EP1109883A2 - Method for increasing the efficiency of surfactants with simultaneous suppression of lamellar mesophases and surfactants with an additive added thereto - Google Patents

Method for increasing the efficiency of surfactants with simultaneous suppression of lamellar mesophases and surfactants with an additive added thereto

Info

Publication number
EP1109883A2
EP1109883A2 EP99953661A EP99953661A EP1109883A2 EP 1109883 A2 EP1109883 A2 EP 1109883A2 EP 99953661 A EP99953661 A EP 99953661A EP 99953661 A EP99953661 A EP 99953661A EP 1109883 A2 EP1109883 A2 EP 1109883A2
Authority
EP
European Patent Office
Prior art keywords
block
water
surfactant
block copolymer
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99953661A
Other languages
German (de)
French (fr)
Other versions
EP1109883B1 (en
EP1109883B2 (en
Inventor
Jürgen Allgaier
Lutz Willner
Dieter Richter
Britta Jakobs
Thomas Sottmann
Reinhard Strey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7878952&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1109883(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP1109883A2 publication Critical patent/EP1109883A2/en
Publication of EP1109883B1 publication Critical patent/EP1109883B1/en
Application granted granted Critical
Publication of EP1109883B2 publication Critical patent/EP1109883B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3788Graft polymers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/0017Multi-phase liquid compositions
    • C11D17/0021Aqueous microemulsions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/0026Structured liquid compositions, e.g. liquid crystalline phases or network containing non-Newtonian phase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers

Definitions

  • the invention relates to a method for increasing the efficiency of surfactants with simultaneous suppression of lamellar mesophases, in particular in microemulsions and emulsions, and to surfactants to which an additive is added.
  • emulsions and microemulsions are stabilized by nonionic, anionic or cationic surfactants.
  • the surfactants are able to solubilize a non-polar solvent (oil) in a polar solvent (eg water) or water in oil.
  • the efficiency of the surfactants is expressed in the amount of surfactant required to add a certain amount of oil in water or vice versa to solubilize.
  • water-oil-surfactant mixtures between emulsions and microemulsions. While microemulsions are thermodynamically stable, emulsions are thermodynamically unstable and disintegrate. In the microscopic range, this difference is reflected in the fact that the emulsified liquids in microemulsions are contained in smaller liquid volumes (e.g. 10 -15 ⁇ l) than in emulsions (e.g. 10-12).
  • Thermodynamically unstable emulsions therefore have larger structure sizes.
  • Lamellar mesophases can occur in microemulsion systems. Lamellar mesophases lead to optical anisotropy and increased viscosity. These properties are e.g. undesirable for detergents because the lamellar mesophases cannot be washed out.
  • additives generally influence the temperature behavior of the emulsions and microemulsions. A shift in the single-phase areas for oil-water-surfactant mixtures to other temperature ranges can be observed in the phase diagram when an additive is added. The shifts can be on the order of 10 ° C. However, this has the consequence that e.g. Detergent formulations have to be changed in order to adapt them to the new temperature behavior of the single-phase area.
  • the temperature behavior of the emulsions and microemulsions should remain unaffected by the addition of the additive, that is to say the position of the single-phase region in the phase diagram should essentially not be influenced by the addition of the additives with respect to the temperature.
  • An additive is to be created which does not influence the position of the single-phase region with regard to the temperature.
  • the aim is also to provide an additive which has the advantages mentioned above and can be added to a detergent, for example, without having to change the formulation of the remaining detergent formulation.
  • a possibility is to be created to produce microemulsions whose size of the emulsified liquid particles corresponds to that of emulsions.
  • the position of the single-phase area in the phase diagram in the temperature area is not changed by adding the AB block copolymer to the water-oil-surfactant mixture, the efficiency of the surfactant mixture is increased considerably, lamellar mesophases are suppressed in microemulsions and the interface
  • the tension between water and oil is reduced more than by the tensides alone.
  • microemulsions retain their characteristic properties while increasing their structural size; the emulsified structures take on sizes of up to approx. 2000 angstroms.
  • a microemulsion is thus obtained which has the structure sizes of an emulsion but is thermodynamically stable.
  • the size of the emulsified liquid particles depends on the temperature and the amount of block copolymer added, and thus on the composition of the surfactant mixture.
  • Blocks A and B can assume molecular weights between 500 u and 60,000 u.
  • a polyethylene oxide (PEO) block is preferably used as block A.
  • all blocks A which are water-soluble can be used, so that they form an amphiphile in conjunction with block B.
  • PEO polyethylene oxide
  • block A polyacrylic acid, polymethacrylic acid, polystyrene sulfonic acid and their alkali metal salts, in which the acid function has been at least partially replaced by alkali metal cations, can also be mentioned as examples of polyvinylpyridine and polyvinyl alcohol, polymethylvinylyl ether, polyvinylpyrrolidine, polysaccharides and mixtures thereof.
  • Block B various water-insoluble components of the stated molecular weight are used.
  • Block B can be the product of an anionic 1,2-, 3,4-polymerization or 1,4-polymerization of dienes.
  • block B can also be the product of an at least partial hydrogenation of the polydienes.
  • Typical monomeric constituents are 1,3 butadiene, isoprene, all constituents of dimethyl butadiene, 1.3 pentadiene, 2.4 hexadienes, ⁇ methylstyrene, isobutylene, ethylene, propylene, styrene or alkyl acrylates and alkyl methacrylates, the alkyl group between 2 contains 20 carbon atoms.
  • Block B can also be polydimethylsiloxane. The polymer of a single monomer or a monomer mixture can be used as block B.
  • Block B can have methyl, ethyl, vinyl, phenyl or benzyl groups as side chains.
  • the double bonds in the polydiene chain as well as in the vinyl groups, which can exist as a side chain, can be either completely or partially hydrogenated.
  • any sufficiently amphiphilic block copolymer can be used in the present invention.
  • the AB block copolymers used according to the invention can preferably be obtained from an anionic polymerization. With lower molecular weights of blocks A and B in the order of about 500-5000 g / mol for blocks A and B, particularly advantageous properties of the AB block copolymers according to the invention are observed in application products. The polymers with these low molecular weights dissolve quickly and well. This applies, for example, to solutions in soaps and detergents.
  • Block A should be as polar as possible and block B as non-polar as possible. This increases the amphiphilic behavior.
  • Block A should be water-soluble and Block B should be soluble in non-polar media.
  • Block B is advantageously soluble in mineral oils or aliphatic hydrocarbons or in mineral oils and aliphatic hydrocarbons. This also applies at room temperature.
  • AB block copolymers of the ABA and BAB types which are referred to as triblock copolymers, can also be used.
  • Anionic surfactants e.g. AOT (sodium bis (2-ethylhexyl) sulfosuccinate)
  • C any surfactant, such as anionic, cationic, nonionic surfactant or sugar surfactant, and mixtures thereof which contain at least two surfactants.
  • total surfactant concentration at the crossing point where the single-phase meets the three-phase area in the phase diagram. For a given water / oil ratio, this corresponds minimally to the total surfactant concentration required for complete solubilization of water and oil.
  • PX / Y additive with a molecular weight in lOOOg / mol X of a hydrophobic alkyl chain (hydrogenated 1,4-polyisoprene) and a molecular weight in lOOOg / mol Y of polyethylene oxide.
  • the alkyl chain has a molecular weight of 22000 g / mol and the polyethylene oxide chain has a molecular weight of 15000 g / mol.
  • the additives shown in this way are AB block copolymers.
  • the compounds shown here as examples can be obtained by the production process from DE 196 34 477 AI.
  • Fig.l Typical temperature / surfactant concentration section through the phase prism at a constant water / oil ratio for the H 2 0-tetradecane-C 6 E 2 system for comparison.
  • Fig. 2 The single-phase areas for the mixture water / n-dean-C 10 E 4 -P5 / 5 as a function of the addition P5 / 5 ( ⁇ ) in a temperature / surfactant concentration diagram.
  • Fig. 4 The single-phase areas for the mixture water / n-dean-C 10 E 4 -P22 / 22 as a function of the addition P22 / 22 ( ⁇ ) in a temperature / surfactant concentration diagram.
  • Fig. 5 The single-phase areas for the mixture water / n-dean-C 10 E 4 -P5 / 3 as a function of the addition of P5 / 3 ( ⁇ ) and P5 / 2 ( ⁇ ) in a temperature / surfactant concentration diagram.
  • Fig. 6 The single-phase areas for the mixture water / n-dean-C 10 E 4 -P22 / 15 as a function of the addition P22 / 15 ( ⁇ ) in a temperature / surfactant concentration diagram.
  • Fig. 8 The single-phase areas for the mixture water / n-dean-C 10 E 4 -P5 / 30 as a function of the addition P5 / 30 ( ⁇ ) in a temperature / surfactant concentration diagram.
  • Fig. 9 The single-phase areas for the mixture (water + NaCl) / n-decane-AOT-P5 / 5 as a function of the addition P5 / 5 ( ⁇ ) in a temperature / surfactant concentration diagram.
  • CgG- L is a sugar amphiphile.
  • Fig. 11 Overview: ⁇ as a function of ⁇ for the different water / n-dean-C 10 E 4 -Px / y systems.
  • Fig. 13 single-phase areas for the systems H 2 0-n-dean C 10 E 4 - P22 / 22 (open circles) and H 2 0-n-dean-C 10 E 4 -Pl / l (black diamonds) depending from ⁇ .
  • PS1 polystyrene with molecular weight 10000g / mol
  • PEOl polyethylene oxide with molecular weight 10000g / mol; (AB block copolymer)) in one temperature / Surfactant concentration diagram.
  • the ratio H 2 0 / cyclohexane is 1: 1.
  • the H 2 ⁇ / n-dean ratios realized in FIGS. 1 to 9 and 11 to 13 are 1: 1.
  • FIG. 1 shows the type of phase diagram according to the prior art, which provides the basis for FIGS. 1 to 8.
  • the temperature T is plotted against the total surfactant concentration ⁇ for the water / n-tetradecane-C 3 E 2 system and a water / n-tetradecane ratio of 1: 1.
  • the single phase area 1 of the mixture is located. This area is followed in the direction of smaller surfactant concentrations.
  • NEN a closed three-phase area 3.
  • the T / ⁇ diagrams shown in FIGS. 2 to 9 relate to systems with a constant water / oil volume ratio of 1: 1 and are to be explained in general below.
  • Figure 2 shows how the efficiency of the total surfactant increases with the addition of the block copolymer.
  • the position of the effectiveness of the surfactant C with respect to its application temperature is essentially invariant.
  • no lamellar mesophases occur in the mixtures examined.
  • the efficiency of the total surfactant is also increased in the example shown in FIG. 4 and the temperature is essentially maintained. Lamellar phases are not observed.
  • FIGS. 7 and 8 A significant increase in efficiency can also be observed in FIGS. 7 and 8. Furthermore, no lamellar phases occur in the experiments shown in FIGS. 7 and 8. In Figure 7, the gray dots are PI5 / PE015 and the triangles P5 / 15. While the increase in efficiency of the nonionic surfactant C 10 E 4 was documented by the addition of block copolymers in FIGS. 2-8, the increase in efficiency in an anionic surfactant system (water + NaCl) / n-decane-AOT-P5 / 5 is shown in FIG. 9 .
  • FIG. 11 documents in an overview the very strong increase in efficiency of the block copolymer admixtures according to the invention.
  • the total surfactant concentrations at the crossing point ⁇ are plotted as a function of the addition ⁇ of the block copolymer.
  • interfacial tension is shown as a function of temperature for the water / n-dean-C 10 E 4 -P5 / 5 system.
  • the value of the interfacial tension minimum drops by a factor of five even at a ⁇ of 0.05.
  • the interfacial tension of surfactants such as, for example, anionic, cationic and nonionic surfactants, sugar surfactants or technical surfactant mixtures, is reduced.
  • the appearance of lamellar mesophases is suppressed.
  • the temperature behavior of the microemulsions remains unchanged, ie the position of the single-phase area with respect to the temperature in the phase diagram is not influenced by the addition of the additives used according to the invention. Therefore, the formulation of a detergent does not have to be changed in order to bring about a constant position of the single-phase area with respect to the temperature in the single-phase diagram.
  • the AB block copolymers according to the invention can not only be used in detergents; they can also have the same effect, for example, as additives in foods and cosmetics and in all industrial or technical applications of microemulsions and emulsions, e.g. when used in crude oil production, in soil remediation and when used as e.g. Reaction medium can be used.
  • microemulsions produced by adding the AB block copolymers according to the invention have emulsified liquid volumes whose size corresponds to that of emulsions.
  • the effects according to the invention can be achieved by any use of a surfactant together with the AB block copolymer in a system to be emulsified.
  • a surfactant, to which an AB block copolymer according to the invention is added, and any system emulsified therewith, comprising additionally water and / or oil, are therefore included in the invention.
  • the effects according to the invention are not limited to emulsions and microemulsions, but rather influence sen the behavior of surfactants in general in the manner described.

