EP1116862A2 - Steam generating method and plant - Google Patents
Steam generating method and plant Download PDFInfo
- Publication number
- EP1116862A2 EP1116862A2 EP00126349A EP00126349A EP1116862A2 EP 1116862 A2 EP1116862 A2 EP 1116862A2 EP 00126349 A EP00126349 A EP 00126349A EP 00126349 A EP00126349 A EP 00126349A EP 1116862 A2 EP1116862 A2 EP 1116862A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- steam generator
- feed water
- waste heat
- steam
- heat boiler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B1/00—Methods of steam generation characterised by form of heating method
- F22B1/02—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
- F22B1/18—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
- F22B1/183—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines in combination with metallurgical converter installations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K3/00—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
- F01K3/18—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
- F01K3/185—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters using waste heat from outside the plant
Definitions
- the invention relates to a method for generating steam in a steam generator system with a gas fired with blast furnace gas Steam generator and a steam generator system.
- the invention is based on the object of the generic type Developing processes in such a way that they are based on support firing with noble fuels in the combustion of the blast furnace gas in Continuous operation can be dispensed with.
- Waste heat is generated in sinter cooling systems in metallurgical plants, in which at the same time top gas as waste gas from the blast furnace process is produced. From the sintered fine ores to the cooling air emitted heat is over according to the invention Heat exchanger surfaces in the waste heat boiler by Heat transfer system in the high pressure system of the steam generator coupled. So that waste heat with different and especially low temperature level and waste gas with fluctuating and in particular low calorific value for generation exploited by steam.
- the heat utilization in the area of the sinter cooling systems is designed due to the special temperature and Cooling air quantity ratios are particularly complex.
- Cooling air is extracted from heat, making heat sources different Temperature levels arise.
- a special waste heat boiler concept is required.
- the most interesting part of the waste heat from the Sinter cooling system only makes up a small percentage of the total amount of cooling air. While this is proportionate low cooling air mass flow thanks to its higher gas temperature lends itself particularly to high feed water preheating the larger cooling air mass flow with low temperature remaining feed water preheating used.
- the temperature of the feed water is checked before entering the Heat exchanger surfaces of the waste heat boiler on the physical lowest possible value lowered. It is advantageous if the feed water through the heat exchange with the recycled steam turbine condensate is cooled. The on this way, lowered temperature of the feed water also allows extract heat from the low-temperature sintered cooling air.
- the heat transfer system consists of two external ones additional preheaters, some of which is the waste heat Add top gas to all combustion air and fuel. This increases the calorific value of the blast furnace gas to such an extent that in normal operation no support fire over high calorific Noble fuels like natural gas is necessary.
- FIG. 1 An embodiment of the invention is in the drawing shown and is explained in more detail below.
- the drawing shows a process scheme for generating steam.
- a steam generator 1 which works according to the natural circulation principle contains a combustion chamber 2, the one from top to bottom flowed flue gas duct 3 is connected. By doing Flue gas duct 3 are secondary heating surfaces like superheater 4 and the convection evaporator 4a. Instead of one Maturum steam generator can also be a forced circulation or a Forced-flow steam generators are used. It can also another than the flue gas duct shown, e.g. B. according to Art a tower boiler can be used.
- the steam generator 1 is fired with blast furnace gas.
- the combustion chamber 2 is shown on the front side with only schematically Provide burners 5.
- the burners 5 have an air line 6 for supplying combustion air and with a top gas line 7 connected to the supply of blast furnace gas.
- This emergency fuel is fed to the burners 5 via a gas line 8.
- a steam line 9 is connected to the superheater 4 of the steam generator 1 connected, which is guided to a steam turbine 10.
- the Steam turbine 10 has a generator 11 for generating electricity coupled.
- the steam turbine 10 can be regulated Withdrawal 12 process steam can be extracted into a steam network is fed.
- the outlet of the steam turbine 10 is connected to an exhaust steam line 13 connected, which is led to a capacitor 14.
- Condenser 14 the exhaust steam is condensed, and that Steam turbine condensate is in via a condensate line 15 a feed pump 16 is arranged to a degasser 17 promoted.
