EP1104006A2 - Flat lamp - Google Patents
Flat lamp Download PDFInfo
- Publication number
- EP1104006A2 EP1104006A2 EP00204005A EP00204005A EP1104006A2 EP 1104006 A2 EP1104006 A2 EP 1104006A2 EP 00204005 A EP00204005 A EP 00204005A EP 00204005 A EP00204005 A EP 00204005A EP 1104006 A2 EP1104006 A2 EP 1104006A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- bulb
- envelope
- radiation source
- radiation
- bulb according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/30—Vessels; Containers
- H01J61/305—Flat vessels or containers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01K—ELECTRIC INCANDESCENT LAMPS
- H01K1/00—Details
- H01K1/02—Incandescent bodies
- H01K1/14—Incandescent bodies characterised by the shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01K—ELECTRIC INCANDESCENT LAMPS
- H01K7/00—Lamps for purposes other than general lighting
Definitions
- the present invention relates to a bulb intended to emit radiation through an emission surface of an envelope containing a source of radiation.
- the envelope has the shape of a cylinder of revolution, the radiation source being constituted by a filament or a cylinder of small diameter disposed on the axis of revolution of the envelope.
- a bulb is known from French patent No. 1,270,856.
- the radiation emitted by a bulb of this type is in the form of cylindrical heat waves whose axis is that of the envelope.
- the distribution of the heat received by said surface is inhomogeneous, the places of the receiving surface closer to the axis of the envelope being subjected to a more intense heat than the places of the receiving surface which are the most distant from said axis.
- the present invention aims to remedy these drawbacks by proposing a bulb capable of emitting homogeneous radiation towards a flat surface with a high radiation density.
- the emission surface is substantially planar and the radiation source defines a planar surface substantially parallel to the emission surface.
- the flatness of the emitting surface and of the radiation source allows the bulb according to the invention to generate radiation in the form of plane heat waves allowing homogeneous heating of a plane receiving surface, as long as it is arranged parallel to the emission surface. Furthermore, the power surface density of the radiation emitted by the bulb according to the invention, and therefore the energy efficiency of the heating operations carried out using said bulb, will be directly a function of the ratio between the surface defined by the radiation source. and the emission surface, and can be adjusted during the design of the radiation source.
- the radiation source consists of at least one filament of flattened shape.
- the source of radiation consists of a plurality of coplanar filaments.
- the source of radiation consists of at least one convoluted filament.
- the radiation source is consisting of a reactive gas intended to be excited by means of electrodes.
- the envelope has a reflecting surface arranged opposite the emission surface.
- the reflective surface increases the surface power density of the radiation emitted by the bulb, and therefore further increase the energy efficiency of heating operations carried out by means of said bulb.
- the present envelope arranged opposite from the emission surface, a surface curved towards the outside of the envelope.
- Such convexity of the surface disposed opposite the emission surface will facilitate positioning of the bulb in a cavity formed within a lamp intended to accommodate the bulb.
- part of the radiation emitted by the bulb will be concentrated towards the center of it, which will facilitate the construction of the radiation source in some embodiments.
- FIG. 1 schematically shows a bulb according to a particular embodiment of the invention.
- This bulb is intended to emit radiation through an emission surface ES of an envelope ENV containing a source of radiation LEM.
- the envelope will advantageously be made of quartz or a special transparent glass for infrared and / or visible. If the contour of the emission surface ES is, in this example, circular, it is clear that any other shape, oval, rectangular, square, polygonal, etc., can be chosen according to the application for which the bulb is intended.
- the emission surface ES is plane, and the radiation source LEM defines a plane surface parallel to the emission surface ES.
- the LEM radiation source consists of a filament of flattened shape.
- the outline of the surface defined by this flattened filament is rectangular in this example, so that it is more easily distinguishable from the other elements of the bulb. It is nevertheless understood that the power surface density of the radiation emitted by the bulb will be all the greater as the area defined by the radiation source LEM will be similar to the emission area ES. Thus, in the present case, where the contour of the emission surface ES is of circular shape, it will be more advantageous in practice to provide the contour of the flattened filament with a circular shape.