Abstract

The invention relates to a method for increasing the efficiency of surfactants as well as to a method for suppressing lamellar mesophases in microemulsions. According to the invention, block copolymers having a water-soluble block A and a water-insoluble part B are admixed to the surfactants. The use of these substances as additives can considerably increase the efficiency of the surfactants. Moreover, the addition of the block copolymers suppresses the formation of undesired lamellar mesophases in microemulsions.

Description

B e s c h r e i b u n g Description
Verfahren zur Effizienzsteigerung von Tensiden bei simultaner Unterdrückung lamellarer Mesophasen sowie Tenside, welchen ein Additiv beigefügt ist.Process for increasing the efficiency of surfactants with simultaneous suppression of lamellar mesophases and surfactants to which an additive is added.
Die Erfindung betrifft ein Verfahren zur Effizienzsteigerung von Tensiden bei simultaner Unterdrückung lamellarer Mesophasen insbesondere in Mikroemulsionen und Emulsionen, sowie Tenside, welchen ein Additiv beigemischt ist .The invention relates to a method for increasing the efficiency of surfactants with simultaneous suppression of lamellar mesophases, in particular in microemulsions and emulsions, and to surfactants to which an additive is added.
Emulsionen und Mikroemulsionen werden nach dem Stand der Technik durch nichtionische, anionische oder kationische Tenside stabilisiert. Die Tenside vermögen ein unpolares Lösungsmittel (Öl) in einem polaren Lösungsmittel ( z.B. Wasser) oder Wasser in Öl zu solubilisie- ren. Die Effizienz der Tenside wird in der Menge Tensid ausgedrückt, welche benötigt wird, um einen bestimmten Anteil Öl im Wasser oder umgekehrt zu solubilisieren. Man unterscheidet bei Wasser-Öl-Tensid-Mischungen zusätzlich zwischen Emulsionen und Mikroemulsionen. Während Mikroemulsionen thermodynamisch stabil sind, sind Emulsionen thermodynamisch instabil und zerfallen. Im mikroskopischen Bereich spiegelt sich dieser Unterschied darin wieder, daß die emulgierten Flüssigkeiten in Mikroemulsionen in kleinere Flüssigkeitsvolumina ( z.B. 10 -15 μl) gefaßt sind als in Emulsionen (z.B. 10-12According to the prior art, emulsions and microemulsions are stabilized by nonionic, anionic or cationic surfactants. The surfactants are able to solubilize a non-polar solvent (oil) in a polar solvent (eg water) or water in oil. The efficiency of the surfactants is expressed in the amount of surfactant required to add a certain amount of oil in water or vice versa to solubilize. A distinction is also made in water-oil-surfactant mixtures between emulsions and microemulsions. While microemulsions are thermodynamically stable, emulsions are thermodynamically unstable and disintegrate. In the microscopic range, this difference is reflected in the fact that the emulsified liquids in microemulsions are contained in smaller liquid volumes (e.g. 10 -15 μl) than in emulsions (e.g. 10-12
μl) . Thermodynamisch instabile Emulsionen weisen somit größere Strukturgrößen auf .μl). Thermodynamically unstable emulsions therefore have larger structure sizes.
In Mikroemulsionssystemen können lamellare Mesophasen auftreten. Lamellare Mesophasen führen zu optischer Anisotropie und erhöhter Viskosität. Diese Eigenschaften sind z.B. für Waschmittel unerwünscht, da die la- mellaren Mesophasen nicht auswaschbar sind. Weiterhin beeinflussen Additive im Allgemeinen das Temperaturverhalten der Emulsionen und Mikroemulsionen. So ist im Phasendiagramm eine Verlagerung der Einphasengebiete für Öl-Wasser-Tensid-Mischungen in andere Temperaturbereiche zu beobachten, wenn ein Additiv zugegeben wird. Die Verschiebungen können in der Größenordnung von 10°C liegen. Dies hat jedoch zur Folge, daß z.B. Waschmittelrezepturen geändert werden müssen, um sie dem sich jeweils neu einstellenden Temperaturverhalten des Einphasengebietes anzupassen.Lamellar mesophases can occur in microemulsion systems. Lamellar mesophases lead to optical anisotropy and increased viscosity. These properties are e.g. undesirable for detergents because the lamellar mesophases cannot be washed out. Furthermore, additives generally influence the temperature behavior of the emulsions and microemulsions. A shift in the single-phase areas for oil-water-surfactant mixtures to other temperature ranges can be observed in the phase diagram when an additive is added. The shifts can be on the order of 10 ° C. However, this has the consequence that e.g. Detergent formulations have to be changed in order to adapt them to the new temperature behavior of the single-phase area.
Zusätzlich besteht das Bedürfnis, unter Einsparung von Tensiden ein mindestens gleich gutes Emulgierungsver- halten zu erlangen und die Grenzflächenspannung zu verkleinern, das bedeutet, beispielsweise die Waschkraft von Waschmitteln zu verbessern.In addition, there is a need to achieve an at least equally good emulsification behavior while saving surfactants and to reduce the interfacial tension, which means, for example, to improve the washing power of detergents.
Es ist daher die Aufgabe der Erfindung, die Effizienz von Tensiden zu steigern und die Grenzflächenspannung zwischen Wasser und Öl in Anwesenheit von Tensiden noch stärker zu verringern. Weiterhin soll das Auftreten von lamellaren Phasen in Mikroemulsionen bzw. Wasser-, Öl-, Tensidgemischen unterdrückt werden. Das Temperaturverhalten der Emulsionen und Mikroemulsionen soll durch Zugabe des Additivs unbeeinflußt bleiben, das heißt, die Lage des Einphasengebietes im Phasendiagramm soll durch Zugabe der Additive bezüglich der Temperatur im wesentlichen nicht beeinflußt werden. Es soll ein Additiv geschaffen werden, welches die Lage des Einphasengebietes bezüglich der Temperatur nicht beeinflußt . Es soll ebenfalls ein Additiv zur Verfügung gestellt werden, welches die oben genannten Vorteile hat und z.B. einem Waschmittel zugemischt werden kann ohne daß eine Rezepturänderung der verbleibenden Waschmittelrezeptur vorgenommen werden muß. Es soll eine Möglichkeit geschaffen werden, Mikroemulsionen herzustellen, deren Größe der emulgierten Flüssigkeitsteilchen denen von Emulsionen entsprechen.It is therefore the object of the invention to increase the efficiency of surfactants and to reduce the interfacial tension between water and oil even more in the presence of surfactants. Furthermore, the occurrence of lamellar phases in microemulsions or water, oil, surfactant mixtures are suppressed. The temperature behavior of the emulsions and microemulsions should remain unaffected by the addition of the additive, that is to say the position of the single-phase region in the phase diagram should essentially not be influenced by the addition of the additives with respect to the temperature. An additive is to be created which does not influence the position of the single-phase region with regard to the temperature. The aim is also to provide an additive which has the advantages mentioned above and can be added to a detergent, for example, without having to change the formulation of the remaining detergent formulation. A possibility is to be created to produce microemulsions whose size of the emulsified liquid particles corresponds to that of emulsions.
Überraschenderweise werden ausgehend vom Oberbegriff des Anspruchs 1 alle Aufgaben erfindungsgemäß dadurch gelöst, daß als Additiv ein Blockcopolymer mit einem wasserlöslichen Block A und einem wasserunlöslichen Block B eingesetzt wird.Surprisingly, starting from the preamble of claim 1, all of the objects are achieved according to the invention in that a block copolymer with a water-soluble block A and a water-insoluble block B is used as an additive.
Erfindungsgemäß wird durch die Zugabe des AB- Blockcopolymers zur Wasser-Öl-Tensid-Mischung die Lage des einphasigen Gebietes im Phasendiagramm im Temperaturgebiet nicht verändert, die Effizienz der Tensidmi- schung wird erheblich gesteigert, lamellare Mesophasen werden in Mikroemulsionen unterdrückt und die Grenzflä- chenspannung zwischen Wasser und Öl wird stärker abgesenkt als durch die Tenside alleine. Außerdem behalten Mikroemulsionen ihre für sie charakteristischen Eigenschaften unter Vergrößerung ihrer Strukturgroße; so nehmen die emulgierten Strukturen Größen von bis zu ca. 2000 Angström an. Somit wird eine Mikroemulsion erhalten, die die Strukturgrößen einer Emulsion hat, aber thermodynamisch stabil ist . Die Größe der emulgierten Flüssigteilchen hängt von der Temperatur und der zugesetzten Menge Blockcopolymer, bzw. damit von der Zusammensetzung des Tensidgemisches, ab.According to the invention, the position of the single-phase area in the phase diagram in the temperature area is not changed by adding the AB block copolymer to the water-oil-surfactant mixture, the efficiency of the surfactant mixture is increased considerably, lamellar mesophases are suppressed in microemulsions and the interface The tension between water and oil is reduced more than by the tensides alone. In addition, microemulsions retain their characteristic properties while increasing their structural size; the emulsified structures take on sizes of up to approx. 2000 angstroms. A microemulsion is thus obtained which has the structure sizes of an emulsion but is thermodynamically stable. The size of the emulsified liquid particles depends on the temperature and the amount of block copolymer added, and thus on the composition of the surfactant mixture.
Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.Advantageous developments of the invention are specified in the subclaims.
