EP1109177B1 - Method for switching a load - Google Patents

Method for switching a load Download PDF

Info

Publication number
EP1109177B1
EP1109177B1 EP00127552A EP00127552A EP1109177B1 EP 1109177 B1 EP1109177 B1 EP 1109177B1 EP 00127552 A EP00127552 A EP 00127552A EP 00127552 A EP00127552 A EP 00127552A EP 1109177 B1 EP1109177 B1 EP 1109177B1
Authority
EP
European Patent Office
Prior art keywords
voltage
load
switching
time interval
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00127552A
Other languages
German (de)
French (fr)
Other versions
EP1109177A3 (en
EP1109177A2 (en
Inventor
Michael Abert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2000113928 external-priority patent/DE10013928C2/en
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1109177A2 publication Critical patent/EP1109177A2/en
Publication of EP1109177A3 publication Critical patent/EP1109177A3/en
Application granted granted Critical
Publication of EP1109177B1 publication Critical patent/EP1109177B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H2047/008Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current with a drop in current upon closure of armature or change of inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/02Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay
    • H01H47/04Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current
    • H01H2047/046Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current with measuring of the magnetic field, e.g. of the magnetic flux, for the control of coil current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits

Definitions

  • the invention relates to a method for switching a load, to which a switching voltage can be supplied.
  • the invention relates to a circuit arrangement for performing the method.
  • a method and a device for protecting an AC circuit are known from the closest prior art DE 41 32 208 C1. Measures are provided which enable an inductive load to be switched on without the occurrence of undesirably high inrush currents.
  • EP 0 618 667 B1 discloses a method for controlling the alternating current in a load circuit and a device for carrying out the method.
  • a test program determines the type of the connected load, so that controllable semiconductors can be operated in the phase control with inductive load and in the phase control with capacitive and / or ohmic load.
  • a drive system for a solenoid valve is known from US Pat. No. 5,938,172.
  • the drive system can be used to generate two types of high voltages with simple means.
  • the present invention is therefore based on the object of specifying a method of the type mentioned which, regardless of the type of load to be switched, be it an ohmic load, a lamp load, a capacitive load, a inductive load with or without moving parts, this load can be switched.
  • the object is achieved by a method according to claim 1.
  • a circuit arrangement is to be specified in claim 4, which is suitable for performing the method.
  • An embodiment of the invention according to the measures specified in claim 2 causes a lower energy requirement when the inductive load is switched with movable parts and also speeds up shutdown processes.
  • the invention can be used in particular in digital output units for programmable logic controllers.
  • Essential components of the circuit arrangement according to FIG. 1 are a sensor unit 1, which is provided to detect the change in a load current 11, a controllable switch 3 in the form of a MOSFET switch and a voltage generating unit 4.
  • a DC supply voltage 5 can be supplied to the voltage generating unit 4 , from which the voltage generation unit 4 generates 6 switching voltages depending on a control signal 6 generated by the sensor unit 1 and supplied to the voltage generation unit 4.
  • two switching voltages are provided, a maximum voltage of 48 VDC and a holding voltage of 16 VDC, which are generated from a supply voltage of 24 VDC.
  • a control signal 9 can be fed to the controllable switch 3 via a control output 7 of a programmable logic controller and via potential-isolating means 8, an activated control signal 9 closing the switch 3. This has the effect that a switching voltage 10 is supplied to the load 2 and the load current 11 through the load 2 via a ground connection M flows off. Further components of the circuit arrangement such as storage choke 12, quenching element 13 and overvoltage protection device 14 are of no importance for the invention and therefore do not need to be explained in more detail.
  • FIG. 2 In which current and voltage profiles are shown.
  • the load 2 (FIG. 1) is supplied with an abrupt maximum voltage Um, which, for. B. corresponds to twice the nominal load voltage Un.
  • This maximum voltage Um causes a rapid increase in a load current I.
  • the sensor unit 1 detects a current shoulder Ss in the load current profile, which, for. B. is caused by the movement of an anchor and the flow change caused thereby.
  • the sensor unit 1 then activates the control signal 6, as a result of which the voltage generating unit 4 at the time T1 suddenly reduces the switching voltage from the maximum voltage Um to a holding voltage Uh, which in a practical exemplary embodiment of the invention is two thirds of the nominal load voltage Un.
  • the inductive load 2 Due to the increased switching voltage Um between times T0 and T1 and the reduced switching voltage Uh from time T1, on the one hand, the inductive load 2 is switched quickly and, on the other hand, the energy requirement during switched load 2 is reduced, with a holding current from time T2 in the steady state Ih flows through the load 2.
  • the time interval is selected in accordance with the technical specifications in the data sheets of the inductive load to be switched so that it is ensured that the current shoulder Ss occurs within this predetermined time interval. In this case the circuit arrangement according to FIG.
  • FIG. 3a shows a switching voltage in the form of a DC voltage, the maximum voltage Um being twice the nominal load voltage Un and the holding voltage Uh being two thirds of this nominal load voltage Un.
  • Such a DC voltage with variable amplitude is generated by the voltage generating unit 4 (FIG. 1), which varies the switching voltage as a function of the control signal 6.
  • FIG. 3b shows a clocked version, with the DC component of the holding voltage of two thirds of the nominal load voltage being achieved from an instant T3 by an AC voltage with a corresponding amplitude and clock rate.
  • Such a pulsating DC voltage with constant amplitude and variable pulse-pause ratio can advantageously be used as a switching voltage in a circuit arrangement shown in FIG. 4 for switching several inductive loads with movable parts.
  • the control of only one output channel is shown in FIG.
  • the same parts in Figures 4 and 1 are provided with the same reference numerals.
  • a voltage generating unit 4 ' connects the maximum voltage Um (FIG. 3b) to the inductive load 2 via the controllable switch 3 and a sensor unit 1'.
  • the sensor unit 1 In the event that the sensor unit 1 'detects a current shoulder and / or a predeterminable time interval has elapsed, the sensor unit 1 'connects an AND logic element 16 to a pulse-pause signal 6', as a result of which the controllable switch 3 switches the maximum voltage Um in accordance with the pulse-pause ratio (duty cycle) of this pulse-pause signal switches on or off.
  • This switching on or off of the maximum voltage Um in accordance with the duty cycle that can be predetermined by the sensor unit generates a constant component from time T3 (FIG. 3b), which corresponds to the holding voltage Uh (FIG. 3a).
  • FIG. 5 A circuit arrangement for switching a load, regardless of the type of load to be switched, be it an ohmic load, a capacitive load, an inductive load with or without movable parts, is shown in simplified form in FIG.
  • the circuit arrangement according to FIG. 5 has a time generator 15, which is provided for specifying evaluation time intervals.
  • a first evaluation time interval is provided to recognize whether the load to be switched is an inductive or another load, e.g. B. is an ohmic, capacitive or lamp load.
  • a second time interval is provided, in which it can be detected whether the inductive load is an inductive load with or without moving parts.
  • the respective start and end of the time intervals are indicated by the time generator 15 of the voltage generating unit 4, which in this time intervals supplies the switching 2 with the corresponding switching voltages as a function of the control signal 6 via the switch 3, as will be shown below.
  • FIG. 6 For a more detailed illustration of the function and mode of operation of the circuit arrangement shown in FIG. 5, reference is made to FIG. 6, in which current and voltage profiles are shown, with voltage and current profiles of an ohmic, a capacitive and a lamp load being shown in FIG. 6a between a switch-on point in time t1 and a switch-off point in time t4, a voltage and current curve of an inductive load without movable parts between these points in time are shown in FIG. 6b and a voltage and current curve of an inductive load with movable parts between these points in time in FIG. 6c.
  • a first switching voltage Un which essentially corresponds to the nominal voltage of the load 2 to be switched, is suddenly switched to the load 2 to be switched .
  • the sensor unit 1 detects the load current I and supplies the voltage generating unit 4 with a control signal 6 corresponding to this load current I.
  • the voltage generating unit 4 switches the Load 2 continues to the first switching voltage Un until the switch-off time t4.
  • the voltage generating unit 4 first increases the switching voltage to a maximum switching voltage Um in a sudden or clocked manner, as a result of which the inductive load is switched quickly is effected.
  • the sensor unit 1 In order to recognize whether the inductive load is an inductive load with movable parts or an inductive load without movable parts, it is necessary that the sensor unit 1 during a predefinable second time interval following the first time interval between the time t2 and a third time t3 continues to record the load current.
  • the voltage generating unit 4 reduces the switching voltage in a step-wise or clocked manner to a holding voltage from the third time t3 to the switch-off time t4 Uh, which is less than the nominal load voltage Un, which reduces the energy consumption.

