EP1109883B2 - Method for increasing the efficiency of surfactants with simultaneous suppression of lamellar mesophases and surfactants with an additive added thereto - Google Patents

Method for increasing the efficiency of surfactants with simultaneous suppression of lamellar mesophases and surfactants with an additive added thereto Download PDF

Info

Publication number
EP1109883B2
EP1109883B2 EP99953661.8A EP99953661A EP1109883B2 EP 1109883 B2 EP1109883 B2 EP 1109883B2 EP 99953661 A EP99953661 A EP 99953661A EP 1109883 B2 EP1109883 B2 EP 1109883B2
Authority
EP
European Patent Office
Prior art keywords
block
water
surfactants
oil
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99953661.8A
Other languages
German (de)
French (fr)
Other versions
EP1109883A2 (en
EP1109883B1 (en
Inventor
Jürgen Allgaier
Lutz Willner
Dieter Richter
Britta Jakobs
Thomas Sottmann
Reinhard Strey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7878952&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1109883(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP1109883A2 publication Critical patent/EP1109883A2/en
Application granted granted Critical
Publication of EP1109883B1 publication Critical patent/EP1109883B1/en
Publication of EP1109883B2 publication Critical patent/EP1109883B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3788Graft polymers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/0017Multi-phase liquid compositions
    • C11D17/0021Aqueous microemulsions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/0026Structured liquid compositions, e.g. liquid crystalline phases or network containing non-Newtonian phase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers

Definitions

  • the invention relates to a process for increasing the efficiency of surfactants with simultaneous suppression of lamellar mesophases, in particular in microemulsions and emulsions, as well as surfactants, to which an additive is admixed.
  • Emulsions and microemulsions are stabilized in the prior art by nonionic, anionic or cationic surfactants.
  • the surfactants are able to solubilize a non-polar solvent (oil) in a polar solvent (eg water) or water in oil.
  • the efficiency of the surfactants is expressed in the amount of surfactant needed to solubilize a certain amount of oil in the water or vice versa.
  • water-oil-surfactant mixtures a distinction is additionally made between emulsions and microemulsions. While microemulsions are thermodynamically stable, emulsions are thermodynamically unstable and disintegrate.
  • Lamellar mesophases can occur in microemulsion systems. Lamellar mesophases lead to optical anisotropy and increased viscosity. These properties are undesirable for detergents, for example, since the lamellar mesophases are not washable.
  • additives generally affect the temperature behavior of the emulsions and microemulsions.
  • the phase diagram shows a shift of the single-phase areas for oil-water-surfactant mixtures into other temperature ranges when an additive is added.
  • the displacements can be on the order of 10 ° C.
  • detergent formulations must be changed in order to adapt to the newly adjusting temperature behavior of the single-phase region.
  • the European patent EP 0 018 085 B1 discloses an explosive having good blasting properties in the form of a water - in - oil microemulsion.
  • the microemulsion contains a block copolymer.
  • the font DE 196 34 477 A1 discloses the preparation of a microemulsion containing AB block copolymers with a nonpolar solvent-soluble block A and a polar solvent-soluble block B.
  • the U.S. Patent 5,162,378 discloses microemulsions containing cetyl dimethicone copolyol and, in some examples, the methoxy PEG-22 / dodecyl copolymer (Elfacos E200).
  • the object of the invention to increase the efficiency of surfactants. Furthermore, the occurrence of lamellar phases in microemulsions or water, oil, surfactant mixtures should be suppressed.
  • the temperature behavior of the emulsions and microemulsions should remain unaffected by the addition of the additive, that is, the position of the single-phase region in the phase diagram should not be substantially influenced by the addition of the additives with respect to the temperature.
  • An additive is to be created which does not influence the position of the single-phase region with respect to the temperature. It is also intended to provide an additive which has the above-mentioned advantages and e.g. a detergent can be added without a change in the formulation of the remaining detergent formulation must be made. It is a possibility to create microemulsions whose size of the emulsified liquid particles correspond to those of emulsions.
  • an AB block copolymer with a water-soluble block A and a water-insoluble block B is added as an additive, wherein as block A of the AB block copolymer, a polyethylene oxide (PEO) is used and as block B of the AB block copolymer a polydiene or an at least partially hydrogenated polydiene is used and solved by the preamble of claim 2 characterized in that the water-oil surfactant mixture as an additive, an AB block copolymer having a water-soluble block A and a water-insoluble block B added is, wherein the blocks A and B have a molecular weight between 500-5000 g / mol.
  • PEO polyethylene oxide
  • the object is achieved in that an oil-water surfactant mixture in microemulsions as an additive is added an AB block copolymer having a water-soluble block A and a water-insoluble block B, wherein the blocks A and B has a molecular weight between 500-5000 g / mol.
  • the addition of the AB block copolymer to the water-oil-surfactant mixture does not change the position of the single-phase region in the phase diagram in the temperature region, the efficiency of the surfactant mixture is considerably increased, lamellar mesophases are suppressed in microemulsions.
  • microemulsions retain their characteristic properties while increasing their structure size;
  • the emulsified structures take on sizes of up to about 2000 angstroms.
  • a microemulsion is obtained which has the structure sizes of an emulsion but is thermodynamically stable.
  • the size of the emulsified liquid particles depends on the temperature and the amount of block copolymer added, or thus on the composition of the surfactant mixture.
  • the blocks A and B can assume molecular weights between 500 and 60,000 u.
  • a polyethylene oxide (PEO) block is preferably used.
  • all blocks A that are water-soluble may be used so that they form an amphiphile in conjunction with block B.
  • block A can be exemplified by polyacrylic acid, polymethacrylic acid, polystyrenesulfonic acid and their alkali metal salts in which at least partial substitution of the acid function by alkali metal cations, polyvinylpyridine and polyvinyl alcohol, polymethylvinylether, polyvinylpyrrolidine, polysaccharides and mixtures thereof are mentioned.
  • block B various water-insoluble components of said molecular weight are used.
  • block B may be the product of anionic 1,2-, 3,4-, or 1,4-polymerization of dienes.
  • block B may still be the product of at least partial hydrogenation of the polydienes.
  • Typical monomeric constituents are 1,3-butadiene, isoprene, all constants of dimethylbutadiene, 1,3-pentadiene, 2,4-hexadienes, ⁇ -methylstyrene, isobutylene, ethylene, propylene, styrene or alkyl acrylates and alkyl methacrylates where the alkyl group contains between 2 and 20 carbon atoms for use.
  • Block B may also be polydimethylsiloxane.
  • Block B the polymer of a single monomer or a mixture of monomers can be used.
  • Block B may have as side chains methyl, ethyl, vinyl-phenyl or benzyl groups.
  • the double bonds in the polydiene chain as well as in the vinyl groups, which may exist as a side chain, may be either fully or partially hydrogenated.
  • any sufficiently amphiphilic block copolymer can be used.
  • the AB block copolymers used according to the invention can preferably be obtained from an anionic polymerization.
  • At lower molecular weights of blocks A and B in the order of about 500-5000 g / mol for blocks A and B, particularly advantageous properties of the AB block copolymers according to the invention in application products are observed.
  • the polymers with these low molecular weights dissolve quickly and well. This applies, for example, to solutions in soaps and detergents.
  • Block A should be as polar as possible and block B preferably nonpolar. This increases the amphiphilic behavior.
  • Block A should be water-soluble and block B should be soluble in non-polar media.
  • block B is soluble in mineral oils or aliphatic hydrocarbons or in mineral oils and aliphatic hydrocarbons. This also applies at room temperature.
  • AB block copolymers of the type ABA and BAB which are referred to as triblock copolymers.
  • PX / Y additive having a molecular weight in 1000 g / mol X of hydrophobic alkyl chain (hydrogenated 1,4-polyisoprene) and a molecular weight in 1000 g / mol Y of polyethylene oxide.
  • P22 / 15 the alkyl chain has a molecular weight of 22,000 g / mol and the polyethylene oxide chain has a Molecular weight of 15000 g / mol.
  • the additives shown in this way are AB block copolymers.
  • the compounds shown here by way of example can be obtained by the production process from the DE 196 34 477 A1 to be obtained.
  • FIG. 1 represents the type of phase diagram of the prior art, which is the basis for the FIGS. 1 to 8 supplies.
  • the temperature T is plotted against the total surfactant concentration ⁇ for the system water / n-tetradecane-C 6 E 2 and a water / n-tetradecane ratio of 1: 1.
  • the Einphasen is the Einphasen which 1 of the mixture.
  • This area is followed by a closed three-phase area 3 in the direction of lower surfactant concentrations.
  • Above and below the phase boundary lines are two-phase regions 2.
  • the point at which all phase regions meet is determined by the surfactant concentration and the temperature Are defined. The more shifted to small values, the larger the structure size of the microemulsions.
  • FIGS. 2 to 9 T / ⁇ diagrams refer to systems having a constant water / oil volume ratio of 1: 1 and will be discussed in general terms below.
  • curves are plotted, each with a ⁇ value, which characterizes the limitation of the respective single-phase region belonging to a ⁇ value.
  • the apex of the respective curve is the point at which different polyphase regions meet.
  • the further the peak of a curve is located at lower surfactant concentrations, ie ⁇ values, the greater the efficiency of the surfactant C by the addition of the block copolymer D.
  • FIG. 2 shows how the efficiency of the total surfactant increases with the addition of the block copolymer.
  • no lamellar mesophases occur in the mixtures investigated.
  • the efficiency of the total surfactant is also reflected in the FIG. 4 shown example increased and the temperature position is maintained substantially. Lamellar phases are not observed.
  • FIG. 6 is the same behavior to watch as in FIG. 5 .
  • FIG. 7 and 8th is also a significant increase in efficiency observed.
  • the gray dots are PI5 / PEO15 and the triangles are P5 / 15.
  • FIG. 9 the efficiency increase in an anionic surfactant system (water + NaCl) / n-decane-AOT-P5 / 5 is shown.
  • FIG. 9 the efficiency increase in an anionic surfactant system (water + NaCl) / n-decane-AOT-P5 / 5 is shown.
  • phase behavior is not determined by the temperature but by the addition of a cosurfactant (octanol).
  • octanol cosurfactant
  • FIG. 11 documents in an overview the invention very strong increase in efficiency of the block copolymer admixtures. Plotted are the total surfactant concentrations at the crossing point as a function of the addition ⁇ of the block copolymer. In contrast to conventional surfactant mixtures, a very small addition of ⁇ leads to a greater decrease in the block copolymers , and therefore to greater efficiency.
  • the value of the water / oil interfacial tension minimum correlates with the efficiency of the surfactant mixture, e.g. for the washing process the lowest possible interfacial tension is desired.
  • the occurrence of lamellar mesophases is suppressed.
  • the temperature behavior of the microemulsions remains unchanged, that is, the position of the single-phase region with respect to the temperature in the phase diagram is not influenced by the addition of the additives used according to the invention. Therefore, the formulation of a detergent must not be changed to cause a constant position of the single-phase region with respect to the temperature in the single-phase diagram.
  • the AB block copolymers according to the invention can not only be used in detergents; they can be used with the same effect, for example, as additives in food and cosmetics and in all industrial or technical applications of microemulsions and emulsions, for example in petroleum production, in soil remediation and in the application as eg reaction medium.
  • the microemulsions prepared by means of the addition according to the invention of the AB block copolymers have emulsified liquid volumes whose size corresponds to those of emulsions.
  • the effects of the present invention can be achieved by any common use of a surfactant with the AB block copolymer in a system to be emulsified.
  • a surfactant to which an AB block copolymer according to the invention is added, and any system emulsified therewith and additionally comprising water and / or oil, are therefore encompassed by the invention.
  • the effects of the invention are not limited to emulsions and microemulsions, but affect the behavior of surfactants in general in the manner described.