Die Blöcke A und B können dabei Molekulargewichte zwischen 500 u und 60000 u annehmen. Als Block A wird bevorzugt ein Polyethylenoxid (PEO) - Block eingesetzt. Jedoch können alle Blöcke A eingesetzt werden, die wasserlöslich sind, so daß sie in Verbindung mit Block B ein Amphiphil bilden. Weiterhin können für den Block A beispielhaft Polyacrylsäure, Polymethacrylsäure , Polystyrolsulfonsäure sowie deren Alkalimetallsalze, bei denen mindestens teilweise eine Substitution der Säurefunktion durch Alkalimetallkationen erfolgt ist, Po- lyvinylpyridin und Polyvinylalkohol, Polymethylvinyle- ther, Polyvinylpyrrolidin, Polysaccharide sowie deren Gemische genannt werden.Blocks A and B can assume molecular weights between 500 u and 60,000 u. A polyethylene oxide (PEO) block is preferably used as block A. However, all blocks A which are water-soluble can be used, so that they form an amphiphile in conjunction with block B. For block A, polyacrylic acid, polymethacrylic acid, polystyrene sulfonic acid and their alkali metal salts, in which the acid function has been at least partially replaced by alkali metal cations, can also be mentioned as examples of polyvinylpyridine and polyvinyl alcohol, polymethylvinylyl ether, polyvinylpyrrolidine, polysaccharides and mixtures thereof.
Für den Block B kommen verschiedene wasserunlösliche Komponenten des genannten Molekulargewichts zum Ein- satz. So kann Block B das Produkt einer anionischen 1,2-, 3,4- Polymerisation, bzw. 1,4 Polymerisation von Dienen sein. In Folge kann Block B weiterhin das Produkt einer mindestens teilweisen Hydrierung der Poly- diene sein. Als typische monomere Bestandteile kommen 1,3 Butadien, Isopren, alle Konstitumere des Dimethyl- butadien, 1,3 Pentadien, 2,4 Hexadiene, α Methylstyrol, Isobutylen, Ethylen, Propylen, Styrol oder Alkylacryla- te und Alkylmethacrylate wobei die Alkylgruppe zwischen 2 uns 20 Kohlenstoffatome enthält zum Einsatz. Block B kann auch Polydimethylsiloxan sein. Als Block B kann das Polymerisat eines einzigen Monomers oder eines Monomerengemisches verwendet werden.For block B, various water-insoluble components of the stated molecular weight are used. sentence. Block B can be the product of an anionic 1,2-, 3,4-polymerization or 1,4-polymerization of dienes. As a result, block B can also be the product of an at least partial hydrogenation of the polydienes. Typical monomeric constituents are 1,3 butadiene, isoprene, all constituents of dimethyl butadiene, 1.3 pentadiene, 2.4 hexadienes, α methylstyrene, isobutylene, ethylene, propylene, styrene or alkyl acrylates and alkyl methacrylates, the alkyl group between 2 contains 20 carbon atoms. Block B can also be polydimethylsiloxane. The polymer of a single monomer or a monomer mixture can be used as block B.
Block B kann als Seitenketten Methyl-, Ethyl-, Vinyl- Phenyl- oder Benzylgruppen aufweisen.Block B can have methyl, ethyl, vinyl, phenyl or benzyl groups as side chains.
Die Doppelbindungen in der Polydienkette sowie in den Vinylgruppen, die als Seitenkette existieren können, können entweder ganz oder teiweise hydriert sein. Jedoch kann erfindungsgemäß jedes genügend amphiphile Blockcopolymer eingesetzt werden. Die erfindungsgemäß eingesetzten AB-Blockcopolymere können vorzugsweise aus einer anionischen Polymerisation erhalten werden. Bei geringeren Molekulargewichten der Blöcke A und B in einer Größenordnung von ca 500-5000 g/mol für die Blök- ke A und B werden besonders vorteilhafte Eigenschaften der erfindungsgemäßen AB-Blockcopolymere in Anwendungsprodukten beobachtet. So lösen sich die Polymere mit diesen niedrigen Molekulargewichten schnell und gut auf. Dies gilt zum Beispiel für Lösungen in Seifen und Waschmitteln. In den erfindungsgemäß eingesetzten AB-Blockcopolymeren sollen die beiden Blöcke A und B ein möglichst hohen Unterschied in ihrer Polarität aufweisen. Dabei soll Block A möglichst polar sein und Block B möglichst unpolar. Hierdurch wird das amphiphile Verhalten gesteigert . Block A soll wasserlöslich sein und Block B soll in unpolaren Medien löslich sein. Vorteilhafterweise ist Block B in Mineralölen oder aliphatischen Kohlenwasserstoffen bzw. in Mineralölen und aliphatischen Kohlenwasserstoffen löslich. Dies gilt auch bei Raumtemperatur .The double bonds in the polydiene chain as well as in the vinyl groups, which can exist as a side chain, can be either completely or partially hydrogenated. However, any sufficiently amphiphilic block copolymer can be used in the present invention. The AB block copolymers used according to the invention can preferably be obtained from an anionic polymerization. With lower molecular weights of blocks A and B in the order of about 500-5000 g / mol for blocks A and B, particularly advantageous properties of the AB block copolymers according to the invention are observed in application products. The polymers with these low molecular weights dissolve quickly and well. This applies, for example, to solutions in soaps and detergents. In the AB block copolymers used according to the invention, the two blocks A and B should have the greatest possible difference in their polarity. Block A should be as polar as possible and block B as non-polar as possible. This increases the amphiphilic behavior. Block A should be water-soluble and Block B should be soluble in non-polar media. Block B is advantageously soluble in mineral oils or aliphatic hydrocarbons or in mineral oils and aliphatic hydrocarbons. This also applies at room temperature.
Weiterhin können auch AB-Blockcopolymere des Typs ABA und BAB einegesetzt werden, die als Triblockcopolymere bezeichnet werden.AB block copolymers of the ABA and BAB types, which are referred to as triblock copolymers, can also be used.
Beispielhaft können folgende Tenside (C) und deren Gemische mit den erfindungsgemäßen Additiven verwendet werden :The following surfactants (C) and their mixtures with the additives according to the invention can be used as examples:
• nichtionische Tenside der Klasse Alkylpolyglycolether ( jE-j) mit i > 8 (C = C-Atome in der Alkylkette, E =• Nonionic surfactants of the class alkyl polyglycol ether (jE- j ) with i> 8 (C = C atoms in the alkyl chain, E =
Ethylenoxideinheiten)Ethylene oxide units)
• nichtionische Tenside der Klasse Alkylpolyglucoside• Nonionic surfactants of the alkyl polyglucoside class
(APG) „Zuckertensidew,CiGj mit i > 8) mit Cotensid Alkohol (Cx-OH, x > 6)(APG) "Sugar surfactants w , CiG j with i> 8) with cosurfactant alcohol (C x -OH, x> 6)
• anionische Tenside, z.B. AOT (Natrium bis (2- ethylhexyl) sulfosuccinat)Anionic surfactants, e.g. AOT (sodium bis (2-ethylhexyl) sulfosuccinate)
• kationische Tenside • Tensidgemische• cationic surfactants • surfactant mixtures
• technische Tenside• technical surfactants
Im Folgenden sollen einige Begriffe definiert werden: C = Ein beliebiges Tensid, wie anionisches, kationisches, nichtionisches Tensid oder Zuckertensid, sowie deren Gemische, die mindestens zwei Tenside enthalten.Some terms are to be defined below: C = any surfactant, such as anionic, cationic, nonionic surfactant or sugar surfactant, and mixtures thereof which contain at least two surfactants.
D = Additiv, welches dem Tensid C erfindungsgemäß zugefügt wird .D = additive which is added to surfactant C according to the invention.
γ Gesamttensidkonzentration (Massenbruch) aus C undγ total surfactant concentration (mass fraction) from C and
Hierin sind: = Masse in g.Here are: = mass in g.
γ = dimensionsloser Massenbruch mges = Gesamtmasse aus ^sser + möι + m(C) + m(E>)γ = dimensionless mass fraction m tot = total mass of ^ ter + m + m öι (C) + m (E>)
γ= Gesamttensidkonzentration am Kreuzungspunkt, an dem im Phasendiagramm das einphasige auf das dreiphasige Gebiet trifft. Dies entspricht der bei gegebenen Wasser/Öl-Verhältnis minimal zur vollständigen Solubilie- rang von Wasser und Öl notwendigen Gesamttensidkonzentration.γ = total surfactant concentration at the crossing point where the single-phase meets the three-phase area in the phase diagram. For a given water / oil ratio, this corresponds minimally to the total surfactant concentration required for complete solubilization of water and oil.
δ = Massenbruch des Additivs D im Gemisch Tensid C + m (D)δ = mass fraction of additive D in a mixture of surfactant C + m (D)
Additiv D, entspricht δ= m (C) + m (D) mit m = Masse in g undAdditive D, corresponds to δ = m (C) + m (D) with m = mass in g and
δ = Massenbruch (dimensionslos)δ = mass fraction (dimensionless)
Im Folgenden soll die Erfindung beispielhaft erläutert werden .The invention is to be explained by way of example below.
PX/Y = Additiv mit einem Molekulargewicht in lOOOg/mol X an hydrophober Alkylkette (hydriertes 1,4- Polyisopren) und einem Molekulargewicht in lOOOg/mol Y an Polyethylenoxid.PX / Y = additive with a molecular weight in lOOOg / mol X of a hydrophobic alkyl chain (hydrogenated 1,4-polyisoprene) and a molecular weight in lOOOg / mol Y of polyethylene oxide.
Beispiel P5/5 : die Alkylkette hat ein Molekulargewicht von 5000 g/mol (= u) und die Polyethylenoxidkette hat ein Molekulargewicht von 5000 g/mol.Example P5 / 5: the alkyl chain has a molecular weight of 5000 g / mol (= u) and the polyethylene oxide chain has a molecular weight of 5000 g / mol.
P22/15: die Alkylkette hat ein Molekulargewicht von 22000 g/mol und die Polyethylenoxidkette hat ein Molekulargewicht von 15000 g/mol.P22 / 15: the alkyl chain has a molecular weight of 22000 g / mol and the polyethylene oxide chain has a molecular weight of 15000 g / mol.