Abstract

The method involves switching a switching voltage suddenly to a first predetermined voltage corresponding to the rated load voltage, detecting the load current in a first time interval, holding the voltage constant until a switch-off time if the load current falls or remains the same during the time interval, and performing sudden or timed reduction of the switching voltage to a maximum value if the load current increases during the time interval. Independent claims are also included for the following: a circuit for implementing the method and a digital output unit for a speech programmable controller.

Description

Die Erfindung betrifft ein Verfahren zum Schalten einer Last, welcher eine Schaltspannung zuführbar ist.
Darüber hinaus betrifft die Erfindung eine Schaltungsanordnung zur Durchführung des Verfahrens.
The invention relates to a method for switching a load, to which a switching voltage can be supplied.
In addition, the invention relates to a circuit arrangement for performing the method.

Aus dem nächstliegenden Stand der Technik DE 41 32 208 C1 ist ein Verfahren und eine Vorrichtung zum Absichern eines Wechselstromkreises bekannt. Es sind Maßnahmen vorgesehen, die ein Einschalten einer induktivitätsbehafteten Last ohne Auftreten von unerwünscht hohen Einschaltströmen ermöglichen.A method and a device for protecting an AC circuit are known from the closest prior art DE 41 32 208 C1. Measures are provided which enable an inductive load to be switched on without the occurrence of undesirably high inrush currents.