- the degasser 17 is operated with bleed steam is removed from the steam turbine 10 via a bleed line 18.
- a feed water line 19 is connected to the degasser 17 connected in which a feed water pump 20 is arranged, which the pressure of the feed water to the process pressure of the Steam generator 1 increased.
- the feed water line 19 is between the degasser 17 and the feed water pump 20 Water / water heat exchanger 21 arranged, the at the same time the condensate line 15 is connected.
- the feed water line 19 is connected in parallel Heat exchanger surfaces 22 performed in a waste heat boiler 23rd are arranged. Downstream from the heat exchanger surfaces 22 is the feed water line 19 with an external air preheater 24, to which the air line 6 is connected, and in parallel for this purpose with a gas preheater 25 to which the top gas line 7 connected, connected. Following the air preheater 24 and the gas preheater 25 is the feed water line 19 a feed water preheater 26 led by the flue gas is flowed through, which leaves the steam generator 1. This Feed water preheater 26 is on the water side with the water-steam cycle of the steam generator 1 connected.
- the waste heat boiler 23 is a sintering system for sintering Subsequent fine ores on a sintered belt.
- the Sintering process becomes air that rests on the sintering belt Layer of the sintered mixture or the sinter supplied. Through the Air becomes the sintering process through the combustion of the Maintain sintered mixture of mixed fine coal.
- To Sintering is carried out by additional fans with cooling air pressed or sucked the sinter. This way it falls lengthways of the sintered cooling belt SK1 in the gas flue 30 with exhaust air different temperatures and in different amounts or, as shown in the throttle cable 31, cooling air with a corresponding mixing temperature on the sintered cooling belt SK2.
- the waste heat boiler 23 is divided into two and has two throttle cables 30, 31.
- the heat exchanger surfaces 22 are distributed to these two throttle cables 30, 31.
- the throttle cables 30, 31 des Waste heat boilers 23 are with connecting pieces for the different exhaust gas flows 27, 28, 29 provided.
- Both sinter cooling systems SK1 and SK2 can be used to the heat extraction described above also in series be switched.
- the feed water is before entering the Heat exchanger surfaces 22 of the waste heat boiler 23 on the physically lowest possible temperature cooled. Consists due to the composition of the waste heat boiler 23 exhaust gases flowing through there is no risk that a Below the dew point, the corrosion damage to the Heat exchanger surfaces causes, as described, that Feed water through before entering the heat exchanger surfaces Steam turbine condensate cooled. This usually happens Waste heat boilers in which exhaust air from sintered cooling belts is cooled becomes. However, corrosion damage must be expected, so the temperature of the feed water must be before entering the Heat exchanger surfaces 22 of the waste heat boiler 23 approximately Temperature of the degasser 17 correspond.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Thermal Sciences (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Physical Water Treatments (AREA)
- Degasification And Air Bubble Elimination (AREA)
- Air Supply (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Erzeugung von Dampf in einer Dampferzeugeranlage mit einem mit Gichtgas gefeuerten Dampferzeuger und eine Dampferzeugeranlage.The invention relates to a method for generating steam in a steam generator system with a gas fired with blast furnace gas Steam generator and a steam generator system.
In Hüttenwerken fallen prozessbedingte Abfallgase wie Gicht-, Koksofen- und Konvertergas an. Es besteht Interesse daran, diese Abfallgase in effizienter Weise zur Stromerzeugung auszunutzen. Wegen der erhöhten Investitionen und wegen des technischen Risikos, diese Abfallgase in Gasturbinen für Kombiprozessen einzusetzen, werden konventionelle Lösungen mit Hochdruckdampferzeugern angestrebt. Bei den prozessbedingt starken Heizwertschwankungen, z. B. des Gichtgases muss bei der Verstromung zur Stabilisierung der Verbrennung im Dampferzeuger Erdgas und Heizöl als Stützfeuer eingesetzt werden.Process-related waste gases such as gout, Coke oven and converter gas. There is interest in this Use waste gases efficiently to generate electricity. Because of the increased investment and because of the technical Risks, these waste gases in gas turbines for combined processes conventional solutions with High pressure steam generators aimed. With the process-related strong fluctuations in calorific value, e.g. B. the top gas must be at the Electricity generation to stabilize the combustion in the steam generator Natural gas and heating oil can be used as support fires.