Die auf diese Weise dargestellten Additive sind AB- Blockcopolymere .The additives shown in this way are AB block copolymers.
Die hier beispielhaft dargestellten Verbindungen können nach dem Herstellungsverfahren aus der DE 196 34 477 AI erhalten werden.The compounds shown here as examples can be obtained by the production process from DE 196 34 477 AI.
Das Verhalten der erfindungsgemäßen Mikroemulsionen ist in den Figuren dargestellt : Fig.l: Typischer Temperatur/Tensidkonzentrationsschnitt durch das Phasenprisma bei konstantem Wasser/Öl- Verhältnis für das H20-Tetradekan-C6E2-System zum Vergleich.The behavior of the microemulsions according to the invention is shown in the figures: Fig.l: Typical temperature / surfactant concentration section through the phase prism at a constant water / oil ratio for the H 2 0-tetradecane-C 6 E 2 system for comparison.
Fig.2: Die Einphasengebiete für das Gemisch Wasser/n- Dekan-C10E4-P5/5 als Funktion der Zugabe P5/5 (δ) in einem Temperatur/Tensidkonzentrationsdiagramm .Fig. 2: The single-phase areas for the mixture water / n-dean-C 10 E 4 -P5 / 5 as a function of the addition P5 / 5 (δ) in a temperature / surfactant concentration diagram.
Fig.3: Die Einphasengebiete für das Gemisch Wasser/n-Fig. 3: The single-phase areas for the mixture water / n
Dekan-C10E4-P10/I0 als Funktion der Zugabe P10/10 (δ) in einem Temperatur/Tensidkonzentrationsdiagramm.Dekan-C 10 E 4 -P10 / I0 as a function of the addition P10 / 10 (δ) in a temperature / surfactant concentration diagram.
Fig.4: Die Einphasengebiete für das Gemisch Wasser/n- Dekan-C10E4-P22/22 als Funktion der Zugabe P22/22 (δ) in einem Temperatur/Tensidkonzentrationsdiagramm.Fig. 4 : The single-phase areas for the mixture water / n-dean-C 10 E 4 -P22 / 22 as a function of the addition P22 / 22 (δ) in a temperature / surfactant concentration diagram.
Fig.5: Die Einphasengebiete für das Gemisch Wasser/n- Dekan-C10E4-P5/3 als Funktion der Zugabe P5/3 (δ) und P5/2 (δ) in einem Temperatur/Tensidkonzentrations- diagramm.Fig. 5: The single-phase areas for the mixture water / n-dean-C 10 E 4 -P5 / 3 as a function of the addition of P5 / 3 (δ) and P5 / 2 (δ) in a temperature / surfactant concentration diagram.
Fig.6: Die Einphasengebiete für das Gemisch Wasser/n- Dekan-C10E4-P22/15 als Funktion der Zugabe P22/15 (δ) in einem Temperatur/Tensidkonzentrationsdiagramm. Fig.7: Die Einphasengebiete für das Gemisch Wasser/n- Dekan-C10E4-P5/15 und Wasser/n-Dekan-C10E4-PI5/PEO15 (PI5 = Polyisopren mit Molekulargewicht 5000g/mol, PE015 = Polyethylenoxyd mit Molekulargewicht 15000 g/mol (AB- Blockcopolymer) . ) als Funktion der Zugabe δ in einem Temperatur/Tensidkonzentrationsdiagramm.Fig. 6: The single-phase areas for the mixture water / n-dean-C 10 E 4 -P22 / 15 as a function of the addition P22 / 15 (δ) in a temperature / surfactant concentration diagram. Fig. 7: The single-phase areas for the mixture water / n-decane-C 10 E 4 -P5 / 15 and water / n-decane-C 10 E 4 -PI5 / PEO15 (PI5 = polyisoprene with molecular weight 5000g / mol, PE015 = Polyethylene oxide with molecular weight 15000 g / mol (AB block copolymer).) As a function of the addition δ in a temperature / surfactant concentration diagram.
Fig.8: Die Einphasengebiete für das Gemisch Wasser/n- Dekan-C10E4-P5/30 als Funktion der Zugabe P5/30 (δ) in einem Temperatur/Tensidkonzentrationsdiagramm.Fig. 8: The single-phase areas for the mixture water / n-dean-C 10 E 4 -P5 / 30 as a function of the addition P5 / 30 (δ) in a temperature / surfactant concentration diagram.
Fig.9: Die Einphasengebiete für das Gemisch (Wasser+NaCl) /n-Dekan-AOT-P5/5 als Funktion der Zugabe P5/5 (δ) in einem Tempera- tur/Tensidkonzentrationsdiagramm.Fig. 9: The single-phase areas for the mixture (water + NaCl) / n-decane-AOT-P5 / 5 as a function of the addition P5 / 5 (δ) in a temperature / surfactant concentration diagram.
Fig.10: Die Einphasengebiete für das Gemisch Wasser/n- Oktan-Oktanol-CsGi-PS/S ( C^ = n-octyl-ß-D- Glucopyranosid, welches ein Zuckertensid ist) als Funk- tion der Zugabe P5/5 (δ) in einem Tetraederschnitt bei einem konstantem Wasser/Öl-Verhältnis und T=25°C. CgG-L ist hierbei ein Zuckeramphiphil .Fig. 10: The single-phase areas for the mixture water / n-octane-octanol-CsGi-PS / S (C ^ = n-octyl-β-D-glucopyranoside, which is a sugar surfactant) as a function of the addition P5 / 5 (δ) in a tetrahedral section with a constant water / oil ratio and T = 25 ° C. CgG- L is a sugar amphiphile.
Fig.11: Übersicht: γ als Funktion von δ für die ver- schiedenen Wasser/n-Dekan-C10E4-Px/y-Systeme . Fig.12: Öl/Wassergrenzflächenspannung als Funktion der Temperatur für das System Wasser/n-Dekan-C10E4-P5/5 für δ=0 und δ=0.05.Fig. 11: Overview: γ as a function of δ for the different water / n-dean-C 10 E 4 -Px / y systems. Fig. 12: Oil / water interfacial tension as a function of temperature for the water / n-dean-C 10 E 4 -P5 / 5 system for δ = 0 and δ = 0.05.
Fig.13 Einphasengebiete für die Systeme H20-n-Dekan- C10E4- P22/22 (leere Kreise) und H20-n-Dekan-C10E4-Pl/l (schwarze Rauten) in Abhängigkeit von δ.Fig. 13 single-phase areas for the systems H 2 0-n-dean C 10 E 4 - P22 / 22 (open circles) and H 2 0-n-dean-C 10 E 4 -Pl / l (black diamonds) depending from δ.
Fig.14: Einphasengebiete für die Systeme H20- Cyclohexan-C8E4- PSl/PEOl (PS1 = Polystyrol mit Molekulargewicht lOOOg/mol, PEOl = Polyethylenoxid mit Molekulargewicht lOOOg/mol ; (AB-Blockcopolymer) ) in einem Temperatur/Tensidkonzentrationsdiagramm. Das Verhältnis H20/Cyclohexan ist 1:1.Fig. 14: Single-phase areas for the systems H 2 O-cyclohexane-C 8 E 4 - PSl / PEOl (PS1 = polystyrene with molecular weight 10000g / mol, PEOl = polyethylene oxide with molecular weight 10000g / mol; (AB block copolymer)) in one temperature / Surfactant concentration diagram. The ratio H 2 0 / cyclohexane is 1: 1.
Die in den Figuren 1 bis 9 und 11 bis 13 realisierten H2θ/n-Dekan-Verhältnisse sind 1:1.The H 2 θ / n-dean ratios realized in FIGS. 1 to 9 and 11 to 13 are 1: 1.
Figur 1 stellt den Typ von Phasendiagramm nach dem Stand der Technik dar, der die Grundlage für die Figuren 1 bis 8 liefert.FIG. 1 shows the type of phase diagram according to the prior art, which provides the basis for FIGS. 1 to 8.
Dabei ist die Temperatur T gegen die Gesamttensidkonzentration γ für das System Wasser/n-Tetradecan-C3E2 und ein Wasser/n-Tetradekan-Verhältnis von 1:1 aufgetragen. Bei höheren Tensidkonzentrationen befindet sich das Einphasengebiet 1 des Gemisches . An diesen Gebiet schließt sich in Richtung kleinerer Tensidkonzentratio- nen ein geschlossenes Dreiphasengebiet 3 an. Oberhalb und unterhalb der Phasengrenzlinien befinden sich Zwei- phasengebiete 2. Der Punkt, an dem alle Phasengebiete zusamnmentreffen, wird durch die Tensidkonzentration γ und die Temperatur T definiert . Je mehr γ zu kleinen Werten verschoben ist, desto größer ist die Strukturgröße der Mikroemulsionen.The temperature T is plotted against the total surfactant concentration γ for the water / n-tetradecane-C 3 E 2 system and a water / n-tetradecane ratio of 1: 1. At higher surfactant concentrations, the single phase area 1 of the mixture is located. This area is followed in the direction of smaller surfactant concentrations. NEN a closed three-phase area 3. There are two-phase regions 2 above and below the phase boundary lines. The point at which all phase regions meet is defined by the surfactant concentration γ and the temperature T. The more γ is shifted to small values, the larger the structure size of the microemulsions.
Die in den Figuren 2 bis 9 dargestellten T/γ -Diagramme beziehen sich auf Systeme auf ein konstantes Wasser/Öl- Volumenverhältnis von 1:1 und sollen im Folgenden allgemein erläutert werden.The T / γ diagrams shown in FIGS. 2 to 9 relate to systems with a constant water / oil volume ratio of 1: 1 and are to be explained in general below.
In diesen Diagrammen sind Kurven zu jeweils einem δ - Wert eingezeichnet, welche die Begrenzung des jeweiligen zu einem δ-Wert gehörigen Einphasengebiet charakterisiert. Die Spitze der jeweiligen Kurve ist derjenige Punkt, an dem verschiedene Mehrphasengebiete zusammentreffen. Je weiter die Spitze einer Kurve bei niedrige- ren Tensidkonzentrationen, d.h. γ - Werten, angesiedelt ist, desto größer ist die Effizienz des Tensids C durch die Zugabe des Blockcopoymeren D.In these diagrams, curves with a δ value are drawn, which characterize the limitation of the respective single-phase area associated with a δ value. The tip of the respective curve is the point at which different multiphase areas meet. The further the tip of a curve at lower surfactant concentrations, i.e. γ values, the greater the efficiency of the surfactant C through the addition of the block copolymer D.
Figur 2 zeigt, wie sich die Effizienz des Gesamttensids mit der Zugabe des Blockcopolymeren vergrößert. Zusätzlich ist keine wesentliche Verschiebung des Einphasengebietes auf der Temperaturachse zu verzeichnen. Dieses ist gleichbedeutend damit, daß das Blockcopolymer D die Lage der Wirksamkeit des Tensids C bezüglich seiner An- wendungstemperatur im wesentlichen invariant läßt. Au- sserdem treten in den untersuchten Mischungen keine lamellaren Mesophasen auf .Figure 2 shows how the efficiency of the total surfactant increases with the addition of the block copolymer. In addition, there is no significant shift in the single-phase area on the temperature axis. This is equivalent to the fact that the block copolymer D The position of the effectiveness of the surfactant C with respect to its application temperature is essentially invariant. In addition, no lamellar mesophases occur in the mixtures examined.