- FIG. 2 illustrates another embodiment of the LEM radiation source, which is, in this example, constituted by N coplanar filaments W1 ... WN. These filaments form a grid whose outline has been chosen rectangular in this example, so that it is more easily differentiated from the other elements of the bulb. However, we understand that, as previously explained, it will be more advantageous in practice to provide the outline of this grid of circular shape in order to obtain a power surface density of the radiation emitted by the optimal bulb in the case where the contour of the emitting surface is, as shown here, circular in shape.
- FIG. 3 illustrates another embodiment of the LEM radiation source, which is, in this example, constituted by two convoluted filaments Wl and W2.
- the W1 and W2 filament convolutions are not very complex here, so that said filaments are identifiable in the figure. It is nevertheless understood that, to obtain an optimal surface power density, it will be necessary to create convolutions such that a large proportion of the points constituting the ES emission surface is directly above a portion of one of the convoluted filaments. A departure from this principle may however, it must be obtained if the surface facing the ES emission surface is curved towards the outside of the envelope ENV and covered with a reflective layer, in which case a part of the reflected radiation will be concentrated towards the center of the ES emission surface. This will reduce the density of filament convolutions near the center of the ES emission surface, and therefore to facilitate the construction of the EM radiation source, without compromising the homogeneity of the radiation emitted by the bulb.
- FIG. 4 illustrates a preferred embodiment of the LEM radiation source, which is, in this example, constituted by a reactive gas, represented in gray form, intended to be excited by means of electrodes El + and El-.
- the gas used may for example be Xenon.
- This embodiment is particularly advantageous in that, the distribution of the gas being isotropic within the envelope ENV, the radiation emitted by the bulb is by nature homogeneous over the entire emission surface ES. Provision may be made to cover the surface located opposite the emission surface ES with a reflective layer to improve uniformity and increase the power density of the radiation emitted by the bulb.
- FIG. 5 is a sectional view of a bulb according to a variant of the invention.
- the envelope ENV has a BOT bottom, arranged opposite the surface of ES emission.
- the LEM radiation source for example a flattened filament or a plurality coplanar filaments, made of tungsten, or any other radiant material, is arranged on the bottom BOT.
- the thickness of this LEM radiation source has been intentionally exaggerated so that it is clearly visible in the figure.
- the LEM radiation source consists of a material intended to be heated to incandescent
- the ENV envelope will advantageously be filled with an inert gas before sealing.
- a REF layer of reflective material for example based on ceramic, has been deposited on the surface of the bottom BOT, outside the envelope ENV, in order to increase the power density of the radiation emitted by the bulb.
- Figure 6 is a sectional view of a bulb according to another variant of the invention.
- the bottom BOT is curved towards the outside of the bulb.
- Source LEM radiation is constituted in this example by a plurality of convoluted filaments, with hatched sections appearing in the section plane. Some of these sections do not have a circular outline because, as can be deduced from Figure 3, some portions of filaments may not be perpendicular to the cutting plane.
- the radiation source LEM rests on the BOT bottom via a plurality of P1 ... PN stilts which can also be made of tungsten, or any other radiant material.
- a REF layer of material reflective for example ceramic-based, has been deposited on the surface of the BOT bottom, outside the envelope ENV, in order to increase the power density of the emitted radiation by the bulb and concentrate this density towards the center of the bulb. This limits the surface density of the convolutions of the filaments near the center of the surface ES emission, without compromising the homogeneity of the radiation emitted through said surface.
Landscapes
- Vessels And Coating Films For Discharge Lamps (AREA)
- Resistance Heating (AREA)
- Control Of Resistance Heating (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Abstract
Description
La présente invention concerne une ampoule destinée à émettre un rayonnement au travers d'une surface d'émission d'une enveloppe contenant une source de rayonnement.The present invention relates to a bulb intended to emit radiation through an emission surface of an envelope containing a source of radiation.