Der Erfindung liegt die Aufgabe zu Grunde, das gattungsgemäße Verfahren derart weiterzuentwickeln, dass auf eine Stützfeuerung mit Edelbrennstoffen bei der Verbrennung des Gichtgases im Dauerbetrieb verzichtet werden kann.The invention is based on the object of the generic type Developing processes in such a way that they are based on support firing with noble fuels in the combustion of the blast furnace gas in Continuous operation can be dispensed with.
Diese Aufgabe wird bei einem gattungsgemäßen Verfahren
erfindungsgemäß durch die kennzeichnenden Merkmale des
Anspruches 1 gelöst. Eine Dampferzeugeranlage zur Durchführung
des Verfahrens ist Gegenstand des Anspruches 5. Vorteilhafte
Ausgestaltungen der Erfindung sind in den Unteransprüchen
angegeben.This task is carried out in a generic method
according to the invention by the characterizing features of
Claim 1 solved. A steam generator plant to carry out
the method is the subject of
Durch die Einkopplung von Abwärme in den Verbrennungsprozess kann auch bei abgesenkten Heizwerten im Gichtgas auf Edelbrennstoffe als Stützfeuer verzichtet werden. Derartige Abwärme fällt in Sinterkühlanlagen von Hüttenwerken an, in denen zeitgleich auch Gichtgas als Abfallgas aus dem Hochofenprozess erzeugt wird. Die von den gesinterten Feinerzen an die Kühlluft abgegebene Wärme wird gemäß der Erfindung über Wärmetauscherflächen im Abhitzekessel durch ein Wärmeverschiebesystem in das Hochdrucksystem des Dampferzeugers eingekoppelt. Damit wird Abfallwärme mit unterschiedlichem und insbesondere niedrigem Temperaturniveau und Abfallgas mit schwankendem und insbesondere geringem Heizwert zur Erzeugung von Dampf ausgenutzt.By coupling waste heat into the combustion process can also occur in the blast furnace gas when the calorific values are lowered Noble fuels can be dispensed with as support fires. Such Waste heat is generated in sinter cooling systems in metallurgical plants, in which at the same time top gas as waste gas from the blast furnace process is produced. From the sintered fine ores to the cooling air emitted heat is over according to the invention Heat exchanger surfaces in the waste heat boiler by Heat transfer system in the high pressure system of the steam generator coupled. So that waste heat with different and especially low temperature level and waste gas with fluctuating and in particular low calorific value for generation exploited by steam.
Die Wärmeausnutzung im Bereich der Sinterkühlanlagen gestaltet sich auf Grund der besonderen Temperatur- und Kühlluftmengenverhältnisse besonders vielschichtig. Längs des Sinterbandes wird an verschiedenen Stellen dem Sintergut über Kühlluft Wärme entzogen, wodurch Wärmequellen unterschiedlichen Temperturniveaus entstehen. Um einen entsprechend hohen Anteil des unterschiedlichen Wärmepotentials sinnvoll ausnutzen zu können, bedarf es eines besonderen Abhitzekesselkonzeptes. Der exergetisch interessanteste Teil der Abwärmemenge aus der Sinterkühlanlage macht nur einen geringen Prozentsatz der gesamten Kühlluftmenge aus. Während dieser verhältnismäßig geringe Kühlluftmassenstrom dank seiner höheren Gastemperatur sich besonders zur hohen Speisewasservorwärmung anbietet, wird der größere Kühlluftmassenstrom mit niedriger Temperatur zur restlichen Speisewasservorwärmung genutzt. Um zusätzliche Temperatursträhnen auf der Kühlluftseite zu vermeiden, werden beide Kühlluftströme erst in der Mitte des zweigeteilten Abhitzekessels bei nahezu gleichem Temperaturniveau zusammengeführt.The heat utilization in the area of the sinter cooling systems is designed due to the special temperature and Cooling air quantity ratios are particularly complex. Along the Sintering tape is over the sintered material at various points Cooling air is extracted from heat, making heat sources different Temperature levels arise. By a correspondingly high proportion to make good use of the different heat potential a special waste heat boiler concept is required. The most interesting part of the waste heat from the Sinter cooling system only makes up a small percentage of the total amount of cooling air. While this is proportionate low cooling air mass flow thanks to its higher gas temperature lends itself particularly to high feed water preheating the larger cooling air mass flow with low temperature remaining feed water preheating used. For additional Avoid temperature streaks on the cooling air side both cooling air flows only in the middle of the two-part Waste heat boiler at almost the same temperature level merged.