Abstract

The invention relates to a method for increasing the efficiency of surfactants as well as to a method for suppressing lamellar mesophases in microemulsions. According to the invention, block copolymers having a water-soluble block A and a water-insoluble part B are admixed to the surfactants. The use of these substances as additives can considerably increase the efficiency of the surfactants. Moreover, the addition of the block copolymers suppresses the formation of undesired lamellar mesophases in microemulsions.

Description

Die Erfindung betrifft ein Verfahren zur Effizienzsteigerung von Tensiden bei simultaner Unterdrückung lamellarer Mesophasen insbesondere in Mikroemulsionen und Emulsionen, sowie Tenside, welchen ein Additiv beigemischt ist.The invention relates to a process for increasing the efficiency of surfactants with simultaneous suppression of lamellar mesophases, in particular in microemulsions and emulsions, as well as surfactants, to which an additive is admixed.

Emulsionen und Mikroemulsionen werden nach dem Stand der Technik durch nichtionische, anionische oder kationische Tenside stabilisiert. Die Tenside vermögen ein unpolares Lösungsmittel (Öl) in einem polaren Lösungsmittel ( z.B. Wasser) oder Wasser in Öl zu solubilisieren. Die Effizienz der Tenside wird in der Menge Tensid ausgedrückt, welche benötigt wird, um einen bestimmten Anteil Öl im Wasser oder umgekehrt zu solubilisieren. Man unterscheidet bei Wasser-Öl-Tensid-Mischungen zusätzlich zwischen Emulsionen und Mikroemulsionen. Während Mikroemulsionen thermodynamisch stabil sind, sind Emulsionen thermodynamisch instabil und zerfallen. Im mikroskopischen Bereich spiegelt sich dieser Unterschied darin wieder, daß die emulgierten Flüssigkeiten in Mikroemulsionen in kleinere Flüssigkeitsvolumina ( z.B. 10-15 µl) gefaßt sind als in Emulsionen (z.B. 10-12 µl). Thermodynamisch instabile Emulsionen weisen somit größere Strukturgrößen auf.Emulsions and microemulsions are stabilized in the prior art by nonionic, anionic or cationic surfactants. The surfactants are able to solubilize a non-polar solvent (oil) in a polar solvent (eg water) or water in oil. The efficiency of the surfactants is expressed in the amount of surfactant needed to solubilize a certain amount of oil in the water or vice versa. In the case of water-oil-surfactant mixtures, a distinction is additionally made between emulsions and microemulsions. While microemulsions are thermodynamically stable, emulsions are thermodynamically unstable and disintegrate. At the microscopic level, this difference is reflected in the fact that the emulsified liquids in microemulsions in smaller volumes of liquid (eg 10 -15 ul) are taken as in emulsions (eg 10 -12 ul). Thermodynamically unstable emulsions thus have larger structure sizes.

In Mikroemulsionssystemen können lamellare Mesophasen auftreten. Lamellare Mesophasen führen zu optischer Anisotropie und erhöhter Viskosität. Diese Eigenschaften sind z.B. für Waschmittel unerwünscht, da die lamellaren Mesophasen nicht auswaschbar sind.
Weiterhin beeinflussen Additive im Allgemeinen das Temperaturverhalten der Emulsionen und Mikroemulsionen. So ist im Phasendiagramm eine Verlagerung der Einphasengebiete für Öl-Wasser-Tensid-Mischungen in andere Temperaturbereiche zu beobachten, wenn ein Additiv zugegeben wird. Die Verschiebungen können in der Größenordnung von 10°C liegen. Dies hat jedoch zur Folge, daß z.B. Waschmittelrezepturen geändert werden müssen, um sie dem sich jeweils neu einstellenden Temperaturverhalten des Einphasengebietes anzupassen.
Zusätzlich besteht das Bedürfnis, unter Einsparung von Tensiden ein mindestens gleich gutes Emulgierungsverhalten zu erlangen und die Grenzflächenspannung zu verkleinern, das bedeutet, beispielsweise die Waschkraft von Waschmitteln zu verbessern.
In microemulsion systems lamellar mesophases can occur. Lamellar mesophases lead to optical anisotropy and increased viscosity. These properties are undesirable for detergents, for example, since the lamellar mesophases are not washable.
Furthermore, additives generally affect the temperature behavior of the emulsions and microemulsions. Thus, the phase diagram shows a shift of the single-phase areas for oil-water-surfactant mixtures into other temperature ranges when an additive is added. The displacements can be on the order of 10 ° C. However, this has the consequence that, for example, detergent formulations must be changed in order to adapt to the newly adjusting temperature behavior of the single-phase region.
In addition, there is a need to achieve at least as good emulsifying behavior while saving surfactants and to reduce the interfacial tension, that is, for example, to improve the detergency of detergents.

Die europäische Patentschrift EP 0 018 085 B1 offenbart einen Sprengstoff mit guten Sprengeigenschaften in Form einer Wasser - in Öl - Mikroemulsion. Die Mikroemulsion enthält ein Blockcopolymer.The European patent EP 0 018 085 B1 discloses an explosive having good blasting properties in the form of a water - in - oil microemulsion. The microemulsion contains a block copolymer.

Die Veröffentlichung " Microemulsions in amphilpilic and polymer-surfactant systmes" in Colloid Polym. Sci. 274: 297-308 (1996 ) aus dem Steinhoff-Verlag offenbart den Zusatz von hydrophob modifizierter Ethyl (hydroxyethyl) Cellulose zu Mikroemulsionssystemen.The publication " Microemulsions in amphilpilic and polymer-surfactant systmes "in Colloid Polym. Sci. 274: 297-308 (1996 ) from Steinhoff-Verlag discloses the addition of hydrophobically modified ethyl (hydroxyethyl) cellulose to microemulsion systems.

Die Schrift DE 196 34 477 A1 offenbart die Herstellung einer Mikroemulsion, die AB-Blockcopolymere mit einem in unpolaren Lösungsmitteln löslichen Block A und einem in polaren Lösungsmitteln löslichen Block B enthalten.The font DE 196 34 477 A1 discloses the preparation of a microemulsion containing AB block copolymers with a nonpolar solvent-soluble block A and a polar solvent-soluble block B.

Das US Patent 5,162,378 offenbart Mikroemulsionen, die Cetyl Dimethicone Copolyol und in einigen Beispielen das Methoxy PEG-22/Dodecylcopolymer (Elfacos E200) enthalten.The U.S. Patent 5,162,378 discloses microemulsions containing cetyl dimethicone copolyol and, in some examples, the methoxy PEG-22 / dodecyl copolymer (Elfacos E200).

Es ist daher die Aufgabe der Erfindung, die Effizienz von Tensiden zu steigern. Weiterhin soll das Auftreten von lamellaren Phasen in Mikroemulsionen bzw. Wasser-, Öl-, Tensidgemischen unterdrückt werden. Das Temperaturverhalten der Emulsionen und Mikroemulsionen soll durch Zugabe des Additivs unbeeinflußt bleiben, das heißt, die Lage des Einphasengebietes im Phasendiagramm soll durch Zugabe der Additive bezüglich der Temperatur im wesentlichen nicht beeinflußt werden. Es soll ein Additiv geschaffen werden, welches die Lage des Einphasengebietes bezüglich der Temperatur nicht beeinflußt. Es soll ebenfalls ein Additiv zur Verfügung gestellt werden, welches die oben genannten Vorteile hat und z.B. einem Waschmittel zugemischt werden kann ohne daß eine Rezepturänderung der verbleibenden Waschmittelrezeptur vorgenommen werden muß. Es soll eine Möglichkeit geschaffen werden, Mikroemulsionen herzustellen, deren Größe der emulgierten Flüssigkeitsteilchen denen von Emulsionen entsprechen.It is therefore the object of the invention to increase the efficiency of surfactants. Furthermore, the occurrence of lamellar phases in microemulsions or water, oil, surfactant mixtures should be suppressed. The temperature behavior of the emulsions and microemulsions should remain unaffected by the addition of the additive, that is, the position of the single-phase region in the phase diagram should not be substantially influenced by the addition of the additives with respect to the temperature. An additive is to be created which does not influence the position of the single-phase region with respect to the temperature. It is also intended to provide an additive which has the above-mentioned advantages and e.g. a detergent can be added without a change in the formulation of the remaining detergent formulation must be made. It is a possibility to create microemulsions whose size of the emulsified liquid particles correspond to those of emulsions.