Dans la plupart des ampoules connues, l'enveloppe a la forme d'un cylindre de
révolution, la source de rayonnement étant constituée par un filament ou un cylindre de faible
diamètre disposé sur l'axe de révolution de l'enveloppe. Une telle ampoule est connue du brevet
français No. 1.270.856. Le rayonnement émis par une ampoule de ce type se présente sous la
forme d'ondes de chaleur cylindriques dont l'axe est celui de l'enveloppe. Lorsqu'une telle
ampoule est utilisée pour chauffer un objet présentant une surface réceptrice plane, comme le
fond d'un récipient ou encore une feuille de papier, la répartition de la chaleur reçue par ladite
surface est inhomogène, les endroits de la surface réceptrice les plus proches de l'axe de
l'enveloppe étant soumis à une chaleur plus intense que les endroits de la surface réceptrice qui
sont les plus éloignés dudit axe.
Une telle inhomogénéité est néfaste, car un chauffage nominal des endroits de la surface
réceptrice les plus éloignés de l'axe de l'enveloppe peut causer une surchauffe des endroits les
plus proches dudit axe, et donc d'endommager l'objet à chauffer, et, inversement, un chauffage
nominal des endroits de la surface réceptrice les plus proches de l'axe de l'enveloppe se
traduira par un chauffage insuffisant des endroits les plus éloignés dudit axe.
Par ailleurs, la densité surfacique de puissance du rayonnement émis par les ampoules connues
est relativement faible, ce qui se traduit par un rendement énergétique faible.In most known bulbs, the envelope has the shape of a cylinder of revolution, the radiation source being constituted by a filament or a cylinder of small diameter disposed on the axis of revolution of the envelope. Such a bulb is known from French patent No. 1,270,856. The radiation emitted by a bulb of this type is in the form of cylindrical heat waves whose axis is that of the envelope. When such a bulb is used to heat an object having a flat receiving surface, such as the bottom of a container or a sheet of paper, the distribution of the heat received by said surface is inhomogeneous, the places of the receiving surface closer to the axis of the envelope being subjected to a more intense heat than the places of the receiving surface which are the most distant from said axis.
Such inhomogeneity is harmful, because nominal heating of the places on the receiving surface furthest from the axis of the envelope can cause overheating of the places closest to said axis, and therefore damage the object to be heated, and, conversely, nominal heating of the locations on the receiving surface closest to the axis of the envelope will result in insufficient heating of the locations furthest from said axis.
Furthermore, the power surface density of the radiation emitted by known bulbs is relatively low, which results in a low energy yield.
La présente invention a pour but de remédier à ces inconvénients en proposant une ampoule capable d'émettre un rayonnement homogène vers une surface plane avec une densité de rayonnement élevée.The present invention aims to remedy these drawbacks by proposing a bulb capable of emitting homogeneous radiation towards a flat surface with a high radiation density.
En effet, dans une ampoule conforme à l'invention, la surface d'émission est substantiellement plane et la source de rayonnement définit une surface plane substantiellement parallèle à la surface d'émission.Indeed, in a bulb according to the invention, the emission surface is substantially planar and the radiation source defines a planar surface substantially parallel to the emission surface.
La planéité de la surface d'émission et de la source de rayonnement permet à
l'ampoule conforme à l'invention de générer un rayonnement se présentant sous la forme
d'ondes de chaleur planes permettant un chauffage homogène d'une surface réceptrice plane,
pour peu que celle-ci soit disposée parallèlement à la surface d'émission.
Par ailleurs, la densité surfacique de puissance du rayonnement émis par l'ampoule selon
l'invention, et donc le rendement énergétique des opérations de chauffage réalisées au moyen
de ladite ampoule, sera directement fonction du rapport entre la surface définie par la source
de rayonnement et la surface d'émission, et pourra être ajusté lors de la conception de la
source de rayonnement.The flatness of the emitting surface and of the radiation source allows the bulb according to the invention to generate radiation in the form of plane heat waves allowing homogeneous heating of a plane receiving surface, as long as it is arranged parallel to the emission surface.
Furthermore, the power surface density of the radiation emitted by the bulb according to the invention, and therefore the energy efficiency of the heating operations carried out using said bulb, will be directly a function of the ratio between the surface defined by the radiation source. and the emission surface, and can be adjusted during the design of the radiation source.
Dans un mode de réalisation particulier de l'invention, la source de rayonnement est constituée par au moins un filament de forme aplatie.In a particular embodiment of the invention, the radiation source consists of at least one filament of flattened shape.
