EP1105685A1 - Ensemble d'alimentation hydraulique et installation ainsi equipee - Google Patents

Ensemble d'alimentation hydraulique et installation ainsi equipee

Info

Publication number
EP1105685A1
EP1105685A1 EP99936743A EP99936743A EP1105685A1 EP 1105685 A1 EP1105685 A1 EP 1105685A1 EP 99936743 A EP99936743 A EP 99936743A EP 99936743 A EP99936743 A EP 99936743A EP 1105685 A1 EP1105685 A1 EP 1105685A1
Authority
EP
European Patent Office
Prior art keywords
enclosure
tank
reservoir
wall
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99936743A
Other languages
German (de)
English (en)
Inventor
Philippe Le Boucher
Marc D'alencon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TEFA
Original Assignee
TEFA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TEFA filed Critical TEFA
Publication of EP1105685A1 publication Critical patent/EP1105685A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/10Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/002Central heating systems using heat accumulated in storage masses water heating system

Definitions

  • the present invention relates to a hydraulic supply device for installation in a closed circuit.
  • the present invention also relates to such an installation.
  • the installations targeted by the invention are in particular heating and / or cooling installations in which a heat transfer fluid flows along a closed circuit to pass successively through equipment for producing heat or cold, a use , a pump, a buffer tank, a filter, etc.
  • It may be a heating or cooling installation, or an installation which can operate either in heating or in cooling, the thermal source being for example then constituted by a reversible refrigerating machine, that is to say capable to operate either by heating means or by cooling means.
  • the object of the present invention is to rationalize installations of the aforementioned kind as regards their components other than the uses.
  • the hydraulic supply device for installation using a heat transfer fluid in a closed circuit, this device comprising for the heat transfer fluid the following components: - a tank having a return orifice and a departure orifice,
  • an expansion tank is characterized in that it further comprises an enclosure containing at least in part the aforementioned components by joining them together to form a hydraulic block.
  • the enclosure is substantially sealed. This avoids the substantial entry of water vapor into the enclosure and therefore the problems of condensation on the outside of the tank wall.
  • the enclosure carries on its inner face a thermal insulation lining.
  • a thermal insulation lining is much easier to produce than exterior linings on components having a complex shape such as a tank, pump, and pipes connecting them.
  • the enclosure being thus insulated internally makes it possible to dispense with thermal insulation on the components enclosed in one enclosure.
  • the thermal insulation lining can be made of intrinsically non-waterproof material, such as rock wool.
  • a material is inexpensive and easy to apply. Thanks to the tightness of the enclosure, there is no risk of waterlogging.
  • the filter is mounted inside the tank in the manner of a permeable partition dividing the interior of the tank into a return chamber connected to the return orifice and a departure chamber. connected to the starting port.
  • This arrangement has multiple advantages. It eliminates the need to provide a location and a mounting for the filter in the circuit outside the tank.
  • the filter has a large diameter and thus offers a negligible pressure drop.
  • a filter of such a size proves capable of stopping the initial impurities then continuing to allow normal operation. without needing to be cleaned. If the return chamber is in the lower position under the flow chamber, the impurities tend to fall to the bottom of the return chamber instead of remaining suspended on the underside of the filter.
  • One of the important optional features of the present invention is to mount some of the components through the wall of the enclosure.
  • the pump (s) are preferably mounted so that their motor is outside the enclosure.
  • the motor is better ventilated and the heat released by the motor is prevented from heating the interior of the enclosure, which is undesirable when the installation has the function of cooling the uses.
  • Such a compartment can take the form of a cabinet in which the electrical box is also installed. If the tank return and outlet ports are oriented approximately 90 ° from each other, the path of departure, making a 90 ° turn due to the usual geometry of pumps such as centrifugal, can exit on the same side of the enclosure as that through which enters the return journey. This is favorable for a rational connection with the rest of the installation.
  • the heating and / or cooling installation comprising, along a closed circuit of heat transfer fluid:
  • a hydraulic supply device - at least one thermal source
  • At least one use is characterized in that the supply device conforms to the first aspect.
  • FIG. 1 and 2 are two diagrams relating to two variant installations according to the invention
  • FIG. 3 is an elevational view of the supply device according to the invention, with vertical section of the enclosure and cutaway of the tank;
  • FIG. 4 is a top view of the supply device of Figure 3, with horizontal section of one enclosure;
  • FIG. 5 is a view of a detail of Figure 3, on a larger scale
  • - Figure 6 is a view similar to Figure 2, but relating to another embodiment
  • - Figure 7 is a view similar to Figure 3, but relating to a possible embodiment for the supply device of Figure 6;
  • the thermal conditioning installation comprises a device for supplying heat transfer fluid 1, an equipment 2 forming a thermal source, and uses 3. These elements 1, 2, 3 are linked between- them by a pipe 4 going from the source 2 to a return pipe 6 of the supply device 1, a pipe 7 connecting a starting path 8 of the feed device 1 with the uses 3, and a pipe 9 going from the uses 3 at input 11 in the heat source 2.
  • the installation therefore forms a closed circuit for the heat transfer fluid going from the supply device 1 to the uses 3 then to the thermal source 2 from which the fluid returns to the supply device 1.
  • the uses 3 are mounted in parallel between the conduits 7 and 9 which serve them.
  • each use 3 is illustrated in the form of an exchanger 12 with ambient air 13.
  • Each use 3 tends to vary the temperature of the heat transfer fluid in the opposite direction to the temperature variation produced by the thermal source 2.
  • the heat source 2 is illustrated in the form of a refrigeration machine, one of the thermally active components 16 of which is in heat exchange relation with the closed circuit of heat transfer fluid.
  • the starting path 8 of the supply device 1 is connected by a pipe 17 to the inlet 11 of the heat source 2 and the return path 6 of the supply device 1 is connected by a pipe 14 to the output of the uses 3.
  • a pipe 19 connects the output 18 of the thermal source 2 with the input of the uses 3.
  • the supply device 1 comprises a reservoir 21 of generally cylindrical shape arranged along a vertical axis in the example shown.
  • the reservoir 21 has a return port 22 which communicates with the return path 6 and a start port 23 which communicates with the start path 8.
  • the tank 21 is part of the closed circuit for the heat transfer fluid.
  • the return path 6 and the start path 8 communicate with each other only through the reservoir 21 which in service is filled with heat transfer liquid.
  • the reservoir 21 carries an automatic vent valve 24 for the automatic elimination of any gas pockets.
