WO2019043334A1 - Improved heat treatment device - Google Patents

Improved heat treatment device Download PDF

Info

Publication number
WO2019043334A1
WO2019043334A1 PCT/FR2018/052118 FR2018052118W WO2019043334A1 WO 2019043334 A1 WO2019043334 A1 WO 2019043334A1 FR 2018052118 W FR2018052118 W FR 2018052118W WO 2019043334 A1 WO2019043334 A1 WO 2019043334A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat treatment
treatment device
substrate
coating
heating means
Prior art date
Application number
PCT/FR2018/052118
Other languages
French (fr)
Inventor
Cécile OZANAM
Emmanuel Mimoun
Johann SKOLSKI
Lorenzo CANOVA
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Priority to KR1020207007954A priority Critical patent/KR20200046056A/en
Priority to EP18773534.5A priority patent/EP3676230A1/en
Priority to CN201880056490.3A priority patent/CN111032590A/en
Publication of WO2019043334A1 publication Critical patent/WO2019043334A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment

Definitions

  • the present invention relates to the field of thin-film heat treatment on glass substrates.
  • a local and rapid annealing flash heating
  • the substrate is passed with the coating to be annealed under a heating means such as a flash lamp or a plasma torch, or a laser line, arranged above the substrate carrying the coating.
  • Rapid annealing is used to heat thin coatings at high temperatures, on the order of several hundred degrees, while preserving the underlying substrate.
  • the scroll speeds are of course preferably the highest possible, preferably at least several meters per minute.
  • a laser line used, it comprises at least one laser generator providing a laser beam.
  • This laser beam is focused in order to locally increase the thermal power supplied by the laser generator.
  • This annealing process whether it is laser or flash lamp or other has the disadvantage of being energy-hungry, this energy greed increasing with the increase in the capabilities of the line especially in terms of processing speed. Such energy greed involves high costs.
  • the present invention therefore proposes to solve these disadvantages by providing a thermal treatment device for rapid annealing which is more energy efficient and less expensive.
  • the invention relates to a device for heat treatment of a coating deposited on a substrate comprising heating means against which the substrate can pass, said heating means arranged to heat an area of the coating on the first face of the glass substrate, characterized in that said heat treatment device further comprises a preheating means arranged to heat the coating of said moving substrate, upstream of the heating zone.
  • This invention has the advantage of preheating the coating which reduces costs since it becomes possible to use heating means having a lower power or use less efficient heating means. This use also increases the scroll speed since the coating is preheated.
  • the heating means are arranged to raise the temperature of the coating in a range of 300 to 700 ° C, in particular from 500 to 650 ° C for a period of time of not more than 1 ms and the preheating means are arranged to raise the temperature of the coating by at most one-third of the temperature reached by the coating via heating means for a period of time of not more than 50 ms.
  • the device further comprises a recycling device for using the unabsorbed portion of the energy supplied by the heating means to serve as preheating means.
  • the heating means comprise a laser system comprising at least one laser generator.
  • the laser system is positioned to be angularly offset from the perpendicular to the glass substrate.
  • the heating means comprise a plurality of flash lamps.
  • the recycling device is a reflective element arranged to reflect the portion of the light beam that is not absorbed by the substrate and to direct it onto the coating of said moving substrate in order to act as a preheating means.
  • This example advantageously allows to have only one device to operate the heating and preheating to reduce costs at most. This also allows to have a simpler heat treatment device because there is only the heating means to set.
  • said reflective element is a mirror arranged facing the face opposite to the face of said substrate carrying the coating.
  • said reflective element is a flat mirror extending parallel to the plane of the substrate.
  • said reflective element is a curved mirror.
  • said reflective element is movable in at least one degree of freedom.
  • the degree of freedom is a translation in a plane perpendicular to the plane of the substrate.
  • the degree of freedom is a rotation with respect to an axis perpendicular to the direction of travel.
  • said reflective element is arranged to reflect a beam in two distinct directions for orienting the unabsorbed beam on either side of the focusing point.
  • said reflective element is a mirror comprising two sections forming between them an angle, the faces of the outer corner being reflective.
  • said reflective element comprises a triangular section cylinder block having two parallel slice faces and three side faces, two adjacent side faces being reflective.
  • said reflective element is a reflective layer deposited on the face of said substrate opposite the face carrying the coating.
  • the substrate extends in a first dimension and a second dimension orthogonal to the first dimension, said substrate traveling in a collinear direction to the larger of the two dimensions, and in that the laser beam extending in a direction orthogonal to the direction of scrolling.
  • the preheating zone and the heating zone are disjoint.
  • said substrate extends in a first direction which is its length and a second direction which is its width and which is orthogonal to the first direction, said substrate traveling along its length, the preheating zone and the heating zone extending over the entire width of the substrate.
  • FIG. 1 is a schematic representation of the heat treatment device according to the invention.
  • FIG. 2 is a schematic representation of the heat treatment device using laser technology according to a first embodiment of the invention
  • -the figs. 3 and 4 are diagrammatic representations of a variant of the heat treatment device according to the first embodiment of the invention.
  • FIG. 5 is a schematic representation of the heat treatment device according to a second embodiment of the invention.
  • FIG. 6 is a schematic representation of the heat treatment device using flash lamp technology according to a first embodiment of the invention.
  • FIG. 1 is shown the heat treatment device 1 of a substrate S according to the invention.
  • the treated substrate S is, for example, a wide-width glass substrate, such as a "jumbo" flat glass sheet (6 mx 3.21 m) emerging from the float processes.
  • the heat treatment device 1 of a substrate S according to the invention is adaptable to substrates of different sizes.
  • This heat treatment device 1 comprises conveying means 2 for transporting the substrates S, for example glassmakers.
  • Such conveying means 2 may be in the form of two parallel rails on which a frame provided with supports for the substrate S is arranged. It can also be provided that the conveying means 2 are in the form of two parallel rails on which wheels are mounted allowing the substrate to be movable. Some wheels are then connected to a motor to allow the scrolling of the substrate.
  • a glass substrate in the form of a "jumbo" flat glass sheet (6 mx 3.21 m)
  • the conveying takes place in a first direction extending along the greatest of two dimensions of the leaves.
  • the sheet has a length of 6 m and a width of 3.21 m and that the conveying means 2 allow said glass sheet to move along its length, that is to say in the direction of its length.
  • the heat treatment device 1 further comprises heating means 10.
  • These heating means 10 may be in various forms and are advantageously arranged to supply energy E for raising the temperature of the coating, in a heating zone, in a heating zone. an interval of 300 to 700 ° C, in particular 500 to 650 ° C for a period of time of not more than 1 ms.
  • These heating means 10 comprise, for example, a flash lamp system 10a comprising at least one flash lamp or a plasma system comprising at least one plasma torch or a laser system 10b comprising one or more laser generators L for supplying said energy.
  • the heating zone extends over the entire width of the substrate.
  • each laser generator L can use solid-state laser or diode laser technology or disk laser that is the perfect combination of a solid-state laser. with a diode laser allowing beam quality and superior performance.
  • These heating means 10 make it possible to anneal a coating R or a layer deposited on the substrate S.
  • This substrate S comprises a first face and a second face, the first face is the face supporting the layer / coating R to anneal. The second face is the face in contact with the conveying means.
  • the substrate S is preferably a substrate transparent to the wavelength of the laser.