EP 0 618 667 B1 offenbart ein Verfahren zur Steuerung des Wechselstromes in einem Lastkreis und eine Vorrichtung zur Durchführung des Verfahrens. Ein Testprogramm ermittelt die Art der angeschlossenen Last, so dass steuerbare Halbleiter bei induktiver Last im Phasenanschnitt und bei kapazitiver und/oder ohmscher Last im Phasenabschnitt betrieben werden können.EP 0 618 667 B1 discloses a method for controlling the alternating current in a load circuit and a device for carrying out the method. A test program determines the type of the connected load, so that controllable semiconductors can be operated in the phase control with inductive load and in the phase control with capacitive and / or ohmic load.

DE 38 17 770 A1 beschreibt eine Einrichtung zur getakteten Ansteuerung eines elektromagnetischen Ventils. Es sind Maßnahmen vorgesehen, die einen effektiven Betrieb des elektromagnetischen Ventils ermöglichen.DE 38 17 770 A1 describes a device for the clocked activation of an electromagnetic valve. Measures are provided which enable the electromagnetic valve to operate effectively.

Aus der US 5,938,172 ist ein Antriebssystem für ein Solenoidventil bekannt. Durch das Antriebssystem sind zwei Arten von Hochspannungen mit einfachen Mitteln erzeugbar.A drive system for a solenoid valve is known from US Pat. No. 5,938,172. The drive system can be used to generate two types of high voltages with simple means.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art anzugeben, das unabhängig von der Art der zu schaltenden Last, sei es eine ohmsche Last, eine Lampenlast, eine kapazitive Last, eine induktive Last mit oder ohne bewegbare Teile, ein Schalten dieser Last ermöglicht. Erfindungsgemäß wird die gestellte Aufgabe durch ein Verfahren gemäß Anspruch 1 gelöst. Darüber hinaus ist in Anspruch 4 eine Schaltungsanordnung anzugeben, welche zur Durchführung des Verfahrens geeignet ist.The present invention is therefore based on the object of specifying a method of the type mentioned which, regardless of the type of load to be switched, be it an ohmic load, a lamp load, a capacitive load, a inductive load with or without moving parts, this load can be switched. According to the invention, the object is achieved by a method according to claim 1. In addition, a circuit arrangement is to be specified in claim 4, which is suitable for performing the method.

Eine Ausgestaltung der Erfindung gemäß den im Anspruch 2 angegebenen Maßnahmen bewirkt einen geringeren Energiebedarf bei geschalteter induktiver Last mit bewegbaren Teilen und beschleunigt darüber hinaus Abschaltvorgänge. Die Erfindung ist insbesondere in Digitalausgabeeinheiten für speicherprogrammierbare Steuerungen einsetzbar.An embodiment of the invention according to the measures specified in claim 2 causes a lower energy requirement when the inductive load is switched with movable parts and also speeds up shutdown processes. The invention can be used in particular in digital output units for programmable logic controllers.

Anhand der Zeichnung, in der ein Ausführungsbeispiel der Erfindung veranschaulicht ist, werden im Folgenden die Erfindung, deren Ausgestaltungen sowie Vorteile näher erläutert.The invention, its configurations and advantages are explained in more detail below with reference to the drawing, in which an exemplary embodiment of the invention is illustrated.

Es zeigen

Figur 1
eine Schaltungsanordnung zum Schalten einer induktiven Last mit bewegbaren Teilen,
Figur 2
eine Darstellung von Strom- und Spannungsverläufen,
Figur 3
eine Darstellung von Schaltspannungen,
Figur 4
eine Schaltungsanordnung zum Schalten mehrerer induktiver Lasten,
Figur 5
eine Schaltungsanordnung zum Schalten einer Last und
Figur 6
eine weitere Darstellung von Strom- und Spannungsverläufen.
Show it
Figure 1
a circuit arrangement for switching an inductive load with movable parts,
Figure 2
a representation of current and voltage profiles,
Figure 3
a representation of switching voltages,
Figure 4
a circuit arrangement for switching several inductive loads,
Figure 5
a circuit arrangement for switching a load and
Figure 6
another representation of current and voltage profiles.