Dans un autre mode de réalisation particulier de l'invention, la source de rayonnement est constituée par une pluralité de filaments coplanaires. In another particular embodiment of the invention, the source of radiation consists of a plurality of coplanar filaments.
Dans un autre mode de réalisation particulier de l'invention, la source de rayonnement est constituée par au moins un filament convoluté.In another particular embodiment of the invention, the source of radiation consists of at least one convoluted filament.
Dans un mode de réalisation préféré de l'invention, la source de rayonnement est constituée par un gaz réactif destiné à être excité au moyen d'électrodes.In a preferred embodiment of the invention, the radiation source is consisting of a reactive gas intended to be excited by means of electrodes.
Dans une variante de l'invention, l'enveloppe présente une surface réfléchissante disposée en vis-à-vis de la surface d'émission.In a variant of the invention, the envelope has a reflecting surface arranged opposite the emission surface.
La surface réfléchissante permet d'augmenter la densité surfacique de puissance du rayonnement émis par l'ampoule, et donc d'augmenter encore le rendement énergétique des opérations de chauffage réalisées au moyen de ladite ampoule.The reflective surface increases the surface power density of the radiation emitted by the bulb, and therefore further increase the energy efficiency of heating operations carried out by means of said bulb.
Dans une autre variante de l'invention, l'enveloppe présente, disposée en vis-à-vis de la surface d'émission, une surface bombée vers l'extérieur de l'enveloppe.In another variant of the invention, the present envelope, arranged opposite from the emission surface, a surface curved towards the outside of the envelope.
Une telle convexité de la surface disposée en vis-à-vis de la surface d'émission permettra de faciliter un positionnement de l'ampoule dans une cavité ménagée au sein d'une lampe destinée à accueillir l'ampoule. De plus, si la surface bombée est recouverte d'une couche réfléchissante, une partie du rayonnement émis par l'ampoule sera concentrée vers le centre de celle-ci, ce qui permettra de faciliter la construction de la source de rayonnement dans certains modes de réalisation.Such convexity of the surface disposed opposite the emission surface will facilitate positioning of the bulb in a cavity formed within a lamp intended to accommodate the bulb. In addition, if the curved surface is covered with a reflective layer, part of the radiation emitted by the bulb will be concentrated towards the center of it, which will facilitate the construction of the radiation source in some embodiments.
L'invention sera mieux comprise à l'aide de la description suivante, faite à titre d'exemple non-limitatif et en regard des dessins annexés, dans lesquels :
- la figure 1 est une vue en perspective d'une ampoule selon un mode de réalisation de l'invention,
- la figure 2 est une vue en perspective d'une ampoule selon un autre mode de réalisation de l'invention,
- la figure 3 est une vue en perspective d'une ampoule selon un autre mode de réalisation de l'invention,
- la figure 4 est une vue en perspective d'une ampoule selon un mode de réalisation préféré de l'invention,
- la figure 5 est une vue en coupe d'une ampoule selon une variante de l'invention, et
- la figure 6 est une vue en coupe d'une ampoule selon une autre variante de l'invention.
- FIG. 1 is a perspective view of a bulb according to an embodiment of the invention,
- FIG. 2 is a perspective view of a bulb according to another embodiment of the invention,
- FIG. 3 is a perspective view of a bulb according to another embodiment of the invention,
- FIG. 4 is a perspective view of a bulb according to a preferred embodiment of the invention,
- FIG. 5 is a sectional view of a bulb according to a variant of the invention, and
- Figure 6 is a sectional view of a bulb according to another variant of the invention.
La figure 1 représente schématiquement une ampoule conforme à un mode de
réalisation particulier de l'invention. Cette ampoule est destinée à émettre un rayonnement au
travers d'une surface d'émission ES d'une enveloppe ENV contenant une source de
rayonnement LEM. L'enveloppe sera avantageusement réalisée en quartz ou en un verre spécial
transparent pour l'infrarouge et/ou le visible.
Si le contour de la surface d'émission ES est, dans cet exemple, de forme circulaire, il est clair
que toute autre forme, ovale, rectangulaire, carrée, polygonale, etc....peut être choisie en
fonction de l'application à laquelle l'ampoule est destinée.