  • the laser generator L provides a beam F passing through an optical element to obtain a beam F in the form of a line having a length, for example and without limitation, ranging from 10 to 50cm and a width less than ⁇ ⁇ .
  • the system 10 includes a plurality of LD discharge lamps providing a broad spectrum pulsed light to provide power.
  • Several tubes are put side by side to form an area irradiated by a flash of several tens of centimeters.
  • a reflective cover C is arranged at the rear of the tubes and on the sides to reflect light forward. This reflective cover C is advantageously designed to reduce the light without it diverge too much.
  • the light source has a duration of less than 1 ms. Compared to a laser system, this flash lamp technology allows a larger area to be treated due to the arrangement of the tubes.
  • the invention proposes to provide a preheating means 10 'of the coating R upstream of the heating means 10.
  • These preheating means 10' are arranged to raise the temperature of the coating R, in a preheating zone, about 100 ° C and at most one third of the temperature reached by the coating R via heating means 10 for a period of time between 1 ms and at most 50 ms.
  • the preheating zone is separate from the heating zone, ie there is a gap between these two zones which is not not heated or preheated. This preheating zone extends over the entire width of the substrate.
  • preheating means 10 ' may for example be a laser line or a flash lamp line or a resistive plate of lesser power than the heating means and arranged upstream of the heating means 10, preferably in a contiguous manner. That is to say that the spacing between the preheating means 10 'and the heating means 10 is as small as possible in order to avoid heat losses.
  • a heat treatment device 1 which comprises a resistive plate as a preheating means 10 'and a flash lamp system as a heating means 10 or which comprises a laser system as a means of preheating 10 'and a flash lamp system as a heating means 10 or alternatively comprising a flash lamp system as a preheating means 10' and a laser system as a heating means 10.
  • the present invention proposes to use the existing heating means 10 to operate this preheating.
  • a heat treatment operated by laser it is cleverly provided to use the laser beam F of the laser generator L to carry out said additional heat treatment step on the substrate S as shown in FIG. 2.
  • the heat treatment device 1 further comprises recycling means RC to allow the preheating of the glass substrate.
  • the heat treatment device 1 comprises a reflector element 20.
  • this reflector element 20 is a mirror M.
  • This mirror M is arranged under the substrate S.
  • means heater 10 comprising at least one laser generator L, this example not being limiting and can be applied for a flash lamp or plasma torch or any other heating means 10.
  • This arrangement allows to act on the part of the non-laser beam absorbed by the coating R and the substrate S, the latter being transparent to the wavelength used for the heating means 10.
  • This unabsorbed laser beam f is defocused, the focusing taking place at level of the coating R to anneal.
  • the mirror M is then positioned so that the unabsorbed laser beam f is reflected.
  • This reflection is designed so that the reflected unabsorbed beam f is reflected towards the glass substrate S upstream of the focusing point of the laser beam F.
  • Such a configuration makes it possible to heat the coating deposited on the glass substrate S before passing through the beam localized laser. This preheating thus makes it possible either to reduce the power of the laser since the power is better used, or to increase the conveying speed.
  • This arrangement advantageously makes it possible to use a mirror M and place it parallel to the plane of the glass substrate S. This arrangement makes it possible more particularly to use a simple flat mirror M for reflecting the unabsorbed laser beam f.
  • the mirror M may be inclined relative to the plane of the glass substrate S.
  • the mirror M is not limited to a flat mirror, it may be convex or concave shape curve.
  • the laser generator L In order for the unabsorbed laser beam to be reflected towards the glass substrate S upstream of the focusing point, the laser generator L will be positioned so as to be offset angularly with respect to the perpendicular to the glass substrate.
  • the angle of incidence of the laser on the glass substrate S will be between 5 and 15 °, preferably between 7 and 10 °.
  • the preheating is done because the reflected defocused beam f has a pfd significantly lower compared to the focused beam F. This reduced pfd makes it impossible to anneal the coating R deposited on the glass substrate S but is sufficient to allow the preheating of the coating of said substrate S.
  • This pfd can be modified. Indeed, the reflected beam f is defocused, that is to say that the beam surface is not constant. Consequently, by modifying the distance D between the mirror M and the glass substrate S, the area of the laser beam reflected at the level of said substrate and therefore the pfd varies. By increasing the distance D between the mirror M and the second face of the glass substrate S, that is to say in placing the mirror M in translation in a direction perpendicular to its plane, the width La of the reflected beam which preheats the glass substrate S is increased and the distance d between the preheated zone and the focusing point is also increased. Similarly, it is possible to change the inclination of the plane of the mirror M to change the position of the preheating. By changing the inclination of the mirror M, the distance between the mirror M and the preheated coating is changed so that it is possible for the power to vary.
  • the reflector element 20 can also be used to reflect unused light during processing and preheat.
  • the reflector element 20, ie the mirror has a larger width to accommodate the large irradiation zone.
  • the distance between said reflector element 20 and the glass substrate S on which the coating is deposited is very small to minimize the divergence.
  • the means to allow preheating also allow post-heating to obtain a slow cooling of the treated coating.
  • the reflector element 20 is arranged to be able to reflect the unabsorbed beam f in two different directions as can be seen in FIG.
  • the reflector element 20 of this second embodiment is a bent mirror M '.
  • a mirror M ' comprises two sections m forming, between them, an angle.
  • the faces of the external angle (the larger of the two angles) are reflective while the faces of the internal angle allow the presence of support means of the reflector element 20.
  • the reflector element 20 is a mirror M "in the form of a cylinder block 200 of triangular section .
  • This mirror M comprises two parallel slice faces 201 and three faces of side 202. Two adjacent side faces are reflective.
  • This positioning of the reflector element 20 advantageously makes it possible to split the unabsorbed beam f in two.
  • a first split portion is directed upstream of the focus point while the second split portion is directed downstream of the focus point. If the first part split up and directed upstream allows preheating of the glass substrate S, the second portion split and directed downstream of the focusing point improves the cooling. Indeed, this ensures a lower temperature drop after the heat treatment.
  • the reflector element 20 may be designed and positioned to split the unabsorbed beam equitably or to unequally split it to favor the upstream or downstream portion of the focusing point.
  • the heat treatment device 1 further comprises a beam shield BD.
  • This beam shield BD is arranged on the path of the reflected unabsorbed beam f. More particularly, this beam shield BD is arranged above the glass substrate S. This arrangement allows the beam shield BD to be the element which stops the propagation of the reflected unabsorbed beam f.
  • This shield BD is advantageously made of a heat-resistant material such as a ceramic or a metal with a high melting point and / or can be cooled. In the case of an unabsorbed beam split in two, two BD beam shields may be present.
  • the reflector element 20 is a reflective layer 21.
  • This reflecting layer 21 is arranged on the glass substrate S at its second face, that is to say the face opposite to the face carrying the coating R.
  • This reflective layer 21, to be effective, has a reflectivity of at least 70%, preferably at least 80%.
  • this reflective layer 21 reflects the unabsorbed beam f. This reflection is similar to that of the mirror M described in the first embodiment, that is to say that the unabsorbed beam f is reflected upstream of the focusing point.
  • the glass substrate is 4mm thick
  • the laser has a power of 433W and a width of ⁇
  • the reflectivity of the reflective layer is 80%
  • the angle of incidence of the laser on the glass substrate is 7 °.
  • the reflected unabsorbed beam passes through the glass substrate upstream of the focusing point over a width of about 300 ⁇ and at a distance of about 350 ⁇ from the focusing point.
  • This configuration example makes it possible to obtain a conveyance speed gain of 15% from about 6m / min to 7m / min at equal processing performance.