Überraschenderweise werden die Aufgaben, ausgehend vom Oberbegriff des Anspruchs 1, erfindungsgemäß dadurch gelöst, dass als Additiv ein AB-Blockcopolymer mit einem wasserlöslichen Block A und einem wasserunlöslichen Block B zugegeben wird, wobei als Block A des AB Blockcopolymers ein Polyethylenoxid (PEO) eingesetzt wird und als Block B des AB Blockcopolymers ein Polydien oder ein mindestens teilweise hydriertes Polydien eingesetzt wird und ausgehend vom Oberbegriff des Anspruchs 2 dadurch gelöst, dass dem Wasser-Öl-Tensidgemisch als Additiv ein AB Blockcopolymer mit einem wasserlöslichen Block A und einem wasserunlöslichen Block B zugegeben wird, wobei die Blöcke A und B ein Molekulargewicht zwischen 500-5000 g/mol aufweisen. Gemäß Anspruch 3 wird die Aufgabe erfindungsgemäß dadurch gelöst, dass einem Öl-Wasser-Tensidgemisch in Mikroemulsionen als Additiv ein AB-Blockcopolymer mit einem wasserlöslichen Block A und einem wasserunlöslichen Block B zugegeben wird, wobei die Blöcke A und B ein Molekulargewicht zwischen 500-5000 g/mol aufweisen.Surprisingly, the objects, starting from the preamble of claim 1, according to the invention solved in that an AB block copolymer with a water-soluble block A and a water-insoluble block B is added as an additive, wherein as block A of the AB block copolymer, a polyethylene oxide (PEO) is used and as block B of the AB block copolymer a polydiene or an at least partially hydrogenated polydiene is used and solved by the preamble of claim 2 characterized in that the water-oil surfactant mixture as an additive, an AB block copolymer having a water-soluble block A and a water-insoluble block B added is, wherein the blocks A and B have a molecular weight between 500-5000 g / mol. According to claim 3, the object is achieved in that an oil-water surfactant mixture in microemulsions as an additive is added an AB block copolymer having a water-soluble block A and a water-insoluble block B, wherein the blocks A and B has a molecular weight between 500-5000 g / mol.

Erfindungsgemäß wird durch die Zugabe des AB-Blockcopolymers zur Wasser-Öl-Tensid-Mischung die Lage des einphasigen Gebietes im Phasendiagramm im Temperaturgebiet nicht verändert, die Effizienz der Tensidmischung wird erheblich gesteigert, lamellare Mesophasen werden in Mikroemulsionen unterdrückt.According to the invention, the addition of the AB block copolymer to the water-oil-surfactant mixture does not change the position of the single-phase region in the phase diagram in the temperature region, the efficiency of the surfactant mixture is considerably increased, lamellar mesophases are suppressed in microemulsions.

Außerdem behalten Mikroemulsionen ihre für sie charakteristischen Eigenschaften unter Vergrößerung ihrer Strukturgröße; so nehmen die emulgierten Strukturen Größen von bis zu ca. 2000 Angström an. Somit wird eine Mikroemulsion erhalten, die die Strukturgrößen einer Emulsion hat, aber thermodynamisch stabil ist. Die Größe der emulgierten Flüssigteilchen hängt von der Temperatur und der zugesetzten Menge Blockcopolymer, bzw. damit von der Zusammensetzung des Tensidgemisches, ab.In addition, microemulsions retain their characteristic properties while increasing their structure size; Thus, the emulsified structures take on sizes of up to about 2000 angstroms. Thus, a microemulsion is obtained which has the structure sizes of an emulsion but is thermodynamically stable. The size of the emulsified liquid particles depends on the temperature and the amount of block copolymer added, or thus on the composition of the surfactant mixture.

Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.Advantageous developments of the invention are specified in the subclaims.

Die Blöcke A und B können dabei Molekulargewichte zwischen 500 u und 60000 u annehmen. Als Block A wird bevorzugt ein Polyethylenoxid (PEO)- Block eingesetzt. Jedoch können alle Blöcke A eingesetzt werden, die wasserlöslich sind, so daß sie in Verbindung mit Block B ein Amphiphil bilden. Weiterhin können für den Block A beispielhaft Polyacrylsäure, Polymethacrylsäure, Polystyrolsulfonsäure sowie deren Alkalimetallsalze, bei denen mindestens teilweise eine Substitution der Säurefunktion durch Alkalimetallkationen erfolgt ist, Polyvinylpyridin und Polyvinylalkohol, Polymethylvinylether, Polyvinylpyrrolidin, Polysaccharide sowie deren Gemische genannt werden.
Für den Block B kommen verschiedene wasserunlösliche Komponenten des genannten Molekulargewichts zum Einsatz. So kann Block B das Produkt einer anionischen 1,2-, 3,4- Polymerisation, bzw. 1,4 Polymerisation von Dienen sein. In Folge kann Block B weiterhin das Produkt einer mindestens teilweisen Hydrierung der Polydiene sein. Als typische monomere Bestandteile kommen 1,3 Butadien, Isopren, alle Konstitumere des Dimethylbutadien, 1,3 Pentadien, 2,4 Hexadiene, α Methylstyrol, Isobutylen, Ethylen, Propylen, Styrol oder Alkylacrylate und Alkylmethacrylate wobei die Alkylgruppe zwischen 2 und 20 Kohlenstoffatome enthält zum Einsatz. Block B kann auch Polydimethylsiloxan sein. Als Block B kann das Polymerisat eines einzigen Monomers oder eines Monomerengemisches verwendet werden.
Block B kann als Seitenketten Methyl-, Ethyl-, Vinyl-Phenyl- oder Benzylgruppen aufweisen.
Die Doppelbindungen in der Polydienkette sowie in den Vinylgruppen, die als Seitenkette existieren können, können entweder ganz oder teiweise hydriert sein. Jedoch kann erfindungsgemäß jedes genügend amphiphile Blockcopolymer eingesetzt werden. Die erfindungsgemäß eingesetzten AB-Blockcopolymere können vorzugsweise aus einer anionischen Polymerisation erhalten werden.
Bei geringeren Molekulargewichten der Blöcke A und B in einer Größenordnung von ca 500-5000 g/mol für die Blöcke A und B werden besonders vorteilhafte Eigenschaften der erfindungsgemäßen AB-Blockcopolymere in Anwendungsprodukten beobachtet. So lösen sich die Polymere mit diesen niedrigen Molekulargewichten schnell und gut auf. Dies gilt zum Beispiel für Lösungen in Seifen und Waschmitteln.
The blocks A and B can assume molecular weights between 500 and 60,000 u. As block A, a polyethylene oxide (PEO) block is preferably used. However, all blocks A that are water-soluble may be used so that they form an amphiphile in conjunction with block B. Furthermore, block A can be exemplified by polyacrylic acid, polymethacrylic acid, polystyrenesulfonic acid and their alkali metal salts in which at least partial substitution of the acid function by alkali metal cations, polyvinylpyridine and polyvinyl alcohol, polymethylvinylether, polyvinylpyrrolidine, polysaccharides and mixtures thereof are mentioned.
For block B, various water-insoluble components of said molecular weight are used. Thus, block B may be the product of anionic 1,2-, 3,4-, or 1,4-polymerization of dienes. As a result, block B may still be the product of at least partial hydrogenation of the polydienes. Typical monomeric constituents are 1,3-butadiene, isoprene, all constants of dimethylbutadiene, 1,3-pentadiene, 2,4-hexadienes, α-methylstyrene, isobutylene, ethylene, propylene, styrene or alkyl acrylates and alkyl methacrylates where the alkyl group contains between 2 and 20 carbon atoms for use. Block B may also be polydimethylsiloxane. As the block B, the polymer of a single monomer or a mixture of monomers can be used.
Block B may have as side chains methyl, ethyl, vinyl-phenyl or benzyl groups.
The double bonds in the polydiene chain as well as in the vinyl groups, which may exist as a side chain, may be either fully or partially hydrogenated. However, according to the invention, any sufficiently amphiphilic block copolymer can be used. The AB block copolymers used according to the invention can preferably be obtained from an anionic polymerization.
At lower molecular weights of blocks A and B in the order of about 500-5000 g / mol for blocks A and B, particularly advantageous properties of the AB block copolymers according to the invention in application products are observed. Thus, the polymers with these low molecular weights dissolve quickly and well. This applies, for example, to solutions in soaps and detergents.

In den erfindungsgemäß eingesetzten AB-Blockcopolymeren sollen die beiden Blöcke A und B ein möglichst hohen Unterschied in ihrer Polarität aufweisen. Dabei soll Block A möglichst polar sein und Block B möglichst unpolar. Hierdurch wird das amphiphile Verhalten gesteigert. Block A soll wasserlöslich sein und Block B soll in unpolaren Medien löslich sein. Vorteilhafterweise ist Block B in Mineralölen oder aliphatischen Kohlenwasserstoffen bzw. in Mineralölen und aliphatischen Kohlenwasserstoffen löslich. Dies gilt auch bei Raumtemperatur.
Weiterhin können auch AB-Blockcopolymere des Typs ABA und BAB einegesetzt werden, die als Triblockcopolymere bezeichnet werden.
In the AB block copolymers used according to the invention, the two blocks A and B should have the greatest possible difference in their polarity. Block A should be as polar as possible and block B preferably nonpolar. This increases the amphiphilic behavior. Block A should be water-soluble and block B should be soluble in non-polar media. Advantageously, block B is soluble in mineral oils or aliphatic hydrocarbons or in mineral oils and aliphatic hydrocarbons. This also applies at room temperature.
Furthermore, it is also possible to use AB block copolymers of the type ABA and BAB, which are referred to as triblock copolymers.