Wesentliche Bestandteile der Schaltungsanordnung nach Figur 1 sind eine Sensoreinheit 1, die zur Erkennung der Änderung eines Laststromes 11 vorgesehen ist, ein steuerbarer Schalter 3 in Form eines MOSFET-Schalters und eine Spannungserzeugungs-Einheit 4. Der Spannungserzeugungs-Einheit 4 ist eine Versorgungsgleichspannung 5 zuführbar, aus welcher die Spannungserzeugungs-Einheit 4 in Abhängigkeit eines von der Sensoreinheit 1 erzeugten und der Spannungserzeugungs-Einheit 4 zugeführten Steuersignals 6 Schaltspannungen erzeugt. In einem praktischen Ausführungsbeispiel der Erfindung sind zwei Schaltspannungen vorgesehen, eine Maximalspannung von 48 VDC und eine Haltespannung von 16 VDC, die aus einer Versorgungsspannung von 24 VDC erzeugt werden.
Dem steuerbaren Schalter 3 ist über einen Steuerausgang 7 einer speicherprogrammierbaren Steuerung und über Potential trennende Mittel 8 ein Steuersignal 9 zuführbar, wobei ein aktiviertes Steuersignal 9 den Schalter 3 schließt. Dies bewirkt, dass eine Schaltspannung 10 der Last 2 zugeführt wird und der Laststrom 11 durch die Last 2 über einen Masseanschluss M abfließt. Weitere Bestandteile der Schaltungsanordnung wie Speicherdrossel 12, Löschglied 13 und Überspannungsschutzeinrichtung 14 sind für die Erfindung ohne Bedeutung und brauchen daher nicht näher erläutert zu werden.
Essential components of the circuit arrangement according to FIG. 1 are a sensor unit 1, which is provided to detect the change in a load current 11, a controllable switch 3 in the form of a MOSFET switch and a voltage generating unit 4. A DC supply voltage 5 can be supplied to the voltage generating unit 4 , from which the voltage generation unit 4 generates 6 switching voltages depending on a control signal 6 generated by the sensor unit 1 and supplied to the voltage generation unit 4. In a practical exemplary embodiment of the invention, two switching voltages are provided, a maximum voltage of 48 VDC and a holding voltage of 16 VDC, which are generated from a supply voltage of 24 VDC.
A control signal 9 can be fed to the controllable switch 3 via a control output 7 of a programmable logic controller and via potential-isolating means 8, an activated control signal 9 closing the switch 3. This has the effect that a switching voltage 10 is supplied to the load 2 and the load current 11 through the load 2 via a ground connection M flows off. Further components of the circuit arrangement such as storage choke 12, quenching element 13 and overvoltage protection device 14 are of no importance for the invention and therefore do not need to be explained in more detail.

Zur Verdeutlichung der Erfindung wird auf Figur 2 verwiesen, in welcher Strom- und Spannungsverläufe dargestellt sind.To illustrate the invention, reference is made to FIG. 2, in which current and voltage profiles are shown.

Zu einem Zeitpunkt T0 wird der Last 2 (Figur 1) eine sprungförmige Maximalspannung Um zugeführt, die z. B. der zweifachen Last-Nennspannung Un entspricht. Diese Maximalspannung Um bewirkt einen raschen Anstieg eines Laststromes I. Während eines Zeitintervalls zwischen dem Zeitpunkt T0 und einem Zeitpunkt T1 erkennt die Sensoreinheit 1 eine Stromschulter Ss im Laststromverlauf, die z. B. durch die Bewegung eines Ankers und die dadurch bewirkte Flussänderung verursacht wird. Die Sensoreinheit 1 aktiviert daraufhin das Steuersignal 6, wodurch die Spannungserzeugungs-Einheit 4 zum Zeitpunkt T1 die Schaltspannung von der Maximalspannung Um sprungförmig auf eine Haltespannung Uh reduziert, die in einem praktischen Ausführungsbeispiel der Erfindung zwei Drittel der Last-Nennspannung Un beträgt. Durch die erhöhte Schaltspannung Um zwischen den Zeitpunkten T0 und T1 und die reduzierte Schaltspannung Uh ab dem Zeitpunkt T1 wird einerseits ein schnelles Schalten der induktiven Last 2 bewirkt und andererseits der Energiebedarf während geschalteter Last 2 verringert, wobei ab einem Zeitpunkt T2 im eingeschwungenen Zustand ein Haltestrom Ih durch die Last 2 fließt.
Anstatt die Schaltspannung nach dem Erfassen der Stromschulter Ss auf die Haltespannung Uh zu reduzieren, kann man auch in der Art und Weise vorgehen, die Schaltspannung nach Ablauf eines vorgebbaren Zeitintervalls zu reduzieren. Das Zeitintervall wird entsprechend den technischen Angaben in den Datenblättern der zu schaltenden induktiven Last so gewählt, dass sichergestellt ist, dass die Stromschulter Ss innerhalb dieses vorgegebenen Zeitintervalls auftritt. Die Schaltungsanordnung nach Figur 1 ist in diesem Fall dahingehend zu modifizieren, dass anstatt der Sensoreinheit 1 eine Zeitintervall-Überwachungseinheit vorzusehen ist. Es kann vorkommen, dass z. B. ein Anker in einer Spule nicht bewegt werden kann, da die Bewegung aufgrund einer Störung blockiert ist. In diesem Fall tritt keine Stromschulter auf und um zu verhindern, dass die Maximalspannung konstant an der Spule anliegt und die Spule dadurch beschädigt wird, ist es vorteilhaft, nach Ablauf eines vorgebbaren Zeitintervalls die Maximalspannung auf die Haltespannung zu reduzieren.
At a time T0, the load 2 (FIG. 1) is supplied with an abrupt maximum voltage Um, which, for. B. corresponds to twice the nominal load voltage Un. This maximum voltage Um causes a rapid increase in a load current I. During a time interval between the time T0 and a time T1, the sensor unit 1 detects a current shoulder Ss in the load current profile, which, for. B. is caused by the movement of an anchor and the flow change caused thereby. The sensor unit 1 then activates the control signal 6, as a result of which the voltage generating unit 4 at the time T1 suddenly reduces the switching voltage from the maximum voltage Um to a holding voltage Uh, which in a practical exemplary embodiment of the invention is two thirds of the nominal load voltage Un. Due to the increased switching voltage Um between times T0 and T1 and the reduced switching voltage Uh from time T1, on the one hand, the inductive load 2 is switched quickly and, on the other hand, the energy requirement during switched load 2 is reduced, with a holding current from time T2 in the steady state Ih flows through the load 2.
Instead of reducing the switching voltage after the detection of the current shoulder Ss to the holding voltage Uh, one can also proceed in the manner of reducing the switching voltage after a predefinable time interval has elapsed. The time interval is selected in accordance with the technical specifications in the data sheets of the inductive load to be switched so that it is ensured that the current shoulder Ss occurs within this predetermined time interval. In this case the circuit arrangement according to FIG. 1 is closed modify that a time interval monitoring unit is to be provided instead of the sensor unit 1. It can happen that e.g. B. an armature in a coil cannot be moved because the movement is blocked due to a disturbance. In this case there is no current shoulder and in order to prevent the maximum voltage from being constantly applied to the coil and thereby damaging the coil, it is advantageous to reduce the maximum voltage to the holding voltage after a predefinable time interval.