Abstract

The present invention concerns a device (1) for heat treatment of a coating (R) deposited on a substrate (S), comprising heating means (10) opposite which the substrate can pass, said heating means (10) being designed to heat the coating on the first surface of the glass substrate, characterised in that said heat treatment device also comprises a pre-heating means (10') designed to heat the coating of said substrate passing upstream of the heating zone.

Description

DISPOSITIF DE TRAITEMENT THERMIQUE AMÉLIORÉ  IMPROVED THERMAL TREATMENT DEVICE
La présente invention est relative au domaine du traitement thermique de couche mince sur des substrats verrier. The present invention relates to the field of thin-film heat treatment on glass substrates.
ART ANTÉRIEUR PRIOR ART
Il est connu d'effectuer un recuit local et rapide (flash heating) de revêtements déposés sur des substrats plats. Pour cela, on fait défiler le substrat avec le revêtement à recuire sous un moyen de chauffage comme un lampe flash ou une torche plasma, ou bien une ligne laser, agencé au-dessus du substrat portant le revêtement.  It is known to carry out a local and rapid annealing (flash heating) of coatings deposited on flat substrates. For this, the substrate is passed with the coating to be annealed under a heating means such as a flash lamp or a plasma torch, or a laser line, arranged above the substrate carrying the coating.
Le recuit rapide permet de chauffer des revêtements minces à des températures élevées, de l'ordre de plusieurs centaines de degrés, tout en préservant le substrat sous-jacent. Les vitesses de défilement sont bien entendu de préférence les plus élevées possibles, avantageusement au moins de plusieurs mètres par minute.  Rapid annealing is used to heat thin coatings at high temperatures, on the order of several hundred degrees, while preserving the underlying substrate. The scroll speeds are of course preferably the highest possible, preferably at least several meters per minute.
Par exemple, dans une ligne laser utilisée, celle-ci comprend au moins un générateur laser fournissant un faisceau laser. Ce faisceau Laser est focalisé afin d'augmenter localement la puissance thermique fournie par le générateur laser.  For example, in a laser line used, it comprises at least one laser generator providing a laser beam. This laser beam is focused in order to locally increase the thermal power supplied by the laser generator.
Ce procédé de recuit qu'il soit laser ou à lampe flash ou autre a l'inconvénient d'être gourmand en énergie, cette gourmandise en énergie augmentant avec l'augmentation des capacités de la ligne notamment en terme de vitesse de traitement. Une telle gourmandise en énergie implique des coûts élevés.  This annealing process whether it is laser or flash lamp or other has the disadvantage of being energy-hungry, this energy greed increasing with the increase in the capabilities of the line especially in terms of processing speed. Such energy greed involves high costs.
RÉSUMÉ DE L'INVENTION La présente invention se propose donc de résoudre ces inconvénients en fournissant un dispositif de traitement thermique pour le recuit rapide qui soit plus efficace au niveau énergétique et moins coûteux. A cet effet, l'invention concerne un dispositif de traitement thermique d'un revêtement déposé sur un substrat comprenant des moyens de chauffage en regard duquel le substrat peut défiler, lesdits moyens de chauffage agencés pour chauffer une zone du revêtement sur la première face du substrat verrier, caractérisé en ce que ledit dispositif de traitement thermique comprend en outre un moyen de préchauffage agencés pour chauffer le revêtement dudit substrat défilant, en amont de la zone de chauffage. SUMMARY OF THE INVENTION The present invention therefore proposes to solve these disadvantages by providing a thermal treatment device for rapid annealing which is more energy efficient and less expensive. For this purpose, the invention relates to a device for heat treatment of a coating deposited on a substrate comprising heating means against which the substrate can pass, said heating means arranged to heat an area of the coating on the first face of the glass substrate, characterized in that said heat treatment device further comprises a preheating means arranged to heat the coating of said moving substrate, upstream of the heating zone.
Cette invention présente l'avantage de préchauffer le revêtement ce qui permet de réduire les coûts puisqu'il devient possible d'utiliser des moyens de chauffage ayant une puissance moindre ou d'utiliser des moyens de chauffage moins performants. Cette utilisation permet également d'augmenter la vitesse de défilement puisque le revêtement est préchauffé.  This invention has the advantage of preheating the coating which reduces costs since it becomes possible to use heating means having a lower power or use less efficient heating means. This use also increases the scroll speed since the coating is preheated.
Selon un exemple, les moyens de chauffage sont agencés pour élever la température du revêtement dans un intervalle de 300 à 700°C, en particulier de 500 à 650°C durant un laps de temps d'au maximum 1 ms et les moyens de préchauffage sont agencés pour élever la température du revêtement d'au maximum le tiers de la température atteinte par le revêtement via des moyens de chauffage durant un laps de temps d'au maximum 50 ms.  According to one example, the heating means are arranged to raise the temperature of the coating in a range of 300 to 700 ° C, in particular from 500 to 650 ° C for a period of time of not more than 1 ms and the preheating means are arranged to raise the temperature of the coating by at most one-third of the temperature reached by the coating via heating means for a period of time of not more than 50 ms.
Selon un exemple, le dispositif comprend en outre un dispositif de recyclage permettant d'utiliser la partie non absorbée de l'énergie fournie par les moyens de chauffage pour servir de moyen de préchauffage.  According to an example, the device further comprises a recycling device for using the unabsorbed portion of the energy supplied by the heating means to serve as preheating means.
Selon un exemple, les moyens de chauffage comprennent un système laser comprenant au moins un générateur laser.  In one example, the heating means comprise a laser system comprising at least one laser generator.
Selon un exemple, le système laser est positionné pour être angulairement décalé par rapport à la perpendiculaire au substrat verrier.  In one example, the laser system is positioned to be angularly offset from the perpendicular to the glass substrate.
Selon un exemple, les moyens de chauffage comprennent une pluralité de lampes flash.  In one example, the heating means comprise a plurality of flash lamps.
Selon un exemple, le dispositif de recyclage est un élément réflecteur agencé pour réfléchir la partie du faisceau lumineux non absorbée par le substrat et la diriger sur le revêtement dudit substrat défilant afin d'agir comme moyen de préchauffage.  In one example, the recycling device is a reflective element arranged to reflect the portion of the light beam that is not absorbed by the substrate and to direct it onto the coating of said moving substrate in order to act as a preheating means.
Cet exemple permet avantageusement de n'avoir qu'un seul dispositif pour opérer le chauffage et le préchauffage permettant de diminuer les coûts au maximum. Cela permet aussi d'avoir un dispositif de traitement thermique plus simple car il n'y a que le moyen de chauffage à paramétrer. This example advantageously allows to have only one device to operate the heating and preheating to reduce costs at most. This also allows to have a simpler heat treatment device because there is only the heating means to set.
Selon un exemple, ledit élément réflecteur est un miroir agencé en regard de la face opposée à la face dudit substrat portant le revêtement.  In one example, said reflective element is a mirror arranged facing the face opposite to the face of said substrate carrying the coating.
Selon un exemple, ledit élément réflecteur est un miroir plat s'étendant parallèlement au plan du substrat.  In one example, said reflective element is a flat mirror extending parallel to the plane of the substrate.
Selon un exemple, ledit élément réflecteur est un miroir courbe.  In one example, said reflective element is a curved mirror.
Selon un exemple, ledit élément réflecteur est mobile selon au moins un degré de liberté.  In one example, said reflective element is movable in at least one degree of freedom.
Selon un exemple, le degré de liberté est une translation dans un plan perpendiculaire au plan du substrat.  In one example, the degree of freedom is a translation in a plane perpendicular to the plane of the substrate.
Selon un exemple, le degré de liberté est une rotation par rapport à un axe perpendiculaire à la direction de défilement.  In one example, the degree of freedom is a rotation with respect to an axis perpendicular to the direction of travel.
Selon un exemple, ledit élément réflecteur est agencé pour réfléchir un faisceau dans deux directions distinctes permettant d'orienter le faisceau non absorbé de part et d'autre du point de focalisation.  In one example, said reflective element is arranged to reflect a beam in two distinct directions for orienting the unabsorbed beam on either side of the focusing point.
Selon un exemple, ledit élément réflecteur est un miroir comprenant deux sections formant entre elles un angle, les faces de l'angle externe étant réfléchissantes.  According to one example, said reflective element is a mirror comprising two sections forming between them an angle, the faces of the outer corner being reflective.
Selon un exemple, ledit élément réflecteur comprend un bloc cylindre de section triangulaire comportant deux faces de tranche parallèles et trois faces de côté, deux faces de côté adjacentes étant réfléchissantes.  In one example, said reflective element comprises a triangular section cylinder block having two parallel slice faces and three side faces, two adjacent side faces being reflective.
Selon un exemple, ledit élément réflecteur est une couche réfléchissante déposée sur la face dudit substrat opposée à la face portant le revêtement.  In one example, said reflective element is a reflective layer deposited on the face of said substrate opposite the face carrying the coating.