Beispielhaft können folgende Tenside (C) und deren Gemische mit den erfindungsgemäßen Additiven verwendet werden:

  • nichtionische Tenside der Klasse Alkylpolyglycolether (CiEj) mit i ≥ 8 (C = C-Atome in der Alkylkette, E = Ethylenoxideinheiten)
  • nichtionische Tenside der Klasse Alkylpolyglucoside (APG) "Zuckertenside",CiGj mit i ≥ 8) mit Cotensid Alkohol (Cx-OH, x ≥ 6)
  • anionische Tenside, z.B. AOT (Natrium bis (2-ethylhexyl)sulfosuccinat)
  • kationische Tenside
  • Tensidgemische
  • technische Tenside
By way of example, the following surfactants (C) and mixtures thereof with the additives according to the invention can be used:
  • nonionic surfactants of the class alkyl polyglycol ethers (C i E j ) with i ≥ 8 (C = C atoms in the alkyl chain, E = ethylene oxide units)
  • nonionic surfactants of the class alkyl polyglucosides (APG) "sugar surfactants", C i G j with i ≥ 8) with cosurfactant alcohol (C x -OH, x ≥ 6)
  • anionic surfactants, eg AOT (sodium bis (2-ethylhexyl) sulfosuccinate)
  • cationic surfactants
  • surfactant mixtures
  • technical surfactants

Im Folgenden sollen einige Begriffe definiert werden:

  • C = Ein beliebiges Tensid, wie anionisches, kationisches, nichtionisches Tensid oder Zuckertensid, sowie deren Gemische, die mindestens zwei Tenside enthalten. D = Additiv, welches dem Tensid C erfindungsgemäß zugefügt wird.
  • γ = Gesamttensidkonzentration (Massenbruch) aus C und
  • D mit γ = m c + m D m g e s
    Figure imgb0001
Hierin sind:
  • m = Masse in g.
  • γ = dimensionsloser Massenbruch
  • mges = Gesamtmasse aus mwasser + mÖl + m (C) + m (D)
  • Figure imgb0002
    = Gesamttensidkonzentration am Kreuzungspunkt, an dem im Phasendiagramm das einphasige auf das dreiphasige Gebiet trifft. Dies entspricht der bei gegebenen Wasser/Öl-Verhältnis minimal zur vollständigen Solubilierung von Wasser und Öl notwendigen Gesamttensidkonzentration.
  • δ = Massenbruch des Additivs D im Gemisch Tensid C + Additiv D, entspricht δ = m D m C + m D
    Figure imgb0003
  • mit m = Masse in g und
  • δ = Massenbruch (dimensionslos)
Here are some terms to be defined:
  • C = Any surfactant, such as anionic, cationic, nonionic or sugar surfactant, and mixtures thereof containing at least two surfactants. D = additive which is added to the surfactant C according to the invention.
  • γ = total surfactant concentration (mass fraction) from C and
  • D with γ = m c + m D m G e s
    Figure imgb0001
Here are:
  • m = mass in g.
  • γ = dimensionless mass fraction
  • m ges = total mass of m water + m oil + m (C) + m (D)
  • Figure imgb0002
    = Total surfactant concentration at the crossing point where the phase diagram meets the single-phase to the three-phase region. This corresponds to the total surfactant concentration required for the complete solubilization of water and oil given the minimum water / oil ratio.
  • δ = mass fraction of the additive D in the mixture of surfactant C + additive D, corresponds δ = m D m C + m D
    Figure imgb0003
  • with m = mass in g and
  • δ = mass fraction (dimensionless)

Im Folgenden soll die Erfindung beispielhaft erläutert werden.In the following, the invention will be explained by way of example.

PX/Y = Additiv mit einem Molekulargewicht in 1000g/mol X an hydrophober Alkylkette (hydriertes 1,4-Polyisopren) und einem Molekulargewicht in 1000g/mol Y an Polyethylenoxid.
Beispiel P5/5 : die Alkylkette hat ein Molekulargewicht von 5000 g/mol (= u) und die Polyethylenoxidkette hat ein Molekulargewicht von 5000 g/mol.
P22/15: die Alkylkette hat ein Molekulargewicht von 22000 g/mol und die Polyethylenoxidkette hat ein Molekulargewicht von 15000 g/mol.
Die auf diese Weise dargestellten Additive sind AB-Blockcopolymere.
Die hier beispielhaft dargestellten Verbindungen können nach dem Herstellungsverfahren aus der DE 196 34 477 Al erhalten werden.
PX / Y = additive having a molecular weight in 1000 g / mol X of hydrophobic alkyl chain (hydrogenated 1,4-polyisoprene) and a molecular weight in 1000 g / mol Y of polyethylene oxide.
Example P5 / 5: the alkyl chain has a molecular weight of 5000 g / mol (= μ) and the polyethylene oxide chain has a molecular weight of 5000 g / mol.
P22 / 15: the alkyl chain has a molecular weight of 22,000 g / mol and the polyethylene oxide chain has a Molecular weight of 15000 g / mol.
The additives shown in this way are AB block copolymers.
The compounds shown here by way of example can be obtained by the production process from the DE 196 34 477 A1 to be obtained.

Das Verhalten der erfindungsgemäßen Mikroemulsionen ist in den Figuren dargestellt:

  • Fig.1: Typischer Temperatur/Tensidkonzentrationsschnitt durch das Phasenprisma bei konstantem Wasser/Öl-Verhältnis für das H2O-Tetradekan-C6E2-System zum Vergleich.
  • Fig.2: Die Einphasengebiete für das Gemisch Wasser/n-Dekan-C10E4-P5/5 als Funktion der Zugabe P5/5 (δ) in einem Temperatur/Tensidkonzentrationsdiagramm.
  • Fig.3: Die Einphasengebiete für das Gemisch Wasser/n-Dekan-C10E4-P10/10 als Funktion der Zugabe P10/10 (δ) in einem Temperatur/Tensidkonzentrationsdiagramm.
  • Fig.4: Die Einphasengebiete für das Gemisch Wasser/n-Dekan-C10E4-P22/22 als Funktion der Zugabe P22/22 (δ) in einem Temperatur/Tensidkonzentrationsdiagramm.
  • Fig.5: Die Einphasengebiete für das Gemisch Wasser/n-Dekan-C10E4-P5/3 als Funktion der Zugabe P5/3 (δ) und P5/2 (δ) in einem Temperatur/Tensidkonzentrationsdiagramm.
  • Fig.6: Die Einphasengebiete für das Gemisch Wasser/n-Dekan-C10E4-P22/15 als Funktion der Zugabe P22/15 (δ) in einem Temperatur/Tensidkonzentrationsdiagramm.
  • Fig.7: Die Einphasengebiete für das Gemisch Wasser/n-Dekan-C10E4-P5/15 und Wasser/n-Dekan-C10E4-PI5/PEO15 (PI5 = Polyisopren mit Molekulargewicht 5000g/mol, PEO15 = Polyethylenoxyd mit Molekulargewicht 15000 g/mol (AB-Blockcopolymer).) als Funktion der Zugabe δ in einem Temperatur/Tensidkonzentrationsdiagramm.
  • Fig.8: Die Einphasengebiete für das Gemisch Wasser/n-Dekan-C10E4-P5/30 als Funktion der Zugabe P5/30 (δ) in einem Temperatur/Tensidkonzentrationsdiagramm.
  • Fig.9: Die Einphasengebiete für das Gemisch (Wasser+NaCl)/n-Dekan-AOT-P5/5 als Funktion der Zugabe P5/5 (δ) in einem Temperatur/Tensidkonzentrationsdiagramm.
  • Fig.10: Die Einphasengebiete für das Gemisch Wasser/n-Oktan-Oktanol-C8G1-P5/5 (C8G1 = n-octyl-β-D-Glucopyranosid, welches ein Zuckertensid ist) als Funktion der Zugabe P5/5 (δ) in einem Tetraederschnitt bei einem konstantem Wasser/Öl-Verhältnis und T=25°C. C8G1 ist hierbei ein Zuckeramphiphil.
  • Fig.11: Übersicht:
    Figure imgb0004
    als Funktion von δ für die verschiedenen Wasser/n-Dekan-C10E4-Px/y-Systeme.
  • Fig.12 Einphasengebiete für die Systeme H2O-n-Dekan-C10E4- P22/22 (leere Kreise) und H2O-n-Dekan-C10E4-P1/1 (schwarze Rauten) in Abhängigkeit von δ.
  • Fig.13: Einphasengebiete für die Systeme H2O-Cyclohexan-C8E4- PS1/PEO1 (PS1 = Polystyrol mit Molekulargewicht 1000g/mol, PEO1 = Polyethylenoxid mit Molekulargewicht 1000g/mol ; (AB-Blockcopolymer)) in einem Temperatur/Tensidkonzentrationsdiagramm. Das Verhältnis H2O/Cyclohexan ist 1:1.
The behavior of the microemulsions according to the invention is shown in the figures:
  • Fig.1 : Typical temperature / surfactant concentration section through the phase prism at constant water / oil ratio for the H 2 O-tetradecane C 6 E 2 system for comparison.
  • Fig.2 : The single-phase ranges for the mixture water / n-decane C 10 E 4 -P5 / 5 as a function of the addition P5 / 5 (δ) in a temperature / Tensidkonzentrationsdiagramm.
  • Figure 3 : The single-phase ranges for the mixture water / n-decane C 10 E 4 -P 10/10 as a function of the addition of P10 / 10 (δ) in a temperature / surfactant concentration diagram.
  • Figure 4 : The single-phase ranges for the mixture water / n-decane C 10 E 4 -P22 / 22 as a function of addition P22 / 22 (δ) in a temperature / surfactant concentration diagram.
  • Figure 5 : The single-phase ranges for the mixture water / n-decane C 10 E 4 -P5 / 3 as a function of the addition of P5 / 3 (δ) and P5 / 2 (δ) in a temperature / surfactant concentration diagram.
  • Figure 6 : The single-phase ranges for the mixture water / n-decane C 10 E 4 -P22 / 15 as a function of addition P22 / 15 (δ) in a temperature / surfactant concentration diagram.
  • Figure 7 : The single phase ranges for the mixture water / n-decane C 10 E 4 -P5 / 15 and water / n-decane C 10 E 4 -PI5 / PEO15 (PI5 = polyisoprene with molecular weight 5000g / mol, PEO15 = polyethylene oxide with molecular weight 15000 g / mol (AB block copolymer).) As a function of the addition δ in a temperature / surfactant concentration diagram.
  • Figure 8 : The single-phase ranges for the mixture water / n-decane C 10 E 4 -P5 / 30 as a function of addition P5 / 30 (δ) in a temperature / surfactant concentration diagram.
  • Figure 9 : The single-phase areas for the mixture (water + NaCl) / n-decane-AOT-P5 / 5 as a function of addition P5 / 5 (δ) in a temperature / surfactant concentration diagram.
  • Figure 10 : The single phase regions for the mixture of water / n-octane-octanol C 8 G 1 -P5 / 5 (C 8 G 1 = n-octyl-β-D-glucopyranoside, which is a sugar surfactant) as a function of addition P5 / 5 (δ) in a tetrahedral section at a constant water / oil ratio and T = 25 ° C. C 8 G 1 is a sugar amphiphile.
  • Figure 11 : Overview:
    Figure imgb0004
    as a function of δ for the various water / n-decane C 10 E 4 Px / y systems.
  • Figure 12 Single phase regions for the systems H 2 on decane C 10 E 4 - P22 / 22 (open circles) and H 2 on decane C 10 E 4 -P1 / 1 (black diamonds) as a function of δ.
  • Figure 13 : Single Phase Areas for the Systems H 2 O-cyclohexane C 8 E 4 - PS1 / PEO1 (PS1 = polystyrene with molecular weight 1000g / mol, PEO1 = polyethylene oxide with molecular weight 1000g / mol (AB block copolymer)) in a temperature / surfactant concentration diagram. The ratio H 2 O / cyclohexane is 1: 1.