La surface d'émission ES est plane, et la source de rayonnement LEM définit une surface plane
parallèle à la surface d'émission ES. Dans l'exemple décrit ici, la source de rayonnement LEM
est constituée par un filament de forme aplatie. Pour des raisons de compréhension de la
figure, le contour de la surface définie par ce filament aplati est rectangulaire dans cet exemple,
afin qu'il soit plus aisément différentiable des autres éléments de l'ampoule. On comprend
néanmoins que la densité surfacique de puissance du rayonnement émis par l'ampoule sera
d'autant plus importante que la surface définie par la source de rayonnement LEM sera similaire
à la surface d'émission ES. Ainsi, dans le cas présent, où le contour de la surface d'émission ES
est de forme circulaire, il sera plus avantageux en pratique de doter le contour du filament
aplati d'une forme circulaire.Figure 1 schematically shows a bulb according to a particular embodiment of the invention. This bulb is intended to emit radiation through an emission surface ES of an envelope ENV containing a source of radiation LEM. The envelope will advantageously be made of quartz or a special transparent glass for infrared and / or visible.
If the contour of the emission surface ES is, in this example, circular, it is clear that any other shape, oval, rectangular, square, polygonal, etc., can be chosen according to the application for which the bulb is intended.
The emission surface ES is plane, and the radiation source LEM defines a plane surface parallel to the emission surface ES. In the example described here, the LEM radiation source consists of a filament of flattened shape. For reasons of understanding of the figure, the outline of the surface defined by this flattened filament is rectangular in this example, so that it is more easily distinguishable from the other elements of the bulb. It is nevertheless understood that the power surface density of the radiation emitted by the bulb will be all the greater as the area defined by the radiation source LEM will be similar to the emission area ES. Thus, in the present case, where the contour of the emission surface ES is of circular shape, it will be more advantageous in practice to provide the contour of the flattened filament with a circular shape.
La figure 2 illustre un autre mode de réalisation de la source de rayonnement LEM, qui est, dans cet exemple, constituée par N filaments coplanaires W1...WN. Ces filaments forment une grille dont le contour a été choisi rectangulaire dans cet exemple, afin qu'elle soit plus aisément différentiable des autres éléments de l'ampoule. On comprend néanmoins que, ainsi qu'exposé précédemment, il sera plus avantageux en pratique de doter le contour de cette grille d'une forme circulaire en vue d'obtenir une densité surfacique de puissance du rayonnement émis par l'ampoule optimale dans le cas où le contour de la surface d'émission est, comme représenté ici, de forme circulaire.FIG. 2 illustrates another embodiment of the LEM radiation source, which is, in this example, constituted by N coplanar filaments W1 ... WN. These filaments form a grid whose outline has been chosen rectangular in this example, so that it is more easily differentiated from the other elements of the bulb. However, we understand that, as previously explained, it will be more advantageous in practice to provide the outline of this grid of circular shape in order to obtain a power surface density of the radiation emitted by the optimal bulb in the case where the contour of the emitting surface is, as shown here, circular in shape.
La figure 3 illustre un autre mode de réalisation de la source de rayonnement LEM, qui est, dans cet exemple, constituée par deux filaments convolutés Wl et W2. Les convolutions des filaments W1 et W2 ne présentent pas ici une grande complexité, afin que lesdits filaments soient identifiables sur la figure. On comprend néanmoins que, pour obtenir une densité surfacique de puissance de rayonnement optimale, il sera nécessaire de créer des convolutions telles qu'une grande proportion des points constituant la surface d'émission ES soit à l'aplomb d'une portion de l'un des filaments convolutés. Une dérogation à ce principe peut toutefois être obtenue si la surface située en vis-à-vis de la surface d'émission ES est bombée vers l'extérieur de l'enveloppe ENV et recouverte d'une couche réfléchissante, auquel cas une partie du rayonnement réfléchi sera concentrée vers le centre de la surface d'émission ES. Ceci permettra de diminuer la densité des convolutions des filaments au voisinage du centre de la surface d'émission ES, et donc de faciliter la construction de la source de rayonnement EM, sans pour autant compromettre l'homogénéité du rayonnement émis par l'ampoule.FIG. 3 illustrates another embodiment of the LEM radiation source, which is, in this example, constituted by two convoluted filaments Wl and W2. The W1 and W2 filament convolutions are not very complex here, so that said filaments are identifiable in the figure. It is nevertheless understood that, to obtain an optimal surface power density, it will be necessary to create convolutions such that a large proportion of the points constituting the ES emission surface is directly above a portion of one of the convoluted filaments. A departure from this principle may however, it must be obtained if the surface facing the ES emission surface is curved towards the outside of the envelope ENV and covered with a reflective layer, in which case a part of the reflected radiation will be concentrated towards the center of the ES emission surface. This will reduce the density of filament convolutions near the center of the ES emission surface, and therefore to facilitate the construction of the EM radiation source, without compromising the homogeneity of the radiation emitted by the bulb.