Selon un exemple, le substrat s'étend selon une première dimension et une seconde dimension orthogonale à la première dimension, ledit substrat défilant dans une direction colinéaire à la plus grande des deux dimensions, et en ce que le faisceau laser s'étendant dans une direction orthogonale à la direction de défilement.  According to one example, the substrate extends in a first dimension and a second dimension orthogonal to the first dimension, said substrate traveling in a collinear direction to the larger of the two dimensions, and in that the laser beam extending in a direction orthogonal to the direction of scrolling.
Selon un exemple, la zone de préchauffage et la zone de chauffage sont disjointes.  In one example, the preheating zone and the heating zone are disjoint.
Selon un exemple, ledit substrat s'étend selon une première direction qui est sa longueur et une seconde direction qui est sa largeur et qui est orthogonale à la première direction, ledit substrat défilant dans le sens de sa longueur, la zone de préchauffage et la zone de chauffage s'étendant sur l'ensemble de la largeur du substrat. According to one example, said substrate extends in a first direction which is its length and a second direction which is its width and which is orthogonal to the first direction, said substrate traveling along its length, the preheating zone and the heating zone extending over the entire width of the substrate.
DESCRIPTION DES FIGURES DESCRIPTION OF THE FIGURES
D'autres particularités et avantages ressortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement limitatif, en référence aux dessins annexés, dans lesquels: Other particularities and advantages will emerge clearly from the description which is given hereinafter, by way of indication and in no way limiting, with reference to the appended drawings, in which:
-la fig. 1 est une représentation schématique du dispositif de traitement thermique selon de l'invention;  FIG. 1 is a schematic representation of the heat treatment device according to the invention;
-la fig. 2 est une représentation schématique du dispositif de traitement thermique utilisant la technologie laser selon un premier mode de réalisation de l'invention;  FIG. 2 is a schematic representation of the heat treatment device using laser technology according to a first embodiment of the invention;
-les fig. 3 et 4 sont des représentations schématiques d'une variante du dispositif de traitement thermique selon le premier mode de réalisation de l'invention;  -the figs. 3 and 4 are diagrammatic representations of a variant of the heat treatment device according to the first embodiment of the invention;
-la fig. 5 est une représentation schématique du dispositif de traitement thermique selon un second mode de réalisation de l'invention;  FIG. 5 is a schematic representation of the heat treatment device according to a second embodiment of the invention;
-la fig. 6 est une représentation schématique du dispositif de traitement thermique utilisant la technologie lampe flash selon un premier mode de réalisation de l'invention;  FIG. 6 is a schematic representation of the heat treatment device using flash lamp technology according to a first embodiment of the invention;
DESCRIPTION DÉTAILLÉE DE L'INVENTION DETAILED DESCRIPTION OF THE INVENTION
A la figure 1 est représenté le dispositif de traitement thermique 1 d'un substrat S selon l'invention. Le substrat S traité est, par exemple, un substrat verrier de grande largeur, tels qu'une feuille de verre plat de taille « jumbo » (6 m x 3,21 m) sortant des procédés de float. Bien sûr, le dispositif de traitement thermique 1 d'un substrat S selon l'invention est adaptable à des substrats de différentes tailles. Ce dispositif de traitement thermique 1 comprend des moyens de convoyage 2 permettant le transport des substrats S, par exemple verriers. De tels moyens de convoyage 2 peuvent se présenter sous la forme de deux rails parallèles sur lesquels un châssis munis de supports pour le substrat S est agencé. Il peut être également prévu que les moyens de convoyage 2 se présentent sous la forme de deux rails parallèles sur lesquels sont montés des roues permettant au substrat d'être mobile. Certaines roues sont alors connectées à un moteur pour permettre le défilement du substrat. In Figure 1 is shown the heat treatment device 1 of a substrate S according to the invention. The treated substrate S is, for example, a wide-width glass substrate, such as a "jumbo" flat glass sheet (6 mx 3.21 m) emerging from the float processes. Of course, the heat treatment device 1 of a substrate S according to the invention is adaptable to substrates of different sizes. This heat treatment device 1 comprises conveying means 2 for transporting the substrates S, for example glassmakers. Such conveying means 2 may be in the form of two parallel rails on which a frame provided with supports for the substrate S is arranged. It can also be provided that the conveying means 2 are in the form of two parallel rails on which wheels are mounted allowing the substrate to be movable. Some wheels are then connected to a motor to allow the scrolling of the substrate.
Pour un substrat verrier se présentant sous la forme d'une feuille de verre plat de taille « jumbo » (6 m x 3,21 m), il sera prévu que le convoyage se fasse dans une première direction s'étendant suivant la plus grande des deux dimensions de la feuilles. Dans le cas d'une feuille de taille « jumbo » (6 m x 3,21 m), on définira que la feuille présente une longueur de 6m et une largeur de 3.21 m et que les moyens de convoyage 2 permettent à ladite feuille de verre de se déplacer suivant sa longueur, c'est-à-dire dans la direction de sa longueur.  For a glass substrate in the form of a "jumbo" flat glass sheet (6 mx 3.21 m), it will be provided that the conveying takes place in a first direction extending along the greatest of two dimensions of the leaves. In the case of a "jumbo" size sheet (6 mx 3.21 m), it will be defined that the sheet has a length of 6 m and a width of 3.21 m and that the conveying means 2 allow said glass sheet to move along its length, that is to say in the direction of its length.
Le dispositif de traitement thermique 1 comprend en outre des moyens de chauffage 10. Ces moyens de chauffage 10 peuvent se présenter sous différentes formes et sont avantageusement agencés fournir de l'énergie E pour élever la température du revêtement, dans une zone de chauffage, dans un intervalle de 300 à 700°C, en particulier de 500 à 650°C durant un laps de temps d'au maximum 1 ms. Ces moyens de chauffage 10 comprennent par exemple un système à lampes flash 10a comprenant au moins une lampe flash ou un système à plasma comprenant au moins une torche plasma ou un système laser 10b comprenant un ou plusieurs générateurs lasers L pour fournir ladite énergie. La zone de chauffage s'étend sur l'ensemble de la largeur du substrat.  The heat treatment device 1 further comprises heating means 10. These heating means 10 may be in various forms and are advantageously arranged to supply energy E for raising the temperature of the coating, in a heating zone, in a heating zone. an interval of 300 to 700 ° C, in particular 500 to 650 ° C for a period of time of not more than 1 ms. These heating means 10 comprise, for example, a flash lamp system 10a comprising at least one flash lamp or a plasma system comprising at least one plasma torch or a laser system 10b comprising one or more laser generators L for supplying said energy. The heating zone extends over the entire width of the substrate.
Dans le cas d'un système laser 10b visible à la figure 2, chaque générateur laser L peut utiliser la technologie du laser solide ou du laser à diode ou du laser à disque se présentant comme étant l'association parfaite d'un laser à solide avec un laser à diode permettant une qualité de faisceau et un rendement supérieur. Ces moyens de chauffage 10 permettent d'opérer un recuit sur un revêtement R ou une couche déposée sur le substrat S. Ce substrat S comprend une premier face et une seconde face, la première face est la face supportant la couche/le revêtement R à recuire. La seconde face est la face en contact des moyens de convoyage. Le substrat S est de préférence un substrat transparent à la longueur d'onde du laser. In the case of a laser system 10b visible in FIG. 2, each laser generator L can use solid-state laser or diode laser technology or disk laser that is the perfect combination of a solid-state laser. with a diode laser allowing beam quality and superior performance. These heating means 10 make it possible to anneal a coating R or a layer deposited on the substrate S. This substrate S comprises a first face and a second face, the first face is the face supporting the layer / coating R to anneal. The second face is the face in contact with the conveying means. The substrate S is preferably a substrate transparent to the wavelength of the laser.
Le générateur laser L fournit un faisceau F passant dans un élément optique pour obtenir un faisceau F en forme de ligne ayant une longueur, par exemple et de façon non limitative, allant de 10 à 50cm et une largeur inférieure à Ι ΟΟμιτι.  The laser generator L provides a beam F passing through an optical element to obtain a beam F in the form of a line having a length, for example and without limitation, ranging from 10 to 50cm and a width less than Ι ΟΟμιτι.
Dans le cas d'une pluralité de générateurs lasers L, ces derniers sont agencés les uns à côtés des autres afin de s'additionner pour former une seule ligne de grande longueur. Dans ce cas et afin de pouvoir régler l'alignement de ces différents faisceaux et ainsi obtenir une ligne laser la plus homogène possible, un système d'alignement (non représenté) est prévu.  In the case of a plurality of laser generators L, the latter are arranged next to each other in order to add up to form a single line of great length. In this case and in order to be able to adjust the alignment of these different beams and thus obtain a laser line as homogeneous as possible, an alignment system (not shown) is provided.