Die in den Figuren 1 bis 9 und 11 bis 12 realisierten H2O/n-Dekan-Verhältnisse sind 1:1.The in the FIGS. 1 to 9 and 11 to 12 realized H 2 O / n-decane ratios are 1: 1.

Figur 1 stellt den Typ von Phasendiagramm nach dem Stand der Technik dar, der die Grundlage für die Figuren 1 bis 8 liefert. FIG. 1 represents the type of phase diagram of the prior art, which is the basis for the FIGS. 1 to 8 supplies.

Dabei ist die Temperatur T gegen die Gesamttensidkonzentration γ für das System Wasser/n-Tetradecan-C6E2 und ein Wasser/n-Tetradekan-Verhältnis von 1:1 aufgetragen. Bei höheren Tensidkonzentrationen befindet sich das Einphasengebiet 1 des Gemisches. An diesen Gebiet schließt sich in Richtung kleinerer Tensidkonzentrationen ein geschlossenes Dreiphasengebiet 3 an. Oberhalb und unterhalb der Phasengrenzlinien befinden sich Zweiphasengebiete 2. Der Punkt, an dem alle Phasengebiete zusamnmentreffen, wird durch die Tensidkonzentration

Figure imgb0005
und die Temperatur
Figure imgb0006
definiert. Je mehr
Figure imgb0007
zu kleinen Werten verschoben ist, desto größer ist die Strukturgröße der Mikroemulsionen.The temperature T is plotted against the total surfactant concentration γ for the system water / n-tetradecane-C 6 E 2 and a water / n-tetradecane ratio of 1: 1. At higher surfactant concentrations is the Einphasengebiet 1 of the mixture. This area is followed by a closed three-phase area 3 in the direction of lower surfactant concentrations. Above and below the phase boundary lines are two-phase regions 2. The point at which all phase regions meet is determined by the surfactant concentration
Figure imgb0005
and the temperature
Figure imgb0006
Are defined. The more
Figure imgb0007
shifted to small values, the larger the structure size of the microemulsions.

Die in den Figuren 2 bis 9 dargestellten T/γ -Diagramme beziehen sich auf Systeme auf ein konstantes Wasser/Öl-Volumenverhältnis von 1:1 und sollen im Folgenden allgemein erläutert werden.The in the FIGS. 2 to 9 T / γ diagrams refer to systems having a constant water / oil volume ratio of 1: 1 and will be discussed in general terms below.

In diesen Diagrammen sind Kurven zu jeweils einem δ - Wert eingezeichnet, welche die Begrenzung des jeweiligen zu einem δ-Wert gehörigen Einphasengebiet charakterisiert. Die Spitze der jeweiligen Kurve ist derjenige Punkt, an dem verschiedene Mehrphasengebiete zusammentreffen. Je weiter die Spitze einer Kurve bei niedrigeren Tensidkonzentrationen, d.h. γ - Werten, angesiedelt ist, desto größer ist die Effizienz des Tensids C durch die Zugabe des Blockcopoymeren D.In these diagrams, curves are plotted, each with a δ value, which characterizes the limitation of the respective single-phase region belonging to a δ value. The apex of the respective curve is the point at which different polyphase regions meet. The further the peak of a curve is located at lower surfactant concentrations, ie γ values, the greater the efficiency of the surfactant C by the addition of the block copolymer D.

Figur 2 zeigt, wie sich die Effizienz des Gesamttensids mit der Zugabe des Blockcopolymeren vergrößert. Zusätzlich ist keine wesentliche Verschiebung des Einphasengebietes auf der Temperaturachse zu verzeichnen. Dieses ist gleichbedeutend damit, daß das Blockcopolymer D die Lage der Wirksamkeit des Tensids C bezüglich seiner Anwendungstemperatur im wesentlichen invariant läßt. Ausserdem treten in den untersuchten Mischungen keine lamellaren Mesophasen auf. FIG. 2 shows how the efficiency of the total surfactant increases with the addition of the block copolymer. In addition, there is no significant shift of the single-phase region on the temperature axis. This is tantamount to the fact that the block copolymer D leaves the position of the effectiveness of the surfactant C with respect to its application temperature substantially invariant. In addition, no lamellar mesophases occur in the mixtures investigated.

In Figur 3 treten sowohl in Bezug auf die Effizienz als auch auf das Temperaturverhalten die selben Charakteristika auf.In FIG. 3 Both in terms of efficiency and on the temperature behavior the same characteristics.

Die Effizienz des Gesamttensids wird auch in dem in Figur 4 gezeigten Beispiel gesteigert und die Temperaturlage bleibt im wesentlichen erhalten. Lamellare Phasen werden nicht beobachtet.The efficiency of the total surfactant is also reflected in the FIG. 4 shown example increased and the temperature position is maintained substantially. Lamellar phases are not observed.

In Figur 5 verschieben sich die Kurven isotherm unter Effizienzsteigerung und Vermeidung von lamellaren Phasen. Die Rauten geben das System mit P5/3 wieder. Durch die grauen Kreise wird das System mit P5/2 dargestellt.In FIG. 5 the curves shift isothermally increasing efficiency and avoiding lamellar phases. The diamonds reflect the system with P5 / 3. The gray circles indicate the system with P5 / 2.

In Figur 6 ist das gleiche Verhalten zu beobachten wie in Figur 5.In FIG. 6 is the same behavior to watch as in FIG. 5 ,

In Figur 7 und 8 ist ebenfalls eine wesentliche Effizienzsteigerung zu beobachten. Weiterhin treten bei den in den Figuren 7 und 8 dargestellten Versuchen keine lamellaren Phasen auf. In Figur 7 sind die grauen Punkte PI5/PEO15 und die Dreiecke P5/15.
Während in den Figuren 2-8 die Effizienzsteigerung des nichtionischen Tensides C10E4 durch die Zugabe von Blockcopolymeren dokumentiert wurde, ist in Figur 9 die Effizienzsteigerung in einem anionischen Tensidsystem (Wasser+NaCl)/n-Dekan-AOT-P5/5 gezeigt.
Um die Effizienzsteigerung der Blockcopolymere für eine weitere Tensidklasse zu dokumentieren, ist in Fig 10 ein Schnitt durch einen Phasentetraeder im System Wasser/n-Oktan-Oktanol-C8G1-P5/5, bei dem das Verhältnis Wasser/n-Oktan 1:1 ist, gezeigt. Dabei wird das Phasenverhalten hier nicht durch die Temperatur sondern durch die Zugabe eines Cotensides (Oktanol) bestimmt. Auch hier verschiebt sich das Einphasengebiet durch die Zugabe von Blockcopolymeren zu wesentlich kleineren Tensidkonzentrationen und außerdem auch zu kleineren Cotensid-Konzentrationen.
In FIG. 7 and 8th is also a significant increase in efficiency observed. Continue to occur in the in the FIGS. 7 and 8th Experiments shown no lamellar phases. In FIG. 7 the gray dots are PI5 / PEO15 and the triangles are P5 / 15.
While in the Figures 2-8 the increase in efficiency of the nonionic surfactant C 10 E 4 has been documented by the addition of block copolymers FIG. 9 the efficiency increase in an anionic surfactant system (water + NaCl) / n-decane-AOT-P5 / 5 is shown.
In order to document the increase in efficiency of the block copolymers for a further class of surfactants, is in FIG. 10 a section through a phase tetrahedron in the system water / n-octane-octanol C 8 G 1 -P5 / 5, in which the ratio of water / n-octane is 1: 1 shown. Here, the phase behavior is not determined by the temperature but by the addition of a cosurfactant (octanol). Here, too, the single-phase region shifts to much smaller surfactant concentrations by the addition of block copolymers and also to smaller cosurfactant concentrations.