  • the reservoir 21 has a thermal accumulator function preventing sudden temperature variations in the heat transfer fluid, when the heat source is started or stopped manually or automatically and when the consumption of the uses 3 varies abruptly.
  • the supply device 1 further comprises an expansion vessel 31 comprising a liquid chamber communicating with the interior of the reservoir 21 by a conduit 32.
  • the vessel 21 contains a movable wall (not shown) separating the liquid chamber of a gas chamber whose pressure can be adjusted by an access 33.
  • the pressure of the liquid in the reservoir 21 is thus adjusted independently of the variations in volume of the liquid enclosed in the closed circuit of the 'installation.
  • the starting path 8 comprises pumping means produced in the example shown in the form of two centrifugal pumps 41 mounted in parallel.
  • the use of two pumps 41 is intended to avoid the risk of breakdown of the entire installation in the event of the breakdown of one of the pumps.
  • Each pump 41 has an axial inlet 42 communicating with a respective starting port 23 of the reservoir 21.
  • Each pump 41 also has a radial delivery port 43 connected to a common delivery pipe 44. In a manner not shown, there is between each delivery opening 43 and the delivery pipe discharge 44 a non-return valve preventing a pump 41 in operation from discharging into another pump 41 stopped.
  • the discharge conduit 44 is equipped with a valve 51 for adjusting the flow rate for the heat transfer liquid discharged by the pumps 41.
  • the reservoir 21 is installed in an enclosure 61 of generally parallelepiped shape supported by a base 62 on which a base 26 of the reservoir rests.
  • the enclosure 61 comprises an outer shell 63, for example made of sheet metal.
  • a thermally insulating lining 64 which completely covers it along the four side walls, under the upper wall as well as above the frame 62.
  • a complement of lining 66 is produced on the inside of the base 26.
  • An air gap 67 is provided between the inside of the lining 64 and the entire outside of the tank 21.
  • One of the side walls of the enclosure 61 includes an opening 67 for a hatch inspection 68 which is also thermally insulating.
  • the enclosure is made substantially sealed so as to avoid as much as possible the entry of atmospheric water vapor and consequently the formation of a large amount of condensation water on the surface of the reservoir 21 and of the other cold parts situated inside the enclosure.
  • a filter 81 is installed inside the tank 21 in the manner of a partition permeable to the coolant, dividing the inside of the tank 21 into a return chamber 27 communicating with the return orifice 22 and a flow chamber 28 communicating with the starting orifices 23.
  • the filter 81 is for example produced in the form of a grid of generally circular planar shape or preferably curved to resist by a vault effect the pressure difference between the chambers 27 and 28
  • the filter 81 is welded by its entire periphery to the inner face of the peripheral wall of the reservoir 21.
  • the filter 81 is arranged in a horizontal plane.
  • the wall of the reservoir 21 is still crossed by two openings 29 located one just below and the other just above the filter 81. As shown in FIG.
  • these openings 29 allow the mounting of heating resistors 82 each in the form of a bar which plunges radially into the interior of the tank 21 and are fixed against the outside face of the wall of the tank 21 by a flange 83 extended outwards by an electrical connection device 84.
  • Such resistors are intended for serve as an additional heating source in addition to the thermal source 2 if the latter is insufficient when it is operating as a heat source, or alternatively to replace the thermal source 2 when the latter consists for example of a machine that is not reversible in a heat pump, so that the installation can still operate in heating installation for example during the winter period.
  • the orifices 29 are oriented towards the inspection hatch 68.
  • an electric heating mat 86 is fixed against the external face of the wall of the tank 21 in the vicinity of the starting orifices 23 because this zone comprising numerous walls separating the heat transfer fluid from the gas space 67 inside the enclosure 63 is more exposed to the risk of freezing.
  • the pumps 41, the expansion tank 31, and the valve 51 are installed in leaktight manner in appropriate openings of the enclosure 61, through the same wall 71 of this enclosure at the same time forming the bottom of a compartment 87 configured in a technical cabinet also containing the electrical box 88.
  • the power cable 89 (FIG. 4) of the heating mat 86 passes through the wall 71 of the enclosure in leaktight manner to be connected to the electrical box 88.
  • the power supply cable of each resistor 82 can connect the connection device 84 with the electrical box 88 via a cable which is, for example, grouped with the cable 89 for crossing the wall 71.
  • the assembly is such that the pump bodies 46 of each of the pumps 41 are inside the enclosure 61 while the motors 47 of the pumps 41 are projecting in the compartment 87.
  • the delivery path of the pumps 41 from discharge orifices 43 and passing through the body 52 of the valve 51 extends in a plane parallel to the wall 71 traversed by the components 31, 41 and 51, all against the interior lining of this wall 71.
  • the member 53 of the valve 51 protrudes into the compartment 87 to be accessible and allow the adjustment of the valve 51 from this compartment.
  • the expansion tank 31 is installed so that the cover 33 giving access to the adjustment means is located in the compartment 87 to allow the pressure of the reservoir 21 to be adjusted from the compartment 87.
  • the wall 73 is adjacent to the wall 71 through which components 31, 41, 51 are mounted, and opposite the wall 74 fitted with the hatch 68.
  • the return duct 6 is a short tube oriented radially with respect to the reservoir 21 and leading directly to the return orifice 22 located just behind the wall 73.
  • the starting path 8 forms, seen from above (FIG. 4), a 90 ° bend inside the pump bodies 46.
  • the starting orifices 23 are oriented towards the wall 71, substantially 90 ° of the return orifice 22 around the vertical axis of the reservoir 21, so that after the 90 ° turn in the pumps the starting path 8 ends at the same wall 73 as the return path 6, as it has been said.
  • the axis of the pumps 41 is horizontal and radial relative to the reservoir 21.
  • the inlet conduits 42 of the pumps 41 are very short rectilinear tubes directed radially relative to the axis of the reservoir 21.
  • the discharge conduit 44 is also rectilinear. If only one pump 41 was provided, all the conduits provided for the heat transfer fluid in the supply device 1 could be strictly straight. In the example shown, this very advantageous condition could not be completely achieved because of the necessary connection between the outlets of the two pumps 41.
  • the wall 71 can, for the mounting of the components 31, 41, 51, have a large window 76 closed by a thermally insulating mask 77 through which the components 31 are mounted,
  • the heat transfer liquid When at least one of the pumps 41 is in operation, the heat transfer liquid is sucked in through the return orifice 22, enters the reservoir 21 in the return chamber 27, passes through the filter 81 to be in the departure chamber 28 that it leaves through at least one of the starting orifices 23.
  • the impurities stopped by the filter 81 tend to fall spontaneously at the bottom of the tank 21 where they are in no way annoying.