La figure 4 illustre un mode de réalisation préféré de la source de rayonnement
LEM, qui est, dans cet exemple, constituée par un gaz réactif, représenté sous forme grisée,
destiné à être excité au moyen d'électrodes El+ et El-. Le gaz utilisé pourra par exemple être du
Xénon. Ce mode de réalisation est particulièrement avantageux en ce que, la répartition du gaz
étant isotrope au sein de l'enveloppe ENV, le rayonnement émis par l'ampoule est par nature
homogène sur toute la surface d'émission ES.
On pourra prévoir de recouvrir la surface située en vis-à-vis de la surface d'émission ES d'une
couche réfléchissante pour améliorer l'homogénéité et accroítre la densité de puissance du
rayonnement émis par l'ampoule.FIG. 4 illustrates a preferred embodiment of the LEM radiation source, which is, in this example, constituted by a reactive gas, represented in gray form, intended to be excited by means of electrodes El + and El-. The gas used may for example be Xenon. This embodiment is particularly advantageous in that, the distribution of the gas being isotropic within the envelope ENV, the radiation emitted by the bulb is by nature homogeneous over the entire emission surface ES.
Provision may be made to cover the surface located opposite the emission surface ES with a reflective layer to improve uniformity and increase the power density of the radiation emitted by the bulb.
La figure 5 est une vue en coupe d'une ampoule selon une variante de l'invention. Dans cette ampoule, l'enveloppe ENV présente un fond BOT, disposé en vis-à-vis de la surface d'émission ES. La source de rayonnement LEM, par exemple un filament aplati ou une pluralité de filaments coplanaires, réalisés en tungstène, ou en tout autre matériau rayonnant, est disposée sur le fond BOT. L'épaisseur de cette source de rayonnement LEM a été volontairement exagérée de manière à ce qu'elle soit clairement visible sur la figure. Dans les cas où, comme ici, la source de rayonnement LEM est constituée par un matériau destiné à être porté à incandescence, l'enveloppe ENV sera avantageusement remplie d'un gaz inerte avant scellement. Une couche REF de matériau réfléchissant, par exemple à base de céramique, a été déposée sur la surface du fond BOT, à l'extérieur de l'enveloppe ENV, en vue d'accroítre la densité de puissance du rayonnement émis par l'ampoule.Figure 5 is a sectional view of a bulb according to a variant of the invention. In this bulb, the envelope ENV has a BOT bottom, arranged opposite the surface of ES emission. The LEM radiation source, for example a flattened filament or a plurality coplanar filaments, made of tungsten, or any other radiant material, is arranged on the bottom BOT. The thickness of this LEM radiation source has been intentionally exaggerated so that it is clearly visible in the figure. In the case, as here, the LEM radiation source consists of a material intended to be heated to incandescent, the ENV envelope will advantageously be filled with an inert gas before sealing. A REF layer of reflective material, for example based on ceramic, has been deposited on the surface of the bottom BOT, outside the envelope ENV, in order to increase the power density of the radiation emitted by the bulb.