Figur 11 dokumentiert in einer Übersicht die erfindungsgemäß sehr starke Effizienzsteigerung der Blockcopolymer-Zumischungen. Aufgetragen sind die Gesamttensidkonzentrationen am Kreuzungspunkt

Figure imgb0008
als Funktion der Zugabe δ des Blockcopolymers.
Im Gegensatz zu konventionellen Tensidmischungen führt bei den Blockcopolymeren schon eine sehr geringe Zugabe δ zu einem stärkeren Absinken von
Figure imgb0009
, und damit zu starker Effizienzsteigerung. FIG. 11 documents in an overview the invention very strong increase in efficiency of the block copolymer admixtures. Plotted are the total surfactant concentrations at the crossing point
Figure imgb0008
as a function of the addition δ of the block copolymer.
In contrast to conventional surfactant mixtures, a very small addition of δ leads to a greater decrease in the block copolymers
Figure imgb0009
, and therefore to greater efficiency.

Der Wert des Wasser/Öl-Grenzflächenspannungsminimums korreliert mit der Effizienz der Tensidmischung, wobei z.B. für den Waschprozeß eine möglichst niedrige Grenzflächenspannung erwünscht ist.The value of the water / oil interfacial tension minimum correlates with the efficiency of the surfactant mixture, e.g. for the washing process the lowest possible interfacial tension is desired.

In Figur 12 ist ebenfalls eine Effizienzsteigerung zu beobachten. Weiterhin treten bei diesen Versuchen keine lamellaren Phasen auf.In FIG. 12 is also an increase in efficiency observed. Furthermore, no lamellar phases occur in these experiments.

Die Messungen in Figur 13 wurden in Cyclohexan vorgenommen, da die Cycloalkane die besten Voraussetzungen für die Löslichkeit von Polystyrol innerhalb der Gruppe der Alkane liefern. Außerdem wurde als Tensidkomponente C8E4 verwendet, um trotz der veränderten unpolaren Komponente Cyclohexan eine ähnliche Ausgangseffizienz zu erhalten. Auch hier werden lamellare Phasen unterbunden.The measurements in FIG. 13 were made in cyclohexane, since the cycloalkanes provide the best conditions for the solubility of polystyrene within the group of alkanes. In addition, C 8 E 4 was used as surfactant component in order to obtain a similar initial efficiency despite the modified nonpolar component cyclohexane. Again, lamellar phases are suppressed.

Mit den erfindungsgemäß eingesetzten AB Blockcopolymeren wird das Auftreten lammelarer Mesophasen wird unterdrückt. Das Temperaturverhalten der Mikroemulsionen bleibt unverändert, das heißt die Lage des Einphasengebietes bezüglich der Temperatur im Phasendiagramm wird durch die Zugabe der erfindungsgemäß eingesetzten Additive nicht beeinflußt. Daher muß die Rezeptur eines Waschmittels nicht verändert werden um eine gleichbleibende Lage des Einphasengebietes bezüglich der Temperatur im Einphasendiagramm zu bewirken.
Die erfindungsgemäßen AB-Blockcopolymere können nicht nur in Waschmitteln eingesetzt werden; sie können mit derselben Wirkung auch beispielsweise als Zusätze in Lebensmitteln und Kosmetika sowie in allen industriellen oder technischen Anwendungen von Mikroemulsionen und Emulsionen, z.B. beim Einsatz in der Erdölförderung, in der Bodensanierung sowie bei der Anwendung als z.B. Reaktionsmedium verwendet werden.
Die mittels der erfindungsgemäßen Zugabe der AB Blockcopolymere hergestellten Mikroemulsionen weisen emulgierte Flüssigkeitsvolumina auf, deren Größe denen von Emulsionen entsprechen.
Die erfindungsgemäßen Wirkungen können durch jeden gemeinsamen Einsatz eines Tensids mit dem AB-Blockcopolymer in einem zu emulgierenden System erreicht werden. Ein Tensid, welchem ein erfindungsgemäßes AB-Blockcopolymer beigefügt ist, sowie jedes damit emulgierte System umfassend zusätzlich Wasser und/oder Öl sind daher von der Erfindung umfaßt.
Die erfindungsgemäßen Wirkungen beschränken sich nicht auf Emulsionen und Mikroemulsionen, sondern beeinflussen das Verhalten von Tensiden im allgemeinen in der beschriebenen Weise.
With the AB block copolymers used according to the invention, the occurrence of lamellar mesophases is suppressed. The temperature behavior of the microemulsions remains unchanged, that is, the position of the single-phase region with respect to the temperature in the phase diagram is not influenced by the addition of the additives used according to the invention. Therefore, the formulation of a detergent must not be changed to cause a constant position of the single-phase region with respect to the temperature in the single-phase diagram.
The AB block copolymers according to the invention can not only be used in detergents; they can be used with the same effect, for example, as additives in food and cosmetics and in all industrial or technical applications of microemulsions and emulsions, for example in petroleum production, in soil remediation and in the application as eg reaction medium.
The microemulsions prepared by means of the addition according to the invention of the AB block copolymers have emulsified liquid volumes whose size corresponds to those of emulsions.
The effects of the present invention can be achieved by any common use of a surfactant with the AB block copolymer in a system to be emulsified. A surfactant to which an AB block copolymer according to the invention is added, and any system emulsified therewith and additionally comprising water and / or oil, are therefore encompassed by the invention.
The effects of the invention are not limited to emulsions and microemulsions, but affect the behavior of surfactants in general in the manner described.

Claims (10)

  1. A method of increasing the efficiency of surfactants in a microemulsion consisting of water and oil by the addition of additives having a water-soluble and a water-insoluble component, characterized in that, as additive, an AB block copolymer with a water-soluble block A and a water-insoluble block B is added, a polyethylene oxide (PEO) being used as block A of the AB block copolymer and a polydiene or an at least partially hydrogenated polydiene being used as block B of the AB block copolymer.
  2. A method of suppressing lamellar phases in water/oil/surfactant mixtures which are present in microemulsions, characterized in that an AB block copolymer with a water-soluble block A and a water-insoluble block B is added to the water/oil/surfactant mixture as additive, the blocks A and B having a molecular weight of between 500 and 5000g/mol.
  3. A method of stabilizing the temperature state of the single-phase region for oil/water/surfactant mixtures in microemulsions to which an additive is added, in which case an AB block copolymer with a water-soluble block A and a water-insoluble block B is added to the oil/water/surfactant mixtures as additive, the blocks A and B having a molecular weight of between 500 and 5000g/mol.
  4. A method according to one of Claims 1 to 4, characterized in that a compound having the structure according to type AB, ABA or BAB is added as block copolymer.
  5. A method according to one of Claims 1 to 4, characterized in that a block B is used which is soluble in oil and in aliphatic hydrocarbons.
  6. A method according to one of Claims 1, 4 or 5, characterized in that block A has a molecular weight of between 500 u and 60000 u.
  7. A method according to one of Claims 1, or 4 to 6, characterized in that block B has a molecular weight of between 500 u and 60000 u.
  8. A method according to one of Claims 2 to 7, characterized in that a polyethylene oxide (PEO) is used as block A.
  9. A method according to one of Claims 2 to 8, characterized in that a polydiene or an at least partially hydrogenated polydiene is used as block B.
  10. A method according to Claim 9, characterized in that block B has, as side chains, at least one component from the groups consisting of methyl, ethyl, phenyl and vinyl.
EP99953661.8A 1998-08-28 1999-08-26 Method for increasing the efficiency of surfactants with simultaneous suppression of lamellar mesophases and surfactants with an additive added thereto Expired - Lifetime EP1109883B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19839054A DE19839054A1 (en) 1998-08-28 1998-08-28 Process for increasing the efficiency of surfactants with simultaneous suppression of lamellar mesophases and surfactants to which an additive is added
DE19839054 1998-08-28
PCT/DE1999/002748 WO2000012660A2 (en) 1998-08-28 1999-08-26 Method for increasing the efficiency of surfactants with simultaneous suppression of lamellar mesophases and surfactants with an additive added thereto

Publications (3)

Publication Number Publication Date
EP1109883A2 EP1109883A2 (en) 2001-06-27
EP1109883B1 EP1109883B1 (en) 2004-10-27
EP1109883B2 true EP1109883B2 (en) 2014-09-03

Family

ID=7878952

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99953661.8A Expired - Lifetime EP1109883B2 (en) 1998-08-28 1999-08-26 Method for increasing the efficiency of surfactants with simultaneous suppression of lamellar mesophases and surfactants with an additive added thereto

Country Status (6)