  • the temperature inside the enclosure 61 is close to that of the heat transfer fluid, which is generally regulated as it passes in contact with the thermal source 2 (FIGS. 1 and 2). The heat given off by the motors 47 remains outside.
  • the heating mat 86 can automatically start to prevent freezing at the intake of the pumps.
  • Such a supply device can operate for years without requiring any maintenance inside the enclosure 61. If one wishes to clean the inside of the tank 21, the latter is emptied by a bottom tap not shown , the two resistors 82 are dismantled and a suction cannula is introduced through the corresponding openings 29 to clean the return chamber 27 and the departure chamber 28 respectively, including the two faces of the filter 81. This operation is facilitated by the fact that the openings 29 are opposite the hatch 68.
  • the supply device is particularly economical to manufacture, very practical in use, minimizes maintenance as well as the pressure losses undergone by the heat transfer fluid.
  • FIG. 6 will only be described for its differences from that of FIG. 1.
  • a part 101 of the heat source 2 is an integral part of the hydraulic supply device 1 and is integrated inside the enclosure 61 and in particular inside the volume surrounded by the gasket. thermal insulation 64.
  • the part 101 of the heat source 2 which is inside the enclosure 61 comprises the refrigeration compressor 103, a reservoir of refrigerant 106, a refrigerant expansion valve 107 and an apparatus 116 serving as an evaporator for the refrigerant and a cooling exchanger for the coolant.
  • the line 17 is now entirely inside the enclosure 61 between the discharge of the pump 41 and the entry into the evaporator-exchanger 116.
  • the outlet 118 of the evaporator-exchanger 116 is constituted by a line coming out of the enclosure 61 through the same face of the enclosure 61 as that where the return connection 6 is located inside the tank 21.
  • the discharge 108 of the compressor 103 is constituted by a pipe which crosses the wall of the enclosure 61 to go to connect to the inlet of the condenser 104 which constitutes the essential element of the part 102 of the heat source 2 which is outside the enclosure 61.
  • a pipe 109 for the outlet of the condenser 104 also passes through the enclosure 61 to go and connect to the refrigerant reservoir 106.
  • the region 106 f of the reservoir 106 which is located below the liquid level in this tank is connected by the pressure reducer 107 with the inlet of the evaporator part of the evaporator-exchanger 116.
  • the outlet of this evaporator part is connected by a pipe 111 with the compressor inlet 103.
  • This embodiment has the advantage that the parts of the refrigerating machine and more generally of the thermal source which also need to be thermally insulated are grouped together inside the insulated enclosure 61.
  • the problems of thermal insulation in the installation are greatly simplified, a large part of the technical components of the installation are grouped together in the same enclosure, there is no need for external insulation on elements such as the compressor or evaporator, which makes these elements more accessible for maintenance.
  • the compressor although having the thermodynamic point of view to compress the refrigerant to a temperature which can be quite high, still constitutes in practice a cold part of the installation since it is usually kept at low temperature by a cooling system using the steam coming from the evaporator of the refrigeration circuit just before its admission into the compression chamber of the compressor.
  • the possible regulating members of the refrigerating machine such as regulating the throttle produced by the regulator 107 for the refrigerating fluid which passes through it.
  • FIG. 6 is also distinguished from that of FIG. 3 by the mounting inside the enclosure 61 of a different filter 181, of cylindrical shape having an annular edge 182 surrounding the return orifice 6 and, at the opposite end, an annular edge 183 surrounding a manhole orifice 184 formed in the wall of the reservoir 21, and normally closed by a closure plate.
  • a different filter 181 of cylindrical shape having an annular edge 182 surrounding the return orifice 6 and, at the opposite end, an annular edge 183 surrounding a manhole orifice 184 formed in the wall of the reservoir 21, and normally closed by a closure plate.
  • the cylindrical shape of the filter 181 has excellent resistance to the burst stress which results from this depression, especially when the filter is dirty.
  • the production of a cylindrical filter is inexpensive.
  • Manhole 184 conveniently allows the insertion of a heating resistor, or a suction cannula for cleaning, or even the replacement of filter 181.
  • the condenser 104 instead of being physically separated from the enclosure 61 is fixed thereon, outside the thermally insulating lining 64.
  • the particular embodiment of the refrigerating tank 106 in the form of an elongated bottle with a substantially vertical upper region 106g, intended to contain the gas phase and a lower region 106f intended to contain the liquid phase and which forms an obtuse angle of approximately 100 ° with the region 106g, so as to be almost horizontal.
  • the region 106f is integral with supports 121 which are extended upward to also support the evaporator-exchanger 116 and the compressor 103.
  • Another support 122 of the compressor 103 rests solely on the tank 106.
  • FIG. 6 illustrates that the gaseous region 106g is connected to the discharge 108 of the compressor 103 by a connection pipe 123.
  • the heat source 2 is no longer a refrigerating machine but a heat exchange system with the water 131 of a swimming pool 132 having a water treatment device 133.
  • a treatment device draws water from the pool 132 and subjects it to cleaning, filtration, etc. treatments. The water is then returned to the swimming pool 132.
  • the water passing through the treatment device 133 is diverted inside the enclosure 61 by an inlet duct 134 and then returns to the treatment device 133 by a return pipe 136.
  • the pool water passes through a heat exchanger 141, the other path of which is crossed by the discharge 17 of the pump 41 upstream of the orifice 118 for the outlet of the heat transfer fluid from the enclosure 61.
  • the heat transfer fluid can go directly to the uses or pass through a refrigerating machine intended to further lower its temperature.
  • the heat transfer fluid has two separate circuits.
  • a first circuit simply ensures the circulation of the heat transfer fluid from the reservoir 21 by the pump 41 to the uses and return by the inlet orifice 6 in the reservoir 21.
  • the other circuit comprises a second pump 148 with a suction 149 in the tank 21, and a discharge 151 in the thermal source 2 which can, as shown, be at least partly located inside the enclosure 61. From the source 2, the heat transfer fluid returns directly to the tank 21 by a pipe 152.
  • the device can with minor modifications be installed so that the axis of the reservoir 21 is horizontal.
  • the filter 81 is then without drawback placed in a vertical plane.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Un réservoir (21) raccorde un orifice de retour (22) avec un conduit de refoulement (44) par l'intermédiaire de pompes (41). Le réservoir (21) est en outre relié à un vase d'expansion (31). Le réservoir (21) est monté dans une enceinte (61) étanche à la vapeur d'eau et calorifugée intérieurement avec toutefois un intervalle d'air (67) autour du réservoir. Des composants (31, 41) sont montés à travers l'enceinte de manière étanche. Un filtre (81) subdivise le réservoir (21) en une chambre basse (27) de retour et une chambre haute (28) de départ.