Dans le cas d'un système à lampe flash 10a visible à la figure 6, le système 10 comprend une pluralité de lampes à décharge LD fournissant une lumière puisée à large spectre pour fournir de l'énergie. Plusieurs tubes sont mis côte à côté pour former une zone irradiée par un flash de plusieurs dizaines de centimètres. Pour ramener la lumière vers la zone à irradier, un capot réflecteur C est agencé à l'arrière des tubes et sur les côtés pour réfléchir la lumière vers l'avant. Ce capot réflecteur C est avantageusement conçu pour ramener la lumière sans que celle-ci ne diverge trop. Le puise de lumière à une durée inférieure à 1 ms. Par rapport à un système laser, cette technologie à lampe flash permet de traiter une plus grande surface étant donné la disposition des tubes.  In the case of a flashlamp system 10a shown in Figure 6, the system 10 includes a plurality of LD discharge lamps providing a broad spectrum pulsed light to provide power. Several tubes are put side by side to form an area irradiated by a flash of several tens of centimeters. To bring the light back to the area to be irradiated, a reflective cover C is arranged at the rear of the tubes and on the sides to reflect light forward. This reflective cover C is advantageously designed to reduce the light without it diverge too much. The light source has a duration of less than 1 ms. Compared to a laser system, this flash lamp technology allows a larger area to be treated due to the arrangement of the tubes.
Astucieusement, l'invention se propose de prévoir un moyen de préchauffage 10' du revêtement R en amont des moyens de chauffage 10. Ces moyens de préchauffage 10' sont agencés pour élever la température du revêtement R, dans une zone de préchauffage, d'environ 100°C et d'au maximum le tiers de la température atteinte par le revêtement R via des moyens de chauffage 10 durant un laps de temps compris entre 1 ms et au maximum 50 ms. La zone de préchauffage est distincte, disjointe de la zone de chauffage c'est-à-dire qu'il existe un espace entre ces deux zones qui n'est pas chauffé ou préchauffé. Cette zone de préchauffage s'étend sur l'ensemble de la largeur du substrat. Cleverly, the invention proposes to provide a preheating means 10 'of the coating R upstream of the heating means 10. These preheating means 10' are arranged to raise the temperature of the coating R, in a preheating zone, about 100 ° C and at most one third of the temperature reached by the coating R via heating means 10 for a period of time between 1 ms and at most 50 ms. The preheating zone is separate from the heating zone, ie there is a gap between these two zones which is not not heated or preheated. This preheating zone extends over the entire width of the substrate.
Ces moyens de préchauffage 10' peuvent être par exemple une ligne laser ou une ligne de lampe flash ou une plaque résistive de moindre puissance que les moyens de chauffage et agencés en amont des moyens de chauffage 10, de préférence de façon contiguë c'est-à-dire que l'écartement entre les moyens de préchauffage 10' et les moyens de chauffage 10 est le plus faible possible afin d'éviter les pertes de chaleur.  These preheating means 10 'may for example be a laser line or a flash lamp line or a resistive plate of lesser power than the heating means and arranged upstream of the heating means 10, preferably in a contiguous manner. that is to say that the spacing between the preheating means 10 'and the heating means 10 is as small as possible in order to avoid heat losses.
On peut donc avoir, par exemple et de façon non limitative, un dispositif de traitement thermique 1 qui comprend une plaque résistive comme moyen de préchauffage 10' et un système à lampe flash comme moyen de chauffage 10 ou qui comprend un System laser comme moyen de préchauffage 10' et un système à lampe flash comme moyen de chauffage 10 ou encore qui comprend un système à lampe flash comme moyen de préchauffage 10' et un système laser comme moyen de chauffage 10.  It may therefore be, for example and without limitation, a heat treatment device 1 which comprises a resistive plate as a preheating means 10 'and a flash lamp system as a heating means 10 or which comprises a laser system as a means of preheating 10 'and a flash lamp system as a heating means 10 or alternatively comprising a flash lamp system as a preheating means 10' and a laser system as a heating means 10.
De façon encore plus astucieuse, la présente invention se propose d'utiliser les moyens de chauffage 10 existant pour opérer ce préchauffage. Dans le cas d'un traitement thermique opéré par laser, il est astucieusement prévu d'utiliser le faisceau laser F du générateur laser L pour opérer ladite étape de traitement thermique supplémentaire sur le substrat S comme visible à la figure 2.  Even more cleverly, the present invention proposes to use the existing heating means 10 to operate this preheating. In the case of a heat treatment operated by laser, it is cleverly provided to use the laser beam F of the laser generator L to carry out said additional heat treatment step on the substrate S as shown in FIG. 2.
Selon un premier mode de réalisation, le dispositif de traitement thermique 1 comprend en outre des moyens de recyclage RC pour permettre le préchauffage du substrat verrier. Pour cela, le dispositif de traitement thermique 1 comprend un élément réflecteur 20. Ici, cet élément réflecteur 20 est un miroir M. Ce miroir M est agencé sous le substrat S. Dans ce premier mode de réalisation, il sera pris pour exemple des moyens de chauffage 10 comprenant au moins un générateur laser L, cet exemple n'étant pas limitatif et pouvant être appliqué pour une lampe flash ou torche plasma ou tout autre moyen de chauffage 10. Cet agencement permet d'agir sur la partie du faisceau laser non absorbé f par le revêtement R et le substrat S, ce dernier étant transparent à la longueur d'onde utilisée pour les moyens de chauffage 10. Ce faisceau laser non absorbé f est défocalisé, la focalisation ayant lieu au niveau du revêtement R à recuire. Le miroir M est alors positionné pour que le faisceau laser non absorbé f soit réfléchi. Cette réflexion est conçue pour que le faisceau non absorbé réfléchi f soit réfléchi vers le substrat verrier S en amont du point de focalisation du faisceau laser F. Une telle configuration permet de chauffer le revêtement déposé sur le substrat verrier S avant le passage devant le faisceau laser localisé. Ce préchauffage permet ainsi, soit de diminuer la puissance du laser puisque la puissance est mieux utilisée, soit d'augmenter la vitesse de convoyage. According to a first embodiment, the heat treatment device 1 further comprises recycling means RC to allow the preheating of the glass substrate. For this, the heat treatment device 1 comprises a reflector element 20. Here, this reflector element 20 is a mirror M. This mirror M is arranged under the substrate S. In this first embodiment, it will be taken for example means heater 10 comprising at least one laser generator L, this example not being limiting and can be applied for a flash lamp or plasma torch or any other heating means 10. This arrangement allows to act on the part of the non-laser beam absorbed by the coating R and the substrate S, the latter being transparent to the wavelength used for the heating means 10. This unabsorbed laser beam f is defocused, the focusing taking place at level of the coating R to anneal. The mirror M is then positioned so that the unabsorbed laser beam f is reflected. This reflection is designed so that the reflected unabsorbed beam f is reflected towards the glass substrate S upstream of the focusing point of the laser beam F. Such a configuration makes it possible to heat the coating deposited on the glass substrate S before passing through the beam localized laser. This preheating thus makes it possible either to reduce the power of the laser since the power is better used, or to increase the conveying speed.
Pour éviter d'endommager le générateur laser L, celui-ci sera installé de sorte que le faisceau laser F ne soit pas perpendiculaire au substrat verrier. Cet agencement permet avantageusement d'utiliser un miroir M et de la placer de façon parallèle au plan du substrat verrier S. Cet agencement permet plus particulièrement d'utiliser un miroir M plat, simple, pour réfléchir le faisceau laser non absorbé f.  To avoid damaging the laser generator L, it will be installed so that the laser beam F is not perpendicular to the glass substrate. This arrangement advantageously makes it possible to use a mirror M and place it parallel to the plane of the glass substrate S. This arrangement makes it possible more particularly to use a simple flat mirror M for reflecting the unabsorbed laser beam f.
Toutefois, le miroir M peut être placé en inclinaison par rapport au plan du substrat verrier S. De plus, le miroir M n'est pas limité à un miroir plat, il peut être courbe de forme convexe ou concave.  However, the mirror M may be inclined relative to the plane of the glass substrate S. In addition, the mirror M is not limited to a flat mirror, it may be convex or concave shape curve.
Pour que le faisceau laser non absorbé soit réfléchi vers le substrat verrier S en amont du point de focalisation, le générateur laser L sera positionné de sorte à être décalé angulairement par rapport à la perpendiculaire au substrat verrier. L'angle d'incidence du laser sur le substrat verrier S sera compris entre 5 et 15°, préférentiellement entre 7 et 10°.  In order for the unabsorbed laser beam to be reflected towards the glass substrate S upstream of the focusing point, the laser generator L will be positioned so as to be offset angularly with respect to the perpendicular to the glass substrate. The angle of incidence of the laser on the glass substrate S will be between 5 and 15 °, preferably between 7 and 10 °.
Le préchauffage est opéré car le faisceau défocalisé réfléchi f présente une puissance surfacique nettement diminuée par rapport au faisceau focalisé F. Cette puissance surfacique diminuée rend impossible le recuit du revêtement R déposé sur le substrat verrier S mais est suffisante pour permettre le préchauffage du revêtement dudit substrat S.  The preheating is done because the reflected defocused beam f has a pfd significantly lower compared to the focused beam F. This reduced pfd makes it impossible to anneal the coating R deposited on the glass substrate S but is sufficient to allow the preheating of the coating of said substrate S.