Country Link
US (2) US6677293B1 (en)
EP (1) EP1109883B2 (en)
JP (1) JP4703852B2 (en)
AT (1) ATE280821T1 (en)
DE (2) DE19839054A1 (en)
WO (1) WO2000012660A2 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19839054A1 (en) * 1998-08-28 2000-03-02 Forschungszentrum Juelich Gmbh Process for increasing the efficiency of surfactants with simultaneous suppression of lamellar mesophases and surfactants to which an additive is added
US20050004864A1 (en) * 2000-06-15 2005-01-06 Nextcard Inc. Implementing a counter offer for an on line credit card application
JP4756671B2 (en) * 2001-04-06 2011-08-24 孝志 澤口 Styrene oligomer-polyethylene oxide copolymer and process for producing the same
AU2003210236A1 (en) * 2002-02-11 2003-09-04 Rhodia Chimie Detergent composition comprising a block copolymer
AU2003211688A1 (en) * 2002-02-11 2003-09-04 Rhodia Chimie Method for controlling the stability of emulsions and stabilized emulsions
FR2845930B1 (en) * 2002-10-21 2006-05-26 Oreal PROCESS FOR SOLUBILIZING LIPOPHILIC COMPOUNDS IN AQUEOUS SOLUTION BY AMPHIPHILIC BLOCK COPOLYMERS AND COSMETIC COMPOSITION
WO2004035013A2 (en) * 2002-10-21 2004-04-29 L'oreal Process for dissolving lipophilic compounds, and cosmetic composition
DE10323180A1 (en) 2003-05-22 2004-12-09 Basf Ag Mixture comprising a surfactant and a cosurfactant
DE10323178A1 (en) 2003-05-22 2004-12-09 Basf Ag Mixture comprising a surfactant and a cosurfactant
DE10358534A1 (en) 2003-12-13 2005-07-14 Henkel Kgaa Adhesion inhibition of microorganisms by nonionic surfactants
DE102004007501A1 (en) * 2004-02-13 2005-09-01 Basf Ag Amphiphilic block copolymers containing aqueous polymer dispersions, processes for their preparation and their use
DE102004007473A1 (en) 2004-02-13 2005-09-01 Basf Ag Mixture comprising a surfactant and a cosurfactant
DE102004056362A1 (en) * 2004-11-22 2006-06-01 Henkel Kgaa Mold-resistant building materials
DE102004058956A1 (en) * 2004-12-08 2006-06-14 Forschungszentrum Jülich GmbH Process for increasing the efficiency of surfactants and emulsifiers by means of additives
DE102005023762A1 (en) * 2005-05-19 2006-11-23 Forschungszentrum Jülich GmbH Process for increasing the efficiency of surfactants, for suppressing lamellar mesophases, for temperature stabilization of the single-phase region, and a process for reducing the interfacial tension in microemulsions containing silicone oils by means of additives, and surfactant-oil mixture
DE102005026716A1 (en) 2005-06-09 2006-12-28 Basf Ag Surfactant mixtures for tertiary mineral oil production
CN101233187A (en) * 2005-08-04 2008-07-30 巴斯福股份公司 Aqueous dispersions and their use
DE102005049765A1 (en) 2005-10-18 2007-04-19 Forschungszentrum Jülich GmbH Method for increasing the efficiency of surfactants, for widening the temperature window, for suppressing lamellar mesophases in microemulsions by means of additives, and microemulsions
WO2008132202A2 (en) * 2007-04-27 2008-11-06 Bernd Schwegmann Gmbh & Co. Kg Mixture comprising an alkyl polyglucoside, a cosurfactant and a polymer additive
DE102007020426A1 (en) 2007-04-27 2008-10-30 Bernd Schwegmann Gmbh & Co. Kg Mixture, useful in emulsion for purifier, comprises alkylpolyglucoside having glucoside units and alkyl group, alcohol group containing-cosurfactant and polymer additive comprising water-soluble unit and hydrophobic unit
DE102007030406A1 (en) 2007-06-29 2009-01-08 Henkel Ag & Co. Kgaa Use of an algae extract for the temporary or permanent dressing of surfaces, reducing adhesion of biological material, preferably microorganisms or proteins, on surfaces and in detergents, cleaning agents and hand-washing agent
US8133924B2 (en) * 2007-08-13 2012-03-13 Rhodia Operations Demulsifiers and methods for use in pharmaceutical applications
US7671099B2 (en) 2007-08-13 2010-03-02 Rhodia Inc. Method for spearation crude oil emulsions
WO2009023724A2 (en) * 2007-08-13 2009-02-19 Rhodia, Inc. Method for separating crude oil emulsions
EP2045320B1 (en) 2007-09-19 2012-04-25 Bubbles & Beyond Gmbh Cleaning agent for removing paint layers on surfaces, method for manufacturing the agent and cleaning method
DE102007058342A1 (en) 2007-12-03 2009-06-04 Henkel Ag & Co. Kgaa Reduction of biofilm formation by multifunctional copolymers
DE102007058343A1 (en) 2007-12-03 2009-06-04 Henkel Ag & Co. Kgaa Reduction of the adhesion of dirt, dust and biological material by polyesteramides
FR2934154B1 (en) * 2008-07-23 2010-08-13 Rhodia Operations THERMOSENSITIVE EMULSIONS
DE102008063070A1 (en) 2008-12-23 2010-07-01 Henkel Ag & Co. Kgaa Use of star-shaped polymers having peripheral negatively charged groups and / or peripheral silyl groups to finish surfaces
WO2010090901A2 (en) * 2009-02-04 2010-08-12 Archer Daniels Midland Company Incorporation of biologically derived carbon into petroleum products
DE102012204378A1 (en) 2012-03-20 2013-09-26 Bernd Schwegmann Gmbh & Co. Kg Microemulsion-based cleaning agent
DE102015011694A1 (en) 2015-09-14 2017-03-16 Forschungszentrum Jülich GmbH Microemulsion-based cleaning agent
EP4011996A1 (en) 2020-12-11 2022-06-15 Henkel AG & Co. KGaA Method for detaching adhesively bonded substrates
EP4140679A1 (en) 2021-08-24 2023-03-01 Henkel AG & Co. KGaA Method for detaching substrates bonded by polyurethane adhesive

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0018085B1 (en) 1979-04-02 1982-12-29 C.I.L. Inc. Explosive compositions based on time-stable colloidal dispersions and a process for the preparation thereof
US4698178A (en) 1984-10-03 1987-10-06 Th. Goldschmidt Ag Use of polyoxyalkylene-polysiloxane copolymers with silicon-linked, long-chain alkyl radicals as emulsifiers for the preparation of water/oil emulsions
EP0407089A2 (en) 1989-06-29 1991-01-09 Unilever Plc Cosmetic composition
EP0455185A2 (en) 1990-04-30 1991-11-06 Helene Curtis, Inc. Hair-treating microemulsion composition and method of preparing and using the same
US5162378A (en) 1990-04-20 1992-11-10 Revlon Consumer Products Corporation Silicone containing water-in-oil microemulsions having increased salt content
WO1994022420A1 (en) 1993-04-05 1994-10-13 Quest International B.V. Silicone based skin care products
WO1996028132A2 (en) 1995-03-15 1996-09-19 Beiersdorf Ag Cosmetic or dermatological gels based on microemulsions
WO1998006818A1 (en) 1996-08-16 1998-02-19 Colgate-Palmolive Company Microemulsion all purpose liquid cleaning compositions
WO1998015255A1 (en) 1996-10-10 1998-04-16 Beiersdorf Ag Cosmetic or dermatological microemulsions

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1103201A (en) 1963-07-23 1968-02-14 Union Carbide Corp Organosilicon compositions
JPS5536237A (en) * 1978-09-06 1980-03-13 Kureha Chem Ind Co Ltd Antistatic resin composition
US4266610A (en) * 1978-11-28 1981-05-12 Phillips Petroleum Company Sulfonate-cosurfactant mixtures for use in hard brines during oil recovery operations
US4384974A (en) 1979-07-27 1983-05-24 Revlon, Inc. Stable water-in-oil emulsions
GB8822374D0 (en) 1988-09-23 1988-10-26 Abster Co Ltd Detergent composition
CA2053147A1 (en) 1990-10-15 1992-04-16 Charles F. Cooper Esterified polyoxyalkylene block copolymers as reduced calorie fat substitutes
DE4100119A1 (en) * 1991-01-04 1992-07-09 Bayer Ag USE OF POLYETHER-POLYCARBONATE BLOCK COPOLYMERS AS COATINGS FOR PLASTIC MOLDED BODIES
DE4141942A1 (en) 1991-12-19 1993-06-24 Huels Chemische Werke Ag METHOD FOR PRODUCING LARGE-PIECE, AQUEOUS PLASTIC DISPERSIONS
US5292795A (en) * 1992-05-08 1994-03-08 Shell Oil Company Very fine stable dispersions of block copolymers
US5985979A (en) * 1993-07-20 1999-11-16 Shell Oil Company Process for making stable latexes of block copolymers
US5461104A (en) * 1994-01-21 1995-10-24 Shell Oil Company Process for making water-based latexes of block copolymers
DE4418156A1 (en) * 1994-05-25 1995-11-30 Basf Ag Process for the preparation of stable water-in-oil emulsions of hydrolyzed polymers of N-vinylamides and their use
US5518648A (en) 1994-06-14 1996-05-21 Basf Corporation Solid dishwashing composition comprising a two-component blend of alkoxylated nonionic surfactants
CA2257313C (en) * 1996-06-05 2006-03-14 Forschungszentrum Julich Gmbh Process for the preparation of hydrophobic/ hydrophile ab block copolymers
DE19634477C2 (en) * 1996-06-05 2002-10-17 Forschungszentrum Juelich Gmbh Process for the production of hydrophobic-hydrophilic AB block copolymers and AB block copolymers
US5908707A (en) * 1996-12-05 1999-06-01 The Procter & Gamble Company Cleaning articles comprising a high internal phase inverse emulsion and a carrier with controlled absorbency
DE19654168A1 (en) * 1996-12-23 1998-06-25 Basf Ag Process for the preparation of aqueous polymer dispersions by free-radical, aqueous emulsion polymerization
DE19714714A1 (en) * 1997-04-09 1998-10-15 Basf Ag Block copolymers and their use as polymeric surfactants
US5962003A (en) * 1998-03-30 1999-10-05 Council Of Scientific & Industrial Research Process for the preparation of polyurethane microcapsules containing monocrotophos
DE19839054A1 (en) * 1998-08-28 2000-03-02 Forschungszentrum Juelich Gmbh Process for increasing the efficiency of surfactants with simultaneous suppression of lamellar mesophases and surfactants to which an additive is added