Description

"Ensemble d'alimentation hydraulique et installation ainsi équipée" DESCRIPTION La présente invention concerne un dispositif d'alimentation hydraulique pour installation en circuit fermé .
La présente invention concerne également une telle installation.
Les installations visées par l'invention sont en particulier les installations de chauffage et/ou de refroidissement dans lesquelles un fluide caloporteur s'écoule le long d'un circuit fermé pour passer successivement par un équipement de production de chaleur ou de froid, une utilisation, une pompe, un réservoir tampon, un filtre etc..
Il peut s'agir d'une installation de chauffage, de refroidissement, ou encore d'une installation pouvant fonctionner soit en chauffage soit en refroidissement, la source thermique étant par exemple alors constituée par une machine frigorifique réversible, c'est à dire capable de fonctionner soit en moyen de chauffage soit en moyen de refroidissement .
Le but de la présente invention est de rationaliser les installations du genre précité en ce qui concerne leurs composants autres que les utilisations.
Suivant l'invention, le dispositif d'alimentation hydraulique pour installation utilisant un fluide caloporteur en circuit fermé, ce dispositif comprenant pour le fluide caloporteur les composants suivants : - un réservoir ayant un orifice de retour et un orifice de départ ,
- un filtre,
- une pompe,
- un vase d'expansion, est caractérisé en ce qu'il comprend en outre une enceinte renfermant au moins en partie les composants précités en les réunissant pour former un bloc hydraulique.
De préférence, l'enceinte est sensiblement étanche. On évite ainsi les entrées substantielles de vapeur d'eau dans l'enceinte et par conséquent les problèmes de condensation sur la face extérieure de la paroi du réservoir.
Il est également préféré que l'enceinte porte sur sa face intérieure une garniture d'isolation thermique. Une telle garniture intérieure est beaucoup plus facile à réaliser que des garnitures extérieures sur des composants ayant une forme complexe tels que réservoir, pompe, et tuyaux de raccordement entre eux. L'enceinte étant ainsi isolée intérieurement permet de se dispenser d'une isolation thermique sur les composants enfermés dans 1 ' enceinte .
En particulier si l'enceinte est sensiblement étanche, la garniture d'isolation thermique peut être réalisée en matière intrinsèquement non étanche, telle que la laine de roche. Une telle matière est peu onéreuse et facile à poser. Grâce à l'étanchéité de l'enceinte elle ne risque pas de se gorger d'eau.
Il y a de préférence entre la face intérieure de la garniture d'isolation thermique et la face extérieure des composants enfermés dans l'enceinte un espace rempli d'air qui constitue un isolant supplémentaire.
L'agencement des composants à l'intérieur de l'enceinte est tel que les éventuels condensats peuvent s'écouler sans mouiller la garniture d'isolation. Selon une particularité importante de l'invention, le filtre est monté à 1 ' intérieur du réservoir à la manière d'une cloison perméable subdivisant l'intérieur du réservoir en une chambre de retour reliée à l'orifice de retour et une chambre de départ reliée à l'orifice de départ. Ce montage a de multiples avantages. Il supprime la nécessité de prévoir un emplacement et un montage pour le filtre dans le circuit à l'extérieur du réservoir. En outre, dans le réservoir, le filtre présente un grand diamètre et il offre ainsi une perte de charge négligeable. De même, pour une installation en circuit fermé, où l'encrassement se produit surtout juste après la première mise en fonctionnement, un filtre d'une telle taille s'avère capable d'arrêter les impuretés initiales puis de continuer à permettre un fonctionnement normal sans avoir besoin d'être nettoyé. Si la chambre de retour est en position basse sous la chambre de départ, les impuretés ont de toute façon tendance à retomber au fond de la chambre de retour au lieu de rester suspendues à la face inférieure du filtre.
L'une des particularités optionnelles importantes de la présente invention consiste à monter certains des composants à travers la paroi de l'enceinte. En particulier la ou les pompe (s) sont de préférence montées de façon que leur moteur soit à l'extérieur de l'enceinte. Ainsi le moteur est mieux ventilé et on évite que la chaleur dégagée par le moteur réchauffe l'intérieur de l'enceinte, ce qui est indésirable lorsque l'installation a pour fonction de refroidir les utilisations.
On peut également monter à travers la paroi de l'enceinte le vase d'expansion de façon que son organe de réglage soit accessible de l'extérieur de l'enceinte.
On peut également monter à travers la paroi de l'enceinte une vanne de réglage de débit installée en aval de la pompe.
Il est avantageux que tous les composants ainsi montés à travers la paroi de 1 ' enceinte soient regroupés sur un seul et même côté de l'enceinte formant le fond d'un compartiment adjacent à l'enceinte proprement dite.
Un tel compartiment peut prendre la forme d'une armoire dans laquelle est également installé le coffret électrique. Si les orifices de retour et de départ du réservoir sont orientés à 90° l'un de l'autre environ, le trajet de départ, effectuant un virage à 90° en raison de la géométrie habituelle des pompes telles que centrifuges, peut sortir du même côté de l'enceinte que celui par où pénètre le trajet de retour. Ceci est favorable à un raccordement rationnel avec le reste de l'installation.
Suivant un second objet de l'invention, l'installation de chauffage et/ou refroidissement comprenant, le long d'un circuit fermé de fluide caloporteur :
- un dispositif d'alimentation hydraulique, - au moins une source thermique,
- au moins une utilisation, est caractérisée en ce que le dispositif d'alimentation est conforme au premier aspect .
D'autres particularités et avantages de l'invention ressortiront encore de la description ci-après, relative à des exemples non limitatifs.
Aux dessins annexés :
- les figures 1 et 2 sont deux schémas relatifs à deux variantes d'installation selon l'invention ; - la figure 3 est une vue en élévation du dispositif d'alimentation selon l'invention, avec coupe verticale de l'enceinte et arrachements du réservoir ;
- la figure 4 est une vue de dessus du dispositif d'alimentation de la figure 3, avec coupe horizontale de 1 ' enceinte ;
- la figure 5 est une vue d'un détail de la figure 3, à plus grande échelle ;
- la figure 6 est une vue analogue à la figure 2, mais relative à un autre mode de réalisation ; - la figure 7 est une vue analogue à la figure 3, mais relative à un mode de réalisation possible pour le dispositif d'alimentation de la figure 6 ; et
- les figures 8 et 9 sont deux vues schématiques en plan, relatives à deux autres modes de réalisation du dispositif d'alimentation hydraulique. Dans l'exemple représenté à la figure 1, l'installation de conditionnement thermique comprend un dispositif d'alimentation en fluide caloporteur 1, un équipement 2 formant source thermique, et des utilisations 3. Ces éléments 1, 2, 3 sont liés entre-eux par une canalisation 4 allant de la source 2 à un conduit de retour 6 du dispositif d'alimentation 1, une canalisation 7 reliant un trajet de départ 8 du dispositif d'alimentation 1 avec les utilisations 3, et une canalisation 9 allant des utilisations 3 à l'entrée 11 dans la source thermique 2.
L'installation forme donc pour le fluide caloporteur un circuit fermé allant du dispositif d'alimentation 1 aux utilisations 3 puis à la source thermique 2 d'où le fluide retourne au dispositif d'alimentation 1. Les utilisations 3 sont montées en parallèle entre les conduits 7 et 9 qui les desservent .
Dans l'exemple représenté, chaque utilisation 3 est illustrée sous la forme d'un échangeur 12 avec de l'air ambiant 13. Chaque utilisation 3 tend à faire varier la température du fluide caloporteur en sens inverse de la variation de température produite par la source thermique 2.
La source thermique 2 est illustrée sous la forme d'une machine frigorifique dont l'un des constituants thermiquement actifs 16 est en relation d'échange de chaleur avec le circuit fermé de fluide caloporteur.
L'exemple de la figure 2 ne sera décrit que pour ses différences par rapport à celui de la figure 1.
Dans cet exemple, le trajet de départ 8 du dispositif d'alimentation 1 est raccordé par une canalisation 17 à l'entrée 11 de la source thermique 2 et le trajet de retour 6 du dispositif d'alimentation 1 est raccordé par une canalisation 14 à la sortie des utilisations 3. Une canalisation 19 relie la sortie 18 de la source thermique 2 avec l'entrée des utilisations 3. On va maintenant décrire plus en détail le dispositif d'alimentation 1 en se référant principalement aux figures 3 et 4.