Im Folgenden wird Bezug auf Figur 3 genommen, in der Schaltspannungen dargestellt sind. Dabei zeigt Figur 3a eine Schaltspannung in Form einer Gleichspannung, wobei die Maximalspannung Um der doppelten Last-Nennspannung Un und die Haltespannung Uh zwei Drittel dieser Last-Nennspannung Un beträgt. Eine derartige Gleichspannung mit variabler Amplitude erzeugt die Spannungserzeugungs-Einheit 4 (Figur 1), die in Abhängigkeit des Steuersignals 6 die Schaltspannung variiert.In the following, reference is made to FIG. 3, in which switching voltages are shown. 3a shows a switching voltage in the form of a DC voltage, the maximum voltage Um being twice the nominal load voltage Un and the holding voltage Uh being two thirds of this nominal load voltage Un. Such a DC voltage with variable amplitude is generated by the voltage generating unit 4 (FIG. 1), which varies the switching voltage as a function of the control signal 6.

Figur 3b zeigt eine getaktete Ausführung, wobei ab einem Zeitpunkt T3 der Gleichanteil der Haltespannung von zwei Drittel der Last-Nennspannung durch eine Wechselspannung mit entsprechender Amplitude und Taktrate erzielt wird.FIG. 3b shows a clocked version, with the DC component of the holding voltage of two thirds of the nominal load voltage being achieved from an instant T3 by an AC voltage with a corresponding amplitude and clock rate.

Eine derartige pulsierende Gleichspannung mit konstanter Amplitude und variablem Puls-Pausen-Verhältnis (Tastverhältnis) ist vorteilhaft als Schaltspannung in einer in Figur 4 dargestellten Schaltungsanordnung zum Schalten mehrerer induktiver Lasten mit bewegbaren Teilen einsetzbar. Der Einfachheit halber ist in Figur 4 die Ansteuerung lediglich eines Ausgangskanals gezeigt. Die in den Figuren 4 und 1 gleichen Teile sind mit gleichen Bezugszeichen versehen.
Eine Spannungserzeugungs-Einheit 4' schaltet über den steuerbaren Schalter 3 und eine Sensoreinheit 1' der induktiven Last 2 die Maximalspannung Um (Figur 3b) zu. Für den Fall, dass die Sensoreinheit 1' eine Stromschulter erkennt und/oder ein vorgebbares Zeitintervall abgelaufen ist, schaltet die Sensoreinheit 1' einem UND-Verknüpfungsglied 16 ein Puls-Pausen-Signal 6' zu, wodurch der steuerbare Schalter 3 die Maximalspannung Um entsprechend dem Puls-Pausen-Verhältnis (Tastverhältnis) dieses Puls-Pausen-Signals zu- oder abschaltet. Dieses Zu- oder Abschalten der Maximalspannung Um gemäß dem durch die Sensoreinheit vorgebbaren Tastverhältnis erzeugt einen Gleichanteil ab dem Zeitpunkt T3 (Figur 3b), welcher der Haltespannung Uh (Figur 3a) entspricht.
Such a pulsating DC voltage with constant amplitude and variable pulse-pause ratio (duty cycle) can advantageously be used as a switching voltage in a circuit arrangement shown in FIG. 4 for switching several inductive loads with movable parts. For the sake of simplicity, the control of only one output channel is shown in FIG. The same parts in Figures 4 and 1 are provided with the same reference numerals.
A voltage generating unit 4 'connects the maximum voltage Um (FIG. 3b) to the inductive load 2 via the controllable switch 3 and a sensor unit 1'. In the event that the sensor unit 1 'detects a current shoulder and / or a predeterminable time interval has elapsed, the sensor unit 1 'connects an AND logic element 16 to a pulse-pause signal 6', as a result of which the controllable switch 3 switches the maximum voltage Um in accordance with the pulse-pause ratio (duty cycle) of this pulse-pause signal switches on or off. This switching on or off of the maximum voltage Um in accordance with the duty cycle that can be predetermined by the sensor unit generates a constant component from time T3 (FIG. 3b), which corresponds to the holding voltage Uh (FIG. 3a).