In Figur 3 treten sowohl in Bezug auf die Effizienz als auch auf das Temperaturverhalten die selben Charakteri- stika auf.In FIG. 3, the same characteristics occur with regard to both efficiency and temperature behavior.
Die Effizienz des Gesamttensids wird auch in dem in Figur 4 gezeigten Beispiel gesteigert und die Temperaturlage bleibt im wesentlichen erhalten. Lamellare Phasen werden nicht beobachtet .The efficiency of the total surfactant is also increased in the example shown in FIG. 4 and the temperature is essentially maintained. Lamellar phases are not observed.
In Figur 5 verschieben sich die Kurven isotherm unter Effizienzsteigerung und Vermeidung von lamellaren Phasen. Die Rauten geben das System mit P5/3 wieder. Durch die grauen Kreise wird das System mit P5/2 dargestellt.In FIG. 5 the curves shift isothermally, increasing efficiency and avoiding lamellar phases. The diamonds represent the system with P5 / 3. The system is represented by P5 / 2 by the gray circles.
In Figur 6 ist das gleiche Verhalten zu beobachten wie in Figur 5.The same behavior can be observed in FIG. 6 as in FIG. 5.
In Figur 7 und 8 ist ebenfalls eine wesentliche Effizienzsteigerung zu beobachten. Weiterhin treten bei den in den Figuren 7 und 8 dargestellten Versuchen keine lamellaren Phasen auf. In Figur 7 sind die grauen Punkte PI5/PE015 und die Dreiecke P5/15. Während in den Figuren 2-8 die Effizienzsteigerung des nichtionischen Tensides C10E4 durch die Zugabe von Blockcopolymeren dokumentiert wurde, ist in Figur 9 die Effizienzsteigerung in einem anionischen Tensidsystem (Wasser+NaCl) /n-Dekan-AOT-P5/5 gezeigt.A significant increase in efficiency can also be observed in FIGS. 7 and 8. Furthermore, no lamellar phases occur in the experiments shown in FIGS. 7 and 8. In Figure 7, the gray dots are PI5 / PE015 and the triangles P5 / 15. While the increase in efficiency of the nonionic surfactant C 10 E 4 was documented by the addition of block copolymers in FIGS. 2-8, the increase in efficiency in an anionic surfactant system (water + NaCl) / n-decane-AOT-P5 / 5 is shown in FIG. 9 .
Um die Effizienzsteigerung der Blockcopolymere für eine weitere Tensidklasse zu dokumentieren, ist in Fig 10 ein Schnitt durch einen Phasentetraeder im System Was- ser/n-Oktan-Oktanol-CgG-L-Pδ/S, bei dem das VerhältnisIn order to document the increase in efficiency of the block copolymers for a further class of surfactants, a section through a phase tetrahedron in the water / n-octane-octanol-CgG- L -Pδ / S system in which the ratio is shown in FIG
Wasser/n-Oktan 1:1 ist, gezeigt. Dabei wird das Phasenverhalten hier nicht durch die Temperatur sondern durch die Zugabe eines Cotensides (Oktanol) bestimmt. Auch hier verschiebt sich das Einphasengebiet durch die Zu- gäbe von Blockcopolymeren zu wesentlich kleineren Ten- sidkonzentrationen und außerdem auch zu kleineren Co- tensid-Konzentrationen .Water / n-octane 1: 1 is shown. The phase behavior here is not determined by the temperature but by the addition of a cosurfactant (octanol). Here too, the addition of block copolymers shifts the single-phase area to much lower surfactant concentrations and also to smaller co-surfactant concentrations.
Figur 11 dokumentiert in einer Übersicht die erfin- dungsgemäß sehr starke Effizienzsteigerung der Blockco- polymer-Zumischungen. Aufgetragen sind die Gesamtten- sidkonzentrationen am Kreuzungspunkt γ als Funktion der Zugabe δ des Blockcopolymers .FIG. 11 documents in an overview the very strong increase in efficiency of the block copolymer admixtures according to the invention. The total surfactant concentrations at the crossing point γ are plotted as a function of the addition δ of the block copolymer.
Im Gegensatz zu konventionellen Tensidmischungen führt bei den Blockcopolymeren schon eine sehr geringe Zugabe δ zu einem stärkeren Absinken von γ , und damit zu starker Effizienzsteigerung. Der Wert des Wasser/Öl-Grenzflächenspannungsminimums korreliert mit der Effizienz der Tensidmischung, wobei z.B. für den Waschprozeß eine möglichst niedrige Grenzflächenspannung erwünscht ist .In contrast to conventional surfactant mixtures, a very small addition δ leads to a greater decrease in γ in the block copolymers and thus to a large increase in efficiency. The value of the water / oil interfacial tension minimum correlates with the efficiency of the surfactant mixture, with the lowest possible interfacial tension being desired, for example, for the washing process.
In Figur 12 ist Grenzflächenspannung als Funktion der Temperatur für das System Wasser/n-Dekan-C10E4-P5/5 dargestellt . Durch die Zugabe des Blockcopolymers sinkt schon bei einem δ von 0.05 der Wert des Grenzflächenspannungsminimums um Faktor fünf ab.In Figure 12, interfacial tension is shown as a function of temperature for the water / n-dean-C 10 E 4 -P5 / 5 system. By adding the block copolymer, the value of the interfacial tension minimum drops by a factor of five even at a δ of 0.05.
In Figur 13 ist ebenfalls eine Effizienzsteigerung zu beobachten. Weiterhin treten bei diesen Versuchen keine lamellaren Phasen auf .An increase in efficiency can also be observed in FIG. Furthermore, no lamellar phases occur in these experiments.
Die Messungen in Figur 14 wurden in Cyclohexan vorgenommen, da die Cycloalkane die besten Voraussetzungen für die Löslichkeit von Polystyrol innerhalb der Gruppe der Alkane liefern. Außerdem wurde als Tensidkomponente C8E4 verwendet, um trotz der veränderten unpolaren Kom- ponente Cyclohexan eine ähnliche Ausgangseffizienz zu erhalten. Auch hier werden lamellare Phasen unterbunden.The measurements in FIG. 14 were made in cyclohexane, since the cycloalkanes provide the best conditions for the solubility of polystyrene within the group of the alkanes. C 8 E 4 was also used as the surfactant component in order to obtain a similar starting efficiency despite the modified nonpolar component cyclohexane. Lamellar phases are also prevented here.
Mit den erfindungsgemäß eingesetzten AB Blockcopolyme- ren wird die Grenzflächenspannung von Tensiden, wie beispielsweise anionischen, kationischen und nichtionischen Tensiden, Zuckertensiden oder technischen Tensid- gemischen gesenkt . Das Auftreten lammelarer Mesophasen wird unterdrückt. Das Temperaturverhalten der Mikroemulsionen bleibt unverändert, das heißt die Lage des Einphasengebietes bezüglich der Temperatur im Phasendiagramm wird durch die Zugabe der erfindungsgemäß ein- gesetzten Additive nicht beeinflußt. Daher muß die Rezeptur eines Waschmittels nicht verändert werden um eine gleichbleibende Lage des Einphasengebietes bezüglich der Temperatur im Einphasendiagramm zu bewirken.With the AB block copolymers used according to the invention, the interfacial tension of surfactants, such as, for example, anionic, cationic and nonionic surfactants, sugar surfactants or technical surfactant mixtures, is reduced. The appearance of lamellar mesophases is suppressed. The temperature behavior of the microemulsions remains unchanged, ie the position of the single-phase area with respect to the temperature in the phase diagram is not influenced by the addition of the additives used according to the invention. Therefore, the formulation of a detergent does not have to be changed in order to bring about a constant position of the single-phase area with respect to the temperature in the single-phase diagram.
Die erfindungsgemäßen AB-Blockcopolymere können nicht nur in Waschmitteln eingesetzt werden; sie können mit derselben Wirkung auch beispielsweise als Zusätze in Lebensmitteln und Kosmetika sowie in allen industriellen oder technischen Anwendungen von Mikroemulsionen und Emulsionen, z.B. beim Einsatz in der Erdölförde- rung, in der Bodensanierung sowie bei der Anwendung als z.B. Reaktionsmedium verwendet werden .The AB block copolymers according to the invention can not only be used in detergents; they can also have the same effect, for example, as additives in foods and cosmetics and in all industrial or technical applications of microemulsions and emulsions, e.g. when used in crude oil production, in soil remediation and when used as e.g. Reaction medium can be used.
Die mittels der erfindungsgemäßen Zugabe der AB Blockcopolymere hergestellten Mikroemulsionen weisen emul- gierte Flüssigkeitsvolumina auf, deren Größe denen von Emulsionen entsprechen.The microemulsions produced by adding the AB block copolymers according to the invention have emulsified liquid volumes whose size corresponds to that of emulsions.
Die erfindungsgemäßen Wirkungen können durch jeden gemeinsamen Einsatz eines Tensids mit dem AB- Blockcopolymer in einem zu emulgierenden System erreicht werden. Ein Tensid, welchem ein erfindungsgemä- ßes AB-Blockcopolymer beigefügt ist, sowie jedes damit emulgierte System umfassend zusätzlich Wasser und/oder Öl sind daher von der Erfindung umfaßt.The effects according to the invention can be achieved by any use of a surfactant together with the AB block copolymer in a system to be emulsified. A surfactant, to which an AB block copolymer according to the invention is added, and any system emulsified therewith, comprising additionally water and / or oil, are therefore included in the invention.
Die erfindungsgemäßen Wirkungen beschränken sich nicht auf Emulsionen und Mikroemulsionen, sondern beeinflus- sen das Verhalten von Tensiden im allgemeinen in der beschriebenen Weise. The effects according to the invention are not limited to emulsions and microemulsions, but rather influence sen the behavior of surfactants in general in the manner described.