Cette puissance surfacique peut être modifiée. En effet, le faisceau réfléchi f est défocalisé c'est-à-dire que la surface du faisceau n'est pas constante. Par conséquent, en modifiant la distance D entre le miroir M et le substrat verrier S, la surface du faisceau laser réfléchi f au niveau dudit substrat et donc la puissance surfacique varie. En augmentant la distance D entre le miroir M et la seconde face du substrat verrier S c'est-à-dire en mettant le miroir M en translation dans une direction perpendiculaire à son plan, la largeur La du faisceau réfléchi f qui préchauffe le substrat verrier S est augmentée et la distance d entre la zone préchauffée et le point de focalisation est également augmentée. De même, il est possible de modifier l'inclinaison du plan du miroir M afin de modifier la position du préchauffage. En modifiant l'inclinaison du miroir M, la distance entre le miroir M et le revêtement préchauffé est modifiée de sorte qu'il est possible que la puissance varie. This pfd can be modified. Indeed, the reflected beam f is defocused, that is to say that the beam surface is not constant. Consequently, by modifying the distance D between the mirror M and the glass substrate S, the area of the laser beam reflected at the level of said substrate and therefore the pfd varies. By increasing the distance D between the mirror M and the second face of the glass substrate S, that is to say in placing the mirror M in translation in a direction perpendicular to its plane, the width La of the reflected beam which preheats the glass substrate S is increased and the distance d between the preheated zone and the focusing point is also increased. Similarly, it is possible to change the inclination of the plane of the mirror M to change the position of the preheating. By changing the inclination of the mirror M, the distance between the mirror M and the preheated coating is changed so that it is possible for the power to vary.
Dans le cas d'un système à lampes flash, l'élément réflecteur 20 peut également être utilisé pour réfléchir la lumière non utilisé lors du traitement et opérer un préchauffage. Dans ce cas-ci, l'élément réflecteur 20, c'est-à-dire le miroir, a une largeur plus importante pour accommoder la grande zone d'irradiation. De plus, la distance entre ledit élément réflecteur 20 et le substrat verrier S sur lequel le revêtement est déposé est très faible pour limiter au maximum la divergence.  In the case of a flash lamp system, the reflector element 20 can also be used to reflect unused light during processing and preheat. In this case, the reflector element 20, ie the mirror, has a larger width to accommodate the large irradiation zone. In addition, the distance between said reflector element 20 and the glass substrate S on which the coating is deposited is very small to minimize the divergence.
Dans une variante de ce premier mode de réalisation, les moyens pour permettre le préchauffage permettent également un post-chauffage pour obtenir un refroidissement lent du revêtement traité. Pour cela, l'élément réflecteur 20 est agencé pour être capable de réfléchir le faisceau non absorbé f dans deux directions différentes comme visible à la figure 3.  In a variant of this first embodiment, the means to allow preheating also allow post-heating to obtain a slow cooling of the treated coating. For this, the reflector element 20 is arranged to be able to reflect the unabsorbed beam f in two different directions as can be seen in FIG.
Dans une première exécution, l'élément réflecteur 20 de ce second mode de réalisation est un miroir coudé M'. Un tel miroir M' comprend deux sections m formant, entre elles, un angle. Les faces de l'angle externe (le plus grand des deux angles) sont réfléchissantes alors que les faces de l'angle interne permettent la présence de moyens de support de l'élément réflecteur 20.  In a first embodiment, the reflector element 20 of this second embodiment is a bent mirror M '. Such a mirror M 'comprises two sections m forming, between them, an angle. The faces of the external angle (the larger of the two angles) are reflective while the faces of the internal angle allow the presence of support means of the reflector element 20.
Dans une seconde exécution visible à la figure 4, l'élément réflecteur 20 est un miroir M" se présentant sous la forme d'un bloc cylindre 200 de section triangulaire. Ce miroir M" comprend deux faces de tranche 201 parallèles et trois faces de côté 202. Deux faces de côté adjacentes sont réfléchissantes.  In a second embodiment visible in FIG. 4, the reflector element 20 is a mirror M "in the form of a cylinder block 200 of triangular section .This mirror M" comprises two parallel slice faces 201 and three faces of side 202. Two adjacent side faces are reflective.
Ce positionnement de l'élément réflecteur 20 permet avantageusement de scinder le faisceau non absorbé f en deux. Une première partie scindée est dirigée en amont du point de focalisation alors que la seconde partie scindée est dirigée en aval du point de focalisation. Si la première partie scindée et dirigée en amont permet de préchauffage du substrat verrier S, la seconde partie scindée et dirigée en aval du point de focalisation permet d'améliorer le refroidissement. Effectivement, cela permet d'assurer une descente en température plus lente après le traitement thermique. This positioning of the reflector element 20 advantageously makes it possible to split the unabsorbed beam f in two. A first split portion is directed upstream of the focus point while the second split portion is directed downstream of the focus point. If the first part split up and directed upstream allows preheating of the glass substrate S, the second portion split and directed downstream of the focusing point improves the cooling. Indeed, this ensures a lower temperature drop after the heat treatment.
L'élément réflecteur 20 pourra être conçu et positionné de sorte à scinder équitablement le faisceau non absorbé f ou pour le scinder de façon inéquitable pour privilégier la partie en amont ou la partie en aval du point de focalisation. Pour modifier le rapport de scission du faisceau non absorbé f par l'élément réflecteur 20, la position du sommet est modifiée. Pour contrôler la puissance surfacique, les angles d'inclinaison des deux sections réfléchissantes sont utilisés et sont modifiés. Les angles d'inclinaisons peuvent avoir des valeurs différentes et être modifiés de manière indépendante.  The reflector element 20 may be designed and positioned to split the unabsorbed beam equitably or to unequally split it to favor the upstream or downstream portion of the focusing point. To modify the split ratio of the unabsorbed beam f by the reflector element 20, the position of the vertex is changed. To control the pfd, the inclination angles of the two reflective sections are used and are modified. The angles of inclination can have different values and be modified independently.
Le dispositif de traitement thermique 1 comprend en outre un bouclier de faisceau BD. Ce bouclier de faisceau BD est agencé sur le trajet du faisceau non absorbé réfléchi f. Plus particulièrement, ce bouclier de faisceau BD est agencé au-dessus du substrat verrier S. Cet agencement permet au bouclier de faisceau BD d'être l'élément qui stoppe la propagation du faisceau non absorbé réfléchi f. Ce bouclier BD est avantageusement réalisé dans un matériau résistant à la chaleur comme une céramique ou un métal à haut point de fusion et/ou peut être refroidi. Dans le cas d'un faisceau non absorbé scindé en deux, deux boucliers de faisceau BD pourront être présents.  The heat treatment device 1 further comprises a beam shield BD. This beam shield BD is arranged on the path of the reflected unabsorbed beam f. More particularly, this beam shield BD is arranged above the glass substrate S. This arrangement allows the beam shield BD to be the element which stops the propagation of the reflected unabsorbed beam f. This shield BD is advantageously made of a heat-resistant material such as a ceramic or a metal with a high melting point and / or can be cooled. In the case of an unabsorbed beam split in two, two BD beam shields may be present.
Dans un second mode de réalisation comme visible à la figure 5, l'élément réflecteur 20 est une couche réfléchissante 21 . Cette couche réfléchissante 21 est agencée sur le substrat verrier S au niveau de sa seconde face c'est-à-dire la face opposée à la face portant le revêtement R. Cette couche réfléchissante 21 , pour être efficace, présente une réflectivité d'au moins 70%, préférentiellement d'au moins 80%.  In a second embodiment as shown in FIG. 5, the reflector element 20 is a reflective layer 21. This reflecting layer 21 is arranged on the glass substrate S at its second face, that is to say the face opposite to the face carrying the coating R. This reflective layer 21, to be effective, has a reflectivity of at least 70%, preferably at least 80%.
Ainsi, cette couche réfléchissante 21 réfléchie le faisceau non absorbé f. Cette réflexion est similaire à celle du miroir M décrit dans le premier mode de réalisation c'est-à-dire que le faisceau non absorbé f est réfléchi vers l'amont du point de focalisation. Dans un exemple non limitatif de configuration, le substrat verrier fait 4mm d'épaisseur, le laser à une puissance de 433W et une largeur de δθμιτι, la réflectivité de la couche réfléchissante est de 80% et l'angle d'incidence du laser sur le substrat verrier est de 7°. Ainsi, dans ce cas-là, le faisceau non absorbé réfléchi traverse le substrat verrier en amont du point de focalisation sur une largeur d'environ 300μηη et à une distance d'environ 350 μιτι du point de focalisation. Cet exemple de configuration permet d'obtenir un gain de vitesses de convoyage de 15% en passant d'environ 6m/min à 7m/min à performances égales du traitement. Thus, this reflective layer 21 reflects the unabsorbed beam f. This reflection is similar to that of the mirror M described in the first embodiment, that is to say that the unabsorbed beam f is reflected upstream of the focusing point. In a non-limiting example of configuration, the glass substrate is 4mm thick, the laser has a power of 433W and a width of δθμιτι, the reflectivity of the reflective layer is 80% and the angle of incidence of the laser on the glass substrate is 7 °. Thus, in this case, the reflected unabsorbed beam passes through the glass substrate upstream of the focusing point over a width of about 300μηη and at a distance of about 350 μιτι from the focusing point. This configuration example makes it possible to obtain a conveyance speed gain of 15% from about 6m / min to 7m / min at equal processing performance.
Bien entendu, la présente invention ne se limite pas à l'exemple illustré mais est susceptible de diverses variantes et modifications qui apparaîtront à l'homme de l'art.  Of course, the present invention is not limited to the illustrated example but is susceptible of various variations and modifications that will occur to those skilled in the art.