Dabei ermöglicht die Absenkung der Temperatur des entgasten Speisewassers durch den Wärmetausch mit dem zurückgeführten Dampfturbinenkondensat die Einkopplung von Abwärme von niedrigem Temperaturniveau.This allows the temperature of the degassed to be lowered Feed water through the heat exchange with the returned Steam turbine condensate the coupling of waste heat from low Temperature level.
Die Temperatur des Speisewassers wird vor dem Eintritt in die Wärmetauscherflächen des Abhitzekessels auf den physikalisch niedrigstmöglichen Wert abgesenkt. Vorteilhaft ist es dabei, wenn das Speisewasser durch den Wärmetausch mit dem zurückgeführten Dampfturbinenkondensat gekühlt wird. Die auf diese Weise abgesenkte Temperatur des Speisewassers erlaubt auch aus der niedertemperaturigen Sinterkühlluft Wärme auszukoppeln.The temperature of the feed water is checked before entering the Heat exchanger surfaces of the waste heat boiler on the physical lowest possible value lowered. It is advantageous if the feed water through the heat exchange with the recycled steam turbine condensate is cooled. The on this way, lowered temperature of the feed water also allows extract heat from the low-temperature sintered cooling air.
Das Wärmeverschiebesystem besteht aus zwei außen liegenden zusätzlichen Vorwärmern, welche die Abwärme teilweise der gesamten Verbrennungsluft und dem Brennstoff Gichtgas zuführen. Hierdurch wird der Heizwert des Gichtgases so weit erhöht, dass im Normalbetrieb kein Stützfeuer über hochkalorige Edelbrennstoffe wie Erdgas notwendig ist.The heat transfer system consists of two external ones additional preheaters, some of which is the waste heat Add top gas to all combustion air and fuel. This increases the calorific value of the blast furnace gas to such an extent that in normal operation no support fire over high calorific Noble fuels like natural gas is necessary.
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im Folgenden näher erläutert. Die Zeichnung zeigt ein Verfahrensschema zur Erzeugung von Dampf.An embodiment of the invention is in the drawing shown and is explained in more detail below. The drawing shows a process scheme for generating steam.