Claims

P a t e n t a n s p r ü c h e Patent claims
1. Verfahren zur Steigerung der Effizienz von Tensiden durch Zugabe von Additiven mit einem wasserlöslichen und einem wasserunlöslichen Anteil, dadurch gekennzeichnet, daß als Additiv ein AB-Blockcopolymer mit einem wasserlöslichen Block A und einem wasserunlöslichen Block B zugegeben wird.1. A method for increasing the efficiency of surfactants by adding additives with a water-soluble and a water-insoluble fraction, characterized in that an AB block copolymer with a water-soluble block A and a water-insoluble block B is added as an additive.
2. Verfahren zur Verhinderung lammelarer Phasen in Wasser-, Öl-, Tensidgemisehen dadurch gekennzeichnet, daß dem Wasser-, Öl-, Tensidgemisch daß als Additiv ein AB-Blockcopolymer mit einem wasserlöslichen Block A und einem wasserunlöslichen Block B zugegeben wird.2. A method for preventing lammelarischen phases in water, oil, Tensidgemisehen characterized in that an AB block copolymer with a water-soluble block A and a water-insoluble block B is added to the water, oil, surfactant mixture.
3. Verfahren zur Stabilisierung der Temperaturlage des Einphasengebietes für Öl-, Wasser-, Tensidmischun- gen, denen ein Additiv zugegeben wird, bei dem den Öl-, Wasser-, Tensid ischungen als Additiv ein AB- Blockcopolymer mit einem wasserlöslichen Block A und einem wasserunlöslichen Block B zugegeben wird.3. A method for stabilizing the temperature of the single-phase area for oil, water and surfactant mixtures to which an additive is added, in which the oil, water and surfactant mixtures as an additive is an AB block copolymer with a water-soluble block A and one water-insoluble block B is added.
4. Verfahren zur Vergrößerung der Strukturgröße von emulgierten Flüssigkeitsteilchen in Mikroemulsionen, dadurch gekennzeichnet, daß den Mikroemulsionen als Additiv ein Blockcopolymer mit einem wasserlöslichen Block A und einem wasserunlöslichen Block B zugegeben wird.4. method for increasing the structure size of emulsified liquid particles in microemulsions, characterized in that a block copolymer with a water-soluble block A and a water-insoluble block B is added to the microemulsions as an additive.
5. Verfahren zur Verminderung der Grenzflächenspannung von Öl-, Wassergemischen, die Tenside enthalten, dadurch gekennzeichnet, daß den Öl-, Wasser-, Tensidgemischen als Additiv ein Blockcopolymer mit einem wasserlöslichen Block A und einem wasserunlöslichen Block B zugegeben wird.5. A process for reducing the interfacial tension of oil and water mixtures containing surfactants, characterized in that a block copolymer with a water-soluble block A and a water-insoluble block B is added to the oil, water and surfactant mixtures as an additive.
6. Verfahren nach einem der Anspruch 1 bis 5, dadurch gekennzeichnet, daß als Blockcopolymer eine Verbindung mit der Struktur nach dem Muster AB, ABA oder BAB zugegeben wird.6. The method according to any one of claims 1 to 5, characterized in that a compound having the structure according to the pattern AB, ABA or BAB is added as a block copolymer.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß ein öllöslicher und in aliphatischen Kohlenwasserstoffen löslicher Block B eingesetzt wird.7. The method according to any one of claims 1 to 6, characterized in that an oil-soluble and in aliphatic hydrocarbons block B is used.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß Block A ein Molekulargewicht zwischen 500 u und 60000 u hat. 8. The method according to any one of claims 1 to 7, characterized in that block A has a molecular weight between 500 u and 60,000 u.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß Block B ein Molekulargewicht zwischen 500 u und 60000 u hat.9. The method according to any one of claims 1 to 8, characterized in that block B has a molecular weight between 500 u and 60,000 u.
10.Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß als Block A ein Polyethylenoxid (PEO) eingesetzt wird.10.The method according to any one of claims 1 to 9, characterized in that a polyethylene oxide (PEO) is used as block A.
11.Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß als Block B ein Polydien oder ein mindestens teilweise hydriertes Polydien eingesetzt wird.11. The method according to any one of claims 1 to 10, characterized in that a polydiene or an at least partially hydrogenated polydiene is used as block B.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß Block B als Seitenketten mindestens eine Komponente aus den Gruppe von Methyl-, Ethyl-, Phenyl-, und Vinyl- umfaßt.12. The method according to claim 11, characterized in that block B comprises as side chains at least one component from the group of methyl, ethyl, phenyl, and vinyl.
13. Tensid, enthaltend ein Additiv, dadurch gekennzeichnet, daß das Additiv ein AB-Blockcopolymer mit einem wasserlöslichen Block A und einem wasserunlöslichen Block B ist, welcher in aliphatischen Kohlenwasserstoffen und Mineralölen löslich ist. 13. A surfactant containing an additive, characterized in that the additive is an AB block copolymer with a water-soluble block A and a water-insoluble block B, which is soluble in aliphatic hydrocarbons and mineral oils.
14. Tensid nach Anspruch 13, dadurch gekennzeichnet, daß als Additiv ein AB-Blockcopolymer mit der Struktur nach dem Muster ABA oder BAB enthält .14. Surfactant according to claim 13, characterized in that an AB block copolymer with the structure according to the ABA or BAB pattern contains as an additive.
15. Tensid nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß Block A ein Molekulargewicht zwischen 500 u und 60000 u hat.15. Surfactant according to claim 13 or 14, characterized in that block A has a molecular weight between 500 u and 60,000 u.
16. Tensid nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet ,16. Surfactant according to one of claims 13 to 15, characterized in that
Block B ein Molekulargewicht zwischen 500 u und 60000 u hat.Block B has a molecular weight between 500 u and 60,000 u.
17. Tensid nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, daß Block A ein Polyethylenoxid ist.17. Surfactant according to one of claims 13 to 16, characterized in that block A is a polyethylene oxide.
18. Tensid nach einem der Ansprüche 13 bis 17 , dadurch gekennzeichnet, daß Block B ein Polydien oder ein mindestens teilweise hydriertes Polydien ist .18. Surfactant according to one of claims 13 to 17, characterized in that block B is a polydiene or an at least partially hydrogenated polydiene.
19. Tensid nach Anspruch 18, dadurch gekennzeichnet, daß Block B als Seitenketten mindestens eine Komponente aus der Gruppe von Methyl- Ethyl-, Benzyl- und Vinyl- umfaßt.19. Surfactant according to claim 18, characterized in that block B as side chains at least one component from the group of methyl, ethyl, and benzyl Vinyl- includes.
20. Tensid nach einem der Ansprüche 13 bis 19, dadurch gekennzeichnet, daß es eine Beimischung in einem Stoff ist .20. Surfactant according to one of claims 13 to 19, characterized in that it is an admixture in a substance.
21.Verwendung eines AB-Blockcopolymers mit einem wasserlöslichen Block A und einem wasserunlöslichen Block B, welcher in aliphatischen Kohlenwasserstoffen und Mineralölen löslich ist, als Additiv für ein Tensid, Waschmittel, Kosmetika oder Lebensmittel.21. Use of an AB block copolymer with a water-soluble block A and a water-insoluble block B, which is soluble in aliphatic hydrocarbons and mineral oils, as an additive for a surfactant, detergent, cosmetics or food.
22.Verwendung eines AB-Blockcopolymers nach Anspruch 21, dadurch gekennzeichnet, daß ein AB-Blockcopolymers mit einem wasserlöslichen Block A mit einem Molekulargewicht zwischen 500 u und 60000 u eingesetzt wird.22.Use of an AB block copolymer according to claim 21, characterized in that an AB block copolymer with a water-soluble block A with a molecular weight between 500 u and 60,000 u is used.
23.Verwendung eines AB-Blockcopolymers nach Anspruch 21 oder 22, dadurch gekennzeichnet, daß ein AB-Blockcopolymers mit einem wasserunlöslichen Block B mit einem Molekulargewicht zwischen 500 u und 60000 u eingesetzt wird.23.Use of an AB block copolymer according to claim 21 or 22, characterized in that an AB block copolymer is used with a water-insoluble block B having a molecular weight between 500 u and 60,000 u.
24.Verwendung eines AB-Blockcopolymers nach einem der Ansprüche 21 bis 23, dadurch gekennzeichnet, daß das AB-Blockcopolymer als Block A ein Polyethylenoxid (PEO) aufweist.24.Use of an AB block copolymer according to one of claims 21 to 23, characterized in that the AB block copolymer as block A has a polyethylene oxide (PEO).
25.Verwendung eines AB-Blockcopolymers nach einem der Ansprüche 21 bis 24, dadurch gekennzeichnet, daß als Block B ein Polydien oder ein mindestens teilweise hydriertes Polydien eingesetzt wird.25.Use of an AB block copolymer according to one of claims 21 to 24, characterized in that a polydiene or an at least partially hydrogenated polydiene is used as block B.
26.Verwendung eines AB-Blockcopolymers nach einem der Ansprüche 21 bis 25, dadurch gekennzeichnet, daß Block B als Seitenketten mindestens eine Komponente aus der Gruppe von Methyl-, Ethyl-, Benzyl- und Vinyl- umfaßt.26.Use of an AB block copolymer according to one of claims 21 to 25, characterized in that block B comprises as side chains at least one component from the group of methyl, ethyl, benzyl and vinyl.
27.Verwendung eines AB-Blockcopolymers nach einem der Ansprüche 21 bis 26, dadurch gekennzeichnet, daß das AB-Blockcopolymer eine Verbindung mit der Struktur nach dem Muster AB, ABA oder BAB ist. 27.Use of an AB block copolymer according to one of claims 21 to 26, characterized in that the AB block copolymer is a compound with the structure according to the pattern AB, ABA or BAB.
EP99953661.8A 1998-08-28 1999-08-26 Method for increasing the efficiency of surfactants with simultaneous suppression of lamellar mesophases and surfactants with an additive added thereto Expired - Lifetime EP1109883B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19839054 1998-08-28
DE19839054A DE19839054A1 (en) 1998-08-28 1998-08-28 Process for increasing the efficiency of surfactants with simultaneous suppression of lamellar mesophases and surfactants to which an additive is added
PCT/DE1999/002748 WO2000012660A2 (en) 1998-08-28 1999-08-26 Method for increasing the efficiency of surfactants with simultaneous suppression of lamellar mesophases and surfactants with an additive added thereto