Le dispositif d'alimentation 1 comprend un réservoir 21 de forme générale cylindrique disposé selon un axe vertical dans l'exemple représenté. Le réservoir 21 comporte un orifice de retour 22 qui communique avec le trajet de retour 6 et un orifice de départ 23 qui communique avec le trajet de départ 8. Le réservoir 21 fait partie du circuit fermé pour le fluide caloporteur. Le trajet de retour 6 et le trajet de départ 8 ne communiquent entre-eux que par le réservoir 21 qui en service est rempli de liquide caloporteur. A son sommet le réservoir 21 porte un purgeur automatique 24 pour l'élimination automatique des éventuelles poches gazeuses. Le réservoir 21 a une fonction d'accumulateur thermique évitant les brusques variations de température dans le fluide caloporteur, lorsque la source thermique est mise en marche ou arrêtée de manière manuelle ou automatique et lorsque la consommation des utilisations 3 varie brusquement.
Le dispositif d'alimentation 1 comprend en outre un vase d'expansion 31 comportant une chambre de liquide communiquant avec l'intérieur du réservoir 21 par un conduit 32. De manière classique, le vase 21 renferme une paroi mobile (non représentée) séparant la chambre de liquide d'une chambre de gaz dont on peut régler la pression par un accès 33. On règle ainsi, en même temps, la pression du liquide dans le réservoir 21 indépendamment des variations de volume du liquide enfermé dans le circuit fermé de l'installation.
Le trajet de départ 8 comprend des moyens de pompage réalisés dans l'exemple représenté sous la forme de deux pompes centrifuges 41 montées en parallèle. L'utilisation de deux pompes 41 est destinée à éviter le risque de panne de l'ensemble de l'installation en cas de panne de l'une des pompes. Chaque pompe 41 a une admission axiale 42 communiquant avec un orifice de départ respectif 23 du réservoir 21. Chaque pompe 41 possède également un orifice de refoulement radial 43 raccordé à un conduit de refoulement commun 44. De manière non représentée, il y a entre chaque orifice de refoulement 43 et le conduit de refoulement 44 un clapet anti-retour évitant qu'une pompe 41 en fonctionnement refoule dans une autre pompe 41 arrêtée.
Le conduit de refoulement 44 est équipé d'une vanne 51 de réglage de débit pour le liquide caloporteur refoulé par les pompes 41.
Le réservoir 21 est installé dans une enceinte 61 de forme générale parallélépipédique supportée par un socle 62 sur lequel repose un piétement 26 du réservoir. L'enceinte 61 comprend une coque extérieure 63, par exemple en tôle. Contre la face intérieure de la coque 63 est fixée une garniture thermiquement isolante 64 qui la recouvre complètement le long des quatre parois latérales, sous la paroi supérieure ainsi qu'au-dessus du cadre 62. Un complément de garniture 66 est réalisé à l'intérieur du piétement 26. Un intervalle d'air 67 est ménagé entre la face intérieure de la garniture 64 et la totalité de la face extérieure du réservoir 21. L'une des parois latérales de l'enceinte 61 comprend une ouverture 67 pour une trappe de visite 68 qui est également réalisée thermiquement isolante .
L'enceinte est réalisée sensiblement étanche de manière à éviter autant que possible l'entrée de vapeur d'eau atmosphérique et par conséquent la formation d'une grande quantité d'eau de condensation à la surface du réservoir 21 et des autres parties froides situées à l'intérieur de l'enceinte. On ne peut néanmoins pas éviter de petites entrées de vapeur et par conséquent la formation d'une petite quantité d'eau de condensation qui ruisselle vers le bas de l'enceinte. Pour cette raison, il est prévu au fond de l'enceinte au-dessus de la garniture 64 du fond un réceptacle de collecte d'eau de condensation 68 équipé un orifice d'évacuation 69 .
Un filtre 81 est installé à l'intérieur du réservoir 21 à la manière d'une cloison perméable au liquide caloporteur, subdivisant l'intérieur du réservoir 21 en une chambre de retour 27 communiquant avec l'orifice de retour 22 et une chambre de départ 28 communiquant avec les orifices de départ 23. Le filtre 81 est par exemple réalisé sous la forme d'une grille de forme générale circulaire plane ou de préférence bombée pour résister par un effet de voûte à la différence de pression entre les chambres 27 et 28. Le filtre 81 est soudé par tout son pourtour à la face intérieure de la paroi périphérique du réservoir 21. Le filtre 81 est disposé dans un plan horizontal. La paroi du réservoir 21 est encore traversée par deux ouvertures 29 situées l'une juste au-dessous et l'autre juste au-dessus du filtre 81. Comme le montre la figure 4, ces ouvertures 29 permettent le montage de résistances chauffantes 82 chacune en forme de barre qui plonge radialement dans l'intérieur du réservoir 21 et sont fixées contre la face extérieure de la paroi du réservoir 21 par une bride 83 prolongée vers l'extérieur par un dispositif de raccordement électrique 84. De telles résistances sont destinées à servir de source de chauffage complémentaire en complément de la source thermique 2 si celle-ci est insuffisante lorsqu'elle fonctionne en source de chaleur, ou encore à se substituer à la source thermique 2 lorsque celle-ci est par exemple constituée d'une machine frigorifique qui n'est pas réversible en pompe à chaleur, pour que l'installation puisse malgré cela fonctionner en installation de chauffage par exemple pendant la période hivernale. Les orifices 29 sont orientés vers la trappe de visite 68.
Par ailleurs, un tapis chauffant électrique 86 est fixé contre la face extérieure de la paroi du réservoir 21 au voisinage des orifices de départ 23 car cette zone comprenant de nombreuses parois séparant le fluide caloporteur de l'espace gazeux 67 à l'intérieur de 1 ' enceinte 63 est plus exposée au risque de gel .
Les pompes 41, le vase d'expansion 31, et la vanne 51 sont installés de manière étanche dans des ouvertures appropriées de l'enceinte 61, à travers une même paroi 71 de cette enceinte formant en même temps le fond d'un compartiment 87 configuré en armoire technique renfermant également le coffret électrique 88. Le câble d'alimentation 89 (figure 4) du tapis chauffant 86 traverse de manière étanche la paroi 71 de l'enceinte pour être raccordé au coffret électrique 88. De manière non représentée, le câble d'alimentation de chaque résistance 82, peut raccorder le dispositif de raccordement 84 avec le coffret électrique 88 via un câble qui est par exemple regroupé avec le câble 89 pour la traversée de la paroi 71.
Le montage est tel que les corps de pompe 46 de chacune des pompes 41 sont à l'intérieur de l'enceinte 61 alors que les moteurs 47 des pompes 41 sont en saillie dans le compartiment 87. Le trajet de refoulement des pompes 41 à partir des orifices de refoulement 43 et en passant par le corps 52 de la vanne 51 s'étend dans un plan parallèle à la paroi 71 traversée par les composants 31, 41 et 51, tout contre le garnissage intérieur de cette paroi 71. L'organe de manoeuvre 53 de la vanne 51 fait saillie dans le compartiment 87 pour être accessible et permettre le réglage de la vanne 51 à partir de ce compartiment.
Le vase d'expansion 31 est installé de manière que le couvercle 33 donnant accès au moyen de réglage se trouve dans le compartiment 87 pour permettre le réglage de la pression du réservoir 21 à partir du compartiment 87.
Le conduit de retour 6 et le conduit de refoulement 44 sortent de l'enceinte par deux orifices 72 pratiqués à travers une même paroi latérale 73 de l'enceinte 61. La paroi 73 est adjacente à la paroi 71 à travers laquelle sont montés les composants 31, 41, 51, et opposée à la paroi 74 équipée de la trappe 68. Le conduit de retour 6 est un court tube orienté radialement par rapport au réservoir 21 et aboutissant directement à l'orifice de retour 22 situé juste derrière la paroi 73. Le trajet de départ 8 forme, vu de dessus (figure 4) , un coude à 90° à l'intérieur des corps de pompe 46. Les orifices de départ 23 sont orientés vers la paroi 71, sensiblement à 90° de l'orifice de retour 22 autour de l'axe vertical du réservoir 21, pour qu'après le virage à 90° dans les pompes le trajet de départ 8 aboutisse à la même paroi 73 que le trajet de retour 6, comme il a été dit. L'axe des pompes 41 est horizontal et radial relativement au réservoir 21. Les conduits d'admission 42 des pompes 41 sont de très courts tubes rectilignes dirigés radialement relativement à l'axe du réservoir 21. Le conduit de refoulement 44 est également rectiligne. Si une seule pompe 41 était prévue, tous les conduits prévus pour le fluide caloporteur dans le dispositif d'alimentation 1 pourraient être strictement rectilignes. Dans l'exemple représenté, cette condition très avantageuse n'a pas pu être tout à fait réalisée à cause du nécessaire raccordement entre les refoulements des deux pompes 41.
Comme le montre le détail de la figure 5, la paroi 71 peut, pour le montage des composants 31, 41, 51, présenter une large fenêtre 76 obturée par un masque thermiquement isolant 77 à travers lequel sont montés les composants 31,