Ein nach dem Naturumlaufprinzip arbeitender Dampferzeuger 1
enthält eine Brennkammer 2, der ein von oben nach unten
durchströmter Rauchgaszug 3 nachgeschaltet ist. In dem
Rauchgaszug 3 sind Nachschaltheizflächen wie der Überhitzer 4
und der Konvektionsverdampfer 4a angeordnet. Anstelle eines
Maturumlaufdampferzeugers kann auch ein Zwangsumlauf- oder ein
Zwangsdurchlaufdampferzeuger eingesetzt werden. Es kann auch
eine andere als die dargestellte Rauchgasführung, z. B. nach Art
eines Turmkessels verwendet werden.A steam generator 1 which works according to the natural circulation principle
contains a
Der Dampferzeuger 1 wird mit Gichtgas befeuert. Die Brennkammer
2 ist an der Stirnseite mit nur schematisch dargestellten
Brennern 5 versehen. Die Brenner 5 sind mit einer Luftleitung 6
zur Zuführung von Verbrennungsluft und mit einer Gichtgasleitung
7 zur Zuführung von Gichtgas verbunden. Bei Störfällen und bei
Ausfall des später beschriebenen Abhitzekessels 23 kann zur
Absicherung der Dampfleistung Koksofengas oder Erdgas als
Notfallbrennstoff eingesetzt werden. Dieser Notfallbrennstoff
wird den Brennern 5 über eine Gasleitung 8 zugeführt.The steam generator 1 is fired with blast furnace gas. The
An den Überhitzer 4 des Dampferzeugers 1 ist eine Dampfleitung 9
angeschlossen, die zu einer Dampfturbine 10 geführt ist. Die
Dampfturbine 10 ist mit einem Generator 11 zur Stromerzeugung
gekopppelt. Der Dampfturbine 10 kann über eine geregelte
Entnahme 12 Prozessdampf entnommen werden, der in ein Dampfnetz
eingespeist wird.A
Der Ausgang der Dampfturbine 10 ist mit einer Abdampfleitung 13
verbunden, die zu einem Kondensator 14 geführt ist. In dem
Kondensator 14 wird der Abdampf kondensiert, und das
Dampfturbinenkondensat wird über eine Kondensatleitung 15, in
der eine Förderpumpe 16 angeordnet ist, zu einem Entgaser 17
gefördert. Der Entgaser 17 wird mit Anzapfdampf betrieben, der
über eine Anzapfleitung 18 der Dampfturbine 10 entnommen wird.The outlet of the
An den Entgaser 17 ist eine Speisewasserleitung 19
angeschlossen, in der eine Speisewasserpumpe 20 angeordnet ist,
die den Druck des Speisewassers auf den Prozessdruck des
Dampferzeugers 1 erhöht. In der Speisewasserleitung 19 ist
zwischen dem Entgaser 17 und der Speisewasserpumpe 20 ein
Wasser/Wasser-Wärmetauscher 21 angeordnet, der gleichzeitig an
die Kondensatleitung 15 angeschlossen ist.A
Die Speisewasserleitung 19 ist zu parallel geschalteten
Wärmetauscherflächen 22 geführt, die in einem Abhitzekessel 23
angeordnet sind. Stromabwärts von den Wärmetauscherflächen 22
ist die Speisewasserleitung 19 mit einem externen Luftvorwärmer
24, an den die Luftleitung 6 angeschlossen ist, und parallel
dazu mit einem Gasvorwärmer 25, an den die Gichtgasleitung 7
angeschlossen ist, verbunden. Im Anschluss an den Luftvorwärmer
24 und den Gasvorwärmer 25 ist die Speisewasserleitung 19 zu
einem Speisewasservorwärmer 26 geführt, der von dem Rauchgas
durchströmt ist, das den Dampferzeuger 1 verlässt. Dieser
Speisewasservorwärmer 26 ist wasserseitig mit dem Wasser-Dampf-Kreislauf
des Dampferzeugers 1 verbunden.The
Der Abhitzekessel 23 ist einer Sinteranlage zur Sinterung von
Feinerzen auf einem Sinterband nachgeschaltet. Während des
Sinterprozesses wird Luft der auf dem Sinterband ruhenden
Schicht der Sintermischung bzw. des Sinters zugeführt. Durch die
Luft wird der Sinterprozess durch die Verbrennung der der
Sintermischung beigemischten Feinkohle aufrechterhalten. Nach
erfolgter Sinterung wird über zusätzliche Gebläse Kühlluft durch
den Sinter gedrückt oder gesaugt. Auf diese Weise fällt längs
des Sinterkühlbandes SK1 im Gaszug 30 Abluft mit
unterschiedlichen Temperaturen und in unterschiedlichen Mengen
oder aber, wie im Gaszug 31 dargestellt, Kühlluft mit einer
entsprechenden Mischtemperatur beim Sinterkühlbandes SK2 an. Um
diese verschiedenen Abluftströme 27, 28, 29 in dem Abhitzekessel
23 ausnutzen zu können, ist der Abhitzekessel 23 zweigeteilt und
weist zwei Gaszüge 30, 31 auf. Die Wärmetauscherflächen 22 sind
auf diese beiden Gaszüge 30, 31 verteilt. Die Gaszüge 30, 31 des
Abhitzekessels 23 sind mit Anschlussstutzen für die
unterschiedlichen Abgasströme 27, 28, 29 versehen. Der
Abgasstrom 29, der eine niedrigere Temperatur aufweist als der
Abgasstrom 28 wird in den Abhitzekessel 23 an einer Stelle
eingespeist, an der der Abgasstrom 28 durch Abkühlung eine
Temperatur angenommen hat, die etwa der des Abgasstromes 29
entspricht. Beide Sinterkühlanlagen SK1 und SK2 können in Bezug
auf die oben beschriebene Wärmeauskopplung auch in Reihe
geschaltet werden.The
In dem Wasser/Wasser-Wärmetauscher 21 wird das entgaste
Speisewasser aus dem Entgaser 17 im Wärmetausch mit dem
Kondensat aus dem Kondensator 14 soweit wie möglich abgekühlt.