Publications (3)

Publication Number Publication Date
EP1109883A2 true EP1109883A2 (en) 2001-06-27
EP1109883B1 EP1109883B1 (en) 2004-10-27
EP1109883B2 EP1109883B2 (en) 2014-09-03

Family

ID=7878952

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99953661.8A Expired - Lifetime EP1109883B2 (en) 1998-08-28 1999-08-26 Method for increasing the efficiency of surfactants with simultaneous suppression of lamellar mesophases and surfactants with an additive added thereto

Country Status (6)

Country Link
US (2) US6677293B1 (en)
EP (1) EP1109883B2 (en)
JP (1) JP4703852B2 (en)
AT (1) ATE280821T1 (en)
DE (2) DE19839054A1 (en)
WO (1) WO2000012660A2 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19839054A1 (en) * 1998-08-28 2000-03-02 Forschungszentrum Juelich Gmbh Process for increasing the efficiency of surfactants with simultaneous suppression of lamellar mesophases and surfactants to which an additive is added
US20050004864A1 (en) * 2000-06-15 2005-01-06 Nextcard Inc. Implementing a counter offer for an on line credit card application
JP4756671B2 (en) * 2001-04-06 2011-08-24 孝志 澤口 Styrene oligomer-polyethylene oxide copolymer and process for producing the same
ATE431844T1 (en) * 2002-02-11 2009-06-15 Rhodia Chimie Sa DETERGENT WITH BLOCK COPOLYMER
DE60325947D1 (en) * 2002-02-11 2009-03-12 Rhodia Chimie Sa METHOD FOR REGULATING THE STABILITY OF EMULSIONS AND STABILIZED EMULSIONS
AU2003282100A1 (en) * 2002-10-21 2004-05-04 L'oreal Process for dissolving lipophilic compounds, and cosmetic composition
FR2845930B1 (en) * 2002-10-21 2006-05-26 Oreal PROCESS FOR SOLUBILIZING LIPOPHILIC COMPOUNDS IN AQUEOUS SOLUTION BY AMPHIPHILIC BLOCK COPOLYMERS AND COSMETIC COMPOSITION
DE10323180A1 (en) 2003-05-22 2004-12-09 Basf Ag Mixture comprising a surfactant and a cosurfactant
DE10323178A1 (en) 2003-05-22 2004-12-09 Basf Ag Mixture comprising a surfactant and a cosurfactant
DE10358534A1 (en) 2003-12-13 2005-07-14 Henkel Kgaa Adhesion inhibition of microorganisms by nonionic surfactants
DE102004007473A1 (en) 2004-02-13 2005-09-01 Basf Ag Mixture comprising a surfactant and a cosurfactant
DE102004007501A1 (en) * 2004-02-13 2005-09-01 Basf Ag Amphiphilic block copolymers containing aqueous polymer dispersions, processes for their preparation and their use
DE102004056362A1 (en) 2004-11-22 2006-06-01 Henkel Kgaa Mold-resistant building materials
DE102004058956A1 (en) * 2004-12-08 2006-06-14 Forschungszentrum Jülich GmbH Process for increasing the efficiency of surfactants and emulsifiers by means of additives
DE102005023762A1 (en) * 2005-05-19 2006-11-23 Forschungszentrum Jülich GmbH Process for increasing the efficiency of surfactants, for suppressing lamellar mesophases, for temperature stabilization of the single-phase region, and a process for reducing the interfacial tension in microemulsions containing silicone oils by means of additives, and surfactant-oil mixture
DE102005026716A1 (en) 2005-06-09 2006-12-28 Basf Ag Surfactant mixtures for tertiary mineral oil production
CN101233187A (en) * 2005-08-04 2008-07-30 巴斯福股份公司 Aqueous dispersions and their use
DE102005049765A1 (en) * 2005-10-18 2007-04-19 Forschungszentrum Jülich GmbH Method for increasing the efficiency of surfactants, for widening the temperature window, for suppressing lamellar mesophases in microemulsions by means of additives, and microemulsions
JP5647515B2 (en) * 2007-04-27 2014-12-24 フォルシュングスツェントルム ユーリッヒ ゲゼルシャフト ミット ベシュレンクテル ハフツングForschungszentrum Juelich GmbH Mixture comprising alkyl polyglucoside, co-surfactant and polymer additive
DE102007020426A1 (en) 2007-04-27 2008-10-30 Bernd Schwegmann Gmbh & Co. Kg Mixture, useful in emulsion for purifier, comprises alkylpolyglucoside having glucoside units and alkyl group, alcohol group containing-cosurfactant and polymer additive comprising water-soluble unit and hydrophobic unit
DE102007030406A1 (en) 2007-06-29 2009-01-08 Henkel Ag & Co. Kgaa Use of an algae extract for the temporary or permanent dressing of surfaces, reducing adhesion of biological material, preferably microorganisms or proteins, on surfaces and in detergents, cleaning agents and hand-washing agent
US8133924B2 (en) * 2007-08-13 2012-03-13 Rhodia Operations Demulsifiers and methods for use in pharmaceutical applications
US7671099B2 (en) 2007-08-13 2010-03-02 Rhodia Inc. Method for spearation crude oil emulsions
RU2476254C2 (en) * 2007-08-13 2013-02-27 Родиа Инк. Method of crude oil emulsion separation
EP2045320B1 (en) 2007-09-19 2012-04-25 Bubbles & Beyond Gmbh Cleaning agent for removing paint layers on surfaces, method for manufacturing the agent and cleaning method
DE102007058343A1 (en) 2007-12-03 2009-06-04 Henkel Ag & Co. Kgaa Reduction of the adhesion of dirt, dust and biological material by polyesteramides
DE102007058342A1 (en) 2007-12-03 2009-06-04 Henkel Ag & Co. Kgaa Reduction of biofilm formation by multifunctional copolymers
FR2934154B1 (en) * 2008-07-23 2010-08-13 Rhodia Operations THERMOSENSITIVE EMULSIONS
DE102008063070A1 (en) 2008-12-23 2010-07-01 Henkel Ag & Co. Kgaa Use of star-shaped polymers having peripheral negatively charged groups and / or peripheral silyl groups to finish surfaces
WO2010090901A2 (en) * 2009-02-04 2010-08-12 Archer Daniels Midland Company Incorporation of biologically derived carbon into petroleum products
DE102012204378A1 (en) 2012-03-20 2013-09-26 Bernd Schwegmann Gmbh & Co. Kg Microemulsion-based cleaning agent
DE102015011694A1 (en) 2015-09-14 2017-03-16 Forschungszentrum Jülich GmbH Microemulsion-based cleaning agent
EP4011996A1 (en) 2020-12-11 2022-06-15 Henkel AG & Co. KGaA Method for detaching adhesively bonded substrates
EP4140679A1 (en) 2021-08-24 2023-03-01 Henkel AG & Co. KGaA Method for detaching substrates bonded by polyurethane adhesive