La figure 6 est une vue en coupe d'une ampoule selon une autre variante de l'invention. Dans cette ampoule, le fond BOT est bombé vers l'extérieur de l'ampoule. La source de rayonnement LEM est constituée dans cet exemple par une pluralité de filaments convolutés, dont des sections hachurées apparaissent dans le plan de coupe. Certaines de ces sections n'ont pas un contour circulaire, car, comme on peut le déduire de la figure 3, certaines portions de filaments peuvent ne pas être perpendiculaires au plan de coupe. La source de rayonnement LEM repose sur le fond BOT via une pluralité de pilotis P1...PN qui peuvent également être réalisés en tungstène, ou en tout autre matériau rayonnant. Une couche REF de matériau réfléchissant, par exemple à base de céramique, a été déposée sur la surface du fond BOT, à l'extérieur de l'enveloppe ENV, en vue d'accroítre la densité de puissance du rayonnement émis par l'ampoule et de concentrer cette densité vers le centre de l'ampoule. Ceci permet de limiter la densité surfacique des convolutions des filaments au voisinage du centre de la surface d'émission ES, sans pour autant nuire à l'homogénéité du rayonnement émis au travers de ladite surface.Figure 6 is a sectional view of a bulb according to another variant of the invention. In this bulb, the bottom BOT is curved towards the outside of the bulb. Source LEM radiation is constituted in this example by a plurality of convoluted filaments, with hatched sections appearing in the section plane. Some of these sections do not have a circular outline because, as can be deduced from Figure 3, some portions of filaments may not be perpendicular to the cutting plane. The radiation source LEM rests on the BOT bottom via a plurality of P1 ... PN stilts which can also be made of tungsten, or any other radiant material. A REF layer of material reflective, for example ceramic-based, has been deposited on the surface of the BOT bottom, outside the envelope ENV, in order to increase the power density of the emitted radiation by the bulb and concentrate this density towards the center of the bulb. This limits the surface density of the convolutions of the filaments near the center of the surface ES emission, without compromising the homogeneity of the radiation emitted through said surface.
Claims (7)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9914743 | 1999-11-23 | ||
FR9914743 | 1999-11-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1104006A2 true EP1104006A2 (en) | 2001-05-30 |
EP1104006A3 EP1104006A3 (en) | 2001-10-04 |
Family
ID=9552453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00204005A Withdrawn EP1104006A3 (en) | 1999-11-23 | 2000-11-14 | Flat lamp |
Country Status (4)
Country | Link |
---|---|
US (1) | US6608442B1 (en) |
EP (1) | EP1104006A3 (en) |
JP (1) | JP2001210451A (en) |
CN (1) | CN1297250A (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3788721A (en) * | 1970-12-15 | 1974-01-29 | Thorn Electrical Ind Ltd | Electrically conductive components |
US4585971A (en) * | 1984-12-18 | 1986-04-29 | Clegg John E | Flat circular foil-filament lamp |
GB2248141A (en) * | 1990-09-18 | 1992-03-25 | Servomex | Infra-red source |
US5500574A (en) * | 1994-09-28 | 1996-03-19 | Matsushita Electric Works R&D Laboratory, Inc. | Inductively coupled substantially flat fluorescent light source |
DE4438870A1 (en) * | 1994-11-03 | 1996-05-09 | Heraeus Noblelight Gmbh | Fast response infra=red source in hermetically sealed quartz tube |
FR2748810A1 (en) * | 1996-09-30 | 1997-11-21 | Commissariat Energie Atomique | Miniature source of infrared radiation, with coated metal microfilament |
WO1998043278A2 (en) * | 1997-03-21 | 1998-10-01 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Flat light emitter |
WO1999045557A1 (en) * | 1998-03-05 | 1999-09-10 | Corning Incorporated | Channeled glass article and method therefor |
US5977707A (en) * | 1997-06-13 | 1999-11-02 | Koenig; Erl A. | Lamp filament and lamp filament assembly |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1270856A (en) | 1960-09-21 | 1961-09-01 | Philips Nv | Electric heater |