41, ainsi que la vanne 51 (non représentée à la figure 5) .
On va maintenant décrire le fonctionnement et l'utilisation du dispositif d'alimentation 1.
Lorsque l'une au moins des pompes 41 est en fonctionnement, le liquide caloporteur est aspiré par l'orifice de retour 22, pénètre dans le réservoir 21 dans la chambre de retour 27, traverse le filtre 81 pour se trouver dans la chambre de départ 28 qu'il quitte par l'un au moins des orifices de départ 23. Les impuretés arrêtées par le filtre 81 tendent à tomber spontanément au fond du réservoir 21 où elles ne sont nullement gênantes. La température à l'intérieur de l'enceinte 61, est voisine de celle du fluide caloporteur, laquelle est en généralement régulée à son passage au contact de la source thermique 2 (figures 1 et 2) . La chaleur dégagée par les moteurs 47 reste à l'extérieur.
Si cette température devient voisine de 0, le tapis chauffant 86 peut se mettre automatiquement en fonctionnement pour éviter la congélation à l'admission des pompes .
Un tel dispositif d'alimentation peut fonctionner pendant des années sans nécessiter aucun entretien à l'intérieur de l'enceinte 61. Si l'on désire nettoyer l'intérieur du réservoir 21, on vidange celui-ci par un robinet de fond non représenté, on démonte les deux résistances 82 et on introduit par les ouvertures 29 correspondantes une canule d'aspiration pour décrasser la chambre de retour 27 et la chambre de départ 28 respectivement, y compris les deux faces du filtre 81. Cette opération est facilitée par le fait que les ouvertures 29 sont en regard de la trappe 68.
Le dispositif d'alimentation est particulièrement économique à fabriquer, très pratique à l'emploi, minimise l'entretien ainsi que les pertes de charge subies par le fluide caloporteur.
L'exemple de la figure 6 ne sera décrit que pour ses différences par rapport à celui-ci de la figure 1.
Dans cet exemple, une partie 101 de la source thermique 2 fait partie intégrante du dispositif d'alimentation hydraulique 1 et se trouve intégrée à l'intérieur de l'enceinte 61 et en particulier à l'intérieur du volume entouré par la garniture d'isolation thermique 64.
Plus particulièrement, la partie 101 de la source thermique 2 qui se trouve à l'intérieur de l'enceinte 61 comprend le compresseur frigorifique 103, un réservoir de fluide frigorifique 106, un détendeur de fluide frigorifique 107 et un appareil 116 servant d ' évaporateur pour le fluide frigorifique et d'échangeur de refroidissement pour le liquide caloporteur. La canalisation 17 se trouve maintenant entièrement à l'intérieur de l'enceinte 61 entre le refoulement de la pompe 41 et l'entrée dans 1 ' évaporateur-échangeur 116. La sortie 118 de 1 ' évaporateur-échangeur 116 est constituée par une canalisation venant déboucher hors de l'enceinte 61 à travers la même face de l'enceinte 61 que celle où se trouve le raccord de retour 6 à 1 ' intérieur du réservoir 21.
En ce qui concerne le circuit frigorifique, le refoulement 108 du compresseur 103 est constitué par une canalisation qui traverse la paroi de l'enceinte 61 pour aller se raccorder à l'entrée du condenseur 104 qui constitue l'élément essentiel de la partie 102 de la source thermique 2 qui se trouve à l'extérieur de l'enceinte 61. Une canalisation 109 de sortie du condenseur 104 traverse elle aussi l'enceinte 61 pour aller se raccorder au réservoir de fluide frigorifique 106. La région 106 f du réservoir 106 qui est située en-dessous du niveau de liquide dans ce réservoir est raccordée par le détendeur 107 avec l'entrée de la partie évaporateur de 1 ' évaporateur-échangeur 116. La sortie de cette partie évaporateur est raccordée par une canalisation 111 avec l'admission du compresseur 103.
Ce mode de réalisation a pour avantage que l'on regroupe à l'intérieur de l'enceinte isolée 61 également les parties de la machine frigorifique et plus généralement de la source thermique qui ont également besoin d'être thermiquement isolées. Ainsi, on simplifie grandement les problèmes d'isolation thermique dans l'installation, on regroupe une grande partie des composants techniques de l'installation dans une même enceinte, on se dispense d'isolation extérieure sur des éléments tels que le compresseur ou 1 'évaporateur, ce qui rend ces éléments plus accessibles pour l'entretien.
Le compresseur, bien qu'ayant du point de vue thermodynamique la fonction de comprimer le fluide frigorifique jusqu'à une température pouvant être assez élevée, constitue quand même en pratique une partie froide de l'installation car il est usuellement maintenu à basse température par un système de refroidissement utilisant la vapeur provenant de 1 ' évaporateur du circuit frigorifique juste avant son admission dans la chambre de compression du compresseur.
De manière non représentée il y a également à l'intérieur de l'enceinte 61 les éventuels organes de régulation de la machine frigorifique tels que la régulation de l'étranglement réalisé par le détendeur 107 pour le fluide frigorifique qui le traverse.
Indépendamment de ce qui précède, le mode de réalisation de la figure 6 se distingue également de celui de la figure 3 par le montage à l'intérieur de l'enceinte 61 d'un filtre 181 différent, de forme cylindrique ayant un bord annulaire 182 entourant l'orifice de retour 6 et, à l'extrémité opposée, un bord annulaire 183 entourant un orifice de regard 184 formé dans la paroi du réservoir 21, et normalement obturé par une plaque de fermeture . Lorsque la pompe 41 est en fonctionnement, elle met l'intérieur du réservoir 21 en dépression. La forme cylindrique du filtre 181 présente une excellente résistance à la contrainte d'éclatement qui résulte de cette dépression, notamment lorsque le filtre est encrassé. En même temps, la réalisation d'un filtre cylindrique est peu coûteuse. Le regard 184 permet commodément l'insertion d'une résistance chauffante, ou d'une canule d'aspiration pour le nettoyage, ou encore le remplacement du filtre 181.
Dans le mode réalisation de la figure 7, le condenseur 104, au lieu d'être physiquement séparé de l'enceinte 61 est fixé sur celle-ci, à l'extérieur du garnissage thermiquement isolant 64.
Par ailleurs on remarque sur cette figure, mieux qu'à la figure 6, la réalisation particulière du réservoir frigorifique 106, en forme de bouteille allongée avec une région supérieure 106g sensiblement verticale, destinée à contenir la phase gazeuse et une région inférieure 106f destinée à contenir la phase liquide et qui forme un angle obtus d'environ 100° avec la région 106g, de manière à se trouver quasiment à l'horizontale. La région 106f est solidaire de supports 121 qui sont prolongés vers le haut pour supporter également 1 ' évaporateur-échangeur 116 et le compresseur 103. Un autre support 122 du compresseur 103 repose uniquement sur le réservoir 106. La figure 6 illustre que la région gazeuse 106g est raccordée au refoulement 108 du compresseur 103 par une conduite de raccordement 123.
Dans l'exemple représenté à la figure 8, la source thermique 2 n'est plus une machine frigorifique mais un système d'échange thermique avec l'eau 131 d'une piscine 132 possédant un dispositif de traitement d'eau 133. Un tel dispositif de traitement prélève de l'eau dans la piscine 132 et lui fait subir des traitements de nettoyage, filtration, etc. L'eau est ensuite renvoyée dans la piscine 132. Dans cette version de l'invention, l'eau passant par le dispositif de traitement 133 est dérivée à l'intérieur de l'enceinte 61 par un conduit d'arrivée 134 puis retourne au dispositif de traitement 133 par un conduit de retour 136. Dans l'enceinte 61, l'eau de la piscine traverse un échangeur de chaleur 141 dont l'autre voie est traversée par le refoulement 17 de la pompe 41 en amont de l'orifice 118 de sortie du fluide caloporteur hors de l'enceinte 61.
A partir de l'orifice 118, le fluide caloporteur peut aller directement aux utilisations ou passer par une machine frigorifique destinée à abaisser encore sa température . Dans l'exemple de la figure 9, le fluide caloporteur dispose de deux circuits séparés. Un premier circuit assure simplement la circulation du fluide caloporteur du réservoir 21 par la pompe 41 vers les utilisations et retour par l'orifice d'arrivée 6 dans le réservoir 21. L'autre circuit comprend une deuxième pompe 148 avec une aspiration 149 dans le réservoir 21, et un refoulement 151 dans la source thermique 2 qui peut, comme représenté, être au moins en partie située à l'intérieur de l'enceinte 61. De la source 2, le fluide caloporteur retourne directement au réservoir 21 par une canalisation 152.
Bien entendu, l'invention n'est pas limitée aux exemples décrits et représentés.
En particulier, le dispositif peut avec des modifications mineures être installé de façon que l'axe du réservoir 21 soit horizontal. Le filtre 81 est alors sans inconvénient disposé dans un plan vertical .