Eine Schaltungsanordnung zum Schalten einer Last, unabhängig von der Art der zu schaltenden Last, sei es eine ohmsche Last, eine kapazitive Last, eine induktive Last mit oder ohne bewegbare Teile, ist in Figur 5 vereinfacht dargestellt. Die in den Figuren 1 und 5 gleichen Teile sind mit gleichen Bezugszeichen versehen. Im Unterschied zur Schaltungsanordnung nach Figur 1 weist die Schaltungsanordnung gemäß Figur 5 einen Zeitgenerator 15 auf, der zur Vorgabe von Auswerte-Zeitintervallen vorgesehen ist. Ein erstes Auswerte-Zeitintervall ist dazu vorgesehen um zu erkennen, ob die zu schaltende Last eine induktive oder eine andere Last, z. B. eine ohmsche, kapazitive oder Lampenlast, ist. Falls eine induktive Last detektiert wird, ist ein zweites Zeitintervall vorgesehen, in welchem detektierbar ist, ob die induktive Last eine induktive Last mit oder ohne bewegbare Teile ist. Der jeweilige Beginn und das jeweilige Ende der Zeitintervalle zeigt der Zeitgenerator 15 der Spannungserzeugungs-Einheit 4 an, die in diesen Zeitintervallen in Abhängigkeit des Steuersignals 6 der Last 2 über den Schalter 3, wie im Folgenden gezeigt wird, entsprechende Schaltspannungen zuführt.A circuit arrangement for switching a load, regardless of the type of load to be switched, be it an ohmic load, a capacitive load, an inductive load with or without movable parts, is shown in simplified form in FIG. The same parts in Figures 1 and 5 are provided with the same reference numerals. In contrast to the circuit arrangement according to FIG. 1, the circuit arrangement according to FIG. 5 has a time generator 15, which is provided for specifying evaluation time intervals. A first evaluation time interval is provided to recognize whether the load to be switched is an inductive or another load, e.g. B. is an ohmic, capacitive or lamp load. If an inductive load is detected, a second time interval is provided, in which it can be detected whether the inductive load is an inductive load with or without moving parts. The respective start and end of the time intervals are indicated by the time generator 15 of the voltage generating unit 4, which in this time intervals supplies the switching 2 with the corresponding switching voltages as a function of the control signal 6 via the switch 3, as will be shown below.

Zur naheren Verdeutlichung der Funktions- und Wirkungsweise der in Figur 5 dargestellten Schaltungsanordnung wird auf Figur 6 verwiesen, in welcher Strom- und Spannungsverlaufe dargestellt sind, wobei in Figur 6a Spannungs- und Stromverlaufe einer ohmschen, einer kapazitiven und einer Lampenlast zwischen einem Einschaltzeitpunkt t1 und einem Abschaltzeitpunkt t4, in Figur 6b ein Spannungs- und Stromverlauf einer induktiven Last ohne bewegbare Teile zwischen diesen Zeitpunkten und in Figur 6c ein Spannungs- und Stromverlauf einer induktiven Last mit bewegbaren Teilen zwischen diesen Zeitpunkten dargestellt sind.For a more detailed illustration of the function and mode of operation of the circuit arrangement shown in FIG. 5, reference is made to FIG. 6, in which current and voltage profiles are shown, with voltage and current profiles of an ohmic, a capacitive and a lamp load being shown in FIG. 6a between a switch-on point in time t1 and a switch-off point in time t4, a voltage and current curve of an inductive load without movable parts between these points in time are shown in FIG. 6b and a voltage and current curve of an inductive load with movable parts between these points in time in FIG. 6c.

Es ist angenommen, dass zu dem Zeitpunkt t1 während der Dauer eines ersten Auswerte-Zeitintervalls zwischen dem Zeitpunkt T1 und einem Zeitpunkt T2 eine erste Schaltspannung Un, die im Wesentlichen der Nennspannung der zu schaltenden Last 2 entspricht, der zu schaltenden Last 2 sprungförmig aufgeschaltet wird. Die Sensoreinheit 1 erfasst, wie beschrieben, den Laststrom I und führt der Spannungserzeugungs-Einheit 4 ein diesem Laststrom I entsprechendes Steuersignal 6 zu. Für den Fall, dass die Sensoreinheit 1 während diesem ersten Zeitintervall einen Stromabfall oder keine Veränderung des Stroms detektiert (Figur 6a), was darauf hinweist, dass die Last 2 eine ohmsche, eine kapazitive oder eine Lampenlast ist, schaltet die Spannungserzeugungs-Einheit 4 der Last 2 bis zum Abschaltzeitpunkt t4 weiterhin die erste Schaltspannung Un auf.It is assumed that at time t1, during the duration of a first evaluation time interval between time T1 and time T2, a first switching voltage Un, which essentially corresponds to the nominal voltage of the load 2 to be switched, is suddenly switched to the load 2 to be switched , As described, the sensor unit 1 detects the load current I and supplies the voltage generating unit 4 with a control signal 6 corresponding to this load current I. In the event that the sensor unit 1 detects a current drop or no change in the current during this first time interval (FIG. 6a), which indicates that the load 2 is an ohmic, a capacitive or a lamp load, the voltage generating unit 4 switches the Load 2 continues to the first switching voltage Un until the switch-off time t4.

