchless laying of stoneware pipes

Also Published As

Publication number Publication date
EP1117901A1 (en) 2001-07-25
ATE255676T1 (en) 2003-12-15
DE19941197A1 (en) 2000-04-06
WO2000017487A1 (en) 2000-03-30
DE19941197C2 (en) 2003-12-04
DE59907960D1 (en) 2004-01-15
US6772134B1 (en) 2004-08-03

Similar Documents

Publication Publication Date Title
EP1117901B1 (en) Method for controlling a horizontal drilling machine
DE60011587T2 (en) CONTROL PROCEDURE FOR CONTROLLABLE DRILLING SYSTEM
DE112014000145B4 (en) Construction Vehicle
DE3911467C2 (en)
DE112014000176T5 (en) Construction vehicle and method for controlling the construction vehicle
DE3009837C2 (en) Device for laying pipes underground
DE112014000127T5 (en) Construction Vehicle
DE4342252C2 (en) Method for automatically regulating the predetermined work to be repeated by an excavator
EP0522446B1 (en) Method for controlling the direction of an earth drilling apparatus and device for making bore holes
AT394090B (en) METHOD AND ARRANGEMENT FOR DRILLING A HOLE IN A ROCK
DE2821113A1 (en) METHOD AND DEVICE FOR MACHINE ADJUSTMENT OF THE INCLINATION OF A ROCK DRILLING DEVICE
EP0293584B1 (en) Drilling device for high pressure injection method
EP0744526B1 (en) Method for controlling a drilling tool
DE19810806C2 (en) Device and method for drilling holes in building walls
DE19924200B4 (en) Speed Feed Control
EP0727561B1 (en) Method for controlling a tunnel boring machine
WO2019238328A1 (en) Method for visualising
DE19964397B4 (en) Drill speed-feed control involves regulating feed depending on measured tool rotation so revolution rate is constant; feed is reduced, adjusted or reversed if rotation less than demand value
EP0486750A2 (en) Target-directed drilling rod
DE2250405C3 (en) Device for program control of the boom arm and the feed device of a drilling tool of self-propelled drilling vehicles
DE4420705A1 (en) Automatic measurement and control of propulsion system when tunnel building
DE102016009516A1 (en) road milling machine
DE19802209C2 (en) Rotating expanding head
EP3964686A1 (en) Mobile working machine for foundations and method for aligning a tool of such a working machine
DE1116166B (en) Device for drilling holes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20020821

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RTI1 Title (correction)

Free format text: METHOD FOR CONTROLLING A HORIZONTAL DRILLING MACHINE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DERANGEWAND

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031203

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20031203

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031203

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031203

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031203

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031203

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031203

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59907960

Country of ref document: DE

Date of ref document: 20040115

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: OK PAT AG PATENTE MARKEN LIZENZEN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040303

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040303

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040303

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040216

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040906

EN Fr: translation not filed
BERE Be: lapsed

Owner name: *FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAN

Effective date: 20040831

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20060711

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070827

Year of fee payment: 9

Ref country code: AT

Payment date: 20070822

Year of fee payment: 9

BERE Be: lapsed

Owner name: *FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAN

Effective date: 20040831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070828

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20031203

Ref country code: CH

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20031203

REG Reference to a national code

Ref country code: GB

Ref legal event code: S29

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20080820

REG Reference to a national code

Ref country code: GB

Ref legal event code: S29

Free format text: OFFER ACCEPTED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20090211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100922

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59907960

Country of ref document: DE

Effective date: 20120301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120301