Claims

REVENDICATIONS
1. Dispositif d'alimentation hydraulique (1) pour installation utilisant un fluide caloporteur en circuit fermé, ce dispositif comprenant pour le fluide caloporteur les composants suivants :
- un réservoir (21) ayant un orifice de retour (22) et un orifice de départ (23) ,
- un filtre (81) ,
- une pompe (41) , ayant une admission (42) raccordée à l'orifice de départ (23) et un refoulement (43) communiquant avec un conduit de refoulement (44) ,
- un vase d'expansion (31), caractérisé en ce qu'il comprend en outre une enceinte (61) renfermant au moins une partie des composants précités (21, 31, 41, 81) en les réunissant pour former un bloc hydraulique.
2. Dispositif selon la revendication 1, caractérisé en ce que l'enceinte (61) est sensiblement étanche.
3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que l'enceinte (61) porte sur sa face intérieure une garniture d'isolation thermique (64).
4. Dispositif selon la revendication 3, caractérisé en ce que la garniture (64) est intrinsèquement non-étanche.
5. Dispositif selon l'une des revendications 3 ou 4 , caractérisé en ce qu'il y a de l'air (67) entre l'isolation thermique (64) et la face extérieure du réservoir (21) .
6. Dispositif selon l'une des revendications 1 à 5, caractérisé par un dispositif (68) de collecte d'eau de condensation sous le réservoir (21) .
7. Dispositif selon l'une des revendications 1 à 6, caractérisé en ce qu'un filtre (81, 181) est monté à l'intérieur du réservoir (21) à la manière d'une cloison perméable qui subdivise 1 ' intérieur du réservoir en une chambre de retour (27) reliée à l'orifice de retour (22), et une chambre de départ (28) reliée à l'orifice de départ (23) .
8. Dispositif selon la revendication 7, caractérisé en ce que le réservoir (21) comprend à travers sa paroi à proximité du filtre (81, 181) au moins une ouverture (29, 184) pour le montage d'une résistance chauffante (82) et /ou l'introduction d'une canule d'aspiration pour le nettoyage du filtre.
9. Dispositif selon la revendication 7 ou 8, caractérisé en ce que le filtre (81) , de forme générale plane ou bombée, comprend un bord périphérique fixé à une paroi périphérique du réservoir (21) .
10. Dispositif selon l'une des revendications 7 à 9, caractérisé en ce que la chambre de retour (27) est en position basse sous la chambre de départ (28) .
11. Dispositif selon la revendication 7 ou 8, caractérisé en ce que le filtre (181) est en forme cylindrique avec un bord annulaire (182) entourant l'un (6) des orifices d'arrivée et de départ, et de préférence, à l'extrémité opposée, un bord annulaire (183) entourant un regard (184) à travers la paroi de l'enceinte.
12. Dispositif selon l'une des revendications 1 à 11, caractérisé en ce que le vase d'expansion (31) est monté à travers une paroi (71) de l'enceinte (1), de façon qu'un organe de réglage du vase d'expansion soit accessible de l'extérieur de l'enceinte.
13. Dispositif selon l'une des revendications 1 à 12, caractérisé en ce que la pompe (41) est montée à travers une paroi (71) de l'enceinte (61) de façon que le moteur (47) de la pompe soit à l'extérieur de l'enceinte (61).
14. Dispositif selon l'une des revendications 1 à 13, caractérisé en ce que la pompe (41) est montée selon un axe sensiblement horizontal, avec une admission axiale dirigée vers l'orifice de départ (23) du réservoir, et un refoulement (43) sensiblement radial, le conduit de refoulement (44) débouchant à travers une même paroi (73) de l'enceinte qu'un conduit de retour (6) relié à l'orifice de retour (22) du réservoir (21), et en ce que l'orifice de retour est orienté vers ladite même paroi (73) de 1 'enceinte (61) .
15. Dispositif selon l'une des revendications 1 à 14, caractérisé en ce que le conduit de refoulement (44) de la pompe s'étend le long d'une paroi (71) de l'enceinte adjacente à celle (73) où débouche le conduit de refoulement (44) .
16. Dispositif selon l'une des revendications 1 à 15, caractérisé en ce que les composants comprennent en outre sur ledit conduit de refoulement (44) , une vanne de réglage (51) montée à travers l'enceinte (61) de façon qu'un organe de manoeuvre (53) de la vanne soit accessible de 1 ' extérieur de 1 ' enceinte .
17. Dispositif selon l'une des revendications 1 à 16, caractérisé en ce que certains composants (31, 41, 51) sont montés à travers une même paroi (71) de l'enceinte (61) .
18. Dispositif selon la revendication 17, caractérisé en ce que lesdits certains composants (31, 41, 51) apparaissent à l'extérieur de l'enceinte dans un compartiment (87) attenant à l'enceinte (61) .
19. Dispositif selon l'une des revendications 1 à 18, caractérisé en ce qu'il inclut en outre, à l'intérieur de l'enceinte (61), une partie au moins (101, 141) d'une source thermique (2) de l'installation.
20. Dispositif selon la revendication 19, caractérisé en ce que la source thermique (2) est une machine frigorifique (101, 102) , et en ce que ladite partie (101) de la source thermique incluse dans l'enceinte (61) comprend un compresseur frigorifique (103) , un échangeur de chaleur (116) entre un fluide frigorifique et le fluide caloporteur, un détendeur (107) et un réservoir de fluide caloporteur (106) .
21. Dispositif selon la revendication 20, caractérisé en ce qu'il comprend en outre un échangeur (104) entre le fluide frigorifique et l'air atmosphérique, cet échangeur étant monté à l'extérieur de l'enceinte (61) en étant fixé au moins indirectement à celle-ci.
22. Dispositif selon la revendication 19, caractérisé en ce que ladite partie de source thermique incluse dans l'enceinte comprend un échangeur de chaleur (141) entre le fluide caloporteur et un circuit de fluide tel que le circuit de traitement de l'eau d'une piscine (132).
23. Dispositif selon l'une des revendications 1 à 22, caractérisé en ce que le réservoir (21) est raccordé à un circuit source (148, 149, 151, 152) et à un circuit utilisation séparés, dotés chacun de ses moyens de pompage respectifs (41 ; 148) .
24. Installation de chauffage et/ou refroidissement comprenant, le long d'au moins un circuit fermé de fluide caloporteur :
- un dispositif d'alimentation hydraulique (1),
- au moins une source thermique (2) ,
- au moins une utilisation (3) , caractérisée en ce que le dispositif d'alimentation (1) est conforme à l'une des revendications 1 à 23.
EP99936743A 1998-08-21 1999-08-18 Ensemble d'alimentation hydraulique et installation ainsi equipee Withdrawn EP1105685A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9810638 1998-08-21
FR9810638A FR2782552B1 (fr) 1998-08-21 1998-08-21 Ensemble d'alimentation hydraulique et installation ainsi equipee
PCT/FR1999/001998 WO2000011408A1 (fr) 1998-08-21 1999-08-18 Ensemble d'alimentation hydraulique et installation ainsi equipee