Durch die Speisewasserpumpe 20 wird der Druck des gekühlten
Speisewassers auf den Prozessdruck des Dampferzeugers 1
gebracht. In dem Abhitzekessel 23 wird die Temperatur des
gekühlten und hochgespannten Speisewassers entsprechend erhöht.
Mit dieser Temperatur tritt das Speisewasser in den
Luftvorwärmer 24 und den Gasvorwärmer 25 ein, wodurch die
Verbrennungsluft und das Gichtgas jeweils höchstmöglich
vorgewärmt werden. Bei Eintritt in den Speisewasservorwärmer 26
weist das Speisewasser dann noch eine Temperatur von wenigen
Kelvin oberhalb der Temperatur im Entgaser 17 auf. Die Werte
können je nach den Gegebenheiten an den Sinterkühlanlagen SK1,
SK2 und je nach den vorliegenden Dampfparametern stark
variieren.This is degassed in the water /
Das Speisewasser wird vor dem Eintritt in die
Wärmetauscherflächen 22 des Abhitzekessels 23 auf die
physikalisch niedrigstmögliche Temperatur abgekühlt. Besteht
aufgrund der Zusammensetzung der den Abhitzekessel 23
durchströmenden Abgase nicht die Gefahr, dass eine
Taupunktunterschreitung auftritt, die Korrosionsschäden an den
Wärmetauscherflächen verursacht, so wird, wie beschrieben, das
Speisewasser vor dem Eintritt in die Wärmetauscherflächen durch
Dampfturbinenkondensat gekühlt. Das trifft normalerweise auf
Abhitzekessel zu, in denen Abluft aus Sinterkühlbändern gekühlt
wird. Muss jedoch mit Korrosionsschäden gerechnet werden, so
muss die Temperatur des Speisewassers vor dem Eintritt in die
Wärmetauscherflächen 22 des Abhitzekessels 23 etwa der
Temperatur des Entgasers 17 entsprechen. In diesem Fall wird
abweichend von der Zeichnung der Wasser/Wasser-Wärmetauscher 21
in die Speisewasserleitung 19 stromaufwärts von dem
Luftvorwärmer 24, und dem Gichtgasvorwärmer 25 und stromabwärts
von dem Speisewasservorwärmer 26 verlegt. Dabei wird unter
Absenkung der Speisewassertemperatur für den
Speisewasservorwärmer 26 das Dampfturbinenkondensat vor dem
Eintritt in dem Entgaser 17 vorgewärmt.The feed water is before entering the
Claims (8)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10001512 | 2000-01-15 | ||
DE10001512A DE10001512A1 (en) | 2000-01-15 | 2000-01-15 | Process for generating steam and a steam generator system |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1116862A2 true EP1116862A2 (en) | 2001-07-18 |
EP1116862A3 EP1116862A3 (en) | 2002-09-25 |
EP1116862B1 EP1116862B1 (en) | 2005-02-09 |
Family
ID=7627638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00126349A Expired - Lifetime EP1116862B1 (en) | 2000-01-15 | 2000-12-02 | Steam generating method and plant |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1116862B1 (en) |
AT (1) | ATE288997T1 (en) |
DE (2) | DE10001512A1 (en) |
ES (1) | ES2235747T3 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9604864B2 (en) | 2013-03-12 | 2017-03-28 | Ingenica Ingenierie Industrielle | Steam generation method and method for recovering crude oil by steam-assisted gravity drainage (SAGD) including said steam generation method |
US10054308B2 (en) | 2014-09-11 | 2018-08-21 | Ingenica Ingenierie Industrielle | Method for generating steam from raw water, in particular from blow down water coming from a steam generator |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101294502B (en) * | 2007-04-23 | 2010-12-08 | 张庆玉 | Multifunctional vacuum firepower waterpower dual-power generation and water-lifting water distributing station |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4327476A1 (en) * | 1993-08-16 | 1995-02-23 | Steinmueller Gmbh L & C | Method for operating a fossil-fuel-fired steam generator and steam-generating plant for carrying out the method |
DE29608816U1 (en) * | 1996-05-15 | 1996-08-01 | Deutsche Babcock Babcock Lentjes Kraftwerkstechnik GmbH Standort Berlin, 10407 Berlin | Arrangement for the use of waste heat from cement clinker lines |
DE19645322A1 (en) * | 1996-11-04 | 1998-05-07 | Asea Brown Boveri | Combined power plant with a once-through steam generator as a gas turbine cooling air cooler |