Für den Fall, dass die Sensoreinheit 1 einen Stromanstieg detektiert (Figur 6b, 6c), was auf eine induktive Last hinweist, erhöht zunächst die Spannungserzeugungs-Einheit 4 sprungförmig oder getaktet die Schaltspannung auf eine maximale Schaltspannung Um, wodurch ein schnelles Schalten der induktiven Last bewirkt wird. Um zu erkennen, ob die induktive Last eine induktive Last mit bewegbaren Teilen oder eine induktive Last ohne bewegbare Teile ist, ist es erforderlich, dass während eines vorgebbaren, dem ersten Zeitintervall folgenden zweiten Zeitintervalls zwischen dem Zeitpunkt t2 und einem dritten Zeitpunkt t3 die Sensoreinheit 1 weiterhin den Laststrom erfasst. Für den Fall, dass während diesem zweiten Zeitintervall zwischen dem Zeitpunkt t2 und dem Zeitpunkt t3 keine Laststromschulter erfasst wird, was darauf hinweist, dass die Last 2 eine induktive Last ohne bewegbare Teile ist (Figur 6b), reduziert aufgrund des durch die Sensoreinheit 1 erzeugten Steuersignals 6 die Spannungserzeugungs-Einheit 4 ab dem Zeitpunkt t3 bis zum Abschaltzeitpunkt t4 sprungförmig oder getaktet die Schaltspannung auf die erste Schaltspannung Un.
Für den Fall dagegen, dass die Sensoreinheit 1 eine Laststromschulter detektiert (Figur 6c), was auf eine induktive Last mit bewegten Teilen hinweist, reduziert die Spannungserzeugungs-Einheit 4 von dem dritten Zeitpunkt t3 bis zum Abschaltzeitpunkt t4 die Schaltspannung sprungförmig oder getaktet auf eine Haltespannung Uh, die geringer ist als die Last-Nennspannung Un, wodurch der Energieverbrauch vermindert wird.
In the event that the sensor unit 1 detects a current rise (FIGS. 6b, 6c), which indicates an inductive load, the voltage generating unit 4 first increases the switching voltage to a maximum switching voltage Um in a sudden or clocked manner, as a result of which the inductive load is switched quickly is effected. In order to recognize whether the inductive load is an inductive load with movable parts or an inductive load without movable parts, it is necessary that the sensor unit 1 during a predefinable second time interval following the first time interval between the time t2 and a third time t3 continues to record the load current. In the event that no load current shoulder is detected during this second time interval between the time t2 and the time t3, which is indicated indicates that the load 2 is an inductive load without moving parts (Figure 6b), due to the control signal 6 generated by the sensor unit 1, the voltage generating unit 4 from step t3 to the switch-off time t4 reduces the switching voltage to the first switching voltage in a sudden or clocked manner U.N.
In contrast, in the event that the sensor unit 1 detects a load current shoulder (FIG. 6c), which indicates an inductive load with moving parts, the voltage generating unit 4 reduces the switching voltage in a step-wise or clocked manner to a holding voltage from the third time t3 to the switch-off time t4 Uh, which is less than the nominal load voltage Un, which reduces the energy consumption.

Claims (6)

  1. Method of switching a load (2) to which a switching voltage (U, Un, Um, Uh) can be fed, characterized by the following method steps:
    a) step-like application of the switching voltage to a first predeterminable voltage that is substantially equal to the rated voltage (Un) of the load (2) to be switched,
    b) determination of the load current (I) during a first predeterminable time interval between a first time instant (t1) and a second time instant (t2),
    c) keeping the first predeterminable voltage (Un) constant up to the switching-off of the switching voltage at a first switch-off time instant (t4) if the load current (I) drops in the first time interval or remains the same,
    d) step-like or clocked increase of the switching voltage to a maximum switching voltage (Um) if the load current rises in the first time interval, in which case, if a load current shoulder (Ss) is registered during a predeterminable second time interval following the first time interval between the second time instant (t2) and a third time instant (t3) the switching voltage is reduced step-like or clocked to a holding voltage (Uh) from the third time instant (t3) up to the switch-off time instant (t4) and if no load current shoulder (Ss) is registered during the second time interval, the switching voltage is reduced step-like or clocked to the first switching voltage (Un) from the third time instant (t3) up to the switch-off time instant (t4).
  2. Method according to Claim 1, characterized in that the holding voltage (Uh) is less than the load rated voltage (Un).
  3. Method according to Claim 1, characterized in that the switching voltage is a direct voltage having variable amplitude or a pulsating direct voltage having constant amplitude and variable mark-space ratio (duty cycle).
  4. Circuit arrangement for performing the method according to any one of Claims 1 to 3, wherein
    - means (1) are provided for registering the load current shoulder (Ss) and means are provided for setting a time interval,
    - wherein said means (1) are connected in series with the load (2) and a controllable switch (3),
    characterized
    in that said means (1) are connected to voltage-generating means (4) that generate a switching voltage (Un, Um, Uh) that can be fed via the controllable switch (3) to the load (2), wherein a time generator (15) is provided that predetermines for the voltage-generating means (4) how long the respective switching voltages (Un, Um, Uh) are to be fed to the load (2).
  5. Digital output unit for a memory-programmable control system with a circuit arrangement according to Claim 4, wherein a control signal (6) can be fed to the controllable switch (3) by a CPU of the memory-programmable control system.
  6. Digital output unit according to Claim 5, having a plurality of output channels, wherein there can be connected to every channel
    - a load (2) via a controllable switch (3) and
    - means (1) for registering the load current shoulder (Ss)
EP00127552A 1999-12-16 2000-12-15 Method for switching a load Expired - Lifetime EP1109177B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19961029 1999-12-16
DE19961029 1999-12-16
DE2000113928 DE10013928C2 (en) 2000-03-21 2000-03-21 Procedure for switching a load
DE10013928 2000-03-21