Claims

REVENDICATIONS
1 . Dispositif de traitement thermique (1 ) d'un revêtement (R) déposé sur un substrat (S) comprenant des moyens de chauffage (10) en regard duquel le substrat peut défiler, lesdits moyens de chauffage (10) étant agencés pour chauffer une zone de chauffage du revêtement sur la première face du substrat verrier, caractérisé en ce que ledit dispositif de traitement thermique comprend en outre un moyen de préchauffage (10') agencé pour chauffer le revêtement dudit substrat défilant en amont de la zone de chauffage sur une zone de préchauffage. 1. Device for heat treatment (1) of a coating (R) deposited on a substrate (S) comprising heating means (10) facing which the substrate can be moved, said heating means (10) being arranged for heating an area coating of the coating on the first face of the glass substrate, characterized in that said heat treatment device further comprises a preheating means (10 ') arranged to heat the coating of said moving substrate upstream of the heating zone on a zone Preheating
2. Dispositif de traitement thermique selon la revendication 1 , caractérisé en ce que les moyens de chauffage (10) sont agencés pour élever la température du revêtement de 300 à 700°C, en particulier de 500 à 650°C durant un laps de temps d'au maximum 1 ms et en ce que les moyens de préchauffage (10') sont agencés pour élever la température du revêtement (R) d'au maximum le tiers de la température atteinte par le revêtement via des moyens de chauffage durant un laps de temps d'au maximum 50 ms. 2. heat treatment device according to claim 1, characterized in that the heating means (10) are arranged to raise the coating temperature from 300 to 700 ° C, in particular from 500 to 650 ° C for a period of time by at most 1 ms and in that the preheating means (10 ') are arranged to raise the temperature of the coating (R) by at most one-third of the temperature reached by the coating via heating means during a lapse of time. time of up to 50 ms.
3. Dispositif de traitement thermique selon l'une des revendications précédentes, caractérisé en ce qu'il comprend en outre un dispositif de recyclage (RC) permettant d'utiliser la partie non absorbée de l'énergie fournie par les moyens de chauffage (10) pour servir de moyen de préchauffage. 3. Heat treatment device according to one of the preceding claims, characterized in that it further comprises a recycling device (RC) for using the unabsorbed portion of the energy supplied by the heating means (10). ) to serve as a preheating means.
4. Dispositif de traitement thermique selon l'une des revendications précédentes, caractérisé en ce que les moyens de chauffage (10) comprennent un système laser (10b) comprenant au moins un générateur laser (L). 4. Heat treatment device according to one of the preceding claims, characterized in that the heating means (10) comprise a laser system (10b) comprising at least one laser generator (L).
5. Dispositif de traitement thermique selon la revendication 4, caractérisé en ce que le système laser (10b) est positionné pour être angulairement décalé par rapport à la perpendiculaire au substrat verrier. 5. Heat treatment device according to claim 4, characterized in that the laser system (10b) is positioned to be angularly offset from the perpendicular to the glass substrate.
6. Dispositif de traitement thermique selon l'une des revendications 1 à 3, caractérisé en ce que les moyens de chauffage (10) comprennent une pluralité de lampes flash (LD). 6. Heat treatment device according to one of claims 1 to 3, characterized in that the heating means (10) comprise a plurality of flash lamps (LD).
7. Dispositif de traitement thermique selon les revendications 4 ou 6, caractérisé en ce que le dispositif de recyclage (RC) est un élément réflecteur (20) agencé pour réfléchir la partie du faisceau lumineux non absorbée (f) par le substrat et la diriger sur le revêtement dudit substrat défilant afin d'agir comme moyen de préchauffage. 7. Heat treatment device according to claim 4 or 6, characterized in that the recycling device (RC) is a reflective element (20) arranged to reflect the portion of the unabsorbed light beam (f) by the substrate and direct it on the coating of said traveling substrate to act as a preheating means.
8. Dispositif de traitement thermique selon la revendication 7, caractérisé en ce que ledit élément réflecteur (20) est un miroir (M) agencé en regard de la face opposée à la face dudit substrat portant le revêtement. 8. Heat treatment device according to claim 7, characterized in that said reflector element (20) is a mirror (M) arranged opposite the face opposite to the face of said substrate carrying the coating.
9. Dispositif de traitement thermique selon la revendication 8, caractérisé en ce que ledit élément réflecteur (20) est un miroir (M) plat s'étendant parallèlement au plan du substrat. 9. Heat treatment device according to claim 8, characterized in that said reflective element (20) is a mirror (M) flat extending parallel to the plane of the substrate.
10. Dispositif de traitement thermique selon la revendication 8, caractérisé en ce que ledit élément réflecteur (20) est un miroir (M) courbe. 10. Heat treatment device according to claim 8, characterized in that said reflector element (20) is a curved mirror (M).
1 1 . Dispositif de traitement thermique selon l'une des revendications 8 à 10, caractérisé en ce que ledit élément réflecteur (20) est mobile selon au moins un degré de liberté. 1 1. Heat treatment device according to one of claims 8 to 10, characterized in that said reflective element (20) is movable in at least one degree of freedom.
12. Dispositif de traitement thermique selon la revendication 1 1 , caractérisé en ce que le degré de liberté est une translation dans un plan perpendiculaire au plan du substrat. 12. Heat treatment device according to claim 1 1, characterized in that the degree of freedom is a translation in a plane perpendicular to the plane of the substrate.
13. Dispositif de traitement thermique selon la revendication 1 1 , caractérisé en ce que le degré de liberté est une rotation par rapport à un axe perpendiculaire à la direction de défilement. 13. Heat treatment device according to claim 1 1, characterized in that the degree of freedom is a rotation relative to an axis perpendicular to the direction of travel.
14. Dispositif de traitement thermique selon la revendication 7, caractérisé en ce que ledit élément réflecteur (20) est agencé pour réfléchir un faisceau dans deux directions distinctes permettant d'orienter le faisceau non absorbé (f) de part et d'autres du point de focalisation. 14. Heat treatment device according to claim 7, characterized in that said reflector element (20) is arranged to reflect a beam in two distinct directions for orienting the unabsorbed beam (f) on either side of the point of focus.
15. Dispositif de traitement thermique selon la revendication 14, caractérisé en ce que ledit élément réflecteur (20) est un miroir (Μ') comprenant deux sections formant entre elles un angle, les faces de l'angle externe étant réfléchissantes. 15. Heat treatment device according to claim 14, characterized in that said reflective element (20) is a mirror (Μ ') comprising two sections forming between them an angle, the faces of the outer corner being reflective.
16. Dispositif de traitement thermique selon la revendication 14, caractérisé en ce que ledit élément réflecteur (20) comprend un bloc cylindre (200) de section triangulaire comportant deux faces de tranche (201 ) parallèles et trois faces de côté (202), deux faces de côté adjacentes étant réfléchissantes. 16. Heat treatment device according to claim 14, characterized in that said reflector element (20) comprises a cylinder block (200) of triangular section having two parallel wafer faces (201) and three side faces (202), two adjacent side faces being reflective.
17. Dispositif de traitement thermique selon la revendication 7, caractérisé en ce que ledit élément réflecteur (20) est une couche réfléchissante (21 ) déposée sur la face dudit substrat (S) opposée à la face portant le revêtement (R). 17. Heat treatment device according to claim 7, characterized in that said reflective element (20) is a reflective layer (21) deposited on the face of said substrate (S) opposite the face bearing the coating (R).
18. Dispositif de traitement thermique selon l'une des revendications précédentes, caractérisé en ce que le substrat (S) s'étend selon une première dimension et une seconde dimension orthogonale à la première dimension, ledit substrat défilant dans une direction colinéaire à la plus grande des deux dimensions, et en ce que le moyen de chauffage s'étend dans une direction orthogonale à la direction de défilement. 18. Heat treatment device according to one of the preceding claims, characterized in that the substrate (S) extends in a first dimension and a second dimension orthogonal to the first dimension, said substrate traveling in a collinear direction at most. large of the two dimensions, and in that the heating means extends in a direction orthogonal to the direction of travel.
19. Dispositif de traitement thermique selon l'une des revendications précédentes, caractérisé en ce que la zone de préchauffage et la zone de chauffage sont disjointes. 19. Heat treatment device according to one of the preceding claims, characterized in that the preheating zone and the heating zone are disjoint.
20. Dispositif de traitement thermique selon l'une des revendications précédentes, caractérisé en ce que ledit substrat s'étend selon une première direction qui est sa longueur et une seconde direction qui est sa largeur et qui est orthogonale à la première direction, ledit substrat défilant dans le sens de sa longueur, la zone de préchauffage et la zone de chauffage s'étendant sur l'ensemble de la largeur du substrat.  20. Heat treatment device according to one of the preceding claims, characterized in that said substrate extends in a first direction which is its length and a second direction which is its width and which is orthogonal to the first direction, said substrate scrolling in the direction of its length, the preheating zone and the heating zone extending over the entire width of the substrate.
PCT/FR2018/052118 2017-08-30 2018-08-29 Improved heat treatment device WO2019043334A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207007954A KR20200046056A (en) 2017-08-30 2018-08-29 Improved heat treatment device
EP18773534.5A EP3676230A1 (en) 2017-08-30 2018-08-29 Improved heat treatment device
CN201880056490.3A CN111032590A (en) 2017-08-30 2018-08-29 Improved heat treatment equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1757990A FR3070387A1 (en) 2017-08-30 2017-08-30 IMPROVED THERMAL TREATMENT DEVICE
FR1757990 2017-08-30