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1103201A (en) * 1963-07-23 1968-02-14 Union Carbide Corp Organosilicon compositions
JPS5536237A (en) * 1978-09-06 1980-03-13 Kureha Chem Ind Co Ltd Antistatic resin composition
US4266610A (en) 1978-11-28 1981-05-12 Phillips Petroleum Company Sulfonate-cosurfactant mixtures for use in hard brines during oil recovery operations
NZ192888A (en) 1979-04-02 1982-03-30 Canadian Ind Water-in-oil microemulsion explosive compositions
US4384974A (en) 1979-07-27 1983-05-24 Revlon, Inc. Stable water-in-oil emulsions
DE3436177A1 (en) 1984-10-03 1986-04-03 Goldschmidt Ag Th USE OF POLYOXYALKYLENE-POLYSILOXANE-COPOLYMERISATES WITH LONG-CHAIN ALKYL RESIDUES BONDED TO SILICON ATOMS AS EMULSIFIERS FOR THE PRODUCTION OF W / O EMULSIONS
GB8822374D0 (en) * 1988-09-23 1988-10-26 Abster Co Ltd Detergent composition
GB8914905D0 (en) 1989-06-29 1989-08-23 Unilever Plc Cosmetic composition
US5162378A (en) 1990-04-20 1992-11-10 Revlon Consumer Products Corporation Silicone containing water-in-oil microemulsions having increased salt content
US5077040A (en) 1990-04-30 1991-12-31 Helene Curtis, Inc. Hair-treating microemulsion composition and method of preparing and using the same
CA2053147A1 (en) * 1990-10-15 1992-04-16 Charles F. Cooper Esterified polyoxyalkylene block copolymers as reduced calorie fat substitutes
DE4100119A1 (en) * 1991-01-04 1992-07-09 Bayer Ag USE OF POLYETHER-POLYCARBONATE BLOCK COPOLYMERS AS COATINGS FOR PLASTIC MOLDED BODIES
DE4141942A1 (en) * 1991-12-19 1993-06-24 Huels Chemische Werke Ag METHOD FOR PRODUCING LARGE-PIECE, AQUEOUS PLASTIC DISPERSIONS
US5292795A (en) * 1992-05-08 1994-03-08 Shell Oil Company Very fine stable dispersions of block copolymers
ES2121601T3 (en) 1993-04-05 1998-12-01 Quest Int SILICONE BASED PRODUCTS FOR SKIN CARE.
US5985979A (en) * 1993-07-20 1999-11-16 Shell Oil Company Process for making stable latexes of block copolymers
US5741760A (en) 1993-08-04 1998-04-21 Colgate-Palmolive Company Aqueous cleaning composition which may be in microemulsion form comprising polyalkylene oxide-polydimethyl siloxane
US5461104A (en) * 1994-01-21 1995-10-24 Shell Oil Company Process for making water-based latexes of block copolymers
DE4418156A1 (en) * 1994-05-25 1995-11-30 Basf Ag Process for the preparation of stable water-in-oil emulsions of hydrolyzed polymers of N-vinylamides and their use
US5518648A (en) * 1994-06-14 1996-05-21 Basf Corporation Solid dishwashing composition comprising a two-component blend of alkoxylated nonionic surfactants
DE19509079A1 (en) 1995-03-15 1996-09-19 Beiersdorf Ag Cosmetic or dermatological microemulsions
DE19634477C2 (en) 1996-06-05 2002-10-17 Forschungszentrum Juelich Gmbh Process for the production of hydrophobic-hydrophilic AB block copolymers and AB block copolymers
US6284847B1 (en) * 1996-06-05 2001-09-04 Forschungszentrum Julich Gmbh Process for the preparation of hydrophobic/hydrophile AB block copolymers
DE19641672A1 (en) 1996-10-10 1998-04-16 Beiersdorf Ag Cosmetic or dermatological preparations based on ethylene oxide-free and propylene oxide-free emulsifiers for the production of microemulsion gels
US5908707A (en) * 1996-12-05 1999-06-01 The Procter & Gamble Company Cleaning articles comprising a high internal phase inverse emulsion and a carrier with controlled absorbency
DE19654168A1 (en) * 1996-12-23 1998-06-25 Basf Ag Process for the preparation of aqueous polymer dispersions by free-radical, aqueous emulsion polymerization
DE19714714A1 (en) * 1997-04-09 1998-10-15 Basf Ag Block copolymers and their use as polymeric surfactants
US5962003A (en) * 1998-03-30 1999-10-05 Council Of Scientific & Industrial Research Process for the preparation of polyurethane microcapsules containing monocrotophos
DE19839054A1 (en) * 1998-08-28 2000-03-02 Forschungszentrum Juelich Gmbh Process for increasing the efficiency of surfactants with simultaneous suppression of lamellar mesophases and surfactants to which an additive is added

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0012660A2 *

Also Published As

Publication number Publication date
WO2000012660A3 (en) 2000-06-22
ATE280821T1 (en) 2004-11-15
US7468349B2 (en) 2008-12-23
JP4703852B2 (en) 2011-06-15
US6677293B1 (en) 2004-01-13
EP1109883B1 (en) 2004-10-27
EP1109883B2 (en) 2014-09-03
DE59910950D1 (en) 2004-12-02
JP2002525392A (en) 2002-08-13
US20040054064A1 (en) 2004-03-18
DE19839054A1 (en) 2000-03-02
WO2000012660A2 (en) 2000-03-09

Similar Documents

Publication Publication Date Title
EP1109883B1 (en) Method for increasing the efficiency of surfactants with simultaneous suppression of lamellar mesophases and surfactants with an additive added thereto
EP0563079B1 (en) Process for making cleaning and maintenance agents
AT397215B (en) PREPARATIONS CONTAINING POLYMERISAT AND TENSIDES, THEIR PRODUCTION AND USE
DE19615271A1 (en) Detergent containing detergents in the form of a microemulsion
EP1937795B1 (en) Method for increasing the efficiency of surfactants and suppressing lamellar mesophases in microemulsion by means of additives, and microemulsion
EP1715944B1 (en) Mixture comprising a detergent and a co-detergent
WO2004103542A1 (en) Mixture, comprising a surfactant and a cosurfactant
EP2123350B1 (en) Aqueous tenside compounds with low pour point
EP1470208B1 (en) Alkylglycol alkoxylates or alkyldiglycol alkoxylates, mixtures thereof with tensides and their use
DE19945506A1 (en) Antimicrobial aqueous multiphase cleaner
DE19922824A1 (en) Aqueous liquid multiphase detergent for cleaning hard surfaces, e.g. in bathroom and kitchen, comprises immiscible lower and upper aqueous phases, and contains acid giving acidic pH when in temporary emulsion form
WO2006060993A1 (en) Method for improving the efficiency of surfactants and emulsifiers by means of additives
EP1882003B1 (en) Method for improving efficacy of surfactants prevention of lamellar mesophases temperature stabilization of the single phase region and a method for reducing boundary surface tension in micro-emulsions containing silicone oils by means of additives and surfactant/oil mixtures
DE19709490A1 (en) Polymers with more than one cavity
WO2001030958A1 (en) Aqueous multiple phase detergent
DE10323180A1 (en) Mixture comprising a surfactant and a cosurfactant
WO2006094707A2 (en) Instantaneously mixable anhydrous lubricant and separation agent mixtures
DE2036395C3 (en) Process for the production of elastomeric polymers or copolymers from their solution
DE19545136C1 (en) Syndet soap bars with little or no free fatty acid content
EP0932483B1 (en) Aqueous concrete parting agents
DE10061418A1 (en) Filling multi-phase liquid wash and cleaning media, involves delivering different liquid phases separately into container, one after another, with replacement of the components of the material carried out to set up material equilibrium
AT215048B (en) Process for breaking petroleum emulsions
DE4420515A1 (en) Mild watery shaving preparations
DE1166400B (en) Process for breaking petroleum emulsions
EP3514207A1 (en) Method for removing lacquers using a microemulsion with low oil content

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010131

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FORSCHUNGSZENTRUM JUELICH GMBH

17Q First examination report despatched

Effective date: 20030715

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20041027

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041027

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041027

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59910950

Country of ref document: DE

Date of ref document: 20041202

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050127

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050127

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050207

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050208

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050826

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN

Effective date: 20050727

Opponent name: BASF AKTIENGESELLSCHAFT

Effective date: 20050726

ET Fr: translation filed
NLR1 Nl: opposition has been filed with the epo

Opponent name: HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN

Opponent name: BASF AKTIENGESELLSCHAFT

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050327

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: HENKEL AG & CO. KGAA

Effective date: 20050727

Opponent name: BASF AKTIENGESELLSCHAFT

Effective date: 20050726

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

R26 Opposition filed (corrected)

Opponent name: HENKEL AG & CO. KGAA

Effective date: 20050727

Opponent name: BASF SE

Effective date: 20050726

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

NLR1 Nl: opposition has been filed with the epo

Opponent name: HENKEL AG & CO. KGAA

Opponent name: BASF SE

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: HENKEL AG & CO. KGAA

Effective date: 20050727

Opponent name: BASF SE

Effective date: 20050726

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: BASF SE

Effective date: 20050726

Opponent name: HENKEL AG & CO. KGAA

Effective date: 20050727

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20140903

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 59910950

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AELC

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 59910950

Country of ref document: DE

Effective date: 20140903

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140703

Year of fee payment: 16

Ref country code: NL

Payment date: 20140821

Year of fee payment: 16

Ref country code: CH

Payment date: 20140821

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20140820

Year of fee payment: 16

Ref country code: GB

Payment date: 20140821

Year of fee payment: 16

Ref country code: FR

Payment date: 20140819

Year of fee payment: 16

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20140820

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59910950

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 280821

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150826

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150826

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160301

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831