Publications (3)

Publication Number Publication Date
EP1109177A2 EP1109177A2 (en) 2001-06-20
EP1109177A3 EP1109177A3 (en) 2002-04-17
EP1109177B1 true EP1109177B1 (en) 2004-04-28

Family

ID=26004935

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00127552A Expired - Lifetime EP1109177B1 (en) 1999-12-16 2000-12-15 Method for switching a load

Country Status (4)

Country Link
EP (1) EP1109177B1 (en)
AT (1) ATE265738T1 (en)
DE (1) DE50006237D1 (en)
ES (1) ES2219253T3 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9013854B2 (en) 2001-02-14 2015-04-21 Xio, Inc. Configurable solenoid actuation method and apparatus
EP2633539B1 (en) * 2010-10-25 2017-06-14 Xio, Inc. Configurable solenoid actuation method and apparatus
EP3072138A4 (en) * 2013-11-20 2017-06-21 Eaton Corporation Solenoid and associated control method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3817770A1 (en) * 1988-05-26 1989-11-30 Daimler Benz Ag Device for the timed operation of an electromagnetic valve
JP3616223B2 (en) * 1996-12-27 2005-02-02 株式会社ボッシュオートモーティブシステム Solenoid valve drive
DE19719602A1 (en) * 1997-05-09 1998-11-12 Fahrzeugklimaregelung Gmbh Electronic control circuit
DE19734895C2 (en) * 1997-08-12 2002-11-28 Siemens Ag Device and method for controlling at least one capacitive actuator
DE19821561A1 (en) * 1998-05-14 1999-11-18 Bosch Gmbh Robert Solenoid valve drive method and apparatus for motor vehicle fuel measurement in internal combustion engine

Also Published As

Publication number Publication date
ATE265738T1 (en) 2004-05-15
ES2219253T3 (en) 2004-12-01
EP1109177A3 (en) 2002-04-17
DE50006237D1 (en) 2004-06-03
EP1109177A2 (en) 2001-06-20

Similar Documents

Publication Publication Date Title
EP1602169A2 (en) Control circuit for a switched mode power supply unit
EP3381043B1 (en) Switching apparatus and method for actuating a switching device
EP3414778B1 (en) Protective circuit for a photovoltaic (pv) module, method for operating the protective circuit, and photovoltaic (pv) system having such a protective circuit
DE102007050844A1 (en) Booster power circuit
DE102014117340A1 (en) Efficient PFM switching control for non-inverting buck-boost converters
WO2009043412A1 (en) Apparatus and method for supplying power to a voltage- or current-releasing switching device
EP2512207B1 (en) Driver circuit and method for powering an LED and illuminant
EP2775502B1 (en) Switching device for switching a capacitor
DE112004002917B4 (en) Circuit arrangement for driving a contactor and its use in a DC link converter
DE19522582C2 (en) Circuit arrangement for operating an electromagnet
EP2696362A2 (en) Control device for a switching device with separate retraction and holding coil
EP1109177B1 (en) Method for switching a load
EP2133996B1 (en) Switch for controlling an electrical load
WO2005008877A1 (en) Monitoring circuit for an electric motor and method for monitoring an electric motor
EP1109178A2 (en) Method for switching an inductive load
EP2284638A2 (en) Power supply switching assembly and method for operating same
EP3125651B1 (en) Dimming of lighting devices
DE10003531A1 (en) Load switching involves holding switching voltage constant until switch-off time if load current falls or remains constant during first time interval, reducing if load current increases
DE10013928C2 (en) Procedure for switching a load
EP1186093B1 (en) Device and method for line-voltage dependent thyristor controlled pre-charging of output capacitors in a three-level pulse rectifier system
DE19806805B4 (en) Starting device for an electric motor
EP3149834B1 (en) Elektrical power supply with output current dependent transitions between operation and stand-by
DE102009002464A1 (en) Method for operating a control circuit, in particular for use in a motor vehicle
EP1154344B1 (en) Method of regulating a voltage in an electronic circuit and an electronic circuit to perform the method
EP3268972A2 (en) Reduced-component high-speed disconnection of an electronically controlled contactor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Kind code of ref document: A2

Designated state(s): AT CH DE ES FR GB LI

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020521

17Q First examination report despatched

Effective date: 20020913

AKX Designation fees paid

Free format text: AT CH DE ES FR GB LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50006237

Country of ref document: DE

Date of ref document: 20040603

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040628

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2219253

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080304

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20081107

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090114

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20091231

Year of fee payment: 10

Ref country code: GB

Payment date: 20091210

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100219

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091215

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110328

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101215

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50006237

Country of ref document: DE

Effective date: 20110701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101215

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110701