Publications (1)

Publication Number Publication Date
WO2019043334A1 true WO2019043334A1 (en) 2019-03-07

Family

ID=60302267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/052118 WO2019043334A1 (en) 2017-08-30 2018-08-29 Improved heat treatment device

Country Status (5)

Country Link
EP (1) EP3676230A1 (en)
KR (1) KR20200046056A (en)
CN (1) CN111032590A (en)
FR (1) FR3070387A1 (en)
WO (1) WO2019043334A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3831790A4 (en) * 2018-07-27 2022-06-01 Cowindst Co., Ltd. Low-e glass annealing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013026817A1 (en) * 2011-08-19 2013-02-28 Von Ardenne Anlagentechnik Gmbh Method and device for producing a low-emitting layer system
WO2014111664A1 (en) * 2013-01-18 2014-07-24 Saint-Gobain Glass France Process for obtaining a substrate equipped with a coating
WO2014132000A1 (en) * 2013-03-01 2014-09-04 Saint-Gobain Glass France Method for heat-treating a coating

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999041777A1 (en) * 1998-02-13 1999-08-19 Seiko Epson Corporation Method of producing semiconductor device and heat treating apparatus
GB2402230B (en) * 2003-05-30 2006-05-03 Xsil Technology Ltd Focusing an optical beam to two foci
FR2934588B1 (en) * 2008-07-30 2011-07-22 Fives Stein METHOD AND DEVICE FOR MAKING A STRUCTURE ON ONE OF THE FACES OF A GLASS RIBBON
CN101727010B (en) * 2009-12-03 2011-11-09 吉林大学 Method for preparing biomimetic colour super-hydrophobic coating by multi-beam interference photoetching technology
US10226837B2 (en) * 2013-03-15 2019-03-12 Nlight, Inc. Thermal processing with line beams

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013026817A1 (en) * 2011-08-19 2013-02-28 Von Ardenne Anlagentechnik Gmbh Method and device for producing a low-emitting layer system
WO2014111664A1 (en) * 2013-01-18 2014-07-24 Saint-Gobain Glass France Process for obtaining a substrate equipped with a coating
WO2014132000A1 (en) * 2013-03-01 2014-09-04 Saint-Gobain Glass France Method for heat-treating a coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3831790A4 (en) * 2018-07-27 2022-06-01 Cowindst Co., Ltd. Low-e glass annealing device

Also Published As

Publication number Publication date
CN111032590A (en) 2020-04-17
KR20200046056A (en) 2020-05-06
EP3676230A1 (en) 2020-07-08
FR3070387A1 (en) 2019-03-01

Similar Documents

Publication Publication Date Title
EP0106722B1 (en) Semiconductor heat treatment apparatus
EP2473315B1 (en) LASER-FOCUSING HEAD WITH ZnS LENSES HAVING A PERIPHERAL THICKNESS OF AT LEAST 5 MM AND LASER CUTTING UNIT AND METHOD USING ONE SUCH FOCUSING HEAD
EP1250711B1 (en) Device for fast and uniform heating of a substrate with infrared radiation
EP1263538B1 (en) Method for locally removing a coat applied on a translucent or transparent substrate
FR2969391A1 (en) METHOD FOR MANUFACTURING OLED DEVICE
EP2782741B1 (en) Unit for heat treating container preforms with double walls radiating in a staggered configuration
FR2972447A1 (en) PROCESS FOR OBTAINING A SUBSTRATE WITH A COATING
EP2678132A1 (en) Heat treatment of a laser coating
WO2015055932A1 (en) Modular laser apparatus
FR3025936A1 (en) METHOD FOR RECLAIMING FLASH LAMPS
EP3676230A1 (en) Improved heat treatment device
FR3042492A1 (en) METHOD FOR QUICKLY RELEASING A THIN FILM STACK CONTAINING AN INDIUM-BASED OVERCAST
FR2859820A1 (en) Modification of characteristic of one zone in a multizone material uses thermal effect produced by laser beam
EP2472305B1 (en) Optical system for focusing a laser beam in a solid state laser cutting apparatus
EP1226581B1 (en) Method and device for initialising digital optical discs
FR3101359A1 (en) GLAZING EQUIPPED WITH A STACK OF THIN LAYERS
FR3073839A1 (en) SYSTEM FOR ALIGNING A THERMAL TREATMENT DEVICE AND ITS OPERATION
WO2019069015A1 (en) Monolithic glass-ceramic sheet having a textured surface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18773534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207007954

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018773534

Country of ref document: EP

Effective date: 20200330