JPH11325406A (en) * | 1998-05-07 | 1999-11-26 | Ebara Corp | Feed water heating device for thermal power generation facility |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2243380C3 (en) * | 1972-09-04 | 1978-07-20 | Kraftwerk Union Ag, 4330 Muelheim | Steam power plant with flue gas heated feed water preheater and water heated air preheater |
DE3324283A1 (en) * | 1983-07-06 | 1985-01-24 | Kleinewefers Energie- und Umwelttechnik GmbH, 4150 Krefeld | Sintering belt installation with device for waste heat utilisation |
-
2000
- 2000-01-15 DE DE10001512A patent/DE10001512A1/en not_active Withdrawn
- 2000-12-02 AT AT00126349T patent/ATE288997T1/en active
- 2000-12-02 DE DE50009474T patent/DE50009474D1/en not_active Expired - Lifetime
- 2000-12-02 EP EP00126349A patent/EP1116862B1/en not_active Expired - Lifetime
- 2000-12-02 ES ES00126349T patent/ES2235747T3/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4327476A1 (en) * | 1993-08-16 | 1995-02-23 | Steinmueller Gmbh L & C | Method for operating a fossil-fuel-fired steam generator and steam-generating plant for carrying out the method |
DE29608816U1 (en) * | 1996-05-15 | 1996-08-01 | Deutsche Babcock Babcock Lentjes Kraftwerkstechnik GmbH Standort Berlin, 10407 Berlin | Arrangement for the use of waste heat from cement clinker lines |
DE19645322A1 (en) * | 1996-11-04 | 1998-05-07 | Asea Brown Boveri | Combined power plant with a once-through steam generator as a gas turbine cooling air cooler |
JPH11325406A (en) * | 1998-05-07 | 1999-11-26 | Ebara Corp | Feed water heating device for thermal power generation facility |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 02, 29. Februar 2000 (2000-02-29) & JP 11 325406 A (EBARA CORP), 26. November 1999 (1999-11-26) * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9604864B2 (en) | 2013-03-12 | 2017-03-28 | Ingenica Ingenierie Industrielle | Steam generation method and method for recovering crude oil by steam-assisted gravity drainage (SAGD) including said steam generation method |
US10054308B2 (en) | 2014-09-11 | 2018-08-21 | Ingenica Ingenierie Industrielle | Method for generating steam from raw water, in particular from blow down water coming from a steam generator |
Also Published As
Publication number | Publication date |
---|---|
EP1116862B1 (en) | 2005-02-09 |
ES2235747T3 (en) | 2005-07-16 |
EP1116862A3 (en) | 2002-09-25 |
DE10001512A1 (en) | 2001-07-19 |
ATE288997T1 (en) | 2005-02-15 |
DE50009474D1 (en) | 2005-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69102577T2 (en) | Power plant. | |
DE3240373A1 (en) | METHOD AND DEVICE FOR THE SMOKE DESULFURATION OF CARBON BURNERS | |
EP0191141B1 (en) | Process and plant for reducing the nox-content in flue gas from burning fossilized fuels in combustion plants | |
EP2167794B1 (en) | Device and method for the generation of power heat | |
WO2009100881A4 (en) | Coal-fired power station and method for operating the coal-fired power station | |
EP0122534B1 (en) | Process for operating a plant for cracking hydrocarbons | |
DE3731627A1 (en) | METHOD FOR CONTROLLING THE PERFORMANCE OF A CARBON COMBINED BLOCK WITH INTEGRATED COAL GASIFICATION AND A COAL POWER PLANT OPERATED BY THE METHOD | |
DE3204672A1 (en) | COMBINED GAS / STEAM TURBINE PROCESS | |
EP1099042A2 (en) | Gas and steam turbine installation | |
DE3225140C2 (en) | ||
EP1116862B1 (en) | Steam generating method and plant | |
EP0267206B1 (en) | Process and plant for reducing nitrogen monoxide emissions when burning anthracite with a medium and high volatile content | |
DE19734862C2 (en) | Thermal power plant with a gas turbine and a steam generator for a multi-pressure steam turbine | |
DE3617364A1 (en) | Combined gas and steam turbine power station with pressurised fluidised-bed furnace and coal gasification | |
DE4418342C2 (en) | Process for operating a power plant fired with a fuel in need of drying | |