US6114809A (en) * | 1998-02-02 | 2000-09-05 | Winsor Corporation | Planar fluorescent lamp with starter and heater circuit |
US6127780A (en) * | 1998-02-02 | 2000-10-03 | Winsor Corporation | Wide illumination range photoluminescent lamp |
-
2000
- 2000-11-14 EP EP00204005A patent/EP1104006A3/en not_active Withdrawn
- 2000-11-20 US US09/716,912 patent/US6608442B1/en not_active Expired - Fee Related
- 2000-11-20 CN CN00128354A patent/CN1297250A/en active Pending
- 2000-11-20 JP JP2000352035A patent/JP2001210451A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3788721A (en) * | 1970-12-15 | 1974-01-29 | Thorn Electrical Ind Ltd | Electrically conductive components |
US4585971A (en) * | 1984-12-18 | 1986-04-29 | Clegg John E | Flat circular foil-filament lamp |
GB2248141A (en) * | 1990-09-18 | 1992-03-25 | Servomex | Infra-red source |
US5500574A (en) * | 1994-09-28 | 1996-03-19 | Matsushita Electric Works R&D Laboratory, Inc. | Inductively coupled substantially flat fluorescent light source |
DE4438870A1 (en) * | 1994-11-03 | 1996-05-09 | Heraeus Noblelight Gmbh | Fast response infra=red source in hermetically sealed quartz tube |
FR2748810A1 (en) * | 1996-09-30 | 1997-11-21 | Commissariat Energie Atomique | Miniature source of infrared radiation, with coated metal microfilament |
WO1998043278A2 (en) * | 1997-03-21 | 1998-10-01 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Flat light emitter |
US5977707A (en) * | 1997-06-13 | 1999-11-02 | Koenig; Erl A. | Lamp filament and lamp filament assembly |
WO1999045557A1 (en) * | 1998-03-05 | 1999-09-10 | Corning Incorporated | Channeled glass article and method therefor |
Also Published As
Publication number | Publication date |
---|---|
CN1297250A (en) | 2001-05-30 |
US6608442B1 (en) | 2003-08-19 |
JP2001210451A (en) | 2001-08-03 |
EP1104006A3 (en) | 2001-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3286491B1 (en) | Lighting device with led filaments | |
FR2853395A1 (en) | VEHICLE HEADLIGHT AND SEMICONDUCTOR PHOTOEMISSILE ELEMENT FOR VEHICLE HEADLIGHT | |
FR2606125A1 (en) | IMPROVED PROJECTOR FOR MOTOR VEHICLE | |
FR2607904A1 (en) | LIGHTING APPARATUS WITH A FACTOR REFLECTOR | |
EP0457645A2 (en) | Lighting device | |
FR2512273A1 (en) | HIGH PRESSURE ALKALINE METAL STEAM LAMP | |
FR2847759A1 (en) | Heating system for industrial use in drying or plastic forming, uses reflector housing two infrared sources that operate in different regions of the infrared spectrum to allow control of type of heat delivered | |
FR3053657A1 (en) | DIRECTIONAL BALLOON EQUIPPED WITH A LOCAL CONCENTRATION COMPACT SOLAR GENERATOR USING BIFACIAL SOLAR CELL LINES | |
EP3708905A1 (en) | Lighting device imaging the mirrored image of a light collector | |
FR2504313A1 (en) | ELECTRIC REFLECTOR LAMP | |
EP1104006A2 (en) | Flat lamp | |
EP3756452A2 (en) | Radiant heating device for plant seedlings | |
FR2496841A1 (en) | LAMP WITH REFLECTOR AND OPTICAL PROFILES | |
FR3061537B1 (en) | LUMINOUS EMISSION MODULE WITH IMPROVED GUIDE RAIL | |
FR2489040A1 (en) | ELECTRIC LAMP WITH ELLIPSOIDAL SHAPE BULB | |
EP1046187B1 (en) | Tube, device and method for emitting electromagnetic radiation | |
FR2513809A1 (en) | HIGH INTENSITY DISCHARGE LAMP | |
EP1083772B1 (en) | Microwave oven antenna | |
EP1196970B1 (en) | Method for optical pumping of a light-amplifying medium and optical pumping module for implementing said method | |
FR2632432A1 (en) | Device for distributing white light over a flat screen, especially a liquid crystal screen | |
BE892845A (en) | ELECTRIC REFLECTOR LAMP | |
FR2542063A1 (en) | Anti-dazzle lighting device | |
FR2565672A1 (en) | Reflector of IR heater | |
EP3676230A1 (en) | Improved heat treatment device | |
EP0300938A1 (en) | Electrical heating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR Kind code of ref document: A2 Designated state(s): DE FR GB |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20020404 |
|
AKX | Designation fees paid |
Free format text: DE FR GB |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20031013 |