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0018085B1 (en) 1979-04-02 1982-12-29 C.I.L. Inc. Explosive compositions based on time-stable colloidal dispersions and a process for the preparation thereof
US4698178A (en) 1984-10-03 1987-10-06 Th. Goldschmidt Ag Use of polyoxyalkylene-polysiloxane copolymers with silicon-linked, long-chain alkyl radicals as emulsifiers for the preparation of water/oil emulsions
EP0407089A2 (en) 1989-06-29 1991-01-09 Unilever Plc Cosmetic composition
US5162378A (en) 1990-04-20 1992-11-10 Revlon Consumer Products Corporation Silicone containing water-in-oil microemulsions having increased salt content
EP0455185A2 (en) 1990-04-30 1991-11-06 Helene Curtis, Inc. Hair-treating microemulsion composition and method of preparing and using the same
WO1994022420A1 (en) 1993-04-05 1994-10-13 Quest International B.V. Silicone based skin care products
WO1996028132A2 (en) 1995-03-15 1996-09-19 Beiersdorf Ag Cosmetic or dermatological gels based on microemulsions
WO1998006818A1 (en) 1996-08-16 1998-02-19 Colgate-Palmolive Company Microemulsion all purpose liquid cleaning compositions
WO1998015255A1 (en) 1996-10-10 1998-04-16 Beiersdorf Ag Cosmetic or dermatological microemulsions

Non-Patent Citations (25)

* Cited by examiner, † Cited by third party
Title
"Brockhaus Enzyklopädie", vol. 17, 1992, F.A. BROCKHAUS, MANNHEIM, article ""Polymere"", pages: 336
"Viscosity-molecular weight Relationship for Polydimethylsiloxane", vol. 4, 1966, POLYMER LETTERS, pages: 317 - 322
A. KABALNOV ET AL.: "Micoremulsions in amphiphilic and polymer-surfactant systems", COLLOID AND POLYMER SCIENCE, vol. 274, no. 4, 1996, pages 297 - 308
ABCR Katalog "Silicon Compounds: Silanes & Silicones"
Abhandlung über den Begriff Kammpolymere aus Römpp
Abhandlung über Pfropfcopolymere aus Römpp
Ausdruck der Internetseite aus "Wikipedia" http://de.wikipedia.org/wiki/Blockcopolymere, Einleitung Punkt 4
Auszug aus CTFA Online zum Stichwort "Methoxy PEG-22/Dodecyl Glycol Copolymer=Elfacos E200
Auszug aus Römpp Chemie Lexikon, Online-Version, Stichwort "Cholesterin", Juni 2004
Auszug aus Römpp Chemie Lexikon, Online-Version, Stichwort "Isostearinsäure", November 2003
Auszug aus Römpp Chemie Lexikon, Online-Version, Stichwort "Petrolether" März 2002
B. ELVERS ET AL.: "Ullmann's Encyclpedia of Industrial Chemistry", vol. A24, VHC, WEINHEIM, pages: 83 - 84
B. GRÜNING ET AL.: "Silicone Surfactants", vol. 26, 1989, CARL HANSER VERLAG, MÜNCHEN, pages: 312 - 317
D. SCHAEFER ET AL.: "Silicone Surfactants", 1990, CARL HANSER VERLAG, MÜNCHEN, pages: 154 - 158
Datenbankrecherche betreffend Verbindung mit der CAS-Nummer 88507-00-0
Dow Corning Produktinformation über Polydimethylsiloxan, 1997
J. ROIDL: "Anwendung der Siliconcopolymere und Silicone mit funktionellen Gruppen in der Kosmetik", PARFÜMERIE UND KOSMETIK, vol. 4, no. 86, 1989, pages 232 - 239
M. KAHLWEIT ET AL.: "Über das Phasenverhalten ternärer Systeme des Typs H²o - Öl - Nichtionisches Tensid", vol. 261, 1983, COLLOID AND POLYMER SCIENCE, pages: 954 - 964
P. ALEXANDRIDIS ET AL.: "Amphiphilic Block Copolymers", 2000, ELSEVIER VERLAG, AMSTERDAM, pages: 191 - 252
Polymere aus Römpp Online
Produktinformation der Firma AKZO NOBEL betreffend Elfacos E200
PROF. DR. J. FALBE ET AL.: "Römpp Chemie Lexikon", 1990, GEORG THIEME VERLAG, NEW YORK, pages: 791
W.M. GELBART ET AL.: "Micelles, Membranes, Microemulsions and Monolayers", 1994, SPRINGER-VERLAG, NEW YORK, pages: 430FF
Y. ITO ET AL.: "Critical molecular weight for onset of Non-Newtonian flow and upper Newtonian viscosity of Polydimethylsiloxane", JOURNAL OF POLYMER SCIENCE, vol. 10, 1972, pages 2239 - 2248
Zitat aus Entgegenhaltung D4, Spalte 2, Zeile 16-28, nämlich US3427271

Also Published As

Publication number Publication date
WO2000012660A3 (en) 2000-06-22
US20040054064A1 (en) 2004-03-18
DE59910950D1 (en) 2004-12-02
JP2002525392A (en) 2002-08-13
EP1109883A2 (en) 2001-06-27
US7468349B2 (en) 2008-12-23
WO2000012660A2 (en) 2000-03-09
US6677293B1 (en) 2004-01-13
ATE280821T1 (en) 2004-11-15
JP4703852B2 (en) 2011-06-15
EP1109883B1 (en) 2004-10-27
DE19839054A1 (en) 2000-03-02

Similar Documents

Publication Publication Date Title
EP1109883B2 (en) Method for increasing the efficiency of surfactants with simultaneous suppression of lamellar mesophases and surfactants with an additive added thereto
DE60202700T2 (en) HYDROPHOBICALLY MODIFIED SACCHARIDE TENSIDES
DE69919291T2 (en) In particular for the production of stable liquid emulsions usable new compositions based on alkyl polyglycosides and fatty alcohols
WO1994016668A1 (en) Foaming emulsions
DE2537586A1 (en) LATEX POLYMERS WITH HIGH HLB
DE60111412T2 (en) PROCESS FOR PREPARING AN EMULSION, THE ORGANIC PHASE OF WHICH HAS A HIGH VISCOSITY
EP2253697B9 (en) Method for expanding the temperature range in microemulsions using additives
DE3124675A1 (en) EMULSION CRUSHER AND METHOD FOR BREAKING EMULSIONS
EP0804280B1 (en) Emulsifying agents
DE60310879T2 (en) POLYAPHRON FUEL COMPOSITIONS
DE10323178A1 (en) Mixture comprising a surfactant and a cosurfactant
EP0759737A1 (en) Micro-emulsions
DE19703087A1 (en) PIT cosmetic emulsions
EP0942712A1 (en) Cosmetic preparations
DE19529907A1 (en) Fine-particle emulsions containing sugar surfactants
DE3929071A1 (en) UNIVERSAL LUBRICANTS BASED ON A SYNTHESIS OIL SOLUTION
EP1882003B1 (en) Method for improving efficacy of surfactants prevention of lamellar mesophases temperature stabilization of the single phase region and a method for reducing boundary surface tension in micro-emulsions containing silicone oils by means of additives and surfactant/oil mixtures
EP1824956A1 (en) Method for improving the efficiency of surfactants and emulsifiers by means of additives
EP3551718B1 (en) Aqueous compositions of paraffin inhibitors
DE60101689T3 (en) Thickener for aqueous systems
DE19548345C2 (en) Use of mixtures of special emulsifiers and oil bodies
DE10323180A1 (en) Mixture comprising a surfactant and a cosurfactant
DE3916128A1 (en) AQUEOUS FUNCTIONAL LIQUIDS CONTAINING THICKENING AGENTS ON A POLY (METH) ACRYLATE BASE
DE19545136C1 (en) Syndet soap bars with little or no free fatty acid content
EP0932483B1 (en) Aqueous concrete parting agents

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010131

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FORSCHUNGSZENTRUM JUELICH GMBH

17Q First examination report despatched

Effective date: 20030715

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20041027

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041027

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041027

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59910950

Country of ref document: DE

Date of ref document: 20041202

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050127

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050127

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050207

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050208

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050826

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050831

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN

Effective date: 20050727

Opponent name: BASF AKTIENGESELLSCHAFT

Effective date: 20050726

ET Fr: translation filed
NLR1 Nl: opposition has been filed with the epo

Opponent name: HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN

Opponent name: BASF AKTIENGESELLSCHAFT

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050327

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: HENKEL AG & CO. KGAA

Effective date: 20050727

Opponent name: BASF AKTIENGESELLSCHAFT

Effective date: 20050726

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

R26 Opposition filed (corrected)

Opponent name: HENKEL AG & CO. KGAA

Effective date: 20050727

Opponent name: BASF SE

Effective date: 20050726

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

NLR1 Nl: opposition has been filed with the epo

Opponent name: HENKEL AG & CO. KGAA

Opponent name: BASF SE

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: HENKEL AG & CO. KGAA

Effective date: 20050727

Opponent name: BASF SE

Effective date: 20050726

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: BASF SE

Effective date: 20050726

Opponent name: HENKEL AG & CO. KGAA

Effective date: 20050727

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20140903

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 59910950

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AELC

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 59910950

Country of ref document: DE

Effective date: 20140903

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140703

Year of fee payment: 16

Ref country code: NL

Payment date: 20140821

Year of fee payment: 16

Ref country code: CH

Payment date: 20140821

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20140820

Year of fee payment: 16

Ref country code: GB

Payment date: 20140821

Year of fee payment: 16

Ref country code: FR

Payment date: 20140819

Year of fee payment: 16

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20140820

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59910950

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 280821

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150826

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150826

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160301

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831