Publications (1)

Publication Number Publication Date
EP1105685A1 true EP1105685A1 (fr) 2001-06-13

Family

ID=9529834

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99936743A Withdrawn EP1105685A1 (fr) 1998-08-21 1999-08-18 Ensemble d'alimentation hydraulique et installation ainsi equipee

Country Status (4)

Country Link
US (1) US6427474B1 (fr)
EP (1) EP1105685A1 (fr)
FR (1) FR2782552B1 (fr)
WO (1) WO2000011408A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2814226B1 (fr) 2000-09-20 2002-10-25 Tefa Dispositif de refrigeration
DE102004032256B3 (de) * 2004-07-03 2005-12-15 Jungheinrich Ag Hydraulikaggregat für Flurförderzeuge
CA2555905A1 (fr) * 2006-08-11 2008-02-11 Swen Theil Appareillage pour deshydrateur et support combine de compresseur et methode de fonctionnement
US10723463B1 (en) 2012-12-07 2020-07-28 Wesley M. Plattner Systems and methods for efficient operation of air cycle machines
FR3139888A1 (fr) * 2022-09-16 2024-03-22 Reydelet Dumoulin Dispositif de raccordement hydraulique pour pompe à chaleur

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2598966A (en) * 1950-05-16 1952-06-03 Vacuum Can Company Temperature regulating water circulator for molding presses and other purposes
US2832569A (en) * 1955-04-21 1958-04-29 Fairbanks Morse & Co Hot and cold water supply unit
DE1205254B (de) * 1955-08-19 1965-11-18 Warmac Ltd Druckhalte- und Sicherungseinrichtung fuer geschlossene Heisswasserheizungsanlagen
US3278122A (en) * 1964-03-02 1966-10-11 Laing Vortex Inc Central heating systems
US3249303A (en) * 1964-07-13 1966-05-03 Esley L Townsend Combination gas and electric hot water heating system
US4513580A (en) * 1982-10-21 1985-04-30 Cooper Donald C Combined refrigeration and heating circuits
IT8321749V0 (it) * 1983-05-05 1983-05-05 Baldini Alessandro Unita' modulare di controllo e pompaggio per centrali termiche e simili.
GB8328858D0 (en) * 1983-10-28 1983-11-30 Atomic Energy Authority Uk Metal vapour deposition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0011408A1 *

Also Published As

Publication number Publication date
FR2782552B1 (fr) 2000-11-10
US6427474B1 (en) 2002-08-06
FR2782552A1 (fr) 2000-02-25
WO2000011408A1 (fr) 2000-03-02

Similar Documents

Publication Publication Date Title
BE1017473A5 (fr) Dispositif et procede de refroidissement de boissons.
FR1464318A (fr) Vitrine réfrigérée
FR2689215A1 (fr) Installation de traitement d'air.
EP1831535A1 (fr) Dispositif de captation d'air de combustion d'un moteur a combustion interne
WO2012056164A1 (fr) Système d'échange thermique entre de l'air situé à l'intérieur d'un espace et de l'air situé à l'extérieur de l'espace et procédé de réalisation d'échange thermique mettant en oeuvre un tel système
EP1105685A1 (fr) Ensemble d'alimentation hydraulique et installation ainsi equipee
FR2934020A1 (fr) Systeme pour echantillonner le flux d'air entrant dans le compresseur d'une turbomachine
EP0564342B1 (fr) Bac de production et de stockage de glace
EP0998650B1 (fr) Dispositif de production d'eau chaude
FR2717564A1 (fr) Agencement de cuve réceptrice de liquide de réfrigérant pour un système de réfrigération destiné notamment à des moyens de transport.
EP2199707A1 (fr) Dispositif combiné comprenant un échangeur de chaleur et un accumulateur constitutifs d'une boucle de climatisation.
FR2702825A1 (fr) Unité de chauffage et d'aération.
FR2855251A1 (fr) Dispositif de repartition de debit pour ventilation mecanique controlee
FR2934672A1 (fr) Procede de mise hors gel d'un systeme de production de chaleur et installation de production de chaleur associee
FR3074531A1 (fr) Installation pour une turbomachine
FR2722834A1 (fr) Module de degazage et de circulation de fluide pour circuit de refroidissement d'un moteur
FR2764680A1 (fr) Condenseur a bloc de traitement externe, notamment pour un circuit de climatisation de vehicule automobile
EP0229410A1 (fr) Machine frigorifique
EP1881942B1 (fr) Fontaine delivrant de l'eau refrigeree
FR2976455A1 (fr) Four de cuisson a generation de vapeur d'eau
FR2679983A1 (fr) Ensemble de distribution d'eau pour evaporateur a ruissellement.
EP2221200B1 (fr) Dispositif logeant un échangeur de chaleur, une zone d'accumulation et un filtre à gaz
WO2002025188A1 (fr) Dispositif de refrigeration
FR2918624A1 (fr) Reservoir d'eau de lavage des surfaces vitrees d'un vehicule automobile.
FR3024213A1 (fr) Systeme de rafraichissement, climatisation, chauffage d'un batiment avec recuperation d'air vicie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010316

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20020102

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030722