DE3111674A1 (en) | "METHOD FOR PRODUCING CARBON DUST AS A FUEL FOR CARBON DUST IGNITION BURNER" | |
DE4327476C2 (en) | Process for operating a steam generator fired with fossil fuels and steam generating plant | |
EP0618404B1 (en) | Method and installation for generating steam in a heat power plant | |
DE2533169A1 (en) | PLANT FOR THE PRODUCTION OF CEMENT IN THE DRY PROCESS | |
DE3842325C2 (en) | Multi-pass waste heat boiler with additional firing | |
DE112010005234T5 (en) | Energy recovery from gases in a blast furnace plant | |
DE3009237A1 (en) | METHOD FOR GENERATING ELECTRICITY AND HEAT FROM COAL | |
DE4220489C1 (en) | Operating air heater plant - using boiler heated closed circuit to preheat air and fuel feeds to reducing high value combustion fuels | |
DE970258C (en) | Plant for the generation of hot air and hot water or steam for the purpose of utilizing the heat contained in exhaust gases | |
DE10056128A1 (en) | Process for operating a gas turbine plant and a corresponding plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MAN TURBOMASCHINEN AG |
|
17P | Request for examination filed |
Effective date: 20020910 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MAN TURBOMASCHINEN AG |
|
AKX | Designation fees paid |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MAN TURBO AG |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050209 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050209 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050209 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050209 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50009474 Country of ref document: DE Date of ref document: 20050317 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20050318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050509 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050509 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050509 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2235747 Country of ref document: ES Kind code of ref document: T3 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051202 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051231 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051231 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051231 |
|
26N | No opposition filed |
Effective date: 20051110 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050709 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20081217 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20090130 Year of fee payment: 9 |
|
BERE | Be: lapsed |
Owner name: *MAN TURBO A.G. Effective date: 20091231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091231 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20110329 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 50009474 Country of ref document: DE Owner name: MAN DIESEL & TURBO SE, DE Free format text: FORMER OWNER: MAN TURBO AG, 46145 OBERHAUSEN, DE Effective date: 20110325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110316 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091203 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20151210 Year of fee payment: 16 Ref country code: GB Payment date: 20151221 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20151221 Year of fee payment: 16 Ref country code: AT Payment date: 20151222 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20151228 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50009474 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 288997 Country of ref document: AT Kind code of ref document: T Effective date: 20161202 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20161202 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161202 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170102 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170